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Abstract

Basal crevasses threaten the stability of ice shelves through the potential to form rifts and calve ice-
bergs. Furthermore, it is important to determine the dependence of crevasse stability on tempera-
ture due to large vertical temperature variations on ice shelves. In this work, considering the vertical
temperature profile through ice viscosity, we compare (1) the theoretical crack depths and (2) the
threshold stress causing the transition from basal crevasses to full thickness fractures in several frac-
ture theories. In the Zero Stress approximation, the depth-integrated force at the crevassed and
non-crevassed location are unbalanced, violating the volume-integrated Stokes equation. By incorp-
orating a Horizontal Force Balance (HFB) argument, recent work showed analytically that the
threshold stress for rift initiation is only half of that predicted by the Zero Stress approximation.
We generalize the HFB theory to show that while the temperature profile influences crack depths,
the threshold rifting stress is insensitive to temperature. We compare with observations and find
that HFB best matches observed rifts. Using HFB instead of Zero Stress for cracks in an ice-
sheet model would substantially enlarge the predicted fracture depth, reduce the threshold rifting
stress and potentially increase the projected rate of ice shelf mass loss.

1. Introduction

Basal crevasses, which are vertical fractures on the underside of ice, can play an important role in
the calving process and thus the stability of ice shelves and marine-terminating glaciers
(McGrath and others, 2012a; Colgan and others, 2016; Jeong and others, 2016). A reduction
in buttressing through calving or other processes can increase the mass loss from ice sheets
and raise global mean sea level by increasing the grounding line flux (Thomas and MacAyeal,
1982; Rott and others, 2002; Rignot and others, 2004; Dupont and Alley, 2005; Pritchard and
others, 2012; Haseloff and Sergienko, 2018). Individual basal crevasses can induce surface cre-
vasses, create surface depressions when sufficiently deep that may enable surface meltwater
ponding, reduce the ability of ice shelves to provide back stress to upstream grounded ice and
penetrate through the full ice thickness to form rifts (Pralong and Funk, 2005; McGrath and
others, 2012b; Luckman and others, 2012; Child and others, 2021). When spaced periodically,
basal crevasses can potentially stabilize ice shelves from breakup through dampening stresses
transmitted through high-frequency elastic-flexural waves (Freed-Brown and others, 2012).
The evolution of basal crevasses has been modeled by the balance of ice shelf and hydrostatic
ocean stresses (Zarrinderakht and others, 2022), as well as idealized ocean dynamics and the
mass balance of melting and freezing (Jordan and others, 2014). Basal crevasses may play a cen-
tral role in the flexure-driven calving of marine-terminating glaciers seen in Greenland and
Canada (Wagner and others, 2014; Murray and others, 2015; Wagner and others, 2016; Benn
and others, 2017). In Antarctica, basal crevasses may initiate rifts (Jeong and others, 2016;
Joughin and others, 2021) that can propagate across the ice shelf and calve icebergs
(Lipovsky, 2020). These icebergs can transport fresh meltwater equatorwards and threaten bio-
diversity of islands in the Southern Ocean (Huth and others, 2022).

While the calving of icebergs is likely caused by multiple mechanisms, we focus on the tran-
sition from basal crevasses to full-thickness fractures, also referred to as rifts. In the absence of
ample surface meltwater such as surface melt ponds, basal crevasses are theoretically more vul-
nerable than surface crevasses to full-thickness penetration and cause rift initiation (Lai and
others, 2020). The depth-averaged deviatoric stress formulations of Nye (Nye, 1955),
Weertman (Weertman, 1973) and the zero toughness or half-space formulations of Mode I
Linear Elastic Fracture Mechanics (LEFM) (van der Veen, 1998a) all predict basal crevasses to
be about nine times deeper than dry (water-free) surface crevasses. The magnitude of lithostatic
stress only decreases as basal crevasses propagate upwards, yet increases as surface crevasses
propagate downwards, making the initiation of rifts more likely due to basal crevasses than
dry surface crevasses. Thus, we study basal crevasses as the precursors of rifts in the absence
of strong atmospheric forcing (Morris and Vaughan, 2003; van Wessem and others, 2023).
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Driven by the importance to predict rift initiation on ice
shelves, here we extend analytical and numerical models to both
predict the ice shelf threshold stress R∗

xx for rifts to initiate from
Mode I (tensile) basal crevasses, and include a vertical tempera-
ture profile, which we show can substantially affect fracture pre-
dictions, yet is currently neglected in fracture parameterization
in ice-sheet models (Goelzer and others, 2020; Seroussi and
others, 2020). We consider three theories for Mode I basal cre-
vasses to propagate into rifts: (1) the Zero Stress approximation
(Jezek, 1984; Benn and others, 2007; Nick and others, 2010),
(2) LEFM for basal crevasses (van der Veen, 1998a; Tada and
others, 2000; Lai and others, 2020) and (3) the Horizontal
Force Balance (HFB) (Buck, 2023). On ice shelves, the Zero
Stress approximation forms rifts from the intersection of basal
crevasses with a surface crevasse, and requires the largest amount
of tensile stress among the three theories for a rift to form. LEFM
considers an isolated basal crevasse such that stress can concen-
trate at the crack tip and predicts the smallest amount of tensile
stress required for rift initiation. The major limitation of current
LEFM-based basal crevasse theory used in this paper (van der
Veen, 1998a) is its neglection of the restoring force at the
deformed ice-ocean interface, leading to non-physical predictions
of the rifting stress. The HFB theory considers the union of sur-
face and basal crevasses for rift formation in a material with zero
strength, similar to the Zero Stress approximation. However,
unlike the Zero Stress approximation, HFB theory does not violate
static force balance. We find that the rifting stress predicted by
HFB for a range of temperature profiles is the same as the tensile
stress at the ice shelf front with no sea ice buttressing; a rifting
stress slightly greater than that of LEFM but much less than
that of the Zero Stress approximation.

Our fracture models’ deviations from standard implementa-
tions and validation of the Zero Stress approximation (Jezek,
1984; Benn and others, 2007; Nick and others, 2010) and Mode
I LEFM for basal crevasses (van der Veen, 1998a) are summarized
below. First, we include the depth variation of the resistive stress
Rxx due to vertical temperature variation in all theories and com-
pare the results. We chose a linear temperature profile for simpli-
city, and then show the effects of a different temperature profile.
Second, we enforce the Zero Stress approximation to uphold HFB
and include vertical temperature variations, following a procedure
similar to Buck (2023) and obtaining a simple analytical result.
Third, we shift the focus from crevasse depth prediction to rift
formation prediction, analyzing results in terms of stress required
for basal crevasses to unstably propagate and initiate rifts or calv-
ing events. Fourth, we validate rift formation predictions with an
existing rift catalog (Walker and others, 2013) on the Ross Ice
Shelf (RIS) and Larsen C Ice Shelf (LCIS). We verified that the
deviation in resistive stress between the 1D fracture theory and
the 2D Shallow-Shelf Approximation (SSA) (MacAyeal, 1989) is
less than 10%, thus ensuring validity of the 1D flow assumption
in the regions of interest.

2. Fracture models of basal crevasses with vertically
varying ice temperature

The basal crevasse evolution problem is illustrated schematically in
Figure 1a, where crack growth may either terminate at a stable
length, or propagate unstably to form a rift, with outcome subject
to the chosen fracture theory. Figure 1b shows the differences
between existing isothermal basal crevasse depth prediction theories:
the Zero Stress approximation, LEFM and a new HFB model in
(Buck, 2023). While these theories differ for a range of crack depths,
the largest discrepancy is near the sea level, where basal crevasses
can unstably propagate and form rifts. Although the basal crevasse
to rift transition is challenging to precisely measure given the

current spatiotemporally sparse observations (see Appendix B),
Figure 1c through f motivates our study of rift initiation associated
with basal crevasse vertical propagation through observed increases
in resistive stress upon rift formation. Importantly, ice shelves are
not isothermal, and basal crevasse depths are sensitive to the ice
shelf vertical temperature profile (Rist and others, 2002; Borstad
and others, 2012; Lai and others, 2020). We analyze several fracture
models (van der Veen, 1998a; Nick and others, 2010; Buck, 2023)
and the stress required to form rifts, considering a vertically linear
temperature profile for simplicity. We assume that the base of the
ice shelf is held at Tb =−2 °C, and take a linear temperature profile
up to the surface temperature Ts as predicted by RACMO (van
Wessem and others, 2018). To conclude this section, we show
that having a Robin temperature profile (Robin, 1955) does not
change the results of this study.

The historical focus on crevasses was centered on surface cre-
vasses, with Nye’s Zero Stress (Nye, 1955) and LEFM (Smith,
1976). However, the use of radar confirmed the presence of cre-
vasses extending upwards from the bottom of the ice (Jezek and
others, 1979; Jezek and Bentley, 1983). The surface crevasses the-
ories were later extended to study basal crevasses (Jezek, 1984;
Benn and others, 2007; Nick and others, 2010; van der Veen,
1998a). The Zero Stress approximation we refer to in this paper
considers these extensions (Jezek, 1984; Benn and others, 2007;
Nick and others, 2010) of Nye’s Zero Stress approximation that
consider both a surface crevasse and a hydrostatic seawater pres-
sure inside a basal crevasse.

Since the setup of these basal crevasse depth theories share many
basic assumptions, we will first present the commonalities, and then
explore each individually. As shown in Figure 1a, given a 2D coord-
inate system with x as the horizontal dimension and z as the vertical
dimension, assuming incompressibility and a stress-free upper sur-
face, we can write the net longitudinal stress σn of van der Veen
(1998a) at the approximately vertical basal crevasse interface as

sn z( ) = Rxx z( ) − pl z( ) + pw z( ), (1)

where Rxx(z), pl(z) and pw(z) are the along-flow component of ice
shelf resistive stress defined in Cuffey and Paterson (2010), ice
lithostatic pressure and hydrostatic water pressure, respectively.
As in the Shallow Shelf Approximation of Stokes flow
(MacAyeal, 1989), we assume that there is negligible vertical
shear stress in the ice due to negligible shear stress on the surface
and basal boundaries. By setting z = 0 at the ice shelf base and posi-
tive upwards as shown in Figure 1a, we define the pressure terms as
pl = ρig (H− z) and water pressure pw = ρwg max(zh− z, 0), with
gravitational acceleration g = 9.8 m s−2, vertically integrated ice
density ρi = 917 kg m−3 and ice thickness H. The piezometric
head zh = Hri/rw as defined in Nick and others (2010) depends
on the water density; for this study, we assume constant saltwater
density ρw = 1028 kgm−3.

The way that we account for vertical temperature profile T(z) is
through the ice hardness B(T ) in the effective viscosity. Modeling
ice as a Non-Newtonian power-law fluid (Glen, 1958), the effect-
ive viscosity is,

m =
B T( )
2

ė(1/n)−1
e ≈

B T( )
2

ė(1/n) −1
xx , (2)

where the effective strain rate ėe =
��������

ėijėji/2
√

, i.e. the second
invariant of the strain rate tensor ėij, is dominated by the along-
flow component ėxx in comparison to the across-flow and shear
terms. Denoting τxx as the along-flow component of the deviatoric
stress, the along-flow resistive stress Rxx = 2txx = 4mėxx can be
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written as

Rxx = 2B T( )ė1/nxx . (3)

Based on lab experiments, the Glen’s flow law gives n = 3 (Glen,

1958), and B(T ) (LeB Hooke, 1981) can be expressed as

B T( ) = B0 exp
T0

T
−

C

Tr − T( )k

[ ]

, (4)

Figure 1. (a) Schematic of crevasses propagating stably or unstably and forming a full-thickness fracture called a rift. Crevasse depths ds, db, thickness H, coord-

inate system and piezometric head at sea level zh are illustrated. (b) Several previously existing isothermal crevasse depth predictions versus depth-averaged resist-

ive stress �Rxx normalized by the analytical depth-averaged ice tongue resistive stress �R
IT
xx for H = 300 m. Circular red dots are LEFM basal crevasse depth numerical

predictions, solid lines are basal crevasse depth analytical theory and dash-dotted lines are surface crevasse depth analytical theory. Rifts initiate either where

db = H for LEFM or at the stars that denote the intersection of surface and basal crevasse tips. Horizontal Force Balance (HFB) and Zero Stress require the existence

of both surface and basal crevasses on ice shelves for theoretical consistency, whereas LEFM treats an isolated basal crevasse. Subfigures (c) to (f) show a potential

instance of the basal crevasse-to-rift transition (Jeong and others, 2016; Joughin and others, 2021) over Pine Island Ice Shelf during January to May 2019. (c) An

estimate of the ratio �Rxx/�R
IT
xx over Pine Island Ice Shelf found using ice velocity data averaged over the month of January 2019 (Wuite and others, 2021). (d) SAR

backscatter image at 50 m resolution from 5th January 2019, and a close-up showing the terminus region of Pine Island Ice Shelf where a fracture (can be surface

crack, surface expression of basal crack or rift) is dimly visible. (e) The equivalent of (c) for May 2019. (f) A backscatter image from May 2019 where a rift is clearly

visible. Grounded ice (Haran and others, 2013), grounding lines (Mouginot and others, 2017b) and calving fronts are denoted by masking, a dashed black line and a

solid black line, respectively.
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where B0 = 2.207 Pa ⋅ yr1/n, T0 = 3155 K, Tr = 273.39 K, k = 1.17
and C = 0.16612 Kk are constants determined from empirical fit
(LeB Hooke, 1981). We discuss sensitivity to rheology choices
in the Robin Temperature Profile subsection, the Discussion
and Conclusions section, and Appendix F.

2.1. Zero stress approximation

Nye’s theory (Nye, 1955) assumes that a crevasse will stop propa-
gating when further infinitesimal crack growth would put the net
longitudinal stress σn at the crack tip into compression. Originally
conceived for surface crevasses only, it has been extended to
model basal crevasses by approximating the stress exerted from
the ocean on crevasse walls as hydrostatic (Jezek, 1984; Benn
and others, 2007; Nick and others, 2010; Duddu and others,
2020). This so-called Zero Stress approximation generates cre-
vasses where there is net tensile stress; on ice shelves, surface
and basal crevasses are both allowed to propagate. While previous
Zero Stress applications assume isothermal ice (Nye, 1955; Jezek,
1984; Benn and others, 2007; Nick and others, 2010; Duddu and
others, 2020), we have extended the theory to consider depth-
varying temperature. As derived in Appendix C, a basal crevasse
on a freely floating ice shelf with vertical temperature variation
can unstably propagate to the surface when the resistive stress is
above the threshold

�Rxx

�R
IT
xx

≥ 2
rw
ri

d∗b
H

B̃ T( )
B̃ T d∗b/H

( )( ) , (5)

where the overline �q represents a depth-averaged value for the
variable q. The dimensionless numbers involved are the ratio of
densities ρw/ρi; the unstable basal crevasse depth d∗b relative to

ice thickness H; the non-dimensional ice hardness

B̃(T) ; B(T)/B(T(z = 0)); and the non-dimensional ice hardness

at the unstable basal crevasse depth B̃(T(d∗b/H)); the

depth-averaged resistive stress �Rxx relative to the resistive stress

of a 1D unbuttressed ice tongue �R
IT
xx ; 1− ri/rw

( )

rigH/2 as

derived by Weertman (1957) from the force balance for an ice

tongue
�H

0
Rxx(z)dz =

�H

0
4me

.
xxdz = 1− ri/rw

( )

rigH/2. In the

Zero Stress approximation, all basal crack depths less than the
unstable basal crevasse depth d∗b are stable, while those greater

than or equal to d∗b will result in rift formation.
As shown in Appendix C, we write the result of depth-

dependent resistive stress in terms of depth-averaged resistive stres-

ses such that we can use the same ratio �R
∗
xx/

�R
IT
xx between all theories

in this paper. Note that when we treat the ice as isothermal or util-
ize a depth-averaged resistive stress instead of the depth-varying

resistive stress, the ice hardness ratio B̃ T( )/B̃(T(d∗b/H)) is 1, and
the maximum basal crevasse depth is from the base to sea level

rwd
∗
b

( )

/ riH
( )

= 1, making the right-hand side of Eqn (5) equal

to 2. Thus, under the Zero Stress approximation, a basal crevasse
will propagate to the sea level, intersecting a surface crevasse to
form a rift in isothermal ice when the depth-averaged resistive
stress is twice that of an isothermal ice tongue, as shown in
Figure 1b.

The simplicity of the Zero Stress approximation comes with
limitations. The rifting stress threshold we derived in Appendix C
to get Eqn (5) does not include stress concentration near crack
tips, the material strength of ice, accumulation and melt, nor
crevasse-induced stresses in ice. The lack of stress concentration
and zero material strength is applicable in the limit of closely spaced
crevasses (De Robin, 1974; Weertman, 1974), where the spacing
between crevasses is much less than the individual crevasse depths

(Weertman, 1977). Observations indicate basal crevasse spacing to
be roughly one to several ice thicknesses (Luckman and others,
2012; McGrath and others, 2012a; Lawrence and others, 2023),
breaking the densely spaced crevasses assumption. Recent exten-
sions of the Zero Stress approximation include non-zero material
strength (Benn and others, 2007) and accumulation and melting
effects (Bassis and Ma, 2015; Huth and others, 2021). In the limit
of densely spaced crevasses with negligible flexural stress, the effects
of crevasse-induced stress on crack depth has been included to sat-
isfy a HFB argument (Buck, 2023). We present an approach to gen-
eralize this approximate crevasse-induced stress for vertically
varying ice temperature in the Horizontal force balance section.

2.2. Linear elastic fracture mechanics

In contrast to the Zero Stress approximation, the LEFM frame-
work, first applied to surface crevasses by Smith (1976) and
later applied to basal crevasses by van der Veen (1998a), considers
an isolated basal crevasse with stress concentration near the crack
tip and assumes small-scale yielding (Zehnder, 2012). It has been
shown that LEFM agrees with the analytical approach of includ-
ing stress concentration near crack tips by Weertman (1973) for
small crack depths (Buck and Lai, 2021). Unlike Weertman’s
infinite thickness assumption (Weertman, 1973), LEFM comes
with the advantage of accounting for a prescribed finite thickness
(van der Veen, 1998a). The LEFM rifting threshold �R

∗
xx for an iso-

thermal ice shelf with traction-free upper and lower surfaces has
been reported by Zarrinderakht and others (2022) and Lai and
others (2020). Building on previous work (van der Veen, 1998a;
Tada and others, 2000; Lai and others, 2020), we extended the
LEFM analysis across a range of surface temperatures applicable
to Antarctica and present the rifting threshold �R

∗
xx for a vertically

varying ice temperature.
The criterion for Mode I (tensile) crevasse propagation in

LEFM is that a crack can propagate so long as the stress intensity
factor KI is at least as large as the fracture toughness KIc, KI≥ KIc.
Following Tada and others (2000); van der Veen (1998a); Lai and
others (2020), the stress intensity factor for a Mode I basal crack
can be written as

KI =
∫db

0

2sn(z)
�����

pdb
√ G(z, d̃b)

1−d̃b
( )3/2

1− z2
( )1/2

dz, (6)

where db is basal crack depth, H is ice thickness, z ; z/db is
a dimensionless height that is one at the crack tip, d̃b ; db/H
is the dimensionless basal crack depth relative to the ice thickness,
σn is the net longitudinal stress defined in Eqn (1), and G(z, d̃b) is
a dimensionless weight function given by Tada and others (2000)
(page 71) which is 99% accurate for any crack depth db. For the
fracture toughness of glacial ice, we use the experimental value
of KIc = 150 kPa

���

m
√

, which is found to be independent of tem-
perature (Litwin and others, 2012). For rifting, we follow the non-
dimensionalization and stability criteria in the Supplemental
material of Lai and others (2020): rifts are formed from unstable
basal cracks when the tensile stress is large enough such that
K̃ I ; KI/rigH

3/2 increases monotonically with d̃b (see Fig. 13).
One caveat is the assumption that the ice includes pre-existing
initial flaws with size dib, which depends on the stress state,
thickness and fracture toughness. The theoretical estimates of dib
are 3 orders of magnitude smaller than the ice thickness for
H = 300 m, as discussed in Appendix D, and thus one would
expect the existence of these pre-existing flaws.

We can approximately explain the dependence of rifting stress
on ice temperature by extending a torque equilibrium argument
by Zarrinderakht and others (2022) with isothermal ice to
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account for the temperature structure effects. As in Appendix C of
Zarrinderakht and others (2022), the rifting stress threshold can
be determined by zero torque (or moment) into the page asso-
ciated with a deep basal crevasse. Mathematically,

ty = ŷ · r ^ F
( )

= 2

∫s

b

Rxx z( ) − rig s− z( )
( )

s− z( )dz

− 2

∫0

b

rwgz s− z( )dz = 0, (7)

where s and b are the freely floating ice surface and base, the ori-
gin z = 0 is at sea level, and the ocean restoring force due to the
vertically deformed ice-ocean interface is neglected for equivalent
comparison. The only difference from Zarrinderakht and others
(2022) is the depth-variation of the resistive stress due to tempera-
ture Rxx(z). For simplicity, we approximate the ice hardness func-
tion in Eqn (4) with Ba in Eqn (E8) (see Fig. 2a),

Ba T z̃( )( ) ≈ B0 exp
T0

Tb

[ ]

exp
z̃ + ri

rw

z̃0

[ ]

, (8)

with z̃ = z/H = 0 at sea level, constants B0 = 2.207 Pa ⋅ yr1/n, n =
3, T0 = 3155 K, surface temperature Ts, basal temperature Tb and
the dimensionless e-folding length scale assuming a linear tem-
perature profile z̃0 ; ((T0/Tb)(1− Ts/Tb))

−1. Computation of
the moments with vertical temperature structure as in (7) were
also presented in Buck (2024). Substituting (8) into the resistive
stress (3) and calculating the torque equilibrium (7), the
temperature-structure-dependent LEFM rifting stress threshold
can be analytically derived,

�R
∗
xx

�R
IT
xx

=
2
3

2− ri
rw

( )

2z̃0 1− z̃0 exp 1
z̃0

( )

− 1
( )( )−1

( ) . (9)

The numerator of the equation is the same as that in
Zarrinderakht and others (2022), while the denominator is the
contribution due to a linear temperature profile. While this

equation is based on an approximate ice hardness function, it
approximately explains the numerical LEFM solution (see
Fig. 2b), capturing the role of linear vertical temperature depend-
ence through one new dimensionless variable, the dimensionless
e-folding length scale z̃0. Figure 2b shows that the dimensionless
LEFM rifting stress threshold decreases with warmer surface tem-
perature, consistent with Figure 4c.

One of the largest limitations of this version of LEFM is
neglecting the oceanic restoring force associated with the vertical
displacement at the ice-ocean boundary (Jimènez and Duddu,
2018; Huth and others, 2021; Zarrinderakht and others, 2022),
which is expected to be particularly important for deep basal cre-
vasses. Accounting for this oceanic restoring force in a LEFM
framework is the subject of future work. However, the effect of
buoyancy is included in the numerical simulations of an isolated
basal crevasse in Buck and Lai (2021), which predicts the same
rifting stress threshold as the HFB theory presented in the next
section.

2.3. Horizontal force balance

In the standard Zero Stress approximation, the depth-integrated
horizontal force per unit width (Fx) at the crevassed (x = xc)
and non-crevassed location (x = xc + Δx) are unbalanced
(see Figs 3b,d). If this force is unbalanced (

∑

Fx = 0), according
to the Newton’s Second Law this net force acting on the ice in the
control volume enclosed by the black dashed lines in Figure 3a
should lead to acceleration of the ice masses, which is inconsistent
with our Stokes flow assumption. The main assumption in the
Zero Stress approximation that led to the inconsistency is the
neglection of crevasse-induced stresses in the unbroken ligament
between the surface and basal crevasse tips (Figs 3a,b). Recent
work by Buck (2023) shows a new model that includes the
crevasse-induced stresses in the unbroken ice (Fig. 3c) by incorp-
orating a HFB argument. In this section, we apply the same argu-
ment for an ice shelf with vertically varying temperature. We use
an Eulerian control volume approach (the box enclosed by the
black dashed lines in Fig. 3a). Note that by satisfying HFB we
mean that the total force acting on the control volume argument
is zero (

∑

Fx = 0), satisfying Newton’s Second Law. As assumed

Figure 2. (a) Comparison of depth-averaged ice hardness value �B normalized by the constant B0 from LeB Hooke (1981) versus surface temperature, assuming a

linear temperature profile. The red curve numerically integrates (4), while the blue curve is an analytical integral of the approximated ice hardness profile Ba (8). (b)

Comparison of the rifting stress threshold versus surface temperature, assuming a linear temperature profile. The LEFM numerical solution calculated using (6) is

shown with red dots, while the analytical solution (9) based on torque equilibrium with an approximated ice hardness Ba (8) is in solid blue. We plot the limit of

Ts−�− 2 °C for the rifting stress from torque equilibrium as it converges to the isothermal case. The difference between the analytical and numerical results is

non-negligible, thus for the rest of the paper we use the numerical LEFM results. That said, the analytical result (9) offers interpretable insight by capturing the role

of the linear temperature profile with one additional dimensionless variable, the e-folding length scale z̃0 .
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in the Zero Stress approximation, we consider the limiting case of
a densely crevassed ice shelf where flexural stresses are negligible.

Our fixed control volume in Figure 3 has vertical boundaries at
the ice shelf surface and base, and horizontal boundaries at the
symmetry plane of a basal crevasse, x = xc, and at a nearby down-
stream location x = xc + Δx with the same ice thickness. The tem-
perature profile that dictates the vertical profile of Rxx(T(z)) is
depicted in Figure 1. We start with Stokes flow, yet inertial
terms may be non-negligible (Bassis and Kachuck, 2023).
Taking glaciostatic balance as in Lindstrom and MacAyeal
(1987) as the vertical force balance,

∂zszz = rig, (10)

we integrate from a level z to the surface H, i.e. σzz = ρig (z −H ),
and solve for pressure

p z( ) ; −szz + tzz = rig H − z( ) + tzz (11)

using a stress-free upper surface boundary condition. From the
downstream side of the control volume at x = xc + Δx, the longitu-
dinal ice shelf Cauchy stress can be written as

sxx xc + Dx, z( ) ; −p+ txx = −rig H − z( ) − tzz + txx

= −rig H − z( ) + Rxx(z), (12)

where the deviatoric stress tensor τij = σij + pδij by definition
has zero trace tr (τij) = 0 (e.g. see Section 12.1 of Rudnicki
(2014)), and thus τxx = −τzz in a 2D (x, z) system without assum-
ing incompressibility. Note that this stress distribution (12) is
valid for an uncrevassed location, where there is no basal
crevasse-induced flexural stress.

At x = xc, in order to satisfy HFB (
∑

Fx = 0), the extra com-
pressive stresses in the unbroken ligament of length L between
the surface and basal crevasse tips, induced by the crevasses them-
selves, need to be considered. We parameterize this
crevasse-induced stress to satisfy three conditions:

1. the zero material strength assumption of the Zero Stress
approximation (Nye, 1955; Jezek, 1984; Benn and others,
2007; Nick and others, 2010),

2. continuity of stress at crack tips (Buck and Lai, 2021) and
3. HFB (Buck, 2023).

Previous zero stress models (Nye, 1955; Benn and others, 2007;
Nick and others, 2010; Duddu and others, 2020) use condition
1 to solve for crack depth; we maintain that the stress field obey
condition 3 for static equilibrium, and take conditions 1 and 2
in the limit of a densely crevasses ice shelf with negligible flexural
stresses.

The longitudinal stress that is consistent with conditions 1 and
2 can be written in a piecewise fashion corresponding to a dry
surface crevasse of depth ds (H− ds≤ z≤H), a water-filled
basal crevasse of depth db (0 ≤ z ≤ db) and an ice ligament
between the two (db≤ z ≤H − ds),

sxx xc, z( ) =
0, H − ds ≤ z ≤ H (surface crevasse)

−rig H − z( ) + cRxx(z), db ≤ z ≤ H − ds (unbroken ice)

−rwg zh − z( ), 0 ≤ z ≤ db (basal crevasse).

⎧

⎪

«

⎪

¬

(13)

Here, cRxx(z) represents the sum of the background resistive stress
and the crevasse-induced compressive stress in the unbroken ice
ligament, db≤ z≤H − ds.

Figure 3. (a) Schematic showing force balance between a down-

stream, unperturbed location x = xc + Δx and the crevassed loca-

tion at x = xc with crevasse depths, surface ds and basal db. The

unbroken ligament is depicted of length L = H− ds− db. The

unperturbed background longitudinal stress at x = xc + Δx in

this example is sxx (xc + Dx) = Rxx − pl = 0.9�R
IT
xx − rig(H− z).

For the remaining subfigures, the top and bottom row corres-

pond to the Zero Stress approximation and HFB (Buck, 2023),

respectively. Figures (b) and (c) show the longitudinal stress pro-

files normalized by ρig H at the crevassed location in the Zero

Stress approximation and HFB (Buck, 2023). Figures (d) and (e)

correspond to the stress difference profiles Δσxx≡ σxx(xc + Δx)

− σxx(xc) normalized by �R
IT
xx . The Zero Stress approximation

does not uphold force balance because the stress difference is

positive or zero for all depths, yet HFB is defined to uphold

the horizontal force balance constraint as written in (a). We

include crack depths for the Zero Stress approximation, where

the blue curve intersects zero and labeled with the superscript

0, as well as the deeper HFB crack depths labeled with the

superscript HFB.
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We note that while a precise numerical profile of the stresses in
the ice ligament can differ from the parameterized form cRxx, the
deviation would be negligible in the limit of a very small unbroken
ice ligament and so the rifting stress threshold will be accurate
despite the parameterized stress profile (13). Investigations of
material strength effects, crevasse-induced flexural stresses and
more complicated physical descriptions of the stress within the
unbroken ice ligament are subjects for future work.

HFB on an Eulerian or fixed control volume, defined with
negligible inertial term as the Stokes equation, can be written as

0 =
∫H

0

∫xc+Dx

xc

∂xsxx + ∂ztzx[ ]dxdz. (14)

The negligible shear stress on the upper and lower surfaces
simplifies Eqn (14) such that the sum of the horizontal forces
per unit width into the page on our control volume is zero,

∫H

0

[sxx xc + Dx( ) − sxx xc( )]dz = 0. (15)

Solving for the constant, c, in Eqn (13) and finding a relation
between surface and basal crack depths will close the system of
equations, allowing us to determine crevasse depths given a nor-
malized resistive stress �Rxx/�R

IT
xx .

2.3.1. Crevasse depths
Following Buck and Lai (2021), we use continuity of stress at
crack tips, z =H− ds and z = db, as a constraint to determine
the constant c and then a relation between the crevasse depths.
At the tip of the surface crevasse, we have that

0 = −rigds + c(Rxx)|z=H−ds , (16)

which easily resolves the constant as

c =
rigds

(Rxx)|z=H−ds

. (17)

At the basal crevasse tip, we have that

−rigH + rwgdb = −rig H − db( ) +
rigds

(Rxx)|z=H−ds

(Rxx)|z=db ,

(18)

which can readily be simplified to a dimensionless relation
between basal and surface crack depth,

db
ds

=
ri

rw − ri

B T|z=db

( )

B T|z=H−ds

( ) for the general case. (19)

Thus, the temperature profile T(z) affects the relative surface to
basal crevasse depth through B(T (z)), with colder surface tem-
peratures creating larger crevasse depth ratio ds/db.

Finally, having solved for the constant, we may now impose
the force balance constraint of Eqn (15) with the stress expres-
sions in Eqns (12) and (13). Defining the dimensionless variables
d̃b = db/H, d̃s = ds/H and z̃ = z/H, the dimensionless force

balance can be written as

�Rxx

�R
IT
xx

=
rw

rw − ri
d̃
2

s +
rw
ri

d̃
2

b +
d̃s

1

2
1−

ri
rw

( )

B̃ T|z̃=1−d̃s

( )

×
∫1−d̃s

d̃b

B̃(T(z̃))dz̃ for the general case. (20)

Equations (19) and (20) form a system of two equations with the
surface and basal crack depths as the two unknown variables,
given that �Rxx/�R

IT
xx is known.

For isothermal ice shelves, the ice hardness functions of Eqn
(19) become constants as in Eqn (E6), and we have

db

ds
=

ri
rw − ri

for the isothermal case. (21)

The equation has an analytical solution (Buck, 2023),

d̃b =d̃s
ri

rw − ri
, and, d̃b =

ri
rw

1−

���������

1−
�Rxx

�R
IT
xx

√( )

for the isothermal case,

(22)

which predicts that rifts would form when the background resist-
ive stress reaches that of a freely floating ice shelf without buttres-
sing, i.e. �R

∗
xx/

�R
IT
xx = 1. Importantly, we did not set �R

∗
xx = �R

IT
xx ; this

arises naturally as the force balance solution to rift formation
where d̃b + d̃s = 1,

d̃b+ d̃s = 1−

���������

1−
�Rxx

�R
IT
xx

√

= 1 for the isothermal rift case. (23)

When we include the vertical temperature profile, we compute
the ice hardness function given vertical temperature variation
numerically. We iterate through temperature profiles and basal
crevasse depths to solve for surface crevasse depth through the
equation residual of Eqn (19). Having numerically obtained a
relation between d̃b and d̃s, we use these values to solve for
�Rxx/�R

IT
xx in Eqn (20). We plot dimensionless basal crack depth as

a function of �Rxx/�R
IT
xx for the linear vertical temperature case in

Figure 4. When the crack is stable, the crevasse depth is instant-
aneously determined by the stress state. This is consistent with the
Zero Stress approximation (Benn and others, 2007; Nick and
others, 2010) and van der Veen (1998a)’s basal crevasse LEFM
consideration of neglecting time-dependent fracture propagation,
but is a possible future extension (Lawn, 1993).

2.3.2. Rifting stress
We find that the crevasse to rift transition for cold and warm ice
shelf surface temperatures occurs at roughly the same critical stress.
Thus, HFB can be approximated by a simple analytical rifting cri-
terion that is independent of the vertical temperature profile,

�R
∗
xx

�R
IT
xx

= 1. (24)

This result from force balance can be explained intuitively. The
transition from uncracked to cracked ice causes a force Fx acting
on the ice through changes in gravitational potential energy U,

Fx =
∂U

∂x
=

∫− ri
rw
H+db

− ri
rw
H

rw − ri
( )

gzdz −
∫ 1− ri

rw

( )

H

1− ri
rw

( )

H−ds

rigzdz. (25)
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The terms on the right-hand side represent the changes in force
due to water replacing ice and ice replaced by a free surface for
basal and surface crevasse opening, respectively. We reset z = 0
to sea level to highlight the similarity to the compressive
buckling problem in equation (B5) of Coffey and others (2022).
In the case of rifting with cracks meeting at sea level, this force is

Fx = −
1

2
1−

ri
rw

( )

rigH
2 = −H�R

∗
xx. (26)

To uphold static HFB ΣFx = 0, we see that the tensile force in
the ice must be the negative of this value. Thus, the resistive stress
required for rifting is that of a 1D ice tongue, as in Eqn (24).

2.4. Comparison between the three fracture models

The comparison between the three fracture models is presented in
Figure 4. In order of smallest to largest rifting threshold �R

∗
xx/

�R
IT
xx ,

or highest to lowest vulnerability to rifting, we have LEFM,
HFB and the Zero Stress approximation for all temperatures ana-
lyzed in this study. We note that the influence of temperature is
distinct between the three theories; while HFB has negligible tem-
perature dependence, colder surface temperatures lower the rifting
threshold �R

∗
xx/

�R
IT
xx for the Zero Stress approximation yet increase

the rifting threshold for LEFM. However, for HFB in Figure 4b,
colder surface temperatures cause a decrease (increase) in basal (sur-
face) crevasse depth, yet leave the rifting threshold stress unchanged.
In summary, the rifting stress ratios that account for a vertically vary-
ing temperature profile for each theory and the formula we use to
compute the dimensionless stress from ice shelf data are:

Zero Stress :
�R
∗
xx

�R
IT
xx

= 2
rw
ri

d∗b
H

B̃ T( )
B̃ T d∗b/H

( )( )

LEFM : Analytical approximation (1%-5%):

�R
∗
xx

�R
IT
xx

=

2

3
2−

ri
rw

( )

2z̃0 1− z̃0 exp
1

z̃0

( )

− 1

( )( )−1
( )

HFB :

�R
∗
xx

�R
IT
xx

= 1

Data :
�Rxx

�R
IT
xx

=
2�Bė1/nxx

1

2
1−

ri
rw

( )

rigH

.

Note that when we compute the dimensionless stress with ice
shelf data, we first confirm in Figure 8 that regions are approxi-
mately 1D to uphold the plane strain assumption of LEFM, and
estimate the stress state prior to rifting through estimating the
unbroken ice thickness as discussed in detail in Appendix A.

We can understand the temperature effects on crack depth and
rifting stress through intuitive explanations of each theory, with
extended discussions in Appendices C through E. One way to
understand the temperature effects is decomposing the depth-
varying resistive stress into a depth-averaged component and a
vertically varying component, Rxx(z) = �Rxx + R′

xx(z). Figure 12
shows that Rxx

′
(z) is negative toward the ice base and positive

toward the ice surface. The Zero Stress approximation is deter-
mined by the net longitudinal stress σn in Eqn (1) at the crack
tip; thus, due to the sign of Rxx

′
(z), we see smaller basal crack

depths toward the base and smaller depth-averaged rifting stress
thresholds �R

∗
xx for colder Ts in Figure 4a. In contrast, numerical

LEFM results in Figure 4c show smaller crack depths and larger
depth-averaged rifting stress thresholds �R

∗
xx for colder ice. The

analytical explanation is provided in the LEFM section and
Appendix D. Finally, our HFB theory inherits the assumption
of local force balance at crack tips from the Zero Stress theory,
yielding smaller basal (larger surface) stable crack depths for
colder Ts with larger vertically varying resistive stress Rxx(z) as
shown in Figure 4b. The rifting stress threshold mostly results
from stable basal and surface crevasse depths meeting at sea
level. The effects of temperature on the ratio of the surface to
basal crack depth (19) vanish as the surface and basal cracks
approach sea-level, as seen in Figure 4b. Thus, the rifting stress
threshold in HFB is well-approximated by the isothermal result
of �R

∗
xx/

�R
IT
xx = 1. Overall, the effect of temperature on basal crevasse

depth and rift initiation depends strongly on the chosen theory.

2.5. Robin temperature profile

To check the sensitivity of our conclusions to temperature profiles
that are not linear, we run through the analyses of this paper
assuming a Robin temperature profile (Robin, 1955). While this
solution is strictly valid for an ice divide, the curvature of the pro-
file is closer to observed temperature from borehole data in some
cases than a linear temperature profile (Thomas and MacAyeal,
1982; Rist and others, 2002; Craven and others, 2009; Sergienko
and others, 2013; Tyler and others, 2013). The goal of this exercise
is not to create highly realistic temperature profiles by modeling
the computationally expensive temperature evolution and advec-
tion from ice divides to ice shelves, but is instead meant as a

Figure 4. Predicted crevasse depths normalized by ice thickness H for (a) the Zero Stress approximation, (b) Horizontal Force Balance and (c) Linear Elastic Fracture

Mechanics given a linear temperature profile in the vertical direction from a basal temperature of −2 °C to surface temperature Ts. The y-axes are non-dimensional

height from the ice shelf base, and the x-axes are depth-averaged resistive stress normalized by depth-averaged ice tongue resistive stress. The solid lines are the

normalized height of basal crack tips measured from the base upwards, and the dash-dotted lines are the normalized height of surface crevasse tips measured

from the surface downwards. Rifting is represented by yellow stars where basal and surface crevasses meet at sea level and by open stars for unstable basal crack

depth d∗b (e.g. Eqn (5)), respectively. For LEFM, rifting occurs when the basal crack, without the presence of a surface crack, fully penetrates the ice thickness. The

isothermal cases presented here at T =−2 °C of the Zero Stress approximation and Horizontal Force Balance are analytical, while all other results are numerical.
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sensitivity test of the results to the assumed temperature profile.
As with the example plotted in Figure 5, the Robin family of tem-
perature profiles take the form

T z̃( ) = Ts +
q

k

�������

pkHd

2ȧ

√

erf

�����

ȧHd

2k

√

( )

− erf z̃

�����

ȧHd

2k

√

( )[ ]

, (27)

with surface temperature Ts, thermal diffusivity κ≡ k/(ρicp)≈ 10−6

m2 s−1 defined by thermal conductivity to ice density and specific
heat of ice, rescaled vertical coordinate z̃ = z/H with value 0 at
the ice base and 1 at the surface, basal heat flux q, ice divide
thickness Hd≈ 1000 m and snowfall rate ȧ ≈ 0.1 m a−1 based
on Fowler and Ng (2020). We note that the ice divide thickness
Hd is set to match the Sandhäger and others (2005) profile at
sea level, as demonstrated in Figure 5. We match the temperature
profiles near sea level, as this region is important in determining if
basal crevasses propagate to form rifts. Considering the ice-ocean
temperature at the bottom of ice shelf Tb =−2 °C, we have

Tb = Ts +
q

k

�������

pkHd

2ȧ

√

erf

�����

ȧHd

2k

√

( )

, (28)

Substituting (28) into (27) gives a simple form of the Robin
profile,

T z̃( ) = Ts + Tb − Ts( ) 1−
erf z̃

����

ȧHd

2k

√

( )

erf
����

ȧHd

2k

√

( )

»

¼

¼

½

¾

¿

¿

À

. (29)

The remainder of the Robin profile analyses for each fracture the-
ory is carried out the same way as presented in the body of this
paper. In the next section, we show that the rifting stress thresh-
olds are not significantly impacted by using a Robin temperature
profile versus linear temperature profile.

3. Comparison with observations

As the three fracture theories predict distinct critical stresses that
drive the basal crevasse to rift transition, we evaluate the applic-
ability of each theory by comparison with observed rift locations.
We analyze our results in two ways. First, we plot the predicted
rift locations on MODIS MOA (Scambos and others, 2007;
Haran and others, 2018) compared with the rifts previously
mapped by Walker and others (2013), labeled as ‘true rifts’ and
colored in blue on Ross Ice Shelf (RIS) in Figure 6. The goal of
these rift formation theories is to maximize the overlap between
the predicted and true rifts, colored in green in Figure 6.

Because we do not have values of strain rate or surface tempera-
ture at the time of rifting, the estimated stress state (Fig. 6e) uses
modern surface temperature (van Wessem and others, 2018) and
strain rate (Wearing, 2017) values, with limitations discussed in
Appendix A. In Figure 6, we see that on the RIS rifts identified
by Walker and others (2013), Zero Stress with a vertical temp-
erature profile (Fig. 6b) underpredicts known rifts as shaded in
blue. Similarly, LEFM with a depth-averaged resistive stress �Rxx

(Fig. 6c), with analytical result given by Zarrinderakht and others
(2022), overpredicts rifts into areas they were not observed as
shaded in red. LEFM with a vertical temperature profile
(Fig. 6a) and HFB (Fig. 6d) are the most accurate theories for
these RIS rifts. Their differences are small enough to warrant
more observations to distinguish which theory is most applicable.

Second, we construct a crack stability plot of the critical stress
�R
∗
xx/

�R
IT
xx for rift formation for each theory as a function of the ice sur-

face temperature Ts, as shown by the curves in Figure 7. Noticeably,
surface temperature has a negligible effect on the rifting threshold
for the HFB; the rifting stress is that of a freely floating ice tongue,
�R
∗
xx = �R

IT
xx ; (1− ri/rw)rigH/2 (light blue line in Fig. 7).

Comparing the rift formation stress criteria, the depth-averaged
Zero Stress approximation (dashed blue line) requires a resistive
stress 200% of that of a freely floating ice tongue to cause rifts,
while the isothermal LEFM theory as presented by Zarrinderakht
and others (2022) (dashed magenta line) requires only 74% of
that of a freely floating ice tongue to initiate rifts. It is our goal to
constrain this substantial uncertainty in the rift initiation stress
threshold of these two theories, presented by the dashed lines of
Figure 7.

We quantitatively compare the rift criteria with the observed
rifts on the RIS in Figure 6 and Larsen C Ice Shelf (LCIS) in
Figure 10. We identify the extensional, 1D flow regions excluding
the high-strain-rate rift locations on the RIS and LCIS in
Figure 11, and plot the mean depth-averaged resistive stress and
surface temperature across these regions in orange symbols in
Figure 7 with one standard deviation of uncertainty due to the
variation of resistive stress and surface temperature across these
regions. The bulk of the non-rift ice shelf data should lie below
the curves in Figure 7. While LEFM with depth-averaged resistive
stress may look accurate in Figure 7, the overprediction in red is
clear in Figures 6c and 10c. Additionally, the lack of force balance
from isothermal Zero Stress (dashed blue line) and Zero Stress
with vertical temperature variation (solid green line) invalidates
these predictions on theoretical grounds. This lack of force bal-
ance manifests as an underprediction of rifting, as discussed in
Appendix A and demonstrated in Figure 16. Therefore, within
the uncertainty of our data as discussed in the Uncertainties of
the data-model comparison subsection and Appendix F, our
results on two ice shelves suggest LEFM and HFB considering
the vertically varying ice temperatures are the most accurate the-
ories for predicting the rift locations on the RIS and LCIS.

Figures 14, 15, 16 and 17 show that the conclusions drawn
from the linear profile are also applicable to the Robin tempera-
ture profile. The rift formation stress curves with linear and
Robin temperature profiles in Figure 16 are similar. The relative
accuracy of each theory in Figures 14 and 15 is comparable to
Figures 6 and 10, respectively. Overall, the conclusions of the
paper with a linear temperature profile are unchanged given our
estimate of a Robin temperature profile.

4. Discussion and conclusions

4.1. Threshold stress for the transition from basal crevasses
to rifts

In this paper, we have determined several rift formation stress cri-
teria as functions of surface temperature for linear temperatureFigure 5. Theoretical ice shelf temperature profiles.
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profiles. We then use remote-sensing and model output data to
determine which theory best predicts observed rifts. We find
that Zero Stress with either depth-averaged or vertically varying
resistive stress underpredicts rifts, due in part to the inconsistency
that the formulations do not uphold force balance in a control
volume. On the other hand, we find that LEFM with
depth-averaged resistive stress overpredicts rifts. Our result
shows that on the RIS and LCIS, HFB and LEFM with vertically
varying resistive stress are the most accurate theories for correctly
predicting rifts and non-rifts. Further distinction between these

two theories is inhibited by the number of rifts and uncertainty
of current data products used in this study. However, given that
buoyancy is expected to stabilize deep basal crevasses (Logan
and others, 2013; Zarrinderakht and others, 2022) and is not
available analytically for the LEFM models, we expect the rift ini-
tiation stress threshold of LEFM models to increase. Thus, for the
initialization of rifts in ice-sheet models, we recommend using the
simple, analytical, physically consistent theory of HFB, with rift
initiation threshold �R

∗
xx/

�R
IT
xx = 1 (Eqn (24)). This rifting threshold

has been numerically predicted for an isolated basal crevasse

Figure 7. Non-dimensional resistive stress required to

initiate rifts versus surface temperature, assuming a lin-

ear temperature profile. The solid lines account for ver-

tically varying temperature structure through

depth-varying stress Rxx(z), whereas the dashed lines

use depth-averaged resistive stress �Rxx . For a given the-

ory, the regions above and below the curve are pre-

dicted as a rift and non-rift, respectively. Ice shelf

stresses averaged over regions that are not rifted and

obey the 1D fracture assumptions are plotted in orange

symbols with mean and standard deviation. These data

are shown in map view in Figure 11. We use the average

thickness in the non-rift area as H to calculate �R
IT
xx . In this

figure, surface temperatures colder than −25 °C are on

the Ross Ice Shelf (RIS), whereas those warmer are on

the Larsen C Ice Shelf (LCIS). While the Zarrinderakht

and others (2022) line in dashed magenta looks compel-

ling with the intact ice shelf data in orange, map view

analyses (see Figs 6c, 10c) show that it overpredicts rifts.

Figure 6. Figures (a) to (d) are map views in kilometers of observed (marked in blue) and theoretically predicted rifts (marked in red) on the Ross Ice Shelf, overlain

on MODIS MOA 2014 (Haran and others, 2018; Scambos and others, 2007), with correctly predicted rifts in green. Rift formation theories are (a) LEFM with depth-

varying stress due to temperature variation Rxx(z), (b) Zero Stress with Rxx(z), (c) LEFM with depth-averaged stress �Rxx and (d) Horizontal Force Balance with Rxx(z).

Figure (e) is the estimated resistive stress ratio used for panel (a–d) with axes in meters. (f) Observed rifts were identified by Walker and others (2013) and shown in

blue.
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(Buck, 2023). Further, this study validates this result against
observed rifts on RIS and LCIS. In the Robin temperature profile
subsection, we compared the results between linear and Robin
temperature profiles (Robin, 1955), both showing a negligible
temperature dependence of this rifting threshold.

4.2. Stability of ice tongues

A question may then naturally arise: How can the freely floating
ice tongue stress be sufficient to form rifts, yet we see ice tongues
exist in nature? It is important here to draw a distinction between
idealized 1D, constant thickness, zero yield-strength ice tongues
and those found in nature: any perturbations to the stress field,
mass balance, spatially varying thickness and crack geometry
can influence the stability of real ice tongues. For example, sea
ice or ice mélange can stabilize these structures through poten-
tially providing a force buttressing the ice shelf and dampening
ocean waves that would otherwise induce ice shelf flexural stress
(Vaughan, 1995; Bromirski and others, 2010; Sergienko, 2010,
2013; Hulbe and others, 2016; Massom and others, 2018; Miles
and others, 2020; Gomez-Fell and others, 2022), with recent
work arguing this idea may be most applicable for thin ice
(Bassis and others, 2024). Recent observational work analyzing
the Eastern Antarctic Peninsula found that 94% of ice shelf calv-
ing occurred during or shortly after the removal of sea ice
(Christie and others, 2022), highlighting the importance of exter-
nal atmospheric and oceanic conditions. The stress threshold and
environmental sensitivity of ice tongue calving is crucial for pre-
dicting calving and potential subsequent changes in dense water
formation, carbon export and biological productivity, as evi-
denced by the 2010 Mertz Glacier Tongue calving (Kusahara
and others, 2011; Shadwick and others, 2013; Ohshima and
others, 2016).

4.3. Model limitations

This idealized study is subject to several limitations. We assume
2D (x, z), incompressible, homogeneous density, elastic modulus
and fracture toughness (Rist and others, 2002) ice shelves with
zero across-flow strain rate and zero shear strain rate. These the-
ories do not include local thickness variation, creep closure, sub-
and super-buoyant flexure (Benn and others, 2017), ice front
bending stresses (Reeh, 1968), grain size dependence of yield
stress (Ranganathan and others, 2021), crack tip shielding
(Clayton and others, 2022), snow accumulation, basal melting
(Bassis and Ma, 2015; Kachuck and others, 2022; Buck, 2023)
and marine ice accumulation. While we take a constant density,
we note recent work that suggests the importance of vertical dens-
ity variation for surface crevasses (Gao and others, 2023).

To be consistent with the plane strain assumptions of our frac-
ture theories when comparing with observations, we develop a
strain rate criterion in Appendix A to validate locations where
the flow is approximately 1D and Mode I fracture is applicable.
In reality, ice shelves can also have their stress states altered due
to 3D effects such as shear fractures (van der Veen, 1999) and tor-
que from ocean currents (Gomez-Fell and others, 2022; Huth and
others, 2022). The interactions of the ocean, sea ice, mass balance,
the location of additional cracks or other additional stresses may
determine the stability of the ice tongues and shelves in nature by
modulating the ice shelf stress. Effects such as the hydrographic
conditions in basal crevasses, crevasse-, tidal- or tsunami-induced
flexural stresses (Walker and others, 2013; Brunt and others, 2011;
Bromirski and others, 2017; Gerstoft and others, 2017), viscous
creep closure, fatigue failure (Zehnder, 2012), potentially non-
negligible process zones (Zehnder, 2012), realistic ice rheology
or the time-dependent evolution (Lawn, 1993) of basal crevasses

evolving into rifts are neglected. We leave the coupling of these
processes to future work.

One inherent source of model uncertainty is the formation
mechanism of the rifts on RIS and LCIS that we analyze in this
study. As mentioned in the introduction, we can not definitively
claim that the rifts were created by basal crevasse propagation.
Surface crevasse hydrofracture is a relatively well-studied problem,
and ample surface meltwater can form a rift on an ice shelf
(Weertman, 1973, 1974; van der Veen, 1998b; Banwell and others,
2013; Duddu and others, 2020; Lai and others, 2020). However,
seawater-filled a basal crevasses are predicted to be roughly nine
times deeper than dry surface crevasses across several isothermal
crevasse theories (Nye, 1955; Nick and others, 2010; Weertman,
1973; van der Veen, 1998b,1998a). This implies that in the
absence of strong surface melt (Morris and Vaughan, 2003; van
Wessem and others, 2023) basal crevasse is the likely rift forma-
tion mechanism.

4.4. Uncertainties of the data-model comparison

Both data products and ice rheology contribute sources of uncer-
tainty to this study. We discuss uncertainty in data products in
Appendix F, where we estimate an upper bound in uncertainty
and see that the largest source of uncertainty is in the estimation
of ice thickness on the Ross Ice Shelf (Morlighem and others,
2020). Another source of uncertainty comes from the ice rhe-
ology. We note that there is uncertainty in the flow law exponent
n (Goldsby and Kohlstedt, 2001; Qi and others, 2017; Bons and
others, 2018; Millstein and others, 2022) and therefore in the
parameters of Eqns (2) and (4) (Zeitz and others, 2020). This
will affect both our estimation of stress as shown in Figure 6e,
and the rift initiation stress threshold curves in Figures 7, 16 for
Zero Stress and LEFM. However, one great benefit of the HFB
model is an insensitivity to rheology in the limit of rifting. This
is exemplified in Figure 4b: while crack depths are different for
different surface temperatures, the rift initiation threshold is
approximately the same across various vertical temperature pro-
files. Furthermore, as demonstrated in the Robin temperature pro-
file subsection the rift initiation stress threshold between linear
and Robin temperature profiles is the same (see Figs 7, 16).
Additionally, as HFB best matches observations (see Figs 6, 10),
the leading rift initiation theory of this study demonstrates a
unique resilience to rheological uncertainty.

4.5. Future applications

Areas of future research that may build on this study are at least
threefold: (1) initializing rifts with the HFB model in numerical
ice sheet/shelf models, (2) analyzing the impacts of fracture
model on processes governing the ice shelf stability; HFB predicts
much deeper crack depths than the Zero Stress approximation
and (3) incorporating higher temporal-resolution observations
to observationally constrain the rifting stress threshold.

First, this study provides a simple analytical rift formation
stress threshold and crack depths that can be coupled with numer-
ical ice-sheet simulations. Damage mechanics has shown great
promise (Huth and others, 2021), capturing the path of rift
propagation to form iceberg A68 from Larsen C (Huth and
others, 2023). However, this model requires the specification of
a starter rift (in this case near the Gipps Ice Rise) to predict its
horizontal propagation. Coupling rift propagation models with
our HFB theory for rift initialization, �R

∗
xx/

�R
IT
xx = 1 can potentially

advance simulations’ ability to model rifts from initiation to ice-
berg detachment.

Second, another interesting extension would be embedding
HFB into the analysis of processes that require analytical fracture
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theory, such as Bassis and Walker (2012); Pollard and others
(2015); Bassis and Ma (2015). For example, because the HFB
model predicts much deeper cracks compared with the Zero
Stress approximation that was used in Pollard and others
(2015), implementing our HFB fracture model instead could
yield substantially different outcomes, making ice shelves more
vulnerable to fracture than predicted by Pollard and others
(2015).

Third, future work monitoring the rift initiation process with
high temporal resolution can provide stronger constraints on
the rifting stress threshold. As shown in Figure 1c and discussed
in Appendix B, the best estimates of stress in this study rely on
monthly averaged strain rate data. However, the speed of horizon-
tal rift propagation can be much faster than what can be observed
from satellite imagery (Olinger and others, 2024). While it is
promising that we see a clear increase in surface strain rate and
thus stress estimates in Figure 1c, it is clear that higher temporal-
resolution measurements of strain rate, cross-rift altimetry and/or
field-based data of the basal crevasse to rift transition would help
to constrain these rifting stress threshold theories.

This study advances the common fracture theories used in gla-
ciology through the incorporation of vertical stress variations due
to the temperature dependence of the ice hardness, and the HFB
model that properly accounts for HFB. The different rifting stress
theories coupled with ice shelf simulations could lead to distinct
calving predictions. Importantly, the Zero Stress approximation
would largely under-predict the crevasse depths and stability
compared with the HFB model, and underestimate the mass
loss of ice shelves over the coming centuries.
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Appendix A. Methods for the data-model comparison

To create rift prediction maps, several important steps must be made to

ensure sensible and causal predictions. First, we must validate that the

areas containing rifts are in regions that largely obey the 1-dimensional

(1D) extensional background flow assumptions of the fracture theories

assessed in this study. To do so, we use automatic differentiation to con-

struct strain rate fields based on MEaSUREs ice shelf velocity data

(Rignot and others, 2011; Mouginot and others, 2012, 2017a; Rignot and

others, 2017).

To determine if the 1D fracture theory assumptions are upheld, we utilize

the criterion that the normalized resistive stress difference between that of the

SSA solution and that assuming 1D flow is within 10%,

�R
SSA
xx − �R

1D
xx

�R
1D
xx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ 0.1, (A1)
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where �R
SSA
xx = �Bė−1+(1/n)

e (2ėxx + ėyy) and �R
1D
xx = 2�Bė1/nxx . This equation can be

simplified and written in terms of dimensionless measures of strain rate,

1+ a2 + a+ j2
( )1/(2n)−(1/2)

1+
a

2

( )

− 1
∣

∣

∣

∣

∣

∣ ≤ 0.1, (A2)

where the first term with a = ėyy/ėxx and j = ėxy/ėxx comes from the second

invariant of the strain rate tensor under the 3D incompressible condition and

assumption of negligible vertical shear stresses. Thus, while one could calculate

the depth-averaged ice hardness �B(T) assuming some vertical temperature

profile, this is unnecessary as this term cancels and does not appear in Eqn

(A2). Figure 8 shows the region which satisfies the criterion (A2), from

which we may select our rifts.

Second, the rifts identified by Walker and others (2013) in these regions

must have their thickness values padded to an estimate of the unbroken

state thickness. These rifts are currently filled with a conglomerate ice material

composed of sea ice, snow and ice shelf fragments, collectively termed as ice

mélange in Rignot and MacAyeal (1998); MacAyeal and others (1998);

Hulbe and others (1998). Since our goal is to predict if the observed rift

could have formed, rather than the stability of the mélange in the rift, we

need to estimate the state of the unbroken ice. Here, we generate bounding

boxes around rifts of interest and infill the mélange thickness with an average

of the local unbroken ice thickness in BedMachine Version 2 (Morlighem,

2020; Morlighem and others, 2020), as shown in Figure 9. Combined with

the map of regions that uphold the 1D extensional flow assumption of our

fracture theories in Figure 8, we generate rift prediction maps in Figures 6

and 10.

The caveat to this method is that in the absence of remotely sensed data on

the time-dependent evolution of basal crevasses into rifts, strain rates and tem-

perature profiles at the time of the basal crack to rift transition remain

unknown. We present an analysis of time series data in Appendix B, but

these data are largely unavailable for many existing rifts. As such, we utilize

the modern values of surface temperatures and strain rates from van

Wessem and others (2018) and Wearing (2017), acknowledging that these

may have changed since rift formation. We note that the 1/n exponent depend-

ence of strain rate given Glen’s flow law in Eqn (3) shields the resistive stress

from strain rate changes, thus decreasing the sensitivity to precise strain rate

estimates.

Due to the uncertainty associated with the temperature and strain rate evo-

lution since the time of rift formation, we construct datasets of stress estimates

on the non-rift ice shelf regions, as shown in Figure 11. The advantage of these

datasets is that they do not have the time-evolution problem of rift datasets.

Therefore, given our methods, we have more confidence in a theory that cor-

rectly predicts many rifts and minimally overpredict rifts than a theory which

correctly predicts most or all rifts while overpredicting rifts in non-rift regions.

In our work, this emphasizes that LEFM with depth-averaged resistive stress

result in Zarrinderakht and others (2022) has too low of a threshold for rift

initiation.

We note that since Walker and others (2013) do not necessarily identify all

rifts in their rift catalog, there could be rifts included in our non-rift region

datasets. To help remove rifts not classified by Walker and others (2013) in

the non-rift regions of Figure 11, we exclude data that would unanimously

be predicted a rift in every fracture theory presented in this study. As such,

we take the highest stress threshold for rifting in the Zero Stress approximation

with isothermal depth-averaged resistive stress, �R
∗
xx/

�R
IT
xx = 2. This is reflected

in the magnitude of the color bar of Figure 11.

Appendix B. Temporal observation of a basal crevasse to
rift transition

Figures 1c,e show the ratio of depth-averaged resistive stress to isothermal ice

tongue resistive stress �Rxx/R
IT
xx over Pine Island Ice Shelf in January and May

2019 respectively. The resistive stress was found using Eqn (7) with along-flow

strain rates estimated from 200 × 200m resolution, monthly averaged ice vel-

ocity observations made using feature tracking applied to Sentinel-1 image

pairs (Wuite and others, 2021) (https://cryoportal.enveo.at/data/). The strain

rate components were calculated via numerical differentiation of the easting

and northing velocities using methods developed in Chartrand (2017).

Estimates of ice shelf thickness were according to BedMachine version 2 by

Morlighem (2020), and the temperature profile was assumed to be linear

between −2 °C at the ice shelf base and temperature given by RACMO (van

Wessem and others, 2018) at the surface. The accompanying satellite images

shown in (d) and (f) are geocoded, multi-looked and radiometrically terrain-

corrected Single-Look Complex backscatter data from the European Space

Agency and European Commission Copernicus’ Sentinel-1 satellites – shown

at 50 m resolution.

These show the concurrent evolution of the ratio of stresses near the ter-

minus of the ice shelf alongside the evolution of a rift, likely from a central

basal crevasse as argued by Jeong and others (2016), that eventually led to

the calving of the B49 iceberg in February 2020. We see clear changes to

the along-flow strain rates over the rift as it widens and propagates laterally.

This provides a motivating example for determining stress conditions under

which basal crevasses transition into rifts, such as those discussed in this art-

icle. However, Figures 1c,e show that we measure stress ratios below those

required for full-thickness rifts according to each of the theories discussed

in this article. That is, the stress ratio over the rift that is clearly visible by

May 2019 (Fig. 1f) is below the value of 1 predicted by the Zero Stress approxi-

mation, modified to maintain horizontal force balance (Eqn (24)). However,

Figure 1 should not be seen as an example aimed at validation of one of the

theories considered here, merely as motivation for the work. In part, this is

because the central part of Pine Island Ice Shelf does not conform to the

assumption of one-dimensional flow (Eqn (A2)) (though the speed of the

ice tongue varies little laterally, the flow is dominated by advection and across-

flow strain rates are similar in magnitude to along-flow strain rates), nor is the

ice shelf cavity necessarily hydrostatic with temperature T =−2 °C.

Additionally, by using satellite-derived measures of ice velocity averaged

over monthly intervals, we cannot hope to capture the maximum strain

rates over a crevasse of this scale as the data are too limited in both spatial

and temporal resolution. In the future, a validation of the theories discussed

in this article using time series of strain rate or stress data should be carried

out with the use of higher-resolution satellite data or data collected on the

Figure 8. Regions where the background viscous ice flow is approximately 1D based on Eqn (A2). Rifts in these regions are regarded as having formed due to 1D

tension, called Mode I failure. The color scale is dimensionless strain rate deviation from 1D flow as in Eqn (A2), and the axes are in units of meters.
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ground, e.g. with the use of an ApRES system as in Nicholls and others (2015).

Similarly, it is not possible to accurately determine when the crevasse transi-

tioned into a rift from satellite images alone, or whether it was ever a basal cre-

vasse at all. Future work that aims to use time series data should do so in

conjunction with other datasets that provide further information on the type

of crevasse under consideration.

Appendix C. Zero stress for rift formation via surface and
basal crevasses

The Zero Stress approximation argues that a vertical crack will propagate so

long as there is no net compression of the net longitudinal stress σn at the

crack tip defined in Eqn (1). Written mathematically, the Zero Stress condition

(σc = 0) claims that a crack propagates when

sn ≥ sc. (C1)

Under the Zero Stress approximation, a basal and surface crevasse will form a

rift when the criterion (C1) holds for all depths.

The depth of surface and basal crevasses that result from this Zero Stress

condition (C1) are available in the literature (Nye, 1955; Jezek, 1984; Benn

and others, 2007; Nick and others, 2010; Duddu and others, 2020),

d0s =
Rxx

rig
, d0b =

Rxx

rw − ri
( )

g
. (C2)

The criterion (C1) can also be re-written in terms of a dimensionless resist-

ive stress, with z = 0 at the bottom of the ice,

Rxx z( )
rw − ri

( )

gH
≥

z
H

0 ≤ z
H
≤ ri

rw
(below sea level)

ri
rw−ri

1− z
H

( ) ri
rw

≤ z
H
≤ 1 (above sea level)

{

(C3)

as visualized by the red dotted lines in Figure 12, which shows basal crevasse

depth and rift formation with a linear temperature profile modifying the resist-

ive stress Rxx(z).

Since the Zero Stress approximation has zero material strength, the min-

imum required resistive stress to form a rift is defined by Eqn (C3). If the

resistive stress is not in net tension at the ice shelf base, no basal crevasse is

predicted. If the resistive stress is in net tension at the base but becomes less

than the dotted red curve in Figure 12 at a larger height z > 0, the point of

equality below sea level is the basal crevasse depth. For example, if the resistive

stress takes the value shown by the dashed green line of Figure 12, a basal cre-

vasse would propagate up to a depth about 60% of the unbroken ice thickness.

However, resistive stresses that are greater than or equal to the dotted red curve

for all heights will form rifts because basal crevasses can propagate all the way

to the surface. Figure 12 clearly demonstrates the underestimation of rifts when

depth-averaged resistive stress theories, the dashed lines, are used instead of

their depth-dependent counterparts, the solid curves.

Next, we develop the mathematical expression for the rift initiation stress

threshold of the Zero Stress approximation. These expressions are plotted in

dashed blue and solid green in Figures 7 and 16. Taking the assumption

that the second invariant of strain rate is approximately the along-flow strain

rate for consistency with LEFM, the rift formation criterion given isothermal,

depth-averaged resistive stress can be written as a dimensionless stress ratio,

�Rxx

�R
IT
xx

≥ 2, (C4)

with �R
IT
xx = (1− ri/rw)rigH/2 the depth-averaged ice tongue resistive stress.

This equation can be understood visually from Figure 12 as the corner of the

dotted red curve located on the x-axis at Rxx/ rw − ri
( )

gH
( )

= ri/rw ≈ 0.89,

which is equivalent to (C4). Similarly, in the depth-dependent case, we have that

�Rxx

�R
IT
xx

≥ 2
rw
ri

d∗b
H

�̃B(T)

B̃(T(
d∗
b

H
))
. (C5)

Here B̃(T) = B(T)/B(T = −2 °C) is the dimensionless ice hardness, �̃B(T) is

the depth-averaged dimensionless ice hardness, and d∗b is the unstable basal

crevasse depth at which a basal crevasse will propagate to form a rift.

The unstable basal crevasse depth d∗b depends upon temperature profile and

the prescribed stresses. For isothermal ice, the unstable basal crevasse

height is sea level without tides, d∗b = Hri/rw, and we also have that
�̃B(T) = B̃(T(d∗b/H)), so the above Eqn (C5) reduces to the depth-averaged

case in Eqn (C4). For vertical temperature profiles that become colder toward

the ice shelf surface, the unstable basal crevasse depth d∗b can decrease. Given

the ice hardness function of LeB Hooke (1981) and a linear temperature profile

from Tb =−2 °C at the base, the unstable basal crevasse depth d∗b falls below

sea level for surface temperatures at least as cold as Ts =−25 °C in the Zero

Stress theory as well as HFB, as shown with the blue curves of Figure 4a

with Ts =−32 °C.

Figure 9. Mélange padding in kilometers with local, unbroken ice thickness on the

RIS and LCIS. Subfigures (a) and (c) are the original data products from

BedMachine2, while subfigures (b) and (d) are the mélange-padded results used in

this study to see if fracture theories can correctly predict rifts in areas where they

are known to have occurred. LCIS thickness has an upper bound of 300 m in the

color bars of subfigures (c) and (d) to enhance the visibility of padded rifts.
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Appendix D. Temperature dependence of linear elastic
fracture mechanics for ice shelf basal crevasses

In this Appendix section, we first explain the stability of LEFM basal crevasses

given (1) and (6), and then the effects of ice-shelf temperature on crack depth

and rifting stress, as shown in Figure 4c.

D.1. LEFM basal crack stability

Figure 13 indicates the possible solutions for LEFM through increasing the

resistive stress, similar to presentation in Lai and others (2020). In the blue

curve, we see that the stress intensity factor is less than the fracture toughness

for all crack depths, implying no fracture could exist for that given resistive

stress. For a larger resistive stress (red curve), a tangent solution exists where

the stress intensity factor is equal to the fracture toughness, so a stable crack

exists, but it cannot propagate. This crack depth is the maximum initial flaw

size required to form a stable crack. Following (Lai and others, 2020), the

maximum initial flaw size is κ(KIc/(ρig))
2/3

≈ 15 m for a basal crevasse, with

κ≈ 2.27, KIc = 0.15 MPa⋅m1/2 from Litwin and others (2012), ρi = 917 kg

m−3 and g = 9.8 m s−2. For an even larger resistive stress, an initial flaw

(open circle) would propagate as long as KI≥ KIc, potentially finding a stable

crack depth, as shown by the solid circle on the yellow curve. Finally, there

exists a rifting stress �R
∗
xx above which initial flaws would unstably propagate

through the entire ice thickness, as shown by the purple curve.

Below, we discuss the dependence of LEFM results on vertical temperature

profile in terms of (1) stable crevasse depths and (2) the rifting stress threshold
�R
∗
xx that corresponds to the first unstable solution.

D.2. Temperature effects on basal crevasse depths and the
rifting stress threshold

As shown in our Figure 4c, for the same depth-averaged resistive stress, colder

ice has shallower crack depths. This may seem at odds with Figure 3 of van der

Figure 10. Same as Figure 6, except on LCIS, assuming a linear temperature profile.
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Veen (1998a) that shows colder ice temperatures promote deeper crack depths.

However, it is actually consistent; Figure 3 of van der Veen (1998a) is for a

constant strain rate, whereas our Figure 4 is for constant normalized resistive

stress. Since the resistive stress depends exponentially on the temperature

through the effective viscosity as shown in (2), (3) and (4), colder temperatures

will have higher viscosity and thus decreased strain rate for the same value of

depth-averaged resistive stress. Thus, for the same depth-averaged resistive

stress, colder ice has shallower crack depths.

As shown by the LEFM solutions in Figure 4c that turn toward vertical as

db goes to H; there is an unstable basal crevasse depth d∗b at which rifts are

formed, similar to the other theories in this study. Since d∗b , H is when rift-

ing is determined, and
�db
0
(�Rxx − Rxx(z))dz increases for colder surface tem-

peratures given a monotonically decreasing temperature profile toward the

ice surface, the diverging rifting stress between the depth-averaged resistive

stress �Rxx and vertically varying resistive stress Rxx(z) is expected, as shown

in Figure 7.

Appendix E. Derivation of horizontal force balance

Here we demonstrate how the Zero Stress approximation does not uphold

horizontal force balance on an isothermal ice shelf through an Eulerian control

volume argument based on Buck (2023), also see Section 2.3. The main argu-

ment of the control volume approach, as has been applied by Weertman

(1957) and Jezek (1984) to solve for the net tension we call �R
IT
xx at ice fronts,

is Newton’s Second Law. The sum of the forces acting on the control volume

are equal to the product of mass and acceleration of fluid entering the control

volume. In our case, there is no net acceleration of fluid into or out of the con-

trol volume, and the shear stresses on surface and bottom boundaries are neg-

ligible. Thus, we can write the horizontal force balance for a control volume

between a crevassed location x = xc and an uncrevassed downstream location

x = xc + Δx as

∫H

0

sxx xc + Dx, z( ) − sxx xc, z( )[ ]dz = 0. (E1)

Figure 11. Extensional, approximately 1D regions of RIS and LCIS, assuming a linear temperature profile, that exclude both observed rifts and rifts predicted by a

resistive stress greater than twice the freely floating resistive stress. The color shows the magnitude of �Rxx/�R
IT
xx , and axes are in meters.

Figure 12. Visualizing the Zero Stress condition. The

dotted red curve, defined by the piecewise distribution

in Eqn (C3), is the magnitude of the lithostatic pressure

minus water pressure that opposes fracture; the inter-

section below sea level of a given resistive stress with

the dotted red curve determines basal crevasse depth.

Solid curves utilize Rxx(z), whereas dashed lines utilize
�Rxx . Green curves with surface temperature Ts =−22 °C

are the reference for cyan and magenta curves; cyan

curves utilize Ts =−32 °C, and magenta curves have

along-flow strain rate doubled. Depth-averaged resistive

stresses have unstable basal crevassing occur only at

sea level, and may be solved for analytically; vertical

temperature profiles may have crevasses unstably

propagate before sea level, and require numerical

treatment.

Figure 13. Understanding possible LEFM solutions for isothermal ice with a constant

thickness H = 300 m and fracture toughness KIc = 150 kPa
���

m
√

(dashed line). The solid

curves are the stress intensity factors from (6) with varying resistive stress.

Descriptions of the possible solutions are in the text of this Appendix D.
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The horizontal force balance model for an isothermal ice shelf was developed

in Buck (2023) and is summarized below. At the downstream location x = xc +

Δx that is sufficiently far away from the bending stresses near the ice front

(Reeh, 1968; Wagner and others, 2016), we have

sxx xc + Dx, z( ) = −rig H − z( ) + Rxx xc + Dx( ). (E2)

At the crevassed location, we will follow the Zero Stress assumption and have

dual surface and basal crevasses with depths ds and db,

sxx xc, z( ) =
0, H − ds ≤ z ≤ H

−rig H − z( ) + Rxx xc( ) db ≤ z ≤ H − ds
−rwg zh − z( ), 0 ≤ z ≤ db

⎧

«

¬

«

¬

­

. (E3)

Note that the stresses cannot be the same at both locations, or σxx(x = xc)≠

σxx(x = xc + Δx), because the intact ice is effectively thinner at the crevassed

location. If we were to evaluate the force balance of Eqn (E1) with the incorrect

assumption of σxx(x = xc) = σxx(x = xc + Δx), the crack depths would be twice

as deep as that of the Zero Stress theory,

ds =
2Rxx

rig
, db =

2Rxx

rw − ri
( )

g
, (E4)

and the stress distribution at the surface crevasse tip would not be continuous,

σxx(z =H− ds) =−ρig ds + Rxx≠ 0. Thus, to satisfy a continuous stress at the

surface crack tip, we have

Rxx x = xc( ) = rigds. (E5)

Similarly, using stress continuity at the basal crack tip gives a relation between

Figure 14. The same map view plot in kilometers as

Figure 6, except that a Robin temperature profile is

taken to generate the rift formation stresses and

assumed in calculating the value of stress in the data.
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surface and basal crack depths,

rw − ri
( )

db = rids. (E6)

With the crack depth relation in Eqn (E6), plugging the stress definitions in

Eqns (E2), (E3), (E5) into the force balance condition of Eqn (E1) yields the

analytical crack depth predictions of Buck (2023) for an isothermal ice shelf,

db
H

= ri
rw

1−
��������������������

1− Rxx xc + Dx( )
�R
IT
xx

√( )

,

ds

H
= 1−

ri
rw

( )

1−
��������������������

1−
Rxx xc + Dx( )

�R
IT
xx

√( )

.

(E7)

For more insight into the role of temperature dependence, we now specify

the form of Eqns (19) and (20) for a simplified, approximate ice hardness func-

tion and linear vertical temperature profile. In Eqn (4), the second term in the

brackets, −C/(Tr− T )k, is two to three orders of magnitude smaller than the first

term, T0/T. Similarly, with temperature T(z̃) = Tb[1− (1− Ts/Tb)z̃] in Kelvin,

the term (1− Ts/Tb)z̃ is at least an order of magnitude smaller than unity, so

we may Taylor expand the exponent to first order in (1− Ts/Tb)z̃. We define

the approximated ice hardness function Ba with these two simplifications,

Ba T z̃( )( ) ≈ B0 exp
T0

Tb + Ts − Tb( )z̃

[ ]

≈ B0 exp
T0

Tb

[ ]

exp
z̃

z̃0

[ ]

, (E8)

with the dimensionless e-folding length scale z̃0 ; ((T0/Tb)(1− Ts/Tb))
−1.

Therefore, the crevasse depth relation of Eqn (19) may be written as

d̃b = d̃s
ri

rw − ri
exp

− 1− d̃s − d̃b
( )

z̃0

[ ]

, (E9)

and the horizontal force balance of Eqn (20) may be written as

�Rxx

�R
IT
xx

=
rw

rw − ri
d̃
2

s +
rw
ri

d̃
2

b

+
d̃s

1

2
1−

ri
rw

( ) z̃0 1− exp
− 1− d̃s − d̃b

( )

z̃0

[ ]( )

. (E10)

Even with the simplified ice hardness, these equations (E9) and (E10) are

not algebraically solvable due to the nature of the Arrhenius equation.

Although the result including vertically varying temperature requires numer-

ical treatment, the rift initiation stress threshold produced using LeB Hooke

(1981)’s ice hardness function is within 0.1% of the analytical isothermal solu-

tion R∗
xx/

�R
IT
xx = 1 for all surface temperatures used for both linear and Robin

temperature profiles. Therefore, we can well-approximate the rift initiation

stress threshold as that of a freely floating ice shelf without buttressing, i.e.

�R
∗
xx

�R
IT
xx

= 1. (E11)

Appendix F. Result robustness: uncertainty estimation

A discussion of result robustness is incomplete without considering the uncer-

tainty in data products. The largest data uncertainty comes from the measure-

ments of ice thickness (Morlighem, 2020; Morlighem and others, 2020), where

Figure 15. Following Figure 14, we use the same concept as Figure 10, except that a Robin temperature profile is used to generate the rift formation stresses and

assumed in calculating the stress values of the data. Axes are in kilometers.
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Figure 17. The same as Figure 11, except that the Robin temperature profile raises the value of the depth-averaged resistive stress relative to the linear temperature

profile. Axes are in meters.

Figure 16. The same idea as Figure 7, except that we include approximate rift stress data and evaluate linear and Robin temperature profiles for generating the

depth-dependent rift formation stresses (green, cyan and red curves). Relative to the linear temperature profile, the Robin profile raises the value of the resistive

stresses in the rifts and non-rift ice shelf datasets (black and orange data, respectively), but has a negligible effect on the rifting stress threshold curves. Horizontal

Force Balance is a much more accurate rift initiation theory compared with the Zero Stress approximation, and is largely or fully insensitive to surface temperature

assuming a linear or Robin profile. This provides robustness, as the same conclusions are drawn with either a linear or Robin temperature profile.
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the uncertainties in our regions of interest are 100 m for the majority of the

RIS, or around a third of the ice thickness, and around 30 m for the LCIS,

or about a tenth of the ice thickness. Alone, one standard deviation of this

uncertainty would shift the data points up or down by about a third for RIS

data or about a tenth for LCIS data on Figures 7 and 16. As such, we look

at LCIS for result robustness. Importantly, if the ice shelf data of interest is

governed by the 1D SSA momentum equation (MacAyeal, 1989),

d

dx
H�Rxx

( )

= rigH 1−
ri
rw

( )

dH

dx
, (F1)

then the depth-averaged resistive stress scales linearly with H. To compute

uncertainty accurately for dependent variables, we would have to use covari-

ance (Taylor, 1982); however, we cannot meaningfully compute the covariance

for each pixel of ice shelf data, and so we estimate the upper bound on uncer-

tainty σβ with

sb ≤

����������������

∑

i

∂b

∂xi
sxi

( )2
√

= b

����������������������������������������

sH

H

( )2

+
sėxx

nėxx

( )2

+
∂B(T∗)

∂T∗
sT∗

B(T∗)

( )2
√

. (F2)

Here, our variable of interest is the dimensionless resistive stress

b = �Rxx/�R
IT
xx . The uncertainties in thickness, strain rate and equivalent

temperature are sH , sėxx and σT*, with equivalent temperature T* defined

as the temperature at which �B = B(T∗) (Sergienko, 2014). We take the strain

rate uncertainty associated with 20 km from the ice front from Table C.1 of

Wearing (2017) and apply this to the whole ice shelf. Given that we do not

have defined uncertainties associated with equivalent temperature, we esti-

mate σT* = 3 K from the uncertainty range associated with modeled and

observed RACMO surface temperature data in Figure 3a of van den

Broeke (2008). In this calculation, we assume the Robin temperature profile

in our ice hardness and equivalent temperature calculations, as we do not

expect profiles warmer than linear, but this choice is negligible in the

final results.

We plot the upper bound of dimensionless resistive stress uncertainty

σβ in Figure 18. Given the distributions of these datasets have some

large outliers that skew the mean, we report the estimated median uncer-

tainties for RIS and LCIS are σβ = 0.27 and σβ = 0.14, respectively. The RIS

median uncertainty is large as anticipated, and the LCIS median uncer-

tainty is comparable to the difference between LEFM with Rxx(z) and

Horizontal Force Balance given the temperatures on LCIS (see red and

cyan curves in Figs 7, 16). Therefore, more precise measurements of ice

thickness, strain rate and temperature are needed to further observation-

ally constrain the optimal theory for tensile rift initiation from basal

crevasses.

Figure 18. Estimates of dimensionless resistive stress uncertainty σβ defined in Eqn (F2) on RIS and LCIS, with thickness padded for known rifts. The small uncer-

tainty on LCIS provides more confidence in our work. The color scale is capped at σβ = 1, as there are a few outliers due to thickness uncertainty being comparable

or larger than ice thickness. Axes are in meters.
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