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Strong coupling yields abrupt synchronization transitions in coupled oscillators
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Coupled oscillator networks often display transitions between qualitatively different phase-locked solutions—
such as synchrony and rotating wave solutions—following perturbation or parameter variation. In the limit of
weak coupling, these transitions can be understood in terms of commonly studied phase approximations. As the
coupling strength increases, however, predicting the location and criticality of transition, whether continuous or
discontinuous, from the phase dynamics may depend on the order of the phase approximation—or a phase
description of the network dynamics that neglects amplitudes may become impossible altogether. Here we
analyze synchronization transitions and their criticality systematically for varying coupling strength in theory
and experiments with coupled electrochemical oscillators. First, we analyze bifurcations analysis of synchrony
and splay states in an abstract phase model and discuss conditions under which synchronization transitions with
different criticalities are possible. In particular, we show that such conditions can be understood by considering
the relative contributions of higher harmonics to the phase dynamics. Second, we illustrate that transitions with
different criticality indeed occur in experimental systems. Third, we highlight that the amplitude dynamics
observed in the experiments can be captured in a numerical bifurcation analysis of delay-coupled oscillators.
Our results showcase that reduced order phase models may miss important features that one would expect in the
dynamics of the full system.

DOI: 10.1103/PhysRevResearch.6.033328

I. INTRODUCTION

Collective oscillatory dynamics are a hallmark of a multi-
tude of real-world networks, such as electrical activity in the
brain [1,2], power grids [3,4], and epidemiology [5,6]. Such
systems are often described using network dynamical systems
models that couple together nodes that each intrinsically (i.e.,
in the absence of coupling) exhibit stable, hyperbolic limit
cycle oscillations. If the oscillation frequencies of the nodes,
or subsets of nodes, are sufficiently close together, the net-
work can display phase-locked behavior in which the phase
difference between pairs of nodes converges to a finite value
[7]. As parameters, such as the coupling strength, are varied,
networks may exhibit sharp transitions between collective
oscillations with different phase-difference properties. Partic-
ularly striking examples include the abrupt synchronization
phenomenon in which a group of nodes (potentially encom-
passing the entire network) exhibits a sharp transition from
an incoherent state to a phase-locked state in which the phase
differences between nodes in the group vanishes [8,9].
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If the coupling is sufficiently weak, the network dynamics
can be described using phase reduction [10,11]. The phase
reduction describes the dynamics of the phases on an attract-
ing invariant torus in terms of intrinsic rotation and a phase
interaction function that captures how the oscillators’ phases
interact. To first order, the phase interaction function is a
convolution of the phase response function, which captures
the linear sensitivity of the phase of a node oscillation to a per-
turbation, and a coupling function that describes how nodes
interact with one another. These functions can often be in-
ferred from data or estimated using perturbative experiments.
This makes weakly coupled oscillator theory an attractive
framework for studying real-world systems, for example, to
design the dynamics of coupled oscillator networks [12,13].

If the coupling between individual units becomes strong—
as is the case in many real-world systems—the assumptions
that underlie phase reduction cease to be satisfied. It is thus
pertinent to ask which predictions of the weakly coupled the-
ory break as the coupling strength is increased and how such
predictions change. For example, strong coupling may turn
a continuous synchronization transition into a discontinuous
one [14]. Recent work has demonstrated that predictions for
infinitesimal coupling strengths are inconsistent with those
for small, finite coupling strengths, even for simple oscillator
models [15]. Similarly, perturbations to oscillation amplitudes
can impact phase dynamics, particularly, if the amplitudes of
different node oscillations are perturbed in different ways. For
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example, it has long been known that chaotic dynamics with
small amplitude variation can emerge close to bifurcations
of coupled oscillator networks as the coupling strength is
increased due to the presence of symmetries in the underlying
dynamics in what is known as instant chaos [16].

To understand network dynamics beyond the weak cou-
pling limit, new mathematical tools have recently become
available. One such example is the construction of higher-
order phase reductions that give a more accurate description
of the phase dynamics [17,18]. Other examples involve ap-
proximations that allow for additional degrees of freedom.
For example, phase-amplitude reductions add a degree of free-
dom that corresponds to an “amplitude” variable; cf. [19–22].
Such approximations have also been derived for dynamical
systems with time delay [23]. Despite being ad hoc and
without a rigorous mathematical justification, there have been
promising results showcasing the merits of these frameworks,
including demonstrations of how amplitude variations can
be controlled [24]. However, it remains an open question
how best to incorporate the effects of strong coupling in a
practical sense.

Here we take an interdisciplinary approach to elucidate the
effect of strong coupling on the synchronization dynamics in
a minimal network of two delay-coupled phase oscillators.
Specifically, we demonstrate how abrupt transitions between
different phase-locked states of a two-node network are in-
duced by changes in coupling strength. First, we consider
phase dynamics for two coupled oscillators with higher har-
monics. Here one would expect higher harmonics to shape
the dynamics for highly nonsinusoidal oscillations as the cou-
pling strength is increased. We show that higher harmonics
can introduce changes in the criticality of key bifurcations,
which in turn leads to bistability between solutions with dif-
ferent asymptotic phase differences. Second, we demonstrate
that such transitions arise in experiments involving a net-
work of electrochemical oscillators coupled through delayed
feedback. Since the phase theory is insufficient to describe
amplitude variations observed in the experiments, we inves-
tigate a network of two delay-coupled oscillators through
numerical bifurcation analysis of a model of the chemical
oscillator network. Here we demonstrate the existence of
branches of symmetry-broken solutions that are well matched
to the experimental observations.

II. CONTINUOUS AND DISCONTINUOUS TRANSITIONS
BETWEEN SYNCHRONIZED STATES IN PHASE

OSCILLATORS

To understand transitions between in-phase and antiphase
dynamics, we consider the simple case of a network of two
delay-coupled nonlinear oscillators. Specifically, the state of
each oscillator is given by xk ∈ RN and evolves according to

ẋ1 = F (x1) + KG(x2(t − τ )), (1a)

ẋ2 = F (x2) + KG(x1(t − τ )), (1b)

where F : RN → RN determines the intrinsic oscillatory dy-
namics and G : RN → RN determines the interactions with
strength K � 0 and delay τ � 0. In the uncoupled case, with
K = 0, each node possesses a stable hyperbolic limit cycle

with intrinsic frequency ω. If the coupling is sufficiently weak
(|K| � 1), the dynamics of (1) evolve on an invariant torus
in which the oscillator amplitudes are slaved to the respec-
tive oscillator phases θ1, θ2 ∈ T := R/2πZ. In this case, the
dynamics can be simplified via projection onto this invariant
torus [10,11], so that the (averaged) phase equations for (1)
with n relevant harmonics can be written as

θ̇1 = ω + g(θ2 − θ1 + α), (2a)

θ̇2 = ω + g(θ1 − θ2 + α), (2b)

where

g(φ) = 1

2

n∑
m=1

am sin(mφ + γm) (3)

is the 2π -periodic (phase) coupling function, and α is a phase
shift parameter common to both oscillators. Up to rescaling,
we may assume a1 = 1 and γ1 = 0. Note that, in the limit
of weak coupling, the delay τ in (1) is associated with the
phase shift α in (2), which, in turn, can affect the stability
of the synchronized solutions and thus serves as a convenient
bifurcation parameter that can be used to engineer phase dif-
ferences between coupled oscillators [12,25].

A. Symmetries, bifurcations, and criticality

By symmetry, the in-phase solution 	0 = {θ1 = θ2} and
the antiphase solution 	π = {θ1 = θ2 + π} are (relative)
equilibria of (2) for any choice of parameter values. Note that
(2) inherits the permutational symmetry (θ1, θ2) �→ (θ2, θ1)
from (1), and—since it describes the slow evolution of the
phase differences—a continuous phase-shift symmetry where
γ ∈ T acts by γ :(θ1, θ2) �→ (θ1 + γ , θ2 + γ ). To eliminate
this phase shift symmetry, we can describe the dynamics of
(2) in terms of the phase difference ψ := θ2 − θ1 between the
two oscillators. The phase difference evolves according to

ψ̇ = g(−ψ + α) − g(ψ + α)

=
n∑

m=1

am cos(mα + γm) sin(mψ ). (4)

In-phase synchrony 	0 in (2) corresponds to ψ = 0 and an-
tiphase synchrony 	π corresponds to ψ = π ; both of these
points are equilibria of (4).

We now consider bifurcations of in-phase (ψ = 0) and
antiphase (ψ = π ) configurations as the phase-shift parameter
α is varied. For coupling functions g with a single nontriv-
ial harmonic, i.e., am = 0 for m � 2, both ψ = 0 and ψ =
π bifurcate at α = π

2 + qπ , q ∈ Z and are connected by a
“vertical” branch of equilibria along which any ψ ∈ T is an
equilibrium of (4). If the second harmonic is also nonzero,
then there is a nondegenerate branch of equilibria around
α = π

2 that connects ψ = 0 and ψ = π [26]; the bifurcations
of these solutions are either both super- or both subcritical.
While first and second harmonics may be a suitable approxi-
mation in certain parameter regimes (e.g., where G describes
linear coupling or when the uncoupled limit cycles are almost
sinusoidal in nature), one expects that higher harmonics in the
phase dynamics become more relevant in (2) as the coupling
strength K is increased.
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It is then instructive to ask what the consequence of the
presence of these higher harmonics might be for the phase
dynamics. One specific important question is whether it is
possible for the bifurcations of the in-phase (ψ = 0) and
antiphase configurations (ψ = π ) in (2) to have different crit-
icality when higher harmonics are taken into account. While
one can generically control the criticality of the transition lo-
cally [27], we consider in-phase and antiphase configurations
here simultaneously in the context of (2).

If the harmonics do not have distinct phase shifts, i.e., γm =
0, then the criticality of the bifurcations of ψ = 0 and ψ = π

are identical; this implies in particular that generalizing the
phase interaction function considered in [26] to more than two
nontrivial harmonics cannot give transitions of distinct criti-
cality. This can be seen by noting that the system for γm = 0
has a parameter symmetry (ψ, α) �→ (π − ψ,π − α). This
implies that ψ = π

2 is an equilibrium for α = π
2 and that any

bifurcation of ψ = 0 at α = α̂ leads to an identical bifurcation
of ψ = π at α = π − α̂. Moreover, if all even harmonics van-
ish (i.e., am = 0 for m even), then ψ = 0 and ψ = π bifurcate
at α = π

2 . Thus, if parameters are such that there is only a
single bifurcation of ψ = 0, π for α ∈ (0, π ) (i.e., these bifur-
cations are related by symmetry), then it is necessary to have
nonzero γm for the bifurcations to have distinct criticality.

B. Distinct criticality of transitions of
in-phase and antiphase configurations

We now consider the bifurcations of ψ ∈ {0, π} in α for
more general choices of γm. Expanding (4) around ψ = 0
yields

ψ̇ =
n∑

m=1

am cos(mα + γm)

(
mψ − m3ψ3

3!
+ · · ·

)
. (5)

Thus, the linear stability of ψ = 0 as well as the criticality of
the (potentially degenerate) pitchfork bifurcation around ψ =
0 are determined by

D1(0; α) =
n∑

m=1

mam cos(mα + γm), (6a)

D3(0; α) = − 1

3!

n∑
m=1

m3am cos(mα + γm). (6b)

Specifically, solving D1(0; α) = 0 for α determines a bifur-
cation point α(0) of ψ = 0 as α is varied and D3(0; α(0) )
determines the criticality of this transition. In particular,
the bifurcation yields a continuous transition (a supercriti-
cal pitchfork bifurcation with an emerging branch of stable
equilibria) if D3(0; α(0) ) < 0 and a discontinuous transition
(a subcritical pitchfork bifurcation with an emerging branch
of unstable equilibria) if D3(0; α(0) ) > 0. In a similar fashion,
expanding (4) around ψ = π gives

D1(π ; α) =
n∑

m=1

(−1)mmam cos(mα + γm), (7a)

D3(π ; α) = − 1

3!

n∑
m=1

(−1)mm3am cos(mα + γm). (7b)

Thus, the bifurcation of the antiphase configuration ψ = π

at α(π ) is continuous if D3(π ; α(π ) ) < 0 and discontinuous if
D3(π ; α(π ) ) > 0.

We now show explicitly that there is an open set of pa-
rameters for which the criticalities of the transition of the
in-phase and antiphase configurations are distinct. We first
restrict to coupling functions whose first three harmonics may
be nontrivial (a2 = r, a3 = s, am = 0 for m > 3). Recall that
for r = s = 0, the equilibria ψ = 0, ψ = π undergo a degen-
erate bifurcation at α = π

2 with a “vertical” bifurcation branch
(i.e., any ψ ∈ T is an equilibrium). For r, s small, this branch
will be perturbed, which leads (generically) to nondegenerate
pitchfork bifurcations at α ≈ π

2 . Let β = π
2 − α denote the

deviation of the bifurcation point from α = π
2 . Assuming

that mβ + γm is small, we can approximate these bifurcation
points by expanding the cosine term in (6a) and collecting
terms in β up to first order to give the approximate location
of the bifurcation point of ψ = 0 as

α̃(0) = π

2
− a2 + a1γ1 − a3γ3

a1 − 3a3
= π

2
− r − sγ3

1 − 3s
. (8)

Using the same approximation with β̃ (ψ ) = π
2 − α̃(ψ ), the crit-

icality at the approximate bifurcation point is

C̃(0) = a1γ1 + 32a2 − 33a3γ3 + (34a3 − a1)β̃ (0)

= 9r − 27sγ3 + (81s − 1)β̃ (0). (9)

Similarly, we can approximate the bifurcation point of ψ = π

by

α̃(π ) = π

2
− r + sγ3

3s − 1
(10)

with criticality determined by

C̃(π ) = 9r + 27sγ3 + (1 − 81s)β̃ (π ). (11)

To see that there is an open set of parameters for which the
criticality of ψ = 0 and ψ = π is distinct, consider the case
with a vanishing second harmonic, r = 0. Then β (0) = β (π )

and

C̃(0) =
(

81s − 1

3s − 1
− 27

)
γ3s = −C̃(π ).

Thus, for C̃(0) �= 0, the transitions of in-phase and antiphase
configurations have distinct criticality, which are exchanged
as s passes through zero. Since the expressions considered
are continuous in all parameters for small s, this yields an
open set of parameters for which the in-phase and antiphase
configurations have distinct criticality, as claimed above. Note
that this phenomenon is not limited to the case with three
harmonics with parameters r, s but also occurs if we allow
small nonzero am, m > 3.

To demonstrate our findings, we compute the bifurcation
points and their criticality numerically using (6) and (7); cf.
Figs. 1(a) and 1(b). There is indeed an open set of parameters
for which the bifurcations of the in-phase and antiphase con-
figurations have distinct criticality, as shown in Fig. 1(c). For a
slowly varying parameter α [28], this results in the bifurcation
behavior shown in Fig. 1(d) where the transition of ψ = 0
at the bifurcation point is continuous while ψ = π shows a
discontinuous, abrupt transition. Note that we here focus on
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FIG. 1. Varying parameters demonstrates regions in which the bifurcations of equilibria ψ = 0, π have distinct criticality. Results are
demonstrated for fixed γ2 = 0.2, γ3 = 0.5. (a) Criticality coefficient (6b) for ψ = 0 as the strength r, s of the second and third harmonic is
varied; blue indicates a continuous, red a discontinuous transition; a hollow circle indicates r = s = 0 and a filled circle the parameter values
in panel (d). (b) Criticality coefficient (7b) for ψ = π as in panel (a). (c) Regions in which the bifurcations of the in-phase and antiphase
configurations have distinct criticalities: white indicates that the transition at ψ = 0 is continuous, while ψ = π is discontinuous and black
vice versa. Bifurcations of ψ = 0 and ψ = π have the same criticality in the gray regions. (d) Pseudocontinuation plot for r = −s = 0.12
as the parameter α is increased (green) or decreased (black); an approximate region of hysteresis or multistability due to the discontinuous
transition of the ψ = π solution is shaded in gray.

the bifurcation points that converge to α = π
2 as r, s → 0;

further bifurcations—also along the nontrivial branch—can
occur as the influence of second and third harmonic grows.

III. HYSTERESIS IN COUPLED
ELECTROCHEMICAL REACTIONS

We next investigate the consequence of the results of the
preceding section in a real-world system. In particular, we
examine whether the regions of existence of pitchfork bifurca-
tions with distinct criticality predicted in Fig. 1 can be induced
in a network of two oscillatory electrochemical reactions
coupled with time-delayed linear feedback. Here we predict
that increasing the coupling strength between the reactions
can drive changes in pitchfork criticality and hence give rise
to bistability between phase-locked solutions with different
phase differences.

A. Experimental setup

A schematic of the experimental setup is shown in
Fig. 2(a). The three-electrode electrochemical cell is equipped
with a Pt-coated Ti rod as a counter (CE), a Hg/Hg2SO4/sat.
K2SO4 as a reference (RE), and two Ni wires (Goodfellow
Cambridge Ltd, 99.98%, 1.0 mm diameter) as working elec-
trodes (WE) connected to a potentiostat (ACM Instruments,
Gill AC). The electrodes are immersed in a 3 M H2SO4

solution as an electrolyte and kept at a constant temperature
of 10 ◦C.

When a constant circuit potential with respect to the refer-
ence electrode (V0 = 1200 mV) is applied by the potentiostat
and external resistance (Rind = 1 k�) is attached to each
nickel wire, the electrochemical dissolution of nickel exhib-
ited periodic oscillations of the current [29] [see Fig. 2(c)].
In our specific experiments, the natural (uncoupled) frequen-
cies of oscillators 1 and 2 were ω1 = 0.446 Hz and ω2 =
0.444 Hz, respectively, with a mean frequency of 0.445 Hz
and a mean period of T = 2.25 s.

The potentiostat is interfaced with a real-time LabVIEW
controller, and is used to measure the total current iT and
subsequently set the circuit potential V (t ) at a rate of 200 Hz

CE RE WE

Rind

Poten ostat

1 2

(t)

(t)

(t)

Feedback Unit

(a)

(c)

(b)

Feedback

(t)

(t) = + ( ( − ) − )

( )(t)
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 i
 (

m
A

)

(t)

FIG. 2. Illustration of the time-delayed linear feedback experi-
ment with a time series of the uncoupled system. (a) Schematic of the
experimental setup. CE: counter electrode, RE: reference electrode,
and WE: working electrodes. (b) Diagram of the delay feedback
schematic of the electrochemical experiment. The currents (i1, i2)
of each nickel wires were measured and added to obtain a total
current (iT ). The iT was fed back with a coupling strength (K), a
delay, (τ ) and applied to the circuit potential (V (t )). (c) Time series
of the currents for the uncoupled (K = 0) oscillators and without
delay (τ = 0). The blue and red lines correspond to oscillator 1 and
2, respectively.
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FIG. 3. Scan under variation of the time delay τ at weak coupling
strength (K = −0.12 V mA−1) of the two-electrode system. (a) Time
series of the current for the in-phase behavior for τ = 0.081 s (0.036
τ/T ). (b) Time series of the current for the out-of-phase behavior for
τ = 0.60 s (0.27 τ/T ). (c) Time series of the current for the antiphase
behavior for τ = 0.89 s (0.39 τ/T ). In panels (a)–(c), the blue and
red lines correspond to oscillators 1 and 2, respectively. (d) Phase
difference of the coupled oscillators as a function of the time delay.
The green line is the phase difference corresponding to the forward
scan (τ = 0 → 0.5 τ/T ), and the gray line to the backward scan
(τ = 0.5 τ/T → 0) with the direction indicated by the green and
gray arrows, respectively.

according to the equation

V (t ) = V0 + K (iT (t − τ ) − 〈iT 〉), (12)

where V (t ) and V0 are the applied and the offset circuit
potential, respectively, K is the coupling strength, iT is the
time-averaged total current, 〈iT 〉 is the mean value of the total
current, and τ is the time delay. The coupling between elec-
trodes is induced using external global feedback via a small
adjustment of the circuit potential according to the scheme
in Fig. 2(b). In contrast to previous studies in which nonlin-
ear feedback was used to couple oscillators very close to a
Hopf bifurcation [26,30], the oscillators under consideration
here are far from the Hopf bifurcation point and are coupled
through linear feedback. In particular, the uncoupled oscillator
waveforms are far from the single harmonic profiles expected
for systems close to a Hopf bifurcation. As a result, we predict
that higher harmonics will be important in determining the
phase dynamics as the coupling strength K is increased, in
line with results illustrated in Fig. 1.

B. Results with weak coupling

We first demonstrate the system dynamics when the cou-
pling is weak (K = −0.12 V mA−1) for different time-delay
values. For illustration, we chose three different time delays
τ = 0.081 s, τ = 0.60 s, and τ = 0.89 s. When τ = 0.081 s,
the current signal for each oscillator overlap, yielding an in-
phase synchronized configuration with nearly identical peak-
to-peak amplitudes [
A = A2 − A1 = −1.0 × 10−3 mA; see
Fig. 3(a)]. As shown in Fig. 3(b), when the time delay is
increased to τ = 0.60 s, an out-of-phase synchronized config-
uration (|
φ| = 1.94 rad) is observed with a relatively large
amplitude difference (
A = −0.011 mA). Figure 3(c) shows
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FIG. 4. Phase difference under slow variation of the time
delay close to the antiphase solution for increasing coupling
strengths. (a) K = −0.12 V mA−1, (b) K = −0.18 V mA−1, (c) K =
−0.25 V mA−1, and (d) K = −0.50 V mA−1. The green line corre-
sponds to the phase difference in the forward (green arrow) scan and
the gray line to the backward (gray arrow) scan.

the dynamics when we further increased the delay to τ =
0.89 s where we observe that the elements synchronized in an
antiphase configuration with both oscillators having similar
amplitudes (
A = −7.0 × 10−4 mA).

The quasistationary phase difference between the two cou-
pled oscillators was experimentally measured under slow
variation of τ . After letting the oscillators settle to a syn-
chronized configuration for τ = 0.00 s, measurements were
taken as the time delay was slowly increased to τ = 1.12 s
(τ ≈ T/2; around one half period). Following this, the time
delay was decreased from τ = 1.12 s back down to τ = 0.00 s
at the same rate as the forward (increasing τ ) scan.

The phase difference for weak coupling strength, K =
−0.12 V mA−1, is shown in Fig. 3(d). For time delays τ �
0.1T , the oscillators exhibit a phase difference close to 0
(equivalently 2π ), indicating in-phase synchronization. For
0.1T < τ � 0.3T , the phase difference between the oscilla-
tors increases monotonically with respect to τ until it reached
a phase difference close to π . The oscillators remain an-
tiphase synchronized when the time delay is further increased
(0.3T < τ � 0.5T ). For decreasing τ from τ = 0.5T to τ =
0, the system passes through a sequence of phase-locked
configurations, from antiphase, to out-of-phase, and finally to
in-phase dynamics. The green and the gray lines in Fig. 3(d)
correspond to the scan where time delay was increased and
decreased, respectively, and it can be seen that the curves
approximately overlap. In other words, the transition from
in-phase to antiphase through out-of-phase synchronized con-
figurations occurs without hysteresis.

C. Results with strong coupling

We next investigated how the phase differences changed
as τ was increased and decreased for different cou-
pling strengths, as reported in Fig. 4. When the coupling
strength is weak (K = −0.12 V mA−1), the curves for in-
creasing τ and for decreasing τ overlap, as observed
in Fig. 4(a).
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FIG. 5. Time series and phase difference of the currents in the
bistability region for strong feedback, K = −0.50 V mA−1, with
time delay τ = 0.70 s (0.31 τ/T ). Panels (a) and (c) correspond to
the out-of-phase configuration, while panels (b) and (d) correspond
to the antiphase configuration. The blue and red lines correspond to
oscillator 1 and 2, respectively.

An increase in the coupling strength to K =
−0.18 V mA−1 [see Fig. 4(b)] reveals a small region around
0.30 T < τ < 0.31T where the system possesses two stable
stationary configurations coexisting simultaneously. In this
case, the system exhibits bistability, and the curves for
increasing and decreasing τ do not overlap. When the
coupling strength increases further to K = −0.25 V mA−1

[see Fig. 4(c)], the bistability region enlarges to 0.28T <

τ < 0.32T . Finally, for K = −0.50 V mA−1 [see Fig. 4(d)],
the bistability region is larger still (0.24T < τ < 0.36T ),
resulting in an extended and well-defined region where
the out-of-phase and antiphase synchronized configurations
coexist.

To better exemplify the bistable nature of the stationary
configurations, we performed experiments in which the sys-
tem exhibited the bistability phenomena at a strong feedback
gain value K = −0.50 V mA−1 with appropriate initial con-
ditions (in-phase or antiphase) and time delay τ = 0.70 s
(τ = 0.31T ). The time series of the current and the phase
difference are shown in Figs. 5(a) and 5(c) for an experiment
in which the system was initiated from an in-phase initial
condition. After a transient time of about 25 s, the two oscilla-
tors transition to an out-of-phase synchronized configuration
with an absolute phase difference of |
φ| = 1.46 rad. Sim-
ilar to the previous examples, the out-of-phase synchronized
configuration has a relatively large amplitude difference, in
this case, 
A = 0.034 mA. The corresponding experimental
results starting from antiphase initial conditions are shown
in Figs. 5(b) and 5(d). As expected, the system remains in
the antiphase synchronized configuration with a very small
amplitude difference (
A = 1 × 10−4 mA).

We thus see that electrochemical oscillators display both
out-of-phase and antiphase configuration for a strong value
of the coupling strength (K = −0.50 V mA−1) for different
initial conditions, further confirming the bistability phenom-
ena observed in the bifurcation diagram in Fig. 4(d). The
experiments in Fig. 5 also demonstrate that these configura-
tions remained stable for at least 300 s (133 cycles). We next
investigate whether such phenomenon can be attributed to
differences in the criticality of the bifurcations of the in-phase
and the antiphase configurations.

IV. AMPLITUDE ASYMMETRY IN A COUPLED
NONLINEAR OSCILLATORMODEL

The analysis of the phase model (4) in Fig. 1 predicts
regions in parameter space in which the pitchfork bifurcations
of the in-phase and antiphase synchronized solutions have
different criticalities. In these regions, we would expect the
bistability between one of these solution types and an out-
of-phase solution, as observed in Fig. 4. However, since the
phase model disregards information about oscillation ampli-
tude, it cannot predict the amplitude asymmetry observed in
Fig. 3(b) and Fig. 5(a). Our goal in this section is to ex-
plore the qualitative asymptotic phase dynamics expected in
the electrochemical experiments via bifurcation analysis of a
suitable system of DDEs to further investigate this amplitude
asymmetry. Some of salient synchronization features of the
two-electrode system have been shown to be well captured by
the network Brusselator model [26]:

ẋi = (B − 1)xi + A2xi + f (xi, yi ) + KG(x j ), (13a)

ẏi = −Bxi − A2yi − f (xi, yi ), (13b)

for j �= i, where i = 1, 2 and

f (x, y) = (B/A)x2 + 2Axy + x2y. (14)

We identify the x component of (13) with the currents
measured in the potentiostat experiments and y with an
unobserved recovery variable. The parameters dictating the
intrinsic oscillator dynamics are herein set to A = 0.9 and
B = 2.3. For these parameter values and with the global
coupling strength set to 0, each oscillator possesses a stable
hyperbolic limit cycle with period T = 7.33. The coupling
function, which applies only to the x equations of (13), is
given by

G(x) =
2∑

n=1

knx(t − τn − τ )n. (15)

We set the amplitude (kn) and delay (τn) parameters using the
synchronization engineering methods outlined in [12]. Briefly,
we express the phase response curve of the uncoupled oscil-
lators as a Fourier series Z (θ ) = ∑

n∈N Zneinθ and a target
phase interaction function as g(θ ) = ∑

n∈N gneinθ . The kn and
τn parameters are then chosen so that the Fourier series repre-
sentation of the coupling function, i.e., G(θ ) = ∑

n∈N Gneinθ ,
are approximated by Gn = Zng−n. In this study, we use a
phase-shifted Hansel-Mato-Meunier-type interaction function
given by [31]

g(θ ) = sin(θ − τ ) − r sin(2(θ − τ ))

= − i

2
eiτ e−iθ + ir

2
e2iτ e−2iθ + c.c., (16)

where r scales the contribution of the second harmonic and
τ is a common phase shift parameter. We set r = 0.5 and
consider the system dynamics under variation of τ and K .

For small K , the system dynamics is well approximated
by a phase reduced model of the type given by (2), and so
the phase difference ψ between the two oscillators obeys (4).
Since our choice for g contains only two harmonics, we would
not expect the pitchfork bifurcations of the in-phase and an-
tiphase solutions to have different criticalities for small K , in
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contrast to the predictions for the phase interaction function
with three harmonics in Fig. 1. In fact, it has previously been
shown experimentally that phase synchronization patterns
matching those expected via (4) with (14) can be achieved in
the electrochemical experiment. In particular, phase locking
with arbitrary steady-state phase differences can be realised
through variation of the common delay τ [26]. Moreover, the
pitchfork bifurcations of the in-phase and antiphase synchro-
nized solutions are both supercritical in nature, and hence the
system does not exhibit any bistability, unlike that observed in
the experiments in Fig. 4.

We use the Matlab-based package DDE-BIFTOOL to ex-
plore the asymptotic system dynamics under variation of τ

as K is increased. DDE-BIFTOOL is designed to perform
numerical bifurcation and stability analysis of systems with
fixed discrete and/or state-dependent delays. It allows for
flexible encoding of systems and for the specification of
additional system constraints, such as relationships between
delays, which we shall leverage to implement the common
delay term. The pipeline for numerical bifurcation analysis is
outlined in the Appendix.

A. Numerical bifurcation analysis results

The results of the bifurcation analysis procedure are shown
in Fig. 6. Specifically, Fig. 6(a) showcases temporal profiles of
the xi along the one parameter bifurcation diagram shown in
Fig. 6(b). These panels are to be compared with the equivalent
panels in Fig. 3 and Fig. 4. Figure 6(b) highlights the presence
of unstable out-of-phase synchronized solutions along the
central branch. This unstable portion of branch is generated
following a change in criticality of the pitchfork bifurcation
of the antiphase solution. This can be seen more clearly in
the two-parameter bifurcation diagram in Fig. 6(c), where we
observe that the pitchfork of the antiphase solution becomes
subcritical at a small positive value of K . This panel also
shows the presence of asymmetry between the amplitudes of
the two oscillators along the out-of-phase branch, just as in
the experimental results shown in Fig. 5(a).

As K increases, the amplitude asymmetry between the
oscillators grows monotonically and the fold of periodics ap-
proaches the pitchfork of the in-phase solution. At K ≈ 0.14,
the two merge and the pitchfork of the in-phase solution
becomes subcritical. For larger values of K , no stable out-
of-phase solutions exist. This suggests that, for sufficiently
large K , only the in-phase and antiphase solutions would be
observed in an experiment. However, we would still expect
bistability between these solutions due to the presence of an
unstable branch of out-of-phase solutions. Overall, we find
that amplitude asymmetry is strongly associated with bista-
bility of the phase-locked solutions for nonweak coupling
strengths. This feature cannot be captured in the phase re-
duced model (2) since this approach disregards amplitude
information.

V. DISCUSSION

In this article, we investigated transitions between distinct
phase-locked states in a network of two delay-coupled os-
cillators as the coupling strength was increased, highlighting
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FIG. 6. Bifurcation diagram and time series for the coupled
Brusselator system (11) computed using DDE-BIFTOOL. (a1)–(a3)
Time series solutions corresponding to the in-phase (a1), out-of-
phase (a2), and antiphase (a3) synchronized configurations. Blue
and red lines correspond to oscillator 1 and 2, respectively. (b) Bi-
furcation diagram under variation of τ . Green and gray curves
correspond to stable and unstable periodic solutions, respectively.
Pitchfork bifurcations are depicted with black circles, while the
fold of periodic orbits is marked with a pink triangle. The dashed
vertical lines show where the corresponding time series in panel
(a) were computed. (c) Two-parameter bifurcation diagram under
simultaneous variation of K and τ . The black curves correspond
to pitchfork bifurcations, and the pink curve represents the fold of
periodic orbits. Superimposed on the diagram is a heat map showing
the relative amplitude asymmetry between the oscillators along the
stable part of the out-of-phase branch. The dashed horizontal line
indicates where the bifurcation diagram in panel (b) was computed.
Bifurcations associated with changes of criticality of the pitchforks
are depicted by gray markers.

the importance of changes in the criticality of said transi-
tions. One logical question to consider is how these results
extend to networks with more oscillators. Larger networks
support a greater variety of solution types, including par-
tially synchronized cluster states [32] and chimera states in
which [33] a portion of the oscillators are phase synchro-
nized, whilst the remaining portion are not. As such, there

033328-7



JORGE L. OCAMPO-ESPINDOLA et al. PHYSICAL REVIEW RESEARCH 6, 033328 (2024)

is a greater variety of transitions that may occur between
the various states, and it would informative to investigate
how these change with respect to coupling strength. In our
study, we used DDE-BIFTOOL to analyze the asymptotic
solutions of the full system and show how the criticality of the
bifurcations changed. A similar approach could be applied to
study larger networks, however, care must to be taken when
discretizing such systems to ensure that solutions remain ac-
curate but the overall problem remains numerically tractable.
Moreover, in the case of homogeneous, isotropically coupled
oscillators studied here, the myriad symmetries present in
larger networks can cause numerical difficulties in finding and
tracking bifurcation points. In this case, additional constraints
can be added to the problem structure to overcome these
difficulties [34].

A more accurate low-dimensional description of the non-
linear time-delayed system can give more precise insights into
the nature of the transition to in-phase or antiphase synchro-
nized configurations. The theoretical considerations leading to
the results in Fig. 1 were based on an ad hoc phase description
with a finite number of harmonics. Note that for highly nonsi-
nusoidal oscillations—such as relaxation oscillations—a large
number of harmonics is required to obtain an accurate de-
scription of the phase dynamics, even to first order in coupling
strength [35,36]. Computing a phase reduction [10,11] explic-
itly allows to link the phase parameters to the actual physical
parameters in the system. Moreover, higher-order phase re-
ductions remain valid for larger coupling strengths that we
would expect in real-world experimental systems. Rigorous
reduction approaches for time-delayed systems are only now
being developed [37]. Alternatively, phase-amplitude reduc-
tion that include an “amplitude” variable in addition to the
phase to describe an oscillator’s state have proven useful [38];
an analysis of phase-amplitude models is beyond the scope of
this paper.

The existence of a phase reduction, i.e., that amplitudes
are enslaved to phase variables, is not a contradiction to
the asymmetry in amplitudes observed in Fig. 5 and Fig. 6.
While traditional approaches to phase reduction have focused
on deriving approximations for the phase dynamics, a re-
cent approach based on a parametrization method [39] can
also compute how amplitudes depend on the phases—or,
in a more mathematical language, how an invariant torus
is embedded in the state space of the nonlinear oscilla-
tor network. Hence, this approach can also shed light on
the emergent amplitude dynamics along solutions of the
phase equations.

Although our mathematical models do not aim to describe
the specific electrochemical reaction in the experiment, it is
still instructive to consider how well matched the features
of the models and the experiment are. It is generally impos-
sible in a real-world setting to establish perfectly identical
oscillators, meaning that these systems do not possess the
same symmetries as the mathematical models. However, the
discrepancy we here observe is small (<0.5%), and so we
consider the oscillator to be approximately identical. We also
cannot rule out the possibility that we observe in the ex-
periments long-lived transient behavior, as opposed to the
asymptotic behavior examined in our bifurcation analysis.
This issue is particularly relevant for the weak coupling

case in which transients may decay over long durations. To
mitigate this, we varied the time delay parameter over a
much slower timescale than the oscillations themselves. In
addition, the abrupt transitions we observe for larger cou-
pling strengths give us confidence that we are sufficiently
well capturing asymptotic dynamics. We also note that the
findings provide limitations to the extent that the synchro-
nization engineering technique [40] can be used for tuning
the phase difference between two oscillators [26]. In this
technique, it is assumed that the feedback gain is sufficiently
strong such that the inherent natural frequency difference can
be neglected. However, in this work, we showed that feed-
back that is too strong can induce higher order effects that
impact the phase dynamics. Therefore, for oscillators with
large frequency difference, techniques that take advantage of
this natural frequency difference, such as phase assignment
with resonant entrainment [41], are preferable. Overall, we
expect our results to be relevant to a wide range of appli-
cations involving oscillator networks away from the weak
coupling limit.

Data and Matlab code for this study can be downloaded
from [42].
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APPENDIX: PIPELINE FOR NUMERICAL
BIFURCATION ANALYSIS

The continuation of solutions with respect to a single,
common delay performed in Fig. 6 requires the use of
DDE-BIFTOOL’s functionality to include constraints be-
tween parameters. Practically speaking, we apply a sys_cond
function that fixes the difference τ1 − τ2 to be constant and
absorb this into the common delay τ . Following this, we use
the following pipeline:

(1) Compute the isolated periodic orbit for (11) when
K = 0.

(2) Set K = K = 
K = 0.01.
(3) Set an initial condition for the coupled system by shift-

ing the periodic orbit of one of the oscillators by α ∈ [0, π ].
In practice, this is done by representing the orbit by its Fourier
series and then multiplying each of the Fourier coefficients by
e−iα/T .

(4) Converge an initial periodic solution for the coupled
system using a bespoke Matlab function. Repeat for the in-
phase branch (α = 0), the antiphase branch (α = π ), and the
out-of-phase branch [α ∈ (0, π )].

(5) Continue each branch of periodic solutions over the
range τ ∈ [0,T/2].

(6) Select a point along each branch and continue said
branch over the range K ∈ [K,K + 
K].

(7) Increment K by 
K and repeat steps 5–7 until the
maximum value of K is reached.
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(8) Finally, extract summary statistics along each branch,
including the following:

(i) Linear stability as determined by Floquet multipliers.
(ii) Phase difference, ψ , assessed by computing the absolute

time difference between the peaks in xi for the two oscilla-

tors and scaling this by 2π/T̃ where T̃ is the period of the
periodic solution.

(iii) The relative amplitude asymmetry between the orbits
of the two electrodes, 
A = |A1 − A2|/ min{A1,A2},
where Ai = xmax

i − xmin
i .
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