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ABSTRACT

We investigate the entrainment of electrochemical oscillators with different phase response curves (PRCs) using a global signal: the goal
is to achieve the desired phase configuration using a minimum-power waveform. Establishing the desired phase relationships in a highly
nonlinear networked system exhibiting significant heterogeneities, such as different conditions or parameters for the oscillators, presents a
considerable challenge because different units respond differently to the common global entraining signal. In this work, we apply an optimal
phase-selective entrainment technique in both a kinetic model and experiments involving electrochemical oscillators in achieving phase
synchronized states. We estimate the PRCs of the oscillators at different circuit potentials and external resistance, and entrain pairs and small
sets of four oscillators in various phase configurations. We show that for small PRC variations, phase assignment can be achieved using an
averaged PRC in the control design. However, when the PRCs are sufficiently different, individual PRCs are needed to entrain the system with
the expected phase relationships. The results show that oscillator assemblies with heterogeneous PRCs can be effectively entrained to desired
phase configurations in practical settings. These findings open new avenues to applications in biological and engineered oscillator systems
where synchronization patterns are essential for system performance.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0205480

Complex systems are often composed of oscillatory units that
can entrain to external signals such that the peak times of the
oscillations are organized in a given pattern. When the units
have distinct, largely nonlinear, dynamics, finding an external
waveform that can induce a predetermined sequence (e.g., some
units peak together and others at different times) is a tremen-
dously challenging task because each unit responds to the external
signal differently. In this study, we demonstrate the entrain-
ment of electrochemical oscillators with different experimen-
tal parameters (and, thus, different phase responses) to achieve
stable in-phase, anti-phase, and out-phase patterns. Our find-
ings reveal that oscillators with large heterogeneities in their
phase responses can be effectively entrained into specified phase
patterns. While the entrainment method was tested in electro-
chemical oscillators, its potential applications extend to biological
systems characterized by significant heterogeneous elements with
distinct phase response characteristics.

I. INTRODUCTION

Large populations of oscillating elements are abundant in
nature and engineered systems, ranging from chemical oscilla-
tors to the neurons in the brain.1–3 These populations often
require a certain dynamic structure between the elements for
the proper functioning of the system. For example, neural activ-
ity synchronization is required for perceptual and cognitive
functions4,5 and desynchronization for the transition between per-
ception and the motor response.6 Any disruption of these self-
organizing structures can result in pathological disorders;7–9 for
instance, increased neuronal synchrony has been linked with
motor dysfunctions in Parkinson’s disease.10,11 Given these prac-
tical applications, it is important to design external stimuli
that can obtain the desired synchronization structures in het-
erogeneous oscillator populations, all the while being robust to
experimental noise and without disrupting the local oscillatory
dynamics.
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Feedback-based techniques have been shown to be effec-
tive in regulating oscillator populations in both theory and
experiments.12–14 This includes tuning the phase relationships
between the oscillators,15 the desynchronization of oscillator
populations,13,16,17 cluster formation,16,18 and the formation of
chimera states.19–21 The robustness of these techniques to exper-
imental uncertainties can be attributed to the intrinsic nature
of feedback, which facilitates disturbance rejection. Nonetheless,
implementations require real-time measurement of oscillator units,
and determining feedback parameters often hinges on certain
assumptions regarding population dynamics, such as similar oscil-
lator parameters or infinite oscillator populations.

In addition to feedback approaches, open-loop methods have
also been investigated for applications where real-time feedback
acquisition is unfeasible. Open-loop applications were developed for
control of quantum systems, where robust manipulation of spins
for generic many-body systems was achieved.22,23 Similar open-loop
techniques were also directed toward desynchronizing oscillator
populations with various kinds of pulses, including single pulse
design,24 double-pulse design,25,26 bi-polar double pulse,27 and a
combination of the pulse train followed by a single pulse.28,29 These
designed pulses often lacked optimality, necessitating the integra-
tion of optimal control theory since applying large external signals
can potentially be harmful to clinical applications such as deep-brain
stimulation. The optimal control techniques were applied to design
optimal time or energy stimuli for a single oscillator,30,31 the popu-
lation of oscillators,32,33 and the optimal entertainment of neuronal
populations.34,35

Despite their effectiveness, homogeneity in the oscillator pop-
ulations is a common assumption for the underlying theory behind
these methods, which leverages phase-model descriptions of oscil-
lator populations. Specifically, the oscillators are typically assumed
to have identical PRC. These PRCs characterize the effect of input
on oscillation phases and are often nonidentical between oscillators.
Some common examples of heterogenous PRC oscillator popu-
lations include cortical pyramidal neurons,36,37 mitral cells in the
olfactory bulb,38 and circadian oscillator in Gonyaulax.39 With elec-
trochemical oscillators, a wide range of PRCs were experimentally
measured;40 for example, for oscillators close to a Hopf bifurcation,
the PRC consisted of only a single harmonic component, but fur-
ther away from the bifurcation point, PRCs with dominant higher
harmonics were observed.

Oscillators with different PRCs can challenge the applicabil-
ity of current techniques. For example, a versatile phase-selective
entertainment procedure was proposed that used natural frequency
heterogeneities to engineer a frequency synchronized ensemble with
a pre-specified phase pattern.41 When oscillators have both different
frequencies and PRCs, each oscillator would entrain differently to
the same global signal, and, thus, finding waveforms for specified
phase patterns is a difficult task. Similarly, waveforms for entrain-
ment to given phase patterns are often desired to have low power to
eliminate undesirable side effects of using large signals and also to
ensure that weak forcing approximations, which are often used in
theoretical frameworks, remain valid. Therefore, there is a need to
extend the applicability of synchronization engineering techniques
to address the entrainments of oscillators with different PRCs using
low-power signals.

In our previous work,42 an optimal input design framework was
proposed to entrain heterogeneous PRC oscillators in a prespecified
configuration. Starting with a phase-model description of the oscil-
lators that have distinct natural frequencies and PRCs, waveforms
were constructed that not only entrained the oscillators in a given
phase configuration but also addressed optimality in terms of sig-
nal power and entrainment rate. This was achieved by elucidating
the complex synchronization engineering task into a convex opti-
mization problem. However, despite the theoretical foundations, the
technique was only validated using simple phase oscillators, and,
thus, important questions remained open related to the extent to
which the method can be applied to systems beyond phase oscil-
lators, e.g., multivariable ordinary differential equations (ODEs) or
experiments.

In this paper, we leverage the optimal phase-selective entrain-
ment technique introduced in our previous work42 to induce the
desired synchronization structures in an array of heterogeneous
(nonidentical PRC) electrochemical oscillators. Specifically, we val-
idate the theoretical framework introduced in Ref. 42 through
experiments with oscillatory electrochemical reactions as well as
numerical simulations with a kinetic ODE model. The optimality of
our method and its robustness against population heterogeneity is
demonstrated using a comparative analysis with the previous phase
assignment technique, which used averaged PRCs.41 This allows us
to elucidate how the performance of entrainment signals designed
with averaged PRCs differs from those with individualized PRCs.

II. MATERIALS AND METHODS

A. Phase models

We consider a m-dimensional (m ≥ 2) limit-cycle oscillator
described by a smooth ordinary differential equation,

ẋ = f(x, u), x(0) = x0, (1)

where x ∈ R
m is the system state and u ∈ R is the external input. For

a weak u(t) such that the system remains in the neighborhood of the
unforced limit-cycle, the evolution of the original m−dimensional
system can be captured by a reduced one-dimensional system,
known as the phase model. These phase models can be evaluated
analytically using the phase reduction theory43 and can also be esti-
mated experimentally for a system with unknown dynamics.44 By
applying the phase reduction theory, the dynamics of an ensemble
of oscillators can be described by

θ̇j(t) = ωj + Zj(θj)u(t), j = 1, . . . , N, (2)

where θj, ωj, and Zj(θj) are the phase, natural frequency, and PRC
of oscillator j. A PRC is a 2π-periodic function that characterizes
the response of the oscillator phase to weak inputs and can be
determined experimentally or numerically.44–47

B. Optimal phase-selective entrainment

Here, we describe the key principles of the optimal phase-
selective entrainment technique introduced in Ref. 42 that decodes
the complex task of synchronization engineering into a convex opti-
mization problem. The objective of our technique is to design an
external periodic input of a given frequency � that can entrain a
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population of heterogeneous oscillators at phases ϕ∗
1 , . . . , ϕ∗

N while
having minimum power. To begin, we take the oscillator population
of (2) and consider their averaged phase model description,

ϕ̇j = 1ωj + 3u,j(ϕj), j = 1, . . . , N, (3)

where ϕj and 1ω are the phase difference and frequency differ-
ence between the oscillator j and the periodic forcing u, respectively;

3u,j(ϕj) = 1
2π

∫ 2π

0
Zj(θ + ϕj)u(θ)dθ is the interaction function of

oscillator j that characterizes the average effect of input over one
cycle. During entrainment, the phase difference between the oscil-
lators and input becomes constant, which results in ϕ̇j = 0 for
j = 1, . . . , N. Thus, to entrain the oscillator j at ϕ∗

j , the interaction

function 3u,j must satisfy

1ωj + 3u,j(ϕ
∗
j ) = 0,

3′
u,j(ϕ

∗
j ) ≤ 0, j = 1, . . . , N,

(4)

where 3′
u,j denotes the first-order derivative of 3u,j, and the second

condition is added to ensure stable entrainment.

1. Convex optimization formulation for control design

For the oscillator ensemble, each PRC (known) is a 2π-periodic
function and, hence, can be approximated using Fourier series.

Let a0,j, {an,j, bn,j}
rj
n=1 be the Fourier coefficient of Zj(θ) and i be

the oscillator index with the largest number of Fourier harmon-
ics, i.e., ri = max(r1, . . . , rN). Similarly, we denote c0, {cn, dn}

r
n=1 and

f0,j, {fn,j, fn,j}
min(r,rj)

n=1 as the input and 3u,j Fourier coefficients, which
are to be determined (r = ri). As a result of this Fourier decoding,
the optimal interaction function of oscillator i can be obtained by
solving the convex optimization problem,

min
y

1

2
yTQy,

s.t. Ay = b,

Gy ≤ h,

(5)

where y = [f0,i, f1,i, g1,i, . . . , gr,i], b = [−1ω1, . . . , −1ωN],
Q ∈ R

(2r+1)×(2r+1) is a diagonal matrix with non-negative entries
that depends on oscillator i PRC coefficients, and the matri-
ces A, G ∈ R

N×(2r+1) satisfy (A)jy = 3u,j(ϕ
∗
j ) and (G)jy = 3′

u,j(ϕ
∗
j ),

with (A)j and (G)j denoting the jth row of the matrix A and G;
h = [h1, . . . , hN] (hj ≤ 0) is added to ensure a faster rate of con-
vergence to the fixed points ϕ∗

j , j = 1, . . . , N. The objective function

and the constraints correspond to input power and the entrainment
conditions, respectively. After obtaining y, the optimal input can
be determined from the relation between the interaction function,
input, and PRC (see Ref. 42 for more details). Other objectives, for
example, fast entrainment, can also be achieved by modifying the
objective criteria to yTGTGy to maximize the slope of the interaction
function.

FIG. 1. Model simulations: electrode potential e(t) and the estimated PRC
of the electrochemical oscillator model for different values for circuit potential
V , resistance R, and 0. (a) (V1,R1,01) = (15, 20, 10−2). (b) (V2,R2,02) =

(15, 25, 10−2). (c) (V3,R3,03) = (24.9, 20, 8.5 × 10−3).

C. Numerical simulations

We consider a set of oscillators describing nickel electrodisso-
lution reaction in sulfuric acid with the dynamics equations,48

dej

dt
=

Vj + u(t) − ej

Rj

−

[

Ch exp (0.5ej)

1 + Ch exp (ej)
+ a exp (ej)

]

(1 − νj),

(6)

0j

dνj

dt
=

exp (0.5ej)

1 + Ch exp (ej)
(1 − νj) −

bCh exp (2ej)

cCh + exp (ej)
νj,

where the state variables ej and νj denote the electrode potential
and the surface coverage of the passivating oxide species of the jth
oscillator, and u(t) denotes the common input to the oscillators.
The parameters Ch = 1600, a = 0.3, b = 6 × 10−5, and c = 10−3

are identical for different oscillators, while the circuit potential, Vj,
resistance, Rj, and 0j are varied to introduce heterogeneity in oscil-
lator frequencies and PRC. The heterogeneous PRCs of three oscil-
lators corresponding to (V1, R1, 01) = (15, 20, 10−2), (V2, R2, 02)

= (15, 25, 10−2), and (V3, R3, 03) = (24.9, 20, 8.5 × 10−3) are dis-
played in Fig. 1. These PRCs are determined by applying narrow
pulses to the electrode potential and measuring the oscillation phase
shift.

D. Experiments

The experiments were performed in a standard three-electrode
electrochemical cell. An array of 1 mm nickel wires (W), a plat-
inum rod counter (C), and a Hg/Hg2SO4/sat. K2SO4 (R) reference
electrodes were used. The electrodes were immersed in an elec-
trolyte solution of 3 m sulfuric acid and kept at 10◦ C. The offset
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FIG. 2. Schematic of the open-loop control design for oscillatory electrochemical reactions. The inputs for the proposed technique consisted of (i) the natural frequency of
the oscillators, (ii) the desired phase pattern and the frequency of periodic forcing, and (iii) the phase response curves. The forcing signal u(t) is designed by plugging in the
parameters to optimization problem (5). The estimated input is then applied by superposing it to the circuit potential offset, V0, i.e., V(t) = V0 + u(t). C: counter electrode,
R: reference electrode, and W: working electrode array. The current, ij(t) (j = 1, . . . ,N, where N is the number of units), generated by the electrodissolution process is
measured by the potential drop across resistance Rind.

circuit potential (V0) was set by the potentiostat (GillAC) and the
control signal u(t) was superimposed on the offset circuit potential
[V(t) = V0 + u(t)]. When an individual resistance (Rind) is attached
to each working electrode, the nickel dissolution exhibits oscillatory
behavior through a Hopf bifurcation.49

In the experiments, three offsets of the circuit potentials
(V0 = 1090, 1150, and 1250 mV) and two different values of the
individual resistance (Rind = 1 and 1.5 k�) were used to induce
heterogeneity in the oscillators. Notice that because of different
individual resistances, the Hopf point (onset of oscillations) also
changed and, therefore, the oscillation frequency.50 To induce a
more relaxational waveform character, the offset circuit potential
was increased to values further away from the Hopf bifurcation.40,51

Due to inherent heterogeneities in the nickel wires, includ-
ing variations in the composition, size, and surface conditions such
as oxide film layer thickness and localized corrosion, the electro-
chemical oscillators exhibited slight discrepancies in the natural
frequencies. To account for such variation in the frequencies, the
experiments reported in this work involved selecting the natural
frequency of two (or four) oscillators from an array of 25. The fre-
quency difference was kept in the interval from 0.125 to 0.5 rad/s. A

pseudorandom sequence of narrow pulses was applied to the offset
circuit potential during each experiment at different parameter con-
ditions (V0 and R). Each of these pulses had a magnitude of 200 mV
and a duration of 0.05 s. Subsequently, we determined the corre-
sponding PRC for each oscillator41,52 and calculated an average PRC
derived from 25 oscillators.

The schematic of the experimental implementation of the
open-loop control is shown in Fig. 2. Our initial step involves mea-
suring both the oscillation frequency and the PRC of the oscillator
populations. These measured parameters, along with the desired
phase pattern, are fed into the optimization block. The opera-
tions of the optimization block are (i) the approximation of mea-
sured PRCs with Fourier series with the desired accuracy; (ii) the
construction of matrices A and G, and the vector b using the
approximated PRC coefficients, oscillator frequencies, input fre-
quency, and the desired entertainment phases (entries of h are
kept identical for all the oscillators); and (iii) the generation of
optimal input by solving (5) using an optimization solver. The
synthesized signal is then applied through a superposition oper-
ation, effectively modulating the circuit potential offset across all
oscillators.
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III. RESULTS AND DISCUSSIONS

A. Numerical simulations

In this section, we first illustrate the optimality and robust-
ness to PRC variations in the proposed phase assignment technique
via numerical simulations performed on a pair of electrochemical
oscillators (6) (Fig. 3). Subsequently, we demonstrate phase-selective
entrainment of four oscillators (Fig. 4).

1. Entrainment of an oscillator pair

In Fig. 3, we consider three pairs of oscillators, each with dis-
tinct levels of heterogeneity in their PRC and compare the proposed

technique with the method introduced in Ref. 41, hereby referred
to as the baseline method. The PRCs of the first pair are identi-
cal [Fig. 1(a)], those of the second pair exhibit some heterogeneity
[Figs. 1(a) and 1(b)], while the PRCs of the third pair display more
pronounced heterogeneity [Figs. 1(a) and 1(c)].

Case 1 (Identical PRC): We proceed to entrain the first pair of
oscillators with natural frequencies (ω1, ω2) = (0.4505, 0.4536) rad/s
in an in-phase configuration with an input of frequency � =

0.4521 rad/s using the proposed method by taking (ϕ∗
1 , ϕ∗

2 ) =

(π/2, π/2). To this end, we first fit the oscillator PRC using a Fourier
series of six harmonics and construct the matrices A, G, and Q using
the fitted Fourier coefficients and the desired entrainment phases.

FIG. 3. Numerical simulations: A comparison of the optimality and robustness again PRC heterogeneity of the proposed technique [(b1)–(b3)] with the baseline method
[(a1)–(a3)]. The top-left, top-right, and bottom figures of each panel depict the designed interaction function (with inset showing phases on the unit circle), control input, and
the time series of the electrode potential, where the red and black colors correspond to the slower and faster oscillators, respectively. (a1) and (b1), (a2) and (b2), and (a3)
and (b3) correspond to three different pairs of the PRC depicted in Fig. 1. The blue line in (a2) and (a3) shows the interaction function corresponding to the mean PRC of
two oscillators. The stable entrainment phases are the points where the horizontal line (−1ω) intersects the interaction function at the negative slope.
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FIG. 4. One-cluster (top) and two-cluster (bottom) state with four oscillators. Left to right: interaction function (inset: phases on the unit circle), control input, and the electrode
potential time series. The red (black) color denotes the slower (faster) oscillators, where oscillators having identical PRC are represented by the same color.

The interaction function is then obtained by solving the optimiza-
tion program (5) where the entries of vector h are set as −0.01.
The designed interaction function, corresponding control input,
and the resulting electrode potential waveform are shown in the
upper-left, upper-right, and lower sections of panel b1 in Fig. 3,
where the slower (faster) oscillator is denoted by the red (black)
color. Now, we repeat the same task of in-phase entrainment
using the baseline method, with the results shown in Fig. 3(a1).
The principle idea behind the baseline method is to first design
a step-like phase interaction function that passes through the
entrainment phases with a negative slope and then approxi-
mate this function with a Fourier series to obtain the inter-
action function and the input. We find a substantial sevenfold
input power reduction, decreasing from 0.61 to 0.09, achieved by
the proposed technique compared to the baseline approach. The
difference between the desired and observed phase difference
remains consistently small for both methods (0.09 and 0.18 rad
for the updated and baseline, respectively). Note that the

input power and the error are defined as 1
2π

∫ 2π

0
u2(θ)dθ and

√

(

1θdesigned−1θobserved

)2
, respectively, where 1θdesigned and 1θobserved

denote the desired and observed phase differences between the
oscillators.

Case 2 (Marginally heterogeneous PRC): Now, we con-

sider a pair of marginally distinct PRC oscillators with (ω1, ω2)

= (0.4505, 0.4587) rad/s and entrain them in an anti-phase con-
figuration by taking (ϕ∗

1 , ϕ2∗) = (π/4, 5π/4) using an input of
� = 0.456 rad/s. We repeat a similar procedure as in the identi-
cal PRC case to construct the interaction function (shown in the
upper-left image in Fig. 3(b2)). The corresponding control input and

the electrode potential waveforms are shown in the upper-right and
bottom sections, respectively. As the baseline method assumes the
oscillators to have identical PRCs, we employ the mean PRC to
design the interaction function for comparative analysis. The mean
interaction function is depicted by the blue line in the upper-left
figure of panel a2, where red and black lines denote the interac-
tion functions associated with the true oscillator PRCs. Similar to
the identical PRC case, we achieve a tenfold input power reduc-
tion by using the proposed technique (input power decreases from
0.86 to 0.083). However, the baseline technique results in a notable
difference of 0.73 rad between the desired and observed phase dif-
ference, while the error remains small (0.05 rad) for the proposed
algorithm. The increased error for the baseline method can be
attributed to the dissimilar oscillator PRCs.

Case 3 (Heterogeneous PRC): As illustrated, for heteroge-
neous PRC oscillators, it becomes imperative to incorporate PRC
heterogeneity in the control design process to obtain an accu-
rate phase difference. Neglecting to do so can sometimes result
in multiple entrainment phases, depending on the initial phase
differences. We empirically substantiated this by entraining a
pair of more heterogeneous PRCs in an in-phase configuration
where (ϕ∗

1 , ϕ∗
2 ) = (π , π). The oscillator’s natural frequencies are

(0.4475, 0.4505) rad/s, and the input frequency is taken as the mean
oscillator frequency. The results of our method are displayed in
Fig. 3(b3), where we notice that PRC heterogeneity does not influ-
ence performance. However, for the baseline method, using the
mean PRC for control design results in two stable fixed points for
the slower (red) oscillator. These stable fixed points are depicted
by the red and light blue colors in the upper-left quadrant of
Fig. 3(a3). This implies that the slower oscillator can, indeed,
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FIG. 5. Experiments in the oscillatory nickel electrodissolu-
tion: current time series i(t) (left column) and the estimated
PRC (right column) of the electrochemical oscillator for differ-
ent values for circuit potential V0 and individual resistance Rind.
(a) (V0,Rind) = (1090 mV, 1k�). (b) (V0,Rind) = (1150 mV,
1 k�). (c) (V0,Rind) = (1150 mV, 1.5 k�). (d) (V0,Rind)

= (1250 mV, 1 k�).

entrain at two disparate phases, depending on its initial phase.
We observe a similar phenomenon during experiments. The results
corresponding to the light blue entrainment phase are shown in
Fig. 3(a3), where oscillators are entrained in an anti-phase con-
figuration instead of an in-phase pattern (the other entertainment
phase, dark red, results in in-phase entrainment). The proposed
technique still generates a smaller power input (input power is
reduced to 0.021 compared to the baseline power of 0.158). The
comparison of input power and the error in the synchroniza-
tion patterns for all three cases is displayed in the top panel
of Fig. 7.

2. Entrainment of oscillator assemblies

Having shown the optimality and robustness to PRC varia-
tions of our technique on a pair of oscillators, we now consider
cluster formation with four oscillators. Specifically, we form one-
and two-cluster states in a group of oscillators with frequencies
(ω1, ω2, ω3, ω4) = (0.4453, 0.4475, 0.4505, 0.4536) rad/s by design-
ing an input with � = 0.4492 rad/s frequency. The entrainment
phases are taken as (ϕ∗

1 , ϕ∗
2 , ϕ∗

3 , ϕ∗
4 ) = (π/2, π/2, π/2, π/2) for the

one-cluster state, while (π/2, π/2, 3π/2, 3π/2) for the two-cluster
state. The oscillators denoted by identical colors have identical
PRCs; precisely, the red (black) color oscillators have PRC shown
in Fig. 1(c). The results of the one-cluster (two-cluster) states are

shown in the top (bottom) panel of Fig. 4. For the two-cluster state,
we keep the oscillators with identical PRCs in identical clusters.

B. Experimental results

1. PRC estimation

Figure 5 shows the waveform of the current and the PRCs
for the different parameters of V0 and Rind. As some previ-
ous studies have pointed out,40,51 at V0 = 1090 mV and Rind

= 1 k�, the oscillation waveform is sinusoidal with natural fre-
quency ω = 2.16rad/s and predominantly first harmonic compo-
nents in the PRC [Fig. 5(a)]. The waveform and the measured
PRC are shown in Fig. 5(b) for an increase in the circuit potential
(V0 = 1150 mV) while keeping the same Rind = 1k�. We observed
a similar sinusoidal waveform with a natural frequency of ω

= 2.28 rad/s. When both the circuit potential and the individ-
ual resistance were increased (V0 = 1150 mV, Rind = 1.5 k�), the
waveform was slightly different from those in Figs. 5(a) and
5(b) with ω = 2.18 rad/s. The PRC showed mainly first harmonic
[see Fig. 5(c)]. Figure 5(d) illustrates the waveform and the PRC
at a higher circuit potential of V0 = 1250 mV and with Rind =

1 k�. Under these parameters, the oscillations became moder-
ately relaxational with a decrease in the natural frequency to ω =
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FIG. 6. Experiments in the nickel electrodissolution: A comparison of the optimality and robustness against PRC heterogeneity of the baseline method [(a1)–(a3)] and with
the proposed technique [(b1)–(b3)]. The top-left, top-right, and bottom figures of each panel depict the designed interaction function, control input, and the time series of the
current of each oscillator. The inset panel in the control input shows a snapshot of the phases for each oscillator after reaching a stationary state. The red and black colors
correspond to the slower and faster oscillators, respectively. (a1) and (b1), (a2) and (b2), and (a3) and (b3) correspond to three different pairs of PRC depicted in Fig. 5. The
blue line in (a2) and (a3) shows the interaction function corresponding to the mean PRC of two oscillators.

2.02 rad/s. At these conditions, the PRC exhibited higher har-
monics as the system moved further away from the Hopf bifurca-
tion.

2. Phase-selective entrainment of a pair of oscillators

Similar to numerical simulations, we consider three pairs of
oscillators, each with different PRC heterogeneities, and entrain
them in various phase patterns. The results are shown for in-phase,
anti-phase, and out-of-phase in Fig. 6 for all three PRC pairs.
For each phase pattern, we determine the interaction function and
the control input using the proposed technique and the baseline
method. The designed input is then applied to offset circuit poten-
tial, and the current (ij) time series of each oscillator is recorded.
The corresponding phases of the oscillators are determined from the
recorded time series using peak-finding algorithms.44,53

Case 1 (Identical PRC): To begin, we consider the pair of
oscillators with identical PRCs and entrain them in an in-phase
configuration by taking (ϕ∗

1 , ϕ∗
2 ) = (π/2, π/2) using both meth-

ods. The oscillator frequencies are (ω1, ω2) = (2.15, 2.29) rad/s,

and the input frequency is taken as the mean of oscillator
frequencies. The designed interaction function, control input,
and recorded oscillator time series are shown in the top-
left, top-right, and bottom parts of Figs. 6(a1) and 6(b1),
which correspond to the baseline and proposed method, respec-
tively. We find that the proposed method used three times
less power (P = 8.1 × 10−5) than the baseline method (P = 24.5
× 10−5). The time series of experiments in Fig. 6(a1) shows a dis-
torted waveform than those in Fig. 6(b1) as a result of strong forcing.
The difference between the designed and observed phase difference
is similar for both methods (baseline error: 0.76 rad and the pro-
posed method error: 0.68 rad). The experiments, thus, confirm that
with identical PRCs, in-phase synchronized entrained oscillators can
be achieved with both methods. These results are consistent with
previous experiments41 and theoretical studies42 with ensembles of
oscillators.

Case 2 (Marginally heterogeneous PRC): The anti-phase

entrainment of two oscillators with marginally different PRCs [see
Figs. 5(b) and 5(c)] is shown in Figs. 6(a2) and 6(b2), where
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FIG. 7. A comparison of input power and the error in the synchronization pat-
tern between the proposed technique and the baseline method for different PRC
heterogeneities (I,II, and III); I: a pair of oscillators with identical PRC, II: a pair
of oscillators with slightly heterogeneous PRCs, and III: a pair of oscillators with
significantly heterogeneous PRCs. The blue and orange color bars indicate the
results for the baseline and the proposed method, respectively.

(ϕ∗
1 , ϕ∗

2 ) = (π/2, 3π/2). The oscillator frequencies are (ω1, ω2)

= (2.18, 2.68) rad/s, and the input frequency is taken as �

= 2.26 rad/s. For the baseline method, we use the mean PRC to
design the interaction function, shown by the blue line in the top-left
part of Fig. 6(a2). Similar to the previous case, the control input
generated using the proposed method (P = 24.2 × 10−5) uses ten
times less power than the baseline input (P = 280 × 10−5). The time
series of the recorded currents using the control signal generated by
the baseline method shows substantial modifications in the wave-
form due to more drastic changes in the circuit potential than in
the proposed method. In this case, the error is more prominent
in the baseline method (1.12 rad) than in the proposed method
(0.45 rad). The findings indicate that heterogeneity in the PRCs
of the oscillators led to an increase in the error of the designated
phase difference when the baseline method is implemented. How-
ever, using the suggested approach, the error remained similar for
identical and heterogeneous PRCs.

Case 3 (Heterogeneous PRC): Figures 6(a3) and 6(b3) show
the results when the heterogeneity between the PRCs is further
increased. In this case, an out-of-phase (π/2 ≈ 1.57 rad) phase dif-
ference is designed by taking (ϕ∗

1 , ϕ∗
2 ) = (π/2, π). The oscillator fre-

quencies are (ω1, ω2) = (1.95, 2.20) rad/s, and the input frequency
is taken as the mean of the oscillator frequencies. The faster oscil-
lator is close to the Hopf bifurcation, exhibiting a sinusoidal wave-
form [Fig. 5(a)], while the slower one in a parameter region with
a more relaxational characteristic [Fig. 5(d)]. As in the previous

FIG. 8. Phase assignment for a population of four oscillators with the proposed method. (a) One-cluster with (N = 4) elements. (b) Two-cluster with (N1,N2) = (2, 2) elements.
(c) Three-cluster state with (N1,N2,N3) = (1,1,2) elements. For each panel, left to right: interaction function, control input (inset: phases on the unit circle), and the current
time series. The red (black) color denotes the slower (faster) oscillators, where oscillators having identical PRC are represented by the same color.
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cases, the baseline input has more power (P = 18 × 10−5) than the
proposed method (P = 7 × 10−5). However, for such large PRC
heterogeneity, we observe that the baseline method entrains the
oscillators in an in-phase configuration instead of an out-of-phase
pattern. This is because the interaction function is designed based
on the mean PRC (blue line), but the actual interaction function
(red line) differs from the mean interaction function. As a result,
the oscillator entrains to the phase difference shown by the red dot
in the top-left portion of Fig. 5(a3). On the other hand, the proposed
method entrains the oscillators to a 1.97 rad phase difference with
a relatively smaller error of 0.40 rad. This experiment demonstrates
that in conditions where the heterogeneities of the PRCs are signifi-
cant, the assigned phase difference could be quite different than the
observed phase difference if the mean PRC is used for the control
design.

3. Input power and error analysis

The experimental results of the power and error for both meth-
ods are compared in Fig. 7 (bottom panel). As we can observe,
the relative power of the proposed method was in the interval
P = 0.09 to 0.39 for the three different phase assignments with
different PRC heterogeneities. As PRC heterogeneity increases, the
error for the baseline technique increases, from 0.76 to 1.36 rad,
while the proposed method remained relatively constant between
0.40 and 0.70 rad, demonstrating robustness against PRC hetero-
geneity. In addition, the suggested approach consistently generates
smaller power inputs for all experiments done in this work.

4. Phase-selective entrainment of four oscillators

We also conduct experiments with four oscillators to display
cluster formation. Figure 8 shows the one- (top row), two- (mid-
dle row), and three-cluster (bottom row) states designed with the
proposed algorithm. For the one- and two-cluster states, oscillator
frequencies are (ω1, ω2, ω3, ω4) = (2.16, 2.17, 1.77, 1.76) rad/s and
the input frequency is taken as � = 1.96 rad/s; while for the three-
cluster state, oscillator frequencies are (2.04, 2.10, 1.85, 1.86) rad/s
with the designed input of � = 2.1 rad/s. The entrainment phases
for one-, two-, and three-cluster states are taken as (π , π , π , π),
(3π/2, 3π/2, π/2, π/2), and (π/4, π/2, 3π/2, 3π/2), respectively.
Oscillators 1 and 2 are close to Hopf bifurcation and have iden-
tical PRC [Fig. 5(a)], while slower oscillators, i.e., oscillators 3
and 4, have identical PRC and display relaxational characteristics
[Fig. 5(d)]. For such a heterogeneous population, we find that our
technique can successfully obtain the desired cluster configuration,
highlighting its experimental applicability to large heterogeneous
oscillator populations.

IV. CONCLUSIONS

Numerical simulations and experimental evidence in the nickel
electrodissolution system were presented for optimal entrainment of
heterogeneous oscillators. Phase-selective entrainment was applied
to heterogeneous oscillators with a global signal. Various entrain-
ments with in-phase, anti-phase, and out-of-phase configurations
were demonstrated with different levels of correlations of the PRCs

of the oscillator pairs. In addition, the technique was also demon-
strated for a set of four oscillators for one-, two-, and three-cluster
configurations.

This approach enables entraining oscillators with heteroge-
neous PRCs, which expands the technique limited to control oscilla-
tors with identical PRCs.41 Our proposed approach transforms the
continuous domain control task into a discrete convex quadratic
program (QP), which is both computationally efficient and yields
a globally optimal signal. This contrasts with the commonly used
method for control design via optimal control theory (see Refs. 54–
57), which involves solving a set of boundary value differential
equations—a process that is computationally intensive and typically
results in a locally optimal solution. Additionally, the transforma-
tion of the control design problem into a convex QP facilitates
scaling to large arrays of oscillators, as the worst-case computational
complexity for solving a convex QP is polynomial time with sys-
tem size, namely, O(N3).58 The main limitations of the method are
related to the use of phase models. As the heterogeneity in oscillator
frequency increases, stronger inputs are required for phase-selective
entrainment. This might invalidate the weak forcing assumption
that underpins the validity of phase models. Further investigation
is needed to effectively control sufficiently large heterogeneous pop-
ulations beyond phase models. From an experimental perspective,
the relative phase distribution of large oscillator populations can be
designed as long as the PRCs and the (natural) frequencies of the
oscillators can be measured (or estimated).

The presented control technique consistently used less power
in numerical simulations and experiments with oscillatory electro-
chemical reactions. This feature makes the technique suitable for
controlling biological neuronal ensembles, where noninvasive and
mild control is desired to fine-tune system behavior without dis-
rupting its fundamental properties. For instance, in medical device
development, synchronizing cardiac tissues with low power forc-
ing is crucial for addressing cardiac arrhythmias.59 Similarly, for the
treatment of brain disorders, minimum-power optimal stimuli are
required to desynchronize oscillator populations.33 In addition, our
technique does not require real-time feedback and can successfully
obtain stable synchronization structures using only the knowledge
of the natural frequencies and the PRCs of the population, both of
which can be determined from the experimental data.
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