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Abstract— Artificial Intelligence (AI) has played an im-
portant role for data-driven decision making in complex
engineering problems. However, there has been a huge
waste of efforts to configure AI methods (e.g., to select
preprocessing and modeling methods, etc.), catering to
different contexts (e.g., data analytics objectives, data dis-
tributions, etc.). In current practice, data scientists need
to manually configure the AI methods in trial-and-errors
according to a specific context, including determining the
different options of the pipeline components and evaluating
the advantages and limitations of an AI method. In this
paper, we propose a Local Low-rank Response Imputation
(Lori) method, which will automatically configure AI meth-
ods to specific contexts by completing a sparse context-
pipeline response matrix. Different from the traditional rec-
ommendation systems, Lori performs multivariate partition
of the entire context-pipeline response matrix based on
the principal Hessian directions of the low-rank imputed
response matrix. Thus, the partitioned local low-rank re-
sponse matrices can be closely modeled to automatically
match the AI methods with the data sets. A small-scale
and a large-scale case studies in three manufacturing
processes demonstrated the merits of the proposed Lori
method.

Index Terms— Computation Pipelines, Matrix Comple-
tion, Principal Hessian Direction, Regression Tree

I. INTRODUCTION

The advancement of machine learning and statistical learn-
ing methods have dramatically promoted the deployment of
data-driven decision-making in many systems. For example,
a cybermanufacturing system (CMS) interconnects manufac-
turing facilities, processes, and systems by various sensors,
actuators, and Fog-Cloud computation units to provide ad-
vanced data analytics towards multiple objectives (e.g., quality
modeling and prediction, monitoring, prognosis, diagnosis,
etc.). In healthcare systems, the deployment of AI methods in
Internet of Things (IoT) enables the monitoring of body health
status [1], detection of human falls [2], heart disease prediction
[3], etc. However, as tremendous method configuration options
from data sourcing, feature extraction, dimension reduction,
tuning criteria, to model estimation become available, it has
posed increasingly huge human and computation workloads
on evaluating different configurations of these method op-
tions in a trial-and-error manner. On the other hand, the
application boundaries of these configurations have not been
well understood, hence preventing fast adaptation from one

configuration of method options to another in response to the
frequent changes in contexts. Here, we define a context as
the dataset produced from a changed manufacturing condition
or analytical objective. For one example, after adjusting a
manufacturing process setting variable, the underlying data
distributions will also change, which creates a new context.
The computation pipelines should be automatically configured
to this new context by learning from the dataset produced
from such context. As another example, when the analytical
objective changed from one quality variable to another, the
computation pipeline should be configured to match such
changing objective. Therefore, the concept of automatic con-
figuration for AI methods has been proposed as a responsive
service by systematically integrating many method options in
different steps in sequences as computation pipelines [4].

In recent years, the concept of automatic machine learn-
ing (AutoML) has been attracting great interests from both
researchers and practitioners to automatically configure AI
methods [5]. AutoML yields an intelligent way to optimize
the AI pipeline for a given context to reach the best possible
prediction accuracy. Researchers and practitioners started to
tackle this research question by automating the searching
process of ML structures. On the one hand, neural architec-
ture search (NAS) was initially created as one direction of
AutoML to automate the searching in the space of neural
network architectures [6]. The key idea of NAS is to greedily
search for and assemble blocks of neural nets (e.g., fully
connected blocks, convolutional blocks, recurrent blocks, etc.)
to construct a neural network. Consequently, NAS usually
requires huge computational powers to achieve satisfactory
performance; e.g., 800 GPUs were used to trained the networks
for 28 days until the optimal structure was identified [7]. Then
NASNet, an advanced algorithm based on NAS to reduce
the computational budget. However, NASNet still used 500
GPU in 5 days to get the best structure [8]. On the other
hand, recommender systems (RecSys) have been created to
efficient rank the ML pipelines for a given dataset/task without
iterative searching [4]. However, the RecSys-based approaches
are not scalable for large-scale AI configuration tasks, calling
for a more effective and efficient algorithm. Before introducing
details, we summarize the notations in Table I.
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Fig. 1. An example of 1360 computation pipelines for supervised learning problems with four steps including feature extraction, dimension reduction,
tuning criteria, and models with multiple method options, where the best pipeline for a given context is highlighted in orange (light) color. Here, one
path that links all four steps from raw data to results represents one computation pipeline. Before executing all the pipelines on the raw data and
comparing their results, the best pipeline cannot be directly identified. Note of abbreviations: fast Fourier transformation (FFT), principal component
analysis (PCA), independent component analysis (ICA), Bayesian information criterion (BIC), extended BIC (EBIC), Akaike information criterion
(AIC), small-sample corrected AIC (AICc), support vector regression (SVR), least angle regression (LARS), Gaussian process regression (GP
Reg), ordinary least squares (OLS).

TABLE I
NOTATIONS

Notations Descriptions
m,n, p Number of contexts, pipelines, and covariates
X Covariates matrix in Rmn×p

Y Response matrix in Rm×n

E Error matrix in Rm×n

R Low-rank matrix in Rm×n

B Model coefficient vector in Rp

A Linear map A: Rmn×1 → Rm×n

y, ϵ, r A−1(Y ),A−1(E),A−1(R)
s, t Positive tuning parameters
e Gaussian noise vector ϵ = r + e
H̄ Expected Hessian matrix
ΣX Covariance matrix of X

ΣyXX Averaged covariance matrix weighted by y
ΣϵXX Averaged covariance matrix weighted by ϵ
ΣeXX Averaged covariance matrix weighted by e
ΣrXX Averaged covariance matrix weighted by r

bj The j-th pHd
λj The j-th eigen value

pHdj The j-th principal direction

A. Adaptive Computation Pipelines

As an example, Adaptive Computation Pipelines
(AdaPipe)-based computation service described in [4]
was proposed with two key components: 1) the computation
pipeline, which is defined as a sequence of method options for
multiple steps from feature extraction to models as presented
in Figure 1. For example, the sequence “Summary Statistics
⇒ Principal Component Analysis ⇒ Extended Bayesian
Information Criterion ⇒ Elastic Net” in orange highlights one

pipeline; 2) a recommender system (RecSys) to formulate the
computation pipeline selection as a recommendation problem
by effectively and efficiently suggest the best computation
pipelines to a give manufacturing contexts via an extended
matrix completion (EMC) model. The EMC model and
estimator is shown in Model (1):

Model: Y =R+A(XB) +E,

Estimator: min
R,B

L(Ŷ ,Y )

subject to ||R||∗ ≤ s,

||B||1 ≤ t,

Ŷ = R̂+A(XB̂),

(1)

where Y ,R ∈ Rm×n are the context-pipeline response matrix
and a low-rank matrix, respectively, with m contexts and n
computation pipelines; X ∈ Rmn×p is the p-dimensional
covariates matrix that is concatenated from the covariates of
contexts and the covariates of computation pipelines; Here,
the covariates are generated following the embedding machine
and metadata extraction machine detailed in [4] to preserve the
similarities among contexts and among pipelines. B ∈ Rp×1

is the p-dimensional model coefficient vector for the linear
regression term; A(·) is a linear mapping function that maps
from Rmn×1 to Rm×n; L(Ŷ ,Y ) is a loss function, such
as least square loss function, pairwise loss function [4], etc.;
|| · ||∗ is the nuclear norm (also known as trace norm), which
is computed as ||R||∗ =

∑min(m,n)
i=1 σi(R), here σi(R) is

the i-th singular value of R after performing singular value
decomposition, to enforce low-rank structure of R; ||·||1 is the
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l-1 norm, which is the sum of absolute value of the elements
in B to control the sparsity of model coefficients; s ≥ 0
and t ≥ 0 are tuning parameters to control the amount of
shrinkages.

Unlike existing collaborative filtering models in RecSys,
EMC model not only considers the explicit similarity ex-
pressed in the context-pipeline response matrix (i.e., the low-
rank matrix completion term R), but also quantifies the
implicit similarities contained in the covariates of contexts
and computation pipelines (i.e., a linear regression term XB).
In [4], an embedding machine and a meta-data extraction
machine were investigate to generate informative covariates
to distinguish the pipelines and covariates, hence benefit the
recommendation accuracy. This AdaPipe system was validated
in a small-scale pipeline recommendation problem with 60
bootstrapped datasets from three manufacturing processes and
27 computation pipelines to represent a pipeline selection
problem in 60 different manufacturing contexts. However, the
scalability of this AdaPipe system has not been well studied
in large-scale problems, i.e., when thousands of candidate
computation pipelines are available. For example, by count
the paths from Raw Data to Results, Figure 1 presents in total
8× 5× (7× 4+1× 6) = 1360 computation pipelines. Such a
large-scale problem can pose significant challenges to both the
responsiveness and scalability of AdaPipe system as an online
computation service.

B. Challenges of Responsiveness and Scalability
The challenges in responsiveness and scalability can be

attributed to 1) the huge time costs in searching for the best
two tuning parameters in a large-scale AdaPipe system when
time costs for one estimation increase, and 2) the lack of
information contained in relatively low dimensional covariates
to distinguish thousands of computation pipelines. Specifically,
as more candidate computation pipelines are considered for
recommendation, the dimensions of context-pipeline response
matrix will be significantly increased, which leads to a cu-
bic growth (i.e., O(n3) for singular value decomposition,
SVD [9]) of computation complexity for the low-rank matrix
completion term R in AdaPipe. On the other hand, higher
dimensional covariates will be required to better distinguish
the candidate computation pipelines by accurately representing
the similarities and dissimilarities. The increased dimension of
p-dimensional covariates will not only lead to a cubic growth
(i.e., O(p3)) for matrix inversion of computation complexity
for the linear regression term XB, but also put significantly
higher requirements on the pipeline embedding machine to
distinguish increasingly higher number of pipelines. However,
simply maintaining the low dimensionality of covariates di-
rectly lead to an one-to-one mapping problem, in other words,
covariates from different computation pipelines may result
in similar responses for some contexts. Thus, the one-to-one
mapping between covariates and entries in the context-pipeline
response matrix cannot be established. Therefore, a responsive
and scalable RecSys is in great needs to reduce the time costs
in parameter tuning and address the one-to-one mapping issue.

Motivated by the challenges for AdaPipe system, the objec-
tive of this research is to investigate a RecSys called “Lori” for

the large-scale computation pipeline recommendation problem
with sufficient responsiveness and scalability. Previous work
investigated three directions towards large-scale recommenda-
tion problem: 1) to develop efficient parallel or distributed
solvers and mechanisms for specific recommendation models,
such as parallel stochastic matrix factorization [10], [11],
distributed matrix completion algorithm [12], [13], etc.; 2) to
propose more efficient recommendation models, such as to
improve the SVD-based matrix completion model by singular
value thresholding [14], the Riemannian optimization-based
manifold learning for matrix completion [15], etc. and 3) to
investigate local low-rank properties of a large response matrix
and complete it in the decomposed low-rank sub-matrices [16].
However, most of the studies in the aforementioned directions
focused on collaborative filtering methods [17]–[19] without
the consideration of covariates. Thus, these methods cannot
directly benefit from the extra information contained in the
covariates, hence limiting their contributions to the compu-
tation pipeline recommendation problem. However, the third
research direction in local low-rank approximation motivated
us to reformulate the AdaPipe system from a matrix partition
perspective.

C. Local Low-rank Matrix Partition Problem

Partitioning the context-pipeline response matrix will not
only provide efficient RecSys by decomposing a large-scale
problem into a finite set of small-scale problems, but also
address the one-to-one mapping issue while maintaining the
low dimensionallity of the covariates. Because for small-scale
problems with limited number of contexts and computation
pipelines, the information provided by covariates is, to some
degree, sufficient to distinguish computation pipelines. The
state-of-the-art studies in local low-rank matrix approxima-
tion propose to directly identify the local low-rank sub-
matrices without applying elementary transformations on row
and column switching [20]. The differences of these RecSys
lie in the identification methods of low-rank sub-matrices,
e.g., random generation [16], anchor points selection [21],
kernel smoothing nearest-neighbors [22], etc. However, the
low-rank sub-matrices identified by existing methods and their
recommendation accuracy highly depend on the organization
of rows and columns. For example, in a MovieLens dataset
[23], where each row represents one user, and each column
corresponds to a movie, if movies that belong to one cluster
(e.g, action movies) and users shared the same interests are
adjacent in the user-movie rating matrix, identifying the local
low-rank sub-matrices is feasible. However, if the users and
movies (i.e., rows and columns) are randomly ordered, a local
low-rank structure may not be easily identified without any
elementary transformation.

Unfortunately, random order of contexts and computation
pipelines is often the case in a computation pipeline rec-
ommendation problem. As presented in Figure 2, the left
matrix is a small-scale full-rank context-pipeline response
matrix Y ∈ R60×27 with each the (i, j)-th entry representing
the normalized root-mean-square-error (NRMSE) for the i-
th context tested on the j-th computation pipeline. Patterns
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Fig. 2. An illustration of partitioning local low-rank sub-matrices after
applying elementary transformations on the original context-pipeline
response matrix.

can be easily observed in columns and rows, which help the
identification of linear operators IL and IR for the elementary
transformation ILY IR, such that the columns and rows can
be switched to form local low-rank structures. The right half
of Figure 2 shows the local low-rank sub-matrices partitioned
from the original full-rank context-pipeline response matrix.
Although the integration of elementary transformations and lo-
cal low-rank sub-matrices partitioning seems to be a promising
approach for RecSys, directly optimizing the linear operators
IL and IR requires to efficiently solve a quadratic integer
programming problem with m2+n2 binary decision variables.
Besides the infeasibility to solve such an optimization problem
in linear time, this optimization problem is not well-defined
since the partitioning process may be stochastic, which leads to
uncertainties in objective functions that minimizes the sum of
ranks (or equivalently the nuclear norm approximations) of the
sub-matrices. Therefore, a computationally-feasible method is
desired to partition the response matrix with the consideration
of maximizing the recommendation accuracy.

In this research, we propose to formulate the local low-
rank matrix approximation problem for computation pipeline
recommendation as a treed RecSys based on the EMC model
[4], [24]. The core idea is to investigate a tree splitting method
to partition the original context-pipeline response matrix by
considering both the similarities in covariates and the local
low-rank structures in the response matrix. The proposed tree
splitting method aims at performing multivariate splitting.
Because a univariate splitting method cannot guarantee the
generation of local low-rank sub-matrices, and cannot address
the one-to-one mapping issue. Specifically, as presented in Fig-
ure 3(left), splitting based on only one variable (perpendicular
to either x1 or x2 axis) may easily result in two full-rank
matrix. Splitting according to the identified curvature (i.e.,
from multiple variables) can potentially lead to local low-rank
matrices. However, a multivariate splitting both on covaraites
and responses requires a reasonable guess for the missing
entries of the response matrix. Therefore, the Lori employs
a newly proposed multivariate splitting method based on the
principal Hessian directions (pHds) [25] of the covariates and a
low-rank imputed response matrix. Here, the low-rank imputed
response matrix is equivalent to the low-rank matrix R in

Model 1, which represents the purely low-rank structure after
subtracting random noises E and a hyperplane, XB, from
the imputed response matrix Y . The proposed multivariate
partition method can guarantee that the splitted sub-matrices
are low-rank in the pHd space, hence can be well modeled
by a linear regression tree with one-to-one mapping problems
addressed. Besides, the Lori does not require to fine-tune the
EMC model by searching for the best combination of tuning
parameters s and t in Model 1, since it does not relies on the
exact solution of R. In this way, the partitioning of response
matrix and the maximization of recommendation accuracy
can be simultaneously achieved in one-shot in a responsive
and scalable manner especially for a large-scale computation
pipeline recommendation problem.

Differing from the existing local low-rank matrix approxi-
mation methods that generates local regions of the response
matrix, the proposed Lori automatically reorganizes (i.e.,
equivalently applies elementary transformations to) the re-
sponse matrix and partitions the matrix into low-rank sub-
matrices with irregular shapes. Hence, the Lori contributes to
the RecSys methodologies in the following aspects:

• The low-rank assumption of existing matrix completion
methodologies is relaxed by defining the local low-rank
properties in a pHd space.

• Lori provides an efficient local low-rank sub-matrices
partitioning method based on a regression tree, which can
serve as a new methodology to address many industrial
challenges that can be formulated as matrix completion
problems.

• Lori addresses the one-to-one mapping issue in large-
scale matrix completion problems when considering both
covariates and response matrix, hence providing more
robust modeling performance.

We also summarize the following contributions to specific
transformative applications in industrial informatics:

• The proposed automatic AI configuration method pre-
vents industrial decision makers from time-consuming
exploration by traversing all candidate machine learning
method options in a trial-and-error manner.

• Both small-scale and large-scale case studies demon-
strates Lori’s superior performance in configuring AI
towards better modeling accuracy, especially in cold-start
scenarios when no prior AI evaluation record is available.

• Lori can broadly benefit many industrial informatics ap-
plications by providing novel local low-rank completion
methodology, such as anomaly detection, predictive main-
tenance, demand forecasting, missing data imputation,
etc.

In addition, the regression tree methodologies are also
advanced by proposing a novel multivariate splitting method
based on imputed responses. Thus, it can be easily extended
to other regression problem by imputing the responses using
many low-rank approximations, such as matrix factorization
[26], basis expansion [27], etc.

The remaining part of this paper is organized as follows.
In Section III, the proposed Lori is introduced. A small-scale
and a large-scale computation pipeline recommendation case
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studies to validate the Lori are discussed in Section III and
Section IV, respectively. Section VII draws the conclusions
and provides potential future directions.

II. RELATED WORK

Literature review from three perspectives are performed in
this section, namely, major RecSys methodologies, computa-
tion pipeline RecSys, local low-rank matrix approximation,
and the tree splitting methods for regression trees.

A. Computation Pipelines and Recommendation

The concept of pipeline for machine learning originates
from software engineering as a way to organize machine
learning method options in a sequence for the convenience of
programming. For example, Scikit-learn, which is a machine
learning library for Python programming language, proposed
a pipeline of transforms with a final estimator to assemble
several steps that can be cross-validated together while setting
different parameters [28]. Similarly, the widely adopted deep
learning platforms Google® Tensorflow [29] and Pytorch [30]
promoted the idea of computational graph as deep learning
pipeline to organize deep learning operations and layers into
graph. These concepts of pipeline enhance the readiness and
traceability to use machine learning and deep learning method
options. However, user needs to test the performance of
pipelines with many trials according to their experience and
expertise. For large-scale distributed data analytics, [28] devel-
oped KeystoneML to optimize the computation and commu-
nication workloads for advanced machine learning pipelines
via a greedy method. However, the prediction accuracy of the
pipeline execution results may not be optimal. As such, [31]
proposed an adaptive data fusion pipeline methodology based
on learning-to-rank to rank data fusion pipelines according
to their predicted statistical accuracy (i.e., NRMSEs). Though
performing well on three manufacturing data sets, this method-
ology requires exploratory computation for feature extraction
step. Different from [31], the construction of computation
pipelines for AdaPipe enables the flexibility for different
type of computation services since the steps can be readily
redefined or reorganized according to different method options.
For instance, a feature extraction step can be eliminated in
computation pipelines if functional models, such as [32], are
investigated.

B. Matrix Completion and Ranking

Recommender systems are typically applied to user-item in-
teraction completion problems. Specifically, organizing users’
ratings for multiple items (e.g., movies, musics, books, etc.)
as a user-item matrix with arbitrarily missing entries, the mod-
els in recommender systems provide predictions for missing
entries in this matrix by assuming the its low-rank property,
and then make recommendations based on the predicted rat-
ings [33]. For example, Netflix® recommendation challenge
investigated models to accurately suggest the right movie to
the right user according to the predicted ratings for missing
entries in a large sparse user-movie rating matrix [34]. In the

last two decades, various techniques have been proposed for
Recommender systems, such as collaborative filtering which
generates recommendations by similar items liked by a user
and similar users who liked the same item [35]; content-
based filtering which provides recommendations by similar-
ity among contents of items [36]; knowledge-based filtering
which assumes the existence of users’ or items’ background
knowledge and recommends according to this knowledge
[37]; social network-based filtering which suggests the items
according to the social network between users [38]; and hybrid
methods which integrate the aforementioned techniques to
enhance their recommendation performance [39]. Among the
aforementioned techniques, collaborative filtering has been
extensively studied by using three types of models, i.e., matrix
completion [40], matrix factorization [41], and neural network-
based models [42] for real-world recommendation applica-
tions. These methods typically require relatively large sample
size to achieve desirable performance, since the similarity
among entries of the user-item matrix can not be easily
quantified with few sample size. Moreover, the aforementioned
RecSys that involve covariates cannot address the one-to-one
mapping issue.

C. Local Low-rank Matrix Approximation

In recent years, local low-rank matrix approximation meth-
ods have been developed aiming to completing the arbitrarily
missed entries in a user-item rating matrix in RecSys. A
notable attempt in local low-rank matrix approximation was
made by [43] to randomly generate sub-matrices from the
original rating matrix, then to complete these sub-matrices
as predictions for the arbitrarily missed entries. This method
cannot guarantee the low-rank property of the generated sub-
matrices, since the selected users may not share similar inter-
ests, while the selected items may from different categories.
Since then, the focuses of existing studies are on the generation
of local low-rank sub-matrices with well-established collab-
orative filtering methods (e.g., low-rank matrix completion
[40], matrix factorization [41], etc.) to complete these sub-
matrices. For example, [16] proposed to approximate the
original rating matrix as a smoothed weighted sum of sub-
matrices, which are nearest neighbors of each entry in the
original rating matrix. This research was further improved by
strategically selecting anchor points to generate the local low-
rank sub-matrices with certain dimensions [21], [44]. Along
with this smoothed weighting direction, [22] investigated a
co-clustering method to partition the original rating matrix
into a set of submatrices with overlaps, hence a weighted and
ensemble local low-rank approximation model was proposed;
and [45] proposed an additive model by identifying local low-
rank structures based on a Bayesian co-clustering method.
However, depending on collaborative filtering methods, the
aforementioned methods only consider to partition the original
rating matrix by considering the explicit similarities expressed
by the rating matrix itself. The implicit similarities contained
in covariates are generally ignored or not available for use,
thus, existing methods cannot support the matrix partitioning
on both covariates and the rating matrix.
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D. Tree Splitting Methods

Tree splitting methods for regression problems provide
another potential direction for partition, specifically, in the
space defined on covariates or transformed covaraites. In
general, existing splitting methods can be categorized into
two groups: 1) univariate splitting methods, and 2) multi-
variate splitting methods. Researches towards univariate split-
ting direction aims at investigating new splitting criteria to
effectively identify one variable and threshold at one time
for binary splitting in the space defined on covariates [46].
Many univariate splitting criteria have been proposed, for
example, [47] proposed classification and regression trees
(CART) with two optional splitting criteria, i.e., gini impurity
measure and twoing criterion. Besides, [48] proposed to iden-
tify splits based on a likelihood ratio statistic; Mean posterior
improvement was investigated as a splitting criterion by [49];
Chi-squared criterion was studied for classification trees in
[50] and regression trees [51]. The major limitation of the
aforementioned criteria lies in testing a single variable at a
node, which typically results in much larger tree structures
than multivariate splitting [52].

For multivariate splitting criteria, in general, transformations
are applied to the covariates to create a new space and grow
a tree in this space. For example, linear discriminant analysis
(LDA) was adopted to transform the covariates for a multi-
variate splitting as described in [53], which demonstrated the
advantage of multivariate splitting over CART in significantly
smaller tree sizes without growing then pruning. LDA has also
been used for other type of multivariate splitting methods,
see examples in [54]–[56]. Besides, a pHd-based multivariate
splitting method were proposed by [25] as a second order
method to better detect the curvature effects in the expected
Hessian matrix, hence yielding superior performance. Unlike
other tree models, [25] provided a successful attempt to gener-
ate splits by jointly consider the covariates and the responses.
One limitation of this approach lies in its dependence on the
accurate estimation of pHds, in other words, the tree structure
and the performance are sensitive to pHds as pointed out in
a sensitivity study [57]. Specifically, noisy pHds may have
significant impacts on the growth of a tree. Besides, this
method is not applicable when missing responses exist, which
is the case for the computation pipeline recommendation
problem. Therefore, a robust pHd-based multivariate splitting
method with imputed responses is desired for our problem.

III. LORI

We propose Lori for responsive and scalable computation
services with the following assumptions: 1) covariates for
the contexts and computation pipelines are available in Lori;
and 2) the context-pipeline response matrix has local low-
rank structures after applying some elementary matrix trans-
formations on rows and columns. In general, Assumption 1
holds for almost all the scenarios in a computation pipeline
recommendation problem. Because covariates can be readily
extracted either from the embedding machine and meta-data
extraction machine [4] or simply from the factorized matrices
U and V via non-negative matrix factorization Y = UV

[26]. And Assumption 2 is a relaxed assumption for low-
rank matrix completion methods that typically require the
existence of a global low-rank structure in the response matrix,
which may not be true especially for small-scale problems.
The Assumption 2 will be validated in both a small-scale
and a large-scale recommendation case studies in Section V
and Section V, respectively. In this section, we will firstly
introduce a novel robust pHd method defined on the a EMC
model, then detail Lori.

A. Robust Principal Hessian Directions
We firstly revisit the original pHd method proposed by

[58], which is a direct application of Stein’s Lemma [59].
Following the notations in Model 1, we firstly define y =
A−1(Y ), where A−1(·) is a inverse linear mapping function
that maps from Rmn×1 back to Rm×n; r = A−1(R) as the
vectorized low-rank matrix; ϵ = A−1(E) as the vectorized
error matrix. The expected Hessian matrix is then defined as
H̄ = E[∂2m(X)/∂X∂XT ], where m(X) = E[Y |X] is the
conditional mean function. According to the Stein’s Lemma,
if X ∼ N (0,ΣX), then H̄ can be derived as Equation 2:

H̄ = Σ−1
X ΣyXXΣ−1

X , (2)

where ΣyXX = 1
mn

∑mn
i=1(yi − ȳ)(xi − x̄)T (xi − x̄), xi

is the i-th row in X representing one sample, ȳ and x̄ are
the mean values for y and X , respectively. Note that the
discussion in [58] extends to elliptic distributions of X and
other weaker condition of linearity. Hence, the normality in
X is not strongly required to produce good estimation of
pHds. Observing that subtracting a hyperplane from Y will
not change the expected Hessian matrix, a residual-based (ϵ-
based) pHd variant can be defined on the residuals ϵ of a
multiple linear regression model y = XB + ϵ:

H̄(ϵ) = Σ−1
X ΣϵXXΣ−1

X , (3)

where ΣϵXX = 1
mn

∑mn
i=1 ϵi(xi − x̄)T (xi − x̄).

Based on Equation 3, the directions can be found following
an eigenvalue decomposition of ΣϵXX with respected to ΣX :

ΣϵXXb
(ϵ)
j = λ

(ϵ)
j ΣXb

(ϵ)
j , for j = 1, . . . , p,

|λ(ϵ)
1 | ≤ · · · ≤ |λ(ϵ)

p |,
(4)

where b
(ϵ)
j is the j-th eigen vector (see more theoretical

analysis in [58] and discussions in [60]. We can then define
the ϵ-based pHd as pHd(ϵ)

j = Xb
(ϵ)
j .

pHd aims at finding the directions along with the response
surface in a reduced dimension space (r.d.s.). For example, as
shown in the left panel of Figure 3, the residual surface of a
linear regression (i.e., Y − A(XB) in our notation) implies
a curvature, which can be identified by the pHd method. By
splitting this residual surface along with the first pHd, each
branch can be well approximated by a hyperplane (i.e., a
linear regressor) defined on the space which is expanded on
covariates (x1,x2).

However, as pointed out in Section 2.4, two important issues
prevent the direct adoption of the pHd method in the matrix
completion application, namely, 1) the solution of the ϵ-based
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Fig. 3. A toy example of multivariate splitting on curvature via pHds and its robust enhancement based on the extended matrix completion model
in Model 1.

pHds is sensitive to the noises in y, and 2) the estimation of
ΣϵXX requires fully observed responses without missing val-
ues. Therefore, in this paper, a robust pHd method is proposed
based on the EMC Model 1 with least square loss function
L(Ŷ ,Y ) = 1

2 ∥PΩ(Y )− PΩ(R)− PΩ (A (XB))∥2F, which
can be efficiently solved by an alternating direction method
of multipliers (ADMM) solver as proposed in [24]. The key
idea to make pHds robust to noise and missing values in
responses is to separate the curvatures from Gaussian noises,
and to provide a reasonable guess for the missing entries in the
context-pipeline response matrix. The EMC model addresses
this issue by decomposing the residuals of a linear regression
term Y − A(XB) to be an additive model of a low-rank
matrix that represents curvatures, and a full-rank matrix that
contains identically and independently distributed Gaussian
noises. Estimating Model 1 results in a low-rank matrix R̂
with missing entries completed, hence imputing the responses.
Therefore, the robust pHd method (i.e., r-based pHd) can be
proposed as:

H̄(r) = Σ−1
X ΣrXXΣ−1

X , (5)

where ΣrXX = 1
mn

∑mn
i=1 ri(xi − x̄)T (xi − x̄). Then, the

eigenvalue decomposition described in Equation 4 can be used
to find the robust directions. As an illustration of the robust
pHd method, Figure 3 provides a toy example, where the
residual matrix (Left) of the linear regression can be further
decomposed as a low-rank matrix (Middle) adding a full-rank
noise matrix (Right) via the estimation of Model 1. Hence, the
proposed robust pHd method can reduce the impacts of noise
on estimating pHds.

The difference between the robust pHds and the ϵ-based
pHds is analyzed by Theorem 1, which also provide a close-
form solution to investigate the impacts of noise on the ϵ-based
pHds.

Theorem 1: Let ΣrXXb
(r)
j = λ

(r)
j ΣXb

(r)
j identifies the

robust pHds, ΣϵXXb
(ϵ)
j = λ

(ϵ)
j ΣXb

(ϵ)
j identifies the ϵ-based

pHds, and ϵ = r + e, λ(ϵ)
j and b

(ϵ)
j can be expressed as:

λ
(ϵ)
j = λ

(r)
j + b

(r)
j

T
ΣeXXb

(r)
j ,

b
(ϵ)
j = b

(r)
j

(
1− 1

2
b
(r)
j

T
ΣeXXb

(r)
j

)

+

p∑
i̸=j

b
(r)
j

T
ΣeXXb

(r)
i

λ
(r)
j − λ

(r)
i

b
(r)
j ,

(6)

where ΣeXX = 1
mn

∑mn
i=1 ei(xi− x̄)T (xi− x̄) is a randomly

weighted variance-covariance matrix, and ei ∼ N (0, σ2).
Therefore, an asymptotic relation exists between the ϵ-

based pHds and the proposed robust pHds as described in
Corollary 2.

Corollary 2: Let each element ei in e identically and in-
dependently follows N (0, σ2) with constant variance σ2, the
following asymptotic property exists:

lim
σ2→0+

λ
(ϵ)
j → λ

(r)
j ,

lim
σ2→0+

b
(ϵ)
j → b

(r)
j .

(7)

These asymptotic properties also proof the robustness of the
proposed robust pHd method, which serves as the basis for
a multivariate splitting method. Theorem 1 and Corollary 2
jointly guarantee that the pHds can be robustly identified even
from a noisy full-rank matrix by Lori.

B. Multivariate Splitting Method for Treed Recommender
System

A multivariate splitting method can be proposed based on
the robust pHds to develop a treed RecSys for computation
pipeline recommendation. The key idea is to redefine the local
low-rank property in the effective dimension reduction (e.d.r.,
[58]) space expanded by the robust pHds by existing impurity
measures, such as entropy, gini index, chi-squred criterion, etc.
Then, the context-pipeline response matrix can be partitioned
as the growth of a regression tree that performs traditional
univariate splitting in the e.d.r. space, which is equivalent
to multivariate splitting in the original covariates-response
space. These splits are well generated since splitting on robust
pHds (i.e., the directions of curvatures) directly partition the
response surface into local ”flat” surfaces that can be well
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Algorithm 1 Lori with Multivariate Splitting Method

1: Estimate R̂, and B̂ in Model 1 via an ADMM solver
detailed in [24],

2: Compute r = A(R), ΣrXX = 1
mn

∑mn
i=1 ri(xi −

x̄)T (xi − x̄), ΣX = 1
mn−1X

TX ,
3: Solve for λ

(r)
j and b

(r)
j for j = 1, . . . , p via the general-

ized eigenvalue decomposition of ΣrXX with respected
to ΣX ,

4: Transform X to the e.d.r. space by pHdj = Xb
(r)
j , for

j = 1, . . . , p,
5: Organize new covariates in expanded e.d.r. space by X̃ =

(pHd1, . . . , pHdp, r),
6: Grow linear regression trees on {PΩ(X̃),PΩ(y)} based

on any univariate splitting linear regression tree methods,
here operator PΩ(·) select training samples from non-
empty entries in Y ,

7: Predict the missing entries by using the trained tree model.

approximated by linear regression as hyperplanes. However,
such a splitting method may not help to address the one-
to-one mapping issue in each local low-rank partition, since
the curvature effects may hinder the one-to-one relationship
between robust pHds and responses. Therefore, we further
expand the e.d.r. space by including the estimation of curvature
R̂, such that splits generated on R̂ will prevent the one-to-one
mapping problem.

The full algorithm for the proposed Lori is then summa-
rized in Algorithm 1. Note that the the selection of tuning
parameters λ1 and λ2 will not have significant impacts on
the recommendation accuracy of the proposed Lori. Because
the recommendation accuracy is majorly contributed by the
linear regression tree, which is not sensitive to the scale of the
robust pHds and r. Besides, the trend of curvatures express
by R̂ will not change too much along with tuning parameters
in a reasonable range. According to some numerical studies,
λ1 = 2, and λ2 = 1 are suggested for large-scale applications
to avoid comprehensive tuning via cross-validations. For large-
scale applications, another strategy to save computation power
is to only use a small proportion of the robust pHds according
to eigenvalues to organize the new covariates in the expanded
e.d.r. space. The reason is that the first few robust pHds can
typically explain more than 90% variance, hence the rest robust
pHds are likely to be less informative.

IV. SMALL-SCALE CASE STUDY

We firstly validate the proposed Lori in the same small-
scale case study in [4] with three manufacturing process and
60 bootstraped manufacturing datasets to represent sixty man-
ufacturing contexts. This case study employed 27 computation
pipelines, as presented in Figure 4, with three steps from
feature extraction, tuning criterion, to candidate models, and
three method options for each step.

The objective of this case study is to identify the best
computation pipeline, which provides the lowest prediction
errors (i.e., the lowest NRMSEs) among all the candidate
pipelines, for each manufacturing context. Therefore, after

Fig. 4. Computation pipelines for the small-scale case study with
three steps and three method options in each step. The best pipeline
is highlighted in bold blue. (Redrawn from [4] with authors’ permission).

obtaining the true context-pipeline response matrix Y true ∈
R60×27 without missing entries, we generated two scenarios
to evaluate the Lori, namely, 1) warm-start scenario, and 2)
cold-start scenario. Here the warm-start scenario refers to
arbitrarily entry missing with certain probabilities in Y true,
specifically, five cases (i.e., five Y matrices) are generated
with missing probabilities ρf ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, for
f = 1, . . . , 5 by setting arbitrarily selected ρf ×mn entries in
Y true to 0. This is the scenario that most of existing RecSys
are developed upon, e.g., the MovieLens datasets include user-
movie rating matrices with arbitrarily missed entries [23]. In
the cold-start scenario, Y is generated from Y true with entire
missing rows, which corresponds to a common manufacturing
scenario that no computation pipelines have been executed
before recommendation.

For both scenarios, different training-testing splitting meth-
ods are adopted to generate replicates. Specifically, for the f -th
case in warm-start scenario, ten replicates are generated with
(1−ρf )×mn training samples arbitrarily selected from Y true
for each replicate, and the rest ρf ×mn entries are set to be
zeros. In cold-start scenario, 60-fold leave-one-fold-out cross-
validation is employed, such that the i-th row in Y true can be
left out for testing in the i-th fold, while the rest rows are
used for training. Thus, in total 60 replicates are created for
the cold-start scenario. To evaluate the prediction accuracy,
root-mean-square errors (RMSE) defined in Equation 8 was
used.

RMSE =

√∑
(i,j)∈Ω̄(ŷi,j − yi,j)2

|Ω̄|
, (8)

where Ω̄ is the index set of the testing samples, and | · | is
the cardinality of a set. In addition, to evaluate the ranking
accuracy, Normalized Discounted Cumulative Gain of the top-
3 items (NDCGk) was adopted, defined in Equation 9.

DCG3 =
3∑

i=1

2ri,z

log2(r + 1)
,

NDCG3 =
DCG3

IDCG3
,

(9)

where ri,z, z ∈ {1, ..., n} is a binary variable for the actual
rank z of the predicted top-i pipelines; And the IDCG3

represents the ideal discounted cumulative gain, evaluating
the cumulative gain of the optimal ranking. Five benchmark
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models are selected, namely, the well-tuned EMC model, a
proximal nuclear norm minimization-based matrix completion
model [61], a Lasso linear regression model [62], a popular
neural collaborative filtering (NCF) model [18], [63], and
a standard non-negative matrix factorization (NNMF) model
[26]. The Lasso linear regression model only considers the
covariates, the matrix completion and the NNMF models only
consider the response matrix, and the EMC model jointly
considers both. The NCF model will be trained by using
the covariates of contexts as the users’ vectors, and using
the covariates of computation pipelines as the items’ vectors
following the original definition in [18], [63]. The comparison
with the selected benchmark methods will validate the ad-
vantages of the robust pHds-based multivariate splitting Lori.
Note that none of the local low-rank approximation models
were selected as benchmark, because they were designed for
matrix completion without consideration of covariates.

Covariates for each entry in Y true is generated by con-
volving the context features (i.e., 17-dimensional) from the
meta-data generation machine and the pipeline features (i.e.,
48-dimensional) from the embedding machine in AdaPipe
system [4]. Convolution is adopted here to create two-way
interactions between contexts and computation pipelines. As
a result, X ∈ R1620×64 are generated in this case study. For an
alternative way mentioned in Section 3, covariates can also be
generated by factorizing matrices U and V via non-negative
matrix factorization Y = UV [26].

The results for small-scale case study are summarised in
Table II with the significantly lowest averaged NRMSEs high-
lighted in bold. It can be easily observed that the the proposed
Lori model yields the best over benchmark models, especially
when being tested in the cold-start scenario. Statistical sig-
nificance can be The superior performance can be mainly
attributed to the relaxation from global low-rank structure to
local low-rank structure. Specifically, in such a small-scale
scenario with 60 contexts and 27 pipelines, the global low-
rank assumption does not exist (i.e., rank(Y ) = 27). Thus,
matrix completion model and EMC model cannot perform
well due to the violated assumptions. However, as presented
in Figure 2, local low-rank structures exist after performing
certain elementary matrix transformations to switch rows and
columns. Therefore, the proposed Lori outperforms benchmark
methods by identifying and modeling these ”implicit” local
low-rank structures in the expanded e.d.r. space.

We also investigated the singular values of the original
response matrix and one example of the local low-rank matrix.
As presented in Figure 5, the original response matrix is, in
fact, a full-rank matrix whose singular values slowly decrease;
while the highlighted submatrix on the bottom presents a local
low-rank structure with rapidly decreasing singular values.
This finding justifies the reason why the proposed Lori model
achieves the best performance over benchmarks that assume a
global low-rank property.

V. LARGE-SCALE CASE STUDY

A large-scale case study is conducted to evaluate the respon-
siveness and scalability of the proposed Lori. In this study,

Fig. 5. Singular values of the original response matrix (left) and one
example of the local low-rank matrix (bottom left within the blue box).

81 manufacturing contexts were randomly generated from a
validated simulation model of a set of similar-but-non-identical
manufacturing processes by varying process setting variables
and in situ process variables. 1360 computation pipelines as
graphically demonstrated in Figure 1 serve as the candidates
to be recommended. Hence, after executing 1360 candidate
pipelines on all 81 data sets, the ground truth Y true ∈ R81×1360

can be obtained, where the (i, j)-th entry in Y true records the
NRMSE after testing the j-th computation pipeline on the i-th
context. The true response matrix is graphically presented in
Figure 6, where both global and local low-rank structures can
be identified.

Fig. 6. A visualization of the true context-pipeline response matrix of the
large-scale case study with 81 contexts and 1360 computation pipelines.

To validate whether the proposed method can address the
one-to-one mapping issue, we did not increase the dimension
of covariates to create the aforementioned one-to-one mapping
issue. Specifically, covariates are generated from the same
number of features, which leads to a 64-dimensional covariates
matrix X ∈ R(81×1360)×64. The same case study setup as is
adopted for the large-scale case study, thus resulting in the
testing results summarized in Table IV. The Lori maintained
its superior performance over benchmark models in both
scenarios.

We further investigate the one-to-one mapping issue in
this large-scale recommendation problem by visualizing the
covariates-response relationship in the e.d.r. space expanded
on the robust pHds. As presented in Figure 7(a), the one-
to-multiple mapping can be easily observed in the pHd-y
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TABLE II
AVERAGE RMSES AND STANDARD ERRORS (WITHIN PARENTHESIS) OF THE PROPOSED LORI AND FIVE BENCHMARK MODELS IN THE SMALL-SCALE

CASE STUDY, WHERE THE SIGNIFICANTLY LOWEST AVERAGED RMSES ARE HIGHLIGHTED IN BOLD.

Warm StartModels
ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

Cold Start

Lori 0.043 (0.010) 0.072 (0.015) 0.086 (0.007) 0.098 (0.011) 0.118 (0.017) 0.038 (0.012)
EMC 0.111 (0.008) 0.117 (0.009) 0.121 (0.007) 0.128 (0.009) 0.137 (0.003) 0.122 (0.004)

Matrix Completion 0.149 (0.018) 0.175 (0.009) 0.185 (0.006) 0.187 (0.003) 0.187 (0.001) 0.140 (0.001)
Lasso 0.135 (0.010) 0.128 (0.007) 0.130 (0.005) 0.130 (0.002) 0.175 (0.020) 0.124 (0.016)
NCF 0.117 (0.012) 0.136 (0.020) 0.142 (0.015) 0.150 (0.021) 0.163 (0.019) 0.112 (0.020)

NNMF 0.143 (0.015) 0.156 (0.008) 0.178 (0.005) 0.179 (0.003) 0.178 (0.003) 0.140 (0.001)

TABLE III
AVERAGE NDCG3 AND STANDARD ERRORS (WITHIN PARENTHESIS) OF THE PROPOSED LORI AND FIVE BENCHMARK MODELS IN THE

SMALL-SCALE CASE STUDY, WHERE THE SIGNIFICANTLY LOWEST AVERAGED NDCG3 ARE HIGHLIGHTED IN BOLD.

Warm StartModels
ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

Cold Start

Lori 0.732 (0.030) 0.706 (0.045) 0.659 (0.047) 0.592 (0.091) 0.587 (0.098) 0.727 (0.068)
EMC 0.621 (0.084) 0.579 (0.086) 0.552 (0.102) 0.508 (0.106) 0.453 (0.126) 0.494 (0.121)

Matrix Completion 0.259 (0.086) 0.208 (0.075) 0.193 (0.051) 0.162 (0.039) 0.159 (0.028) 0.204 (0.021)
Lasso 0.325 (0.080) 0.317 (0.057) 0.303 (0.051) 0.258 (0.036) 0.249 (0.095) 0.342 (0.084)
NCF 0.649 (0.065) 0.604 (0.092) 0.587 (0.083) 0.552 (0.101) 0.518 (0.095) 0.628 (0.082)

NNMF 0.283 (0.052) 0.276 (0.039) 0.239 (0.029) 0.198 (0.023) 0.194 (0.020) 0.204 (0.021)

TABLE IV
AVERAGE RMSES AND STANDARD ERRORS (WITHIN PARENTHESIS) OF THE PROPOSED LORI AND FIVE BENCHMARK MODELS IN THE

LARGE-SCALE CASE STUDY, WHERE THE SIGNIFICANTLY LOWEST AVERAGED RMSES ARE HIGHLIGHTED IN BOLD.

Warm StartModels
ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

Cold Start

Lori 0.064 (0.002) 0.082 (0.002) 0.099 (0.002) 0.116 (0.003) 0.145 (0.004) 0.051 (0.002)
EMC 0.102 (0.003) 0.121 (0.001) 0.146 (0.003) 0.160 (0.001) 0.165 (0.002) 0.134 (0.002)

Matrix Completion 0.144 (0.000) 0.170 (0.000) 0.198 (0.000) 0.229 (0.000) 0.253 (0.000) 0.246 (0.000)
Lasso 0.125 (0.002) 0.129 (0.001) 0.176 (0.001) 0.194 (0.000) 0.205 (0.000) 0.232 (0.001)
NCF 0.095 (0.018) 0.105 (0.011) 0.128 (0.021) 0.137 (0.020) 0.152 (0.032) 0.092 (0.012)

NNMF 0.138 (0.000) 0.154 (0.000) 0.183 (0.000) 0.198 (0.000) 0.203 (0.000) 0.246 (0.000)

TABLE V
AVERAGE NDCG3 AND STANDARD ERRORS (WITHIN PARENTHESIS) OF THE PROPOSED LORI AND FIVE BENCHMARK MODELS IN THE

LARGE-SCALE CASE STUDY, WHERE THE SIGNIFICANTLY LOWEST AVERAGED NDCG3 ARE HIGHLIGHTED IN BOLD.

Warm StartModels
ρ = 0.1 ρ = 0.3 ρ = 0.5 ρ = 0.7 ρ = 0.9

Cold Start

Lori 0.542 (0.017) 0.519 (0.032) 0.485 (0.030) 0.462 (0.023) 0.438 (0.020) 0.557 (0.010)
EMC 0.452 (0.023) 0.437 (0.031) 0.406 (0.023) 0.378 (0.021) 0.335 (0.016) 0.424 (0.015)

Matrix Completion 0.173 (0.000) 0.156 (0.000) 0.142 (0.000) 0.128 (0.000) 0.121 (0.000) 0.118 (0.000)
Lasso 0.238 (0.017) 0.211 (0.012) 0.196 (0.009) 0.188 (0.009) 0.175 (0.008) 0.230 (0.001)
NCF 0.394 (0.088) 0.371 (0.067) 0.313 (0.085) 0.294 (0.090) 0.238 (0.093) 0.384 (0.053)

NNMF 0.190 (0.000) 0.178 (0.000) 0.165 (0.000) 0.142 (0.000) 0.130 (0.000) 0.118 (0.012)

relation, thus limiting the performance of benchmark models,
especially the Lasso linear regression model. The best way
to reduce such a one-to-multiple mapping problem to one-to-
one mapping is to split on the response y following certain
directions. However, splitting on y requires the knowledge of
the ground truth Y true, which is contradicted to the matrix
completion problem.

By adopting the proposed Lori, Figure 7(b) presents the

identified curvatures in the estimated low-rank matrix R̂ in
the same e.d.r. space. By jointly splitting on the e.d.r. space
and r̂ following Algorithm 1, the one-to-one mapping can be
established by partitioning the expanded e.d.r. space into local
low-rank spaces. The execution of the Lori only take less than
two minutes on a Lenovo Thinkpad T460p laptop with an
i7-6820HQ processor @2.7GHz, while the EMC and Lasso
models took over 20 minutes (on average) for hyperparam-
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Fig. 7. Scatter plots to demonstrate the one-to-one mapping issue,
where (a) visualizes the covariates-response relationship in the e.d.r.
space expanded on the robust pHds, and (b) represents the curvatures
identified by the estimated low-rank matrix R̂ in the same space.

eter tuning. In summary, the proposed Lori demonstrated its
advantages in providing responsive and scalable computation
services for cybermanufacturing systems.

VI. NOTE TO PRACTITIONERS

To deploy and interpret Lori in practice, the following steps
are recommended:

• (Initialization) Define the response matrix as a context-
pipeline matrix by filling in the performance scores (e.g.,
RMSEs for regression analysis and accuracies for classi-
fication) collected from historical evaluation records. For
new context (i.e., in the form of dataset), append a new
empty row to the response matrix. Covariates for both
the contexts and the pipelines can be generated based on
the process described in [4].

• (Lori Execution) Both covariates and response matrix can
then be filled into Algorithm 1, which will result in a
completed response matrix.

• (Results Interpretation) In the completed response matrix,
rank the predicted performance scores within the row(s)
that correspond to the target context. The top-ranked
pipelines can then be executed to find the truly best one.

• (Incremental) After initial execution of Lori, for any new
context, it can generate a new row in the response matrix;
for any new pipeline, it can generate a new column in the
response matrix. Then the Lori can be estimated again to
identify the best pipeline.

VII. CONCLUSIONS AND FUTURE WORK

Recommendation of computation pipelines prevents the
wastes of time and efforts for both researchers and practi-
tioners to explore numerous AI methods in a trial-and-error
manner. Existing RecSys for computation pipeline recom-
mendation problems suffer from responsiveness and scala-
bility challenges, hence being not applicable for large-scale
problems. This research investigates a Lori to effectively
and efficiently identify local low-rank structures by response
imputation and perform multivariate splitting for linear re-
gression trees in an expanded e.d.r. space which is defined
on both the robust pHds and the estimated low-rank matrix
from the EMC model. This method successfully addresses

the one-to-one mapping issue as the pipeline recommendation
problem scale increases from small to large with reduced
computation complexity. Therefore, it can support both small-
and large-scale pipeline recommendation problems with high
responsiveness and scalability.

A few limitations were identified. First, the uncertainty
of pipeline performance estimation on a given context was
not quantified. For computation pipelines with classical ma-
chine learning methods, this is not a significant problem as
most of the estimators can reach global optimality. How-
ever, the situation becomes severe for deep neural network
pipelines/graphs, since the model estimation is associated
with large uncertainties. Such uncertainty may direct influence
the recommendation performance. Second, Lori relies on an
initial estimation of the EMC model, whose computational
complexity can increase exponentially along with increasing
number of pipelines.

This research points out several future directions. First,
we will generalize the RecSys to both vector and tensor re-
sponses by investigating new response imputation techniques,
so that the responsiveness and scalability can benefit more
real-world applications other than RecSys. Second, more effi-
cient covariates generation techniques will be investigated to
provide low-dimensional but highly informative covariates to
better distinguish contexts and computation pipelines. Thirdly,
Bayesian online learning techniques will be investigated to
enable the adaptive sampling capability of the Lori, which can
be sequentially improved as more entries of a context-pipeline
response matrix become available in an online manner. More-
over, although the advantages of Lori were demonstrated in
computational pipelines of classical machine learning meth-
ods, Lori is designed to enable generalizability to other AI
configuration problems. For example, with meta data extracted
from both datasets and deep learning models, Lori can be
readily used for deep learning model configuration, following
the similar schemes discussed in [64].
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