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ABSTRACT

The synchronization dynamics for the circadian gene expression in the suprachiasmatic nucleus is investigated using a transcriptional circa-
dian clock gene oscillator model. With global coupling in constant dark (DD) conditions, the model exhibits a one-cluster phase synchronized
state, in dim light (dim LL), bistability between one- and two-cluster states and in bright LL, a two-cluster state. The two-cluster phase syn-
chronized state, where some oscillator pairs synchronize in-phase, and some anti-phase, can explain the splitting of the circadian clock, i.e.,
generation of two bouts of daily activities with certain species, e.g., with hamsters. The one- and two-cluster states can be reached by transfer-
ring the animal from DD or bright LL to dim LL, i.e., the circadian synchrony has a memory effect. The stability of the one- and two-cluster
states was interpreted analytically by extracting phase models from the ordinary differential equation models. In a modular network with two
strongly coupled oscillator populations with weak intragroup coupling, with appropriate initial conditions, one group is synchronized to the
one-cluster state and the other group to the two-cluster state, resulting in a weak-chimera state. Computational modeling suggests that the
daily rhythms in sleep–wake depend on light intensity acting on bilateral networks of suprachiasmatic nucleus (SCN) oscillators. Addition of
a network heterogeneity (coupling between the left and right SCN) allowed the system to exhibit chimera states. The simulations can guide
experiments in the circadian rhythm research to explore the effect of light intensity on the complexities of circadian desynchronization.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156135

Circadian rhythms control the sleep–wake cycles of animals by
synchronization of the nearly 24 h period oscillations of indi-
vidual clock cells in the brain region called the suprachiasmatic
nucleus (SCN). Under normal conditions, the cells synchronize
and generate daily bouts of activities. Some animals, for example,
hamsters, under constant light conditions, can show two bouts
of daily activities (split circadian rhythms) separated by nearly
12 h, similar to biphasic sleep. This phenomenon was explained
by the left- and right-brain SCN cells oscillating 12 h apart. We
developed a biomolecular model for the SCN to show that light
can induce such behavior by a synchronization pattern in which
two groups of oscillators form. In each group, the oscillators
are synchronized in-phase, but the two groups are anti-phase
synchronized. When two such populations are considered, for

example, representing the SCN in the left and right brain, a
chimera state was observed, when one group synchronizes in one-
cluster and the other group in a two-cluster (split) state. The
model predictions can be used to better understand the proper-
ties of the circadian clock, in particular, under varying conditions
such as the transition from constant dark to bright/dim light and
back.

I. INTRODUCTION

Synchronization of oscillatory processes is an important
dynamical phenomenon with relevance to many physical, chemical,
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and biological processes.1 With chemical oscillators, early stud-
ies used stirred tank reactors (CSTRs)2–6 and showed different
synchronization patterns, e.g., in-phase, anti-phase, and out-of-
phase entrainment in small networks. Large networks of oscillatory
units can be built, for example, with Belousov–Zhabotinsky (BZ)
microdroplets,7,8 beads,9,10 microwell arrays,11 and nanodroplets12 or
with electrochemical oscillators.13 Globally coupled electrochemical
oscillators showed a variety of synchrony patterns with various lev-
els of coherence, including full synchrony14 and other stable15 and
intermittent16 cluster states. In a globally coupled network, bistabil-
ity was found between one- and two-cluster states with electrochem-
ical oscillators15 where the frequency synchronized oscillators had
identical phases (one cluster) or form two clusters, which are often
nearly anti-phase.

In many biological systems, an optimal level of synchroniza-
tion is required.17 Chimeras are types of patterns that can realize
a state with an intermediate level of synchrony with coexisting
domains of coherence and incoherence in networks of identi-
cal oscillators.18,19 Many traditional chimeras considered a contin-
uum limit of infinitely many oscillators.20,21 The concept of “weak
chimera”22,23 provides a rigorous definition of chimera-like states in
networks with the finite number of oscillators yet capture essential
features of the original chimeras:20 Weak chimeras exhibit local-
ized frequency synchrony in networks of identical oscillators.22 Such
states were discovered with modular networks of phase models with
higher-order phase interaction functions22–24 and later confirmed
with synchronization engineering techniques with electrochemical
oscillators, where a network of two pairs of oscillators was locked
in-phase and anti-phase configurations, respectively, with different
frequencies.25 Similarly, in a modular network of electrochemical
oscillators, two populations with weak cross-coupling synchronized
in one- and two-cluster states with different frequencies to yield a
weak-chimera state.26

The circadian clock presents an important example where a
synchronized network of oscillatory units with a period close to
24 h, i.e., the network of the circadian cells in the suprachias-
matic nucleus (SCN), and regulates a large variety of behavioral
and physiological functions.27–30 The oscillatory gene expression in
an SCN cell can be described with ordinary differential equation
(ODE) models.27,31–35 The SCN cells, as heterogeneous autonomous
oscillators,36 are typically synchronized to a one-cluster state37 and
thus the animal exhibits approximately one bout of daily activity
separated by a sleep phase. However, splitting of the daily activ-
ity into two components was observed with hamsters transferred
to constant light conditions.38–41 Seasonal changes in activity pat-
terns can include two bouts of daily activity (e.g., around dawn and
dusk on long days) as an adaptation to resource availability.38 On
a biomolecular level, splitting was found to be related to the left-
and the right-brain SCN gene expressions cycling in 12 circadian
hours apart.40 This splitting of the circadian activity can be modeled
with coupled nonlinear oscillators where circadian cells synchro-
nize in anti-phase configurations.38,42–46 Multicellular, biomolecular
models are capable of describing the synchronization of the SCN
cells to a fully (or partially) synchronized one-cluster state.47,48 The
constant light-induced two-cluster (splitting) state challenged our
current understanding of the circadian clock because many possible
dynamical mechanisms can explain similar cluster states. For

example, phenomenological models predicted that splitting could
occur when the constant light switches the coupling sign
between the oscillators from positive to negative or through
delays/inhibitions.43,44,46 A biomolecular model49 was developed that
showed that such assumptions may not be needed because when
the maximum transcription rate of the essential clock gene was
increased by light intensity, the circadian properties of the indi-
vidual clock cells change, and the coupling between two circadian
cells changes from phase attractive to phase repulsive. Therefore,
in a modular network with very strong coupling in each of the two
populations (where the phase repulsive coupling is counterbalanced
by amplitude coupling resulting in a one-cluster state), and weak
coupling between the populations, light intensity increase induces a
switch from in- to anti-phase collective synchronization between the
populations.49

In this paper, a network model with transcriptional clock gene
oscillators is investigated to clarify the mechanism of the splitting
in the form of synchronized (or partially synchronized) two-cluster
states to seek new dynamical splitting mechanisms and to explore
the possibility of the existence of weak-chimera states in a model
SCN. First, numerical simulations were performed in a globally cou-
pled SCN model at various light intensities to identify the parameter
region where stable one- and two-cluster states could exist. The goal
was to show that, in a realistic biomolecular SCN model, two-cluster
states emerge with increase of light intensity even with a symmetrical
network and identical oscillator properties. The stability of the one-
and the two-cluster states are interpreted with a theoretical analysis50

using phase models extracted from the ODE models using both
phase sensitivity function15,51,52 and data-based53–57 approaches. The
capability of the two types of phase models to predict the stability of
the clusters is compared. The presence of the weak-chimera state is
confirmed in a modular model where two populations of SCN cells
(representing the two nuclei of the SCN) are coupled weakly. Finally,
the relevance of the stability of the one- and the two-cluster states
and the observed chimera states to the properties of the circadian
clock are discussed.

II. MATERIALS AND METHODS

A. SCN model

1. Model equations: Single circadian clock and

coupling

We considered a simplified model for the kinetics of a clock
gene for each circadian cell in the SCN.33,58 The model consists of
three variables, concentrations of the core circadian clock mRNA
(M) and the corresponding clock protein in the cytosol (Pc) and
the nucleus (Pnuc). The ODE model is constructed to consider the
salient kinetic features of the transcription process: the inhibition of
the maximum transcription rate by Pnuc, the Michaelis–Menten type
degradation of M and Pc, and the diffusion of the proteins between
the cytosol and the nucleus,58

τk

dMk

dt
= vs,k

K4
I

K4
I + P4

nuc,k

− vm

Mk

Km + Mk

, (1)

τk

dPc,k

dt
= ksMk − vd

Pc,k

Kd + Pc,k

− k1Pc,k + k2Pnuc,k, (2)
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τk

dPnuc,k

dt
= k1Pc,k − k2Pnuc,k, (3)

where k = 1, . . . , N denotes the cell index in a population of
N = 200 cells. The parameters were selected to produce circa-
dian oscillations:49 vm = 0.421 nM/h, KI = 1.0 nM, Km = 0.5 nM,
ks = 0.417 1/h, vd = 1.167 nM/h, Kd = 0.13 nM, k1 = 0.417 nM/h,
k2 = 0.5 nM/h. The inherent heterogeneities of the individual cells
are modeled by choosing the values of τk (time scale parameter)
from a Gaussian random distribution of mean 1.000 and standard
deviation 1.0 × 10−3. In the case of identical oscillators, τk = 1.

A key model parameter is the maximum transcription rate, vs,k.
Following previous studies, we assumed that light intensity increases
the maximum transcription rate (vs,k) in each cell.33,47–49,59 In addi-
tion, the coupling between the cells is also mediated by vs,k. Based
on the signaling mechanism of the coupling,48 it is assumed that
the mRNA level of cell j (Mj) promotes the release of the vasoactive
intestinal protein (VIP); the VIP enters the intercellular medium and
binds to the VPAC2 protein, which regulates the mRNA expression
(maximum rate) of cell k through Ca2+ and CREB. In other words,
when Mj increases, the maximum transcription rate of cell k also
increases. Altogether, the effect of light and coupling can be modeled
by Ref. 49,

vs,k = v0 + L + α(Mj − Mk), (4)

where v0 = 0.73 nM/h is the base maximum transcription rate, L is
the light intensity, and α is the coupling strength. We note that this
basic model was not built to reproduce all the dynamical features
of the circadian clock. Instead, it captures the salient dynamical fea-
tures such as self-sustained oscillations, response to light by phase
shifts, and coupling induced synchronization.47 Many other features
are not included, for example, the presence of the multiple core
genes35 or the complex dynamics of light transduction to the SCN.60

We have considered some features that enabled us to obtain split-
ting yet retain some of the known biomolecular properties of the
gene expressions.

2. Model equations: Networks

The circadian cells can be coupled assuming an all-to-all global
coupling scheme, in which each cell is affected by all other cells, i.e.,

vs,k = v0 + L + α

N∑
j=1

(Mj − Mk). (5)

The nature of global coupling is certainly a simplification of
the complex network coupling of the SCN cells; however, it reflects
the presence of a dense network resulting in robust synchrony
and allows the use of the theory of globally coupled oscillators for
predictions of the synchronization states.51 Efforts to infer the func-
tional connections within the SCN have revealed network topologies
including all-to-all and small world depending on the experimen-
tal conditions and functional network being mapped.55,61,62 To better
reflect the network organization of SCN cells, we also investi-
gated the behavior of a modular network, when the N = 200 cells
are divided in two populations. The cells for k = 1, . . . , 100 were
assigned to population 1 and k = 101, . . . , 200 to population 2. In

each population, the coupling strength is α as in Eq. (5), how-
ever, the coupling between the populations is somewhat weaker, αε,
where ε is the cross coupling parameter (0 ≤ ε ≤ 1),

vs,k = v0 + L + α

100∑
j=1

(Mj − Mk)

+ αε

200∑
j=101

(Mj − Mk) k = 1, 2, . . . 100, (6)

vs,k = v0 + L + αε

100∑
j=1

(Mj − Mk)

+ α

200∑
j=101

(Mj − Mk) k = 101, 102, . . . 200. (7)

B. Phase definition and measure of cluster

synchronization

The oscillatory behavior of the time series Mk(t) was charac-
terized by its frequency (or period) and phase. We used the peak-
finding1 technique to reconstruct the phase of each oscillation. The
peak mRNA expression Mk(t) for each cell was identified as tl

k, where
l is the peak number. The phase can be determined by assuming that
two consecutive peaks are separated by 2π and at other times, the
phases are linearly interpolated, i.e.,

θk(t) =
t − tl−1

k

tl
k − tl−1

k

2π . (8)

The phases were unwrapped to increase continuously with time. The
frequency was obtained from the slope of the phase vs time plot and
the period as the inverse of the frequency.

The extent of cluster synchronization was calculated using the
phases with the generalized order parameters63 according to

rn(t) =
1

N

N∑
k=1

eniθk(t), (9)

where i is the complex unit and n = 1 or 2. R1 and R2 are the average
over time of the absolute value of r1(t) and r2(t), respectively. When
R1 ≈ R2 ≈ 0, the system is desynchronized, while R1 ≈ R2 ≈ 1, the
system is synchronized in a one-cluster configuration. If R1 ≈ 0 but
R2 ≈ 1, the system is synchronized in a two-cluster configuration.

C. Actogram generation from the SCN model

To illustrate the dynamical behavior observed in the SCN cells,
we assumed that the changes of the concentration of the M vari-
able (Ṁ) resulted in locomotor activity (W), which we plotted as an
actogram.64 We considered the animal to be active when the sin-
gle population mean < M > decreases and inactive when < M >

increases. When < Ṁ >≤ 0 then the activity was scaled with steep
sigmoid function W(t) = tanh(−25 < Ṁ(t) >), and zero otherwise.
Therefore, W can be considered to be proportional to the normal-
ized wheel running activity in the range of 0 to 1. W can be visualized
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using an actogram where W is plotted as the height of the shaded
area as a function of time for each day. For the modular network,
W was calculated as the sum of the two population activities. This
definition is similar to other studies that generated actograms.44,49

III. RESULTS AND DISCUSSION

A. Uncoupled cells: Free-running period distributions

at different light intensities

First, we considered the behavior of the oscillatory circadian
gene expressions for the uncoupled populations, i.e., α = 0. The
free-running periods of the individual oscillations of Mk(t) were
determined under three different light intensities: constant dark-
ness (DD, L = 0.00), dim light (LL, L = 0.27), and bright light (LL,
L = 0.32). For constant darkness and light, we use the com-
mon notations DD and LL, respectively, widely used in circadian
biology.65 As shown in Fig. 1(a), in DD conditions (L = 0.00), the
cells had an average free-running period of 21.97 ± 0.022 h (mean ±

standard deviation). In dim LL conditions [L = 0.27, see Fig. 1(b)],
the mean period increases to 23.57 ± 0.024 h. Note that, in accor-
dance to previous findings,49 the oscillations in LL are slower, in this
example by about 1.6 h (7%), while the standard deviation is also
somewhat wider (by about 9%). This trend also continues for bright
LL conditions [L = 0.32, Fig. 1(c)] with a mean free-running period
of 23.90 ± 0.025 h.

B. Simulations of a globally coupled network at

different light intensities

We examined the effect of the coupling in a single popula-
tion SCN model with all-to-all topology. Numerical simulations of a
globally coupled network were performed from random initial con-
ditions at a fixed coupling strength (α = 1.8 × 10−4); the results are
shown for DD (row a), dim LL (rows b and c), and bright LL (row d)
conditions in Fig. 2. At each condition, a numerical simulation was
performed from a random initial condition, and we determined the
snapshot of the phases for each cell, the time series of M(t), and the
actogram.

At DD [L = 0.00, Fig. 2(a)], the globally coupled popula-
tion exhibits a fully synchronized behavior: the gene expressions
time series nearly overlap, and the phase differences with respect
to the slowest (longest free-running period) oscillator (with index
k = maxP), θk − θmaxP, are nearly the same. Note that, as expected
from phase synchronization theories,51 the faster oscillators are
somewhat ahead of the slowest oscillators in phase difference vs
free-running period graph [left panel in Fig. 2(a)]. The simulated
actogram for the circadian rhythm [right panel in Fig. 2(a)] shows
the expected one bout activity band. The simulations thus confirm
that in DD, the SCN synchronizes to a one-cluster state, and the
results are consistent with the previous finding that in DD the glob-
ally coupled SCN population synchronizes to a nearly one-cluster
state.49

The behavior of the globally coupled SCN population in dim
light conditions (L = 0.27), is shown in Fig. 2(b). The time series of
Mk(t) shows there is a slight increase in the amplitude of the oscilla-
tions with a less sinusoidal waveform compared to DD conditions.
In addition, only 36 of the 200 oscillators are synchronized (thick

FIG. 1. Histograms of the period distribution of the circadian gene mRNA
(Mk(t)) oscillations of the uncoupled cells. (a)–(c) Histogram of the period in DD
(a, L = 0.00), dim LL (b, L = 0.27), and bright LL (c, L = 0.32).

green curve in the graph), while the rest of the population was desyn-
chronized. The phase-difference graph (left panel) shows that the
slow (long free-running period) oscillators are phase locked, and the
desynchronized elements are fast (with short free-running period).
In the corresponding actogram for the circadian rhythm, there is
again one bout of activity due to the synchronized cells in the one-
cluster configuration, however, the activity length in a given day is
now wider. The results showed that in dim LL, under the given con-
ditions, the population formed a partially synchronized one-cluster
state.

While many random initial conditions in dim LL resulted in
a partially synchronized one-cluster state of the SCN, some initial
conditions yielded a fundamentally different synchronization state.
The Mk(t) time series shows two groups of anti-phase synchronized
oscillations [shown as thick red and green curves in Fig. 2(c)] along
with some desynchronized elements. As in the previous case, the
elements with a long free-running period were phase-locked but
now with two phases separated by about π . The actogram features
two bouts of activities, characteristic of a split circadian rhythm.
Under these conditions, the system exhibits a partially synchronized
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FIG. 2. Synchronization states of a single population SCN model in DD (row a), dim LL (rows b and c), and bright LL (row d) conditions starting from random initial conditions.
From left to right: the relative phase of the oscillators (with respect to the slowest oscillator) vs free-running (natural) period, the time series of the mRNA (Mk(t)) (thick green
or red lines represent frequency synchronized oscillations, with different colors for different phase clusters), a snapshot of the phases, and an actogram. (a) The SCN in DD
showed one-cluster synchronization. (b) Partially synchronized one-cluster state in dim LL (L = 0.27). (c) Partially synchronized two-cluster state in dim LL (L = 0.27) using
a different initial condition than those in row b. (d) Partially synchronized two-cluster state in bright LL (L = 0.32).

two-cluster state. Thus, in dim LL, there is bistability between the
partially synchronized one- and two-cluster states.

When the light intensity was further increased to L = 0.32
[bright LL, Fig. 2(d)], the typical behavior of the single popula-
tion SCN was a partially synchronized two-cluster state. The Mk(t)
time series exhibited two anti-phase synchronized groups with some
desynchronized oscillators. Two distinct phase differences were
observed at approximately 0 and π for the elements with a long free-
running period, and the actogram showed two bouts activities per
day. In bright LL, thus, the SCN exhibits a partially synchronized
two-cluster state corresponding to a split circadian rhythm.

Because in dim LL, the final state showed sensitivity to initial
conditions, we performed 100 simulations from random initial con-
ditions at each light intensity (DD, dim LL, bright LL) and classified
the final state as one- or two-cluster partially synchronized state; the
results are shown in Fig. 3. In DD, all initial conditions converged
to the one-cluster state. In bright LL, all initial conditions resulted
in the two-cluster state. However, in dim LL conditions, 59% of
the initial conditions ended up in the one-cluster and 41% in the
two-cluster state. These results further confirm that depending on
the initial conditions, in dim LL, the SCN exhibits a bistability

between the one-cluster (non-split) and the two-cluster (split)
state.

When there is bistability between different synchronization
states, it is possible that the splitting of the circadian rhythm depends
on the light protocol that had been used before the animal was

FIG. 3. The distribution of one- and two-cluster synchronized states in the SCN
from simulations using one hundred random initial conditions with different light
intensities in DD (L = 0.00), dim LL (L = 0.27) and bright LL (L = 0.32).
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FIG. 4. Simulations of the circadian rhythm by transferring the SCN from DD to dim LL (a) and from DD through bright LL to dim LL (b). Top: light intensity as a function
of time. Bottom: The first and second Kuramoto order parameter as a function of time. The inset panels show a snapshot of the phases for each cell in the final state. (a)
Transferring the SCN from DD to dim LL, the SCN yielded a one-cluster (non-split) state. (b) Transferring from DD through bright LL to dim LL yields a two-cluster (split)
circadian rhythm.

transitioned to dim LL conditions. For example, circadian clocks
exhibit prior LD cycle or history dependent changes in rhythms
called aftereffects.66–68 In the following simulations, we demonstrate
the bistability by applying DD or bright LL light protocols before
dim LL.

Figure 4(a) shows the results when the animal was transferred
to dim LL from 50 days in DD. Under DD conditions, the popu-
lation remained in a complete one-cluster state with synchroniza-
tion indices R1 = 0.99 and R2 = 0.99. After dim LL at day 50, the
order parameters gradually decreased until they stabilized around
R1 = 0.86, R2 = 0.75. We, thus, see that when transferring the
animal from DD to dim LL results in a non-split circadian rhythm.

Figure 4(b) shows the results when the animal was transferred
from DD to bright LL at 50 days (t = 50 d) and then from bright
LL to dim LL at t = 1500 d. As previously, in DD, a one-cluster
state of the SCN was observed. After bright LL at day 50, the order
parameters gradually decreased resulting in a partially synchronized
state (50 d < t < 880 d), followed by a desynchronization interval
(880 d < t < 1250 d) to the two-cluster state (1250 d < t < 1500 d)
with R1 = 0.07 and R2 = 0.67. At this point (day 1500), the light
was changed to dim LL and the SCN remained in the partially syn-
chronized two-cluster state. The previously applied light protocol
thus creates initial conditions that can steer the system to the cor-
responding final state. This is indicative of hysteresis, i.e., different
behaviors can be obtained at the same light intensity with increasing
or decreasing light intensities. In other words, the very same SCN
can exhibit split or non-split circadian state depending on the light
protocol that was applied before dim LL because of the bistability.

C. Phase model description of cluster stability in the

SCN model

The numerical simulations imply that the phase
synchronization in the SCN occurs with stable one-cluster states

in DD and dim LL and with stable two-cluster states in dim and
bright LL conditions. To confirm that these states occur due to syn-
chronization with the interactions of the phases of oscillations, we
derived phase model for the globally coupled SCN system and ana-
lyzed the stability of the one- and two-cluster states as a function of
light intensity L. A generalized Kuramoto-type phase model63 was
considered,

dθk

dt
= ωk +

N∑
j=1

H(1θk,j), (10)

where ωk is the natural frequency of the k oscillator and 1θk,j

= θj − θk is the phase difference. H(1θk,j) is the interaction function
between oscillators k and j. The phase shift due to some coupling
can be obtained from the infinitesimal phase response curve (Z(θ))
and from the perturbation (sk,j) experienced by node k as a result of
being coupled to node j as dθk = Z(θk)sk,j dt. Because in our exam-
ple, the coupling is through parameter vs,k, the overall perturbation
with coupling strength α and KI = 1 nM is

sk,j(Mj, Mk, Pnuc,k) = α(Mj − Mk)
1

1 + P4
nuc,k

. (11)

Then, the interaction function H can be expressed as function of
phase difference with averaging the phase shift for a cycle length for
the two oscillators with a given (fixed) phase difference, i.e.,

H(1θ) =
1

2π

∫ 2π

θ=0

Z(θ)s [M(θ + 1θ), M(θ), Pnuc(θ)] dθ (12)

The stability of the cluster synchronization states can be ana-
lytically calculated for a globally coupled population of identical
oscillators (with the same natural frequency, waveform, response
function for each oscillators, and thus identical H).69 The stabil-
ity of the one-cluster state can be expressed using the slope of the
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FIG. 5. Circadian phase interaction functions calculated with the phase sensitivity
function method for a phase model of the simulated SCN. Left column: H. Right
column: Odd part of H. (a) DD. (b) Dim LL. (c). Bright LL.

interaction function at 1θ = 0,

λ1 = 0′(0), (13)

where 0(1θ) = H(−1θ). When λ1 > 0 or < 0, the one-cluster state
is unstable or stable, respectively.

There could be many two-cluster states with different number
of elements in each cluster, pN and p(1 − N), where p is the clus-
ter partition coefficient. The stability can be expressed with three
distinct nontrivial eigenvalues,69

λ1 = p0′(0) + (1 − p)0′(1θ), (14)

λ2 = (1 − p)0′(0) + p0′(−1θ), (15)

λ3 = (1 − p)0′(1θ) + p0′(−1θ), (16)

where 1θ is the phase difference between such clusters. Because
the numerically observed cluster states are quite balanced (about
the same number of elements in each cluster), we consider p = 0.5,
where the phase difference between the clusters is π .69 The stability
of the two-cluster state can be obtained by examining the real part
of the largest eigenvalue, with Re(λmax) > 0 for an unstable and < 0
for a stable state.

The advantage of the phase model representation of the SCN
is that as soon as H is obtained, we can analytically calculate
the stability of the clusters. Then, the stability of the clusters can

FIG. 6. Theoretical characterization of the stability of one- and two-cluster states
in the single population SCN using the largest eigenvalues from phase-sensitivy
based circadian interaction functions and comparisons to direct numerical sim-
ulations of the ODE model. λmax as a function of the light intensity for the one-
and two-cluster states using interaction functions obtained from phase sensitivity
functions. λmax < or > 0 indicate stable or unstable clusters, respectively. The
eigenvalues were analytically calculated from H using Eq. (13) for the one-cluster
and Eqs. (14)–(16) for the two-cluster state. On top, the black (one-cluster) and
red (two-cluster) bars represent the stable cluster predicted by the phase model
and corresponding numerical simulations, as indicated.

be obtained for a large range of light intensity without extensive
numerical simulations. We used the XPPAUT software package70 to
calculate H.

D. Interaction function to predict cluster stability in

the SCN model

Figure 5 shows the circadian phase interaction functions and
their odd part at different light intensities. Only the odd compo-
nents contribute to the stability for the considered clusters because
the eigenvalues in Eqs. (13)–(16) depend on the derivatives of 0 (and
thus H) at 1θ = 0 and π . The even parts of H do not contribute
to the stability of the clusters but do impact the frequency of the
synchronized oscillations.69

Figure 5(a) shows H and the odd part for DD conditions. Under
these conditions, the odd part is nearly a sinusoidal signal, but the
overall H has large cosine component and thus H > 0 for almost
any phase difference. The slope of the odd part of H at zero is pos-
itive, and thus the one-cluster state is stable (λ1 = −0.33 < 0). For
the two-cluster state λmax = 0.22 > 0 and thus the phase model pre-
dicts the two-cluster state to be unstable. These predictions agree
well with the direct numerical simulations of the SCN that showed
a tightly synchronized one-cluster state. Under these DD condi-
tions, where the circadian cells are close to a supercritical Hopf
bifurcation,49 the dominant components of the interaction func-
tion are [1-cos(1θ)] and sin(1θ), which agree well Kuramoto’s
theoretical prediction.51

Figure 5(b) shows H and the odd part in dim LL conditions.
While the overall shape of H looks similar to that in DD [Fig. 5(a)]
with a shift of the maximum to a larger phase difference, a close

Chaos 33, 083105 (2023); doi: 10.1063/5.0156135 33, 083105-7

Published under an exclusive license by AIP Publishing

 09 August 2023 16:17:27

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 7. Numerical simulations with two coupled circadian cells in dim LL for extracting data-based phase interaction functions (H). The numerical simulations were performed
with two coupled cells (τ1 = 1.0026, τ2 = 0.9974, α = 0.018). (a) Time series of Mk(t) at dim LL (L = 0.27). (b) Phase difference as a function of time. (c) Instantaneous
frequencies vs. time for oscillator 1 (black line: numerical simulations, red line: phase model fit). (d) H vs 1θ . (e) Odd part of H.

inspection of the shape reveals that the odd part now is close to
a − sin function, and thus the negative slope of H(0) indicates an
unstable one-cluster state (λ1 = 0.06 > 0). However, the odd part
also shows the presence of higher harmonics (sin(21θ)), and overall
the two-cluster state becomes stable with Re(λmax) = −0.05 < 0. In
comparison with the direct numerical simulations, the phase model
incorrectly predicts that the one-cluster state is unstable, and cor-
rectly predicts that the two-cluster state is stable. Figure 5(c) shows
H and the odd part in bright LL conditions—in this case the inter-
action function is similar to the dim light case [Fig. 5(b)]—and thus
phase model correctly predicts unstable one- and stable two-cluster
states with λ1 = 0.12 > 0 and Re(λmax) = −0.03 < 0.

To further explore the accuracy of phase model predictions of
cluster stability in the single population SCN, we reconstructed the
interaction functions at several light intensities. The largest eigen-
values for the one- and the two-cluster states as functions of light
intensity are shown in Fig. 6. At low light intensities, from L = 0.00
to L = 0.10, where the oscillatory behavior of the cells was smooth,
the one-cluster state was stable (λmax < 0). When the light inten-
sity increases (L = 0.15 to L = 0.20), the circadian phase interaction
function changes, and now both the one- and two-cluster states are
stable. At these light intensities, the phase model predicts bistabil-
ity. Subsequently, with increased light from L = 0.25 to L = 0.40,
the one- and two-cluster state were found to be unstable and stable,
respectively.

For comparison, we performed direct numerical simulations at
the different light intensities, and at the top of Fig. 6, the predicted
stability of the one- and the two-cluster states are shown. The inter-
val of the one-cluster state was found to be larger compared to the
phase model predictions. Conversely, the simulations yielded a nar-
rower range of the two-cluster state than that predicted by the phase
models. The bistability in the simulations was observed at L = 0.25
to L = 0.30 at larger light intensities than those predicted by the
phase model.

Overall, the phase model and the simulations follow the same
trend. At low light intensity, the one-cluster is stable. At intermedi-
ate light intensity, the system showed bistability between the one-
and two-cluster states. At larger values of L, only the two-cluster
state was stable. However, there is some discrepancy in the predicted
ranges; this discrepancy could be due to the cell heterogeneities used
in the simulations, nonlinearity effects on the waveform and the
phase response function, and strong coupling effects.

E. Cluster state predictions with data-based phase

model

An alternative way to obtain phase models for coupled oscil-
lators is with the use of a data-based approach when the instanta-
neous frequencies of the oscillators are recorded at a given coupling
strength, and a phase model is fitted to the data to Eq. (10).55 Then,
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once H is obtained, predictions can be made using the phase model
at different coupling strength, topology, and natural frequencies.
Here, we test the use of the data-based technique to improve the
predictions of the stability of the one- and the two-cluster states in
the SCN.

The Mk(t) time series of two weakly coupled (α = 0.018) circa-
dian clock cells (τ1 = 1.0026 and τ2 = 0.9974) at L = 0.27 are shown
in Fig. 7(a). With these coupling strengths, the system exhibits a
partially synchronized state, where the oscillators alternate between
synchronized and desynchronized intervals. Correspondingly, the
phase difference vs time plot [Fig. 7(b)] shows alternation of flat
(phase synchronized) and quickly increasing (desynchronized) peri-
ods—such state is often called phase slipping dynamics. The instan-
taneous frequency of oscillator 1 as a function of time is shown
Fig. 7(c). A periodic variation can be observed on a time scale of
about 474 days. During the synchronized intervals, the frequency is
nearly constant, and during the desynchronization interval, there is
a large drop and subsequent increase in the frequency. Rearranging
the phase model equation

dθ1

dt
= ω1 + H(1θ), (17)

dθ1

dt
− ω1 = H(1θ), (18)

the interaction function can be obtained by plotting dθ1/dt − ω1

as a function of the phase difference 1θ = θ2 − θ1 and fitting the
function with a truncated Fourier series.55 Truncating the interac-
tion function up two Fourier terms is sufficient; the instantaneous
frequencies obtained from the reconstructed phase model (red line)
can nearly perfectly recover the numerically obtained values (black
line) in the instantaneous frequency variations in Fig. 7(c).

The obtained H and its odd part are shown in Figs. 7(d)
and 7(e). Compared to the phase sensitivity function based interac-
tion functions [Fig. 5(b)], H and the odd part exhibit stronger higher
harmonics. In particular, the slope of the odd part [see Fig. 7(e)]
at zero phase difference is now positive, and thus the one-cluster
state is stable (λ1 = −2.2 × 10−4 < 0). Similarly, strong second har-
monics dominate the shape, and the two-cluster state is also stable
(λmax = −9.5 × 10−4 < 0). Therefore, the data-based phase model
now correctly predicted the bistability between one- and two-cluster
state in dim LL conditions.

The interaction function using the data-based technique was
obtained for a range of light intensities (0 ≤ L ≤ 0.4), and the sta-
bility of the one- and the two-cluster states is shown as a function
of L in Fig. 8. Similar to the phase model predictions using the
phase response curve method, at low light intensities, only the one-
cluster is stable (0 ≤ L ≤ 0.1). At intermediate light intensities, there
is bistability between the one-and the two-cluster states (0.15 ≤ L
≤ 0.27). At large light intensity (0.3 ≤ L ≤ 0.4), the two-cluster state
is stable. The data-based phase model approach now better predicts
the stability compared to the numerical simulations (see the top of
Fig. 8) but still predicts somewhat lower critical light intensity for
the upper bound (Lcrit = 0.27 vs 0.30) of the stable one-cluster state
and somewhat lower critical light intensity (Lcrit = 0.15 vs 0.25) for
the lower bound of the stable two-cluster state.

FIG. 8. Theoretical characterization of the stability of one- and two-cluster states
in the single population SCN using the largest eigenvalues from data-based phase
interaction functions and comparisons to direct numerical simulations of the ODE
model. λmax as a function of the light intensity for the one- and two-cluster states
using data-based interaction functions. λmax < or > 0 indicate stable or unsta-
ble clusters, respectively. The eigenvalues were analytically calculated from H

(obtained simulations similar to those in Fig. 7 for each L) and using Eq. (13)
for the one-cluster, and Eqs. (14)–(16) for the two-cluster state. On top, the black
(one-cluster) and red (two-cluster) bars represent the stable cluster predicted by
the phase model and corresponding numerical simulations, as indicated.

F. Cluster formation and chimera state in a modular

SCN network

The bistability between the one- and the two-cluster states in
dim LL opens the possibility for the existence of weak-chimera states
in a modular network. One of the simplest of such networks can be
constructed with two globally coupled population with weak cross
coupling.22 For a weak-chimera state to exist in the circadian clock,
the one- and two-cluster states must have different synchronization
frequencies. This requirement implies a sufficient amount of non-
isochronicity, (or phase shear) in the interaction function due to
a large cosine component in H.22,25 As shown in the reconstructed
interaction functions (in Figs. 5 and 7) the interaction functions
do have large cosine components. Because H(0) is close to zero,
in the (fully synchronized) one-cluster state, the synchronized fre-
quency of the SCN is close to mean of the natural frequencies.
However, in the two-cluster state, because H(φ) > 0, the anti-phase
synchronized oscillator pairs will have a tendency to have larger
frequencies (and thus lower periods). In other words, the interac-
tion speeds up the anti-phase synchronized clusters of the circadian
clock. This was demonstrated in numerical simulations in Figs. 2(b)
and 2(c), where the synchronized periods in dim LL conditions
were 23.38 h and 22.55 h for the one- and the two-cluster states,
respectively.

Motivated by the predictions of the phase models and simu-
lations with a globally coupled network regarding cluster stability,
we explored the behavior of a modular network consisting of two
populations with a weak cross coupling. The two populations can
represent two densely coupled circadian cells domains in the brain,
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FIG. 9. Synchronization states of the SCN in dim LL using a modular network. From left to right: snapshot of phase, snapshot and time series of Mk(t), and actogram. The
modular network was constructed with α = 2.10 × 10−4 coupling strength in each populations with a weak cross coupling ε = 0.15. (a) Non-split state from one-cluster
initials condition such that the two population are nearly in-phase. (b) Split circadian rhythm with one-cluster initial conditions that are anti-phase synchronized. The SCN
yields spatial domains that are anti-phase to each other. (c) Split circadian rhythm with two-cluster initial conditions. The SCN yields two-cluster state without spatially localized
in-phase synchronization. (d) Weak-chimera state with two-cluster initial condition for population 1, and one-cluster initial condition for population 2. The panels show the final
synchronization states. Population 1: cells 1–100. Population 2: cells 101–200. In the time series plot in the third column, the green and red lines represent the synchronized
elements in population 1 and 2, respectively, and the grey lines are the desynchronized elements. All simulations were performed with the samemodel parameters (L = 0.26),
only the initial conditions were different.

which are coupled relatively weakly to each other. For example, on
a macroscopic scale, the two populations can represent the left and
the right brain SCN in hamster.40,41

N = 100 cells were placed in each population, with rela-
tively strong, all-to-all coupling in each population (α = 2.10
× 10−4) and weak, all-to-all coupling between the populations
(αε = 3.15 × 10−5, i.e., ε = 0.15). The light intensity was fixed in
dim LL (L = 0.26), where there is bistability between the one- and
the two-cluster states. (The light intensity was slightly decreased
compared to the previous dim LL conditions so that the one- and

the two-cluster states are further away from their corresponding
critical light intensities). The simulations were performed at exactly
the same parameter values but with initial conditions corresponding
nearly to one- or two-cluster states in each modules; the results are
shown in Fig. 9 (phase snapshots, snapshot and time series plot of
Mk(t), and actograms) and Fig. 10 for phase differences.

When both SCN populations were started from nearly a one-
cluster state and the phase difference was small, the one-cluster pop-
ulations synchronized in nearly in-phase conditions [see Figs. 9(a)
and 10(a)]. This state thus represents a globally synchronized
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FIG. 10. Time series of phase differences among the circadian gene expression oscillations of the cells in the modular SCN network. The simulations of the circadian
rhythms are at the same parameter values but differ by the initial conditions. The left column: phase differences in population 1 (black lines, θ1−100 − θ1). Middle column:
Phase differences in population 2 (red lines, (θ101−200 − θ101). Right column: Phase differences between oscillators in the different populations (blue lines, θ101−200 − θ101).
Panels (a)–(d) correspond to those in Fig. 9. Population 1: cells 1–100. Population 2: cells 101–200. (a) One-cluster state in each populations, and in-phase synchronization
between the populations. (b) One-cluster state in each populations, and anti-phase synchronization between the populations. (c) Two-cluster state in each populations, and
synchronization between cells in different populations can be in- or anti-phase. (d) Chimera state: Two-cluster state in population 1, one-cluster state in population 2, and
lack of synchrony in-between the populations. The black, red, and blue curves in the left, middle, and right panels, respectively, denote the behavior of the synchronized
oscillators.

one-cluster state, and thus there is no splitting in the circadian
rhythm. The period of this synchronized state was 23.32 h.

When the one-cluster synchronized populations were started
from a nearly anti-phase initial conditions relative to each other [see
Figs. 9(b) and 10(b)], both populations remained in the one-cluster
state; however, they reached an anti-phase synchronized state rela-
tively to each other. This state represents a split circadian rhythm,
where anti-phase synchronization was established between the two
populations, but the one-cluster synchrony remained within each
population. The period of this synchronized state was 23.16 h, i.e.,
the oscillators sped up compared to the globally synchronized one-
cluster state (with period 23.32 h) as expected by the phase model
analysis.

When the two populations were initialized in a nearly two-
cluster initial state, both populations remained in the two-cluster
state [see Fig. 9(c)] and two populations collectively synchronized in
an “in-phase” configuration such that the phase differences between

pairs of elements in populations 1, in population 2, or between the
populations are nearly zero or π [see Fig. 10(c)]. This state also rep-
resents a split circadian rhythm, however, now we do not see large
domains of circadian cells with similar phases; instead, the cluster
configuration depends on the initial conditions. We see a further
decrease in the synchronized period, now to 22.80 h.

Finally, the observed synchronization pattern is shown in
Figs. 9(d) and 10(d) when population 1 was started from a nearly
two-cluster, and population 2 from a nearly one-cluster initial con-
dition. Both populations remained in their corresponding states, i.e.,
population 1 synchronized with a two-cluster state and population 2
with a one-cluster state. However, in contrast to the previous exam-
ples, the two populations did not synhchronize with each other,
as they attained 22.81 h (population 1) and 23.24 h (population 2)
periods. The analysis of the phase differences [Fig. 9(d)] shows that
within population 1, we can find in- and anti-phase synchronized
pairs (left column); in population 2, the phase differences are close
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to 0 (or 2π), i.e., the population 2 is in a one-cluster synchronized
state. The phase differences between elements in different popula-
tions diverges [right column in Fig. 10(d)]. We thus see that the SCN
exhibits a weak-chimera synchronized state with desynchronization
between the population. Note also that for the phase differences
within population 1, the anti-phase state exhibits a slowly varying,
oscillatory behavior, typically seen with weak chimeras as predicted
by phase model theories and confirmed in experiments.25,26 (To fur-
ther confirm the simulation results, we repeated the simulations
for random initial conditions as well as with identical oscillators;
we identified only the above described dynamical states.) We thus
see that a modular network of SCN cells can exhibit weak-chimera
states. In this state, there is a domain with a one-cluster state,
and another domain with two-cluster, split rhythm. In terms of
actograms, we can discern three activity bands, one (wide) band
corresponding to the one-cluster state (with its own period) and a
double band (separated by about 12 h) corresponding to the split
population. (Note that when the bands overlap, the activity is larger,
which is perceived as a darker shade in the actogram.)

IV. CONCLUSIONS

We investigated the synchronization patterns of globally cou-
pled and modular networks of transcriptional oscillator models for
circadian rhythms. With global coupling, numerical simulations and
phase model predictions followed a similar trend: one-cluster state
at low light intensity (L), bistability between one- and two-cluster
states with intermediate L, and two-cluster states at high L. The
phase models were constructed by both phase sensitivity function
and data-based approaches. Analytical analysis of the stability of the
cluster states predicted the lower bound of the two-cluster states
lower than those observed in simulations. This is expected because
the numerical simulation was performed with heterogeneous oscil-
lators, but the phase model predictions assumed identical oscillators.
Heterogeneities often (but not always71) have a tendency to destroy
synchronization states and, thus, predictions with identical oscilla-
tors are expected to overestimate the stability regions compared to a
heterogeneous population. In contrast, the upper bounds of the sta-
bility region of numerically observed one-cluster states were found
to be larger than those predicted by both phase models, i.e., the
ODE model with heterogeneous oscillators showed synchronization
where the corresponding phase model with identical oscillators did
not. This could be related to the deviation of the ODE model from
strictly phase model behavior due to strong coupling and amplitude
effects.72

The two-cluster states arise because of higher (often second)
harmonics in the phase interaction function due to nonlinearities
in the oscillator properties.69 Similar to the transcriptional model
considered here, the number of phase clusters increased as the oscil-
lator properties were set further away from a Hopf bifurcation with
the Brusselator, electrochemical oscillators, and an integrate-and-
fire neuronal spiking model.73,74 In all these examples, many stable
cluster states, including the one- and two-cluster states, co-existed at
a given set of model parameters. It appears that there could be some
commonality in the appearance of the nonlinearities in these models
as a bifurcation parameter is changed, although there is no canon-
ical, general oscillator model for behavior further away from Hopf

bifurcations; instead, the higher order contributions should be eval-
uated on a case-by-case basis.73 Nonetheless, when the light intensity
would be further increased even larger number of clusters could be
expected and eventually the system could become desynchronized.
The previous SCN model49 investigated such a large light intensity
parameter region (L ≈ 1), where weak coupling was not be able to
synchronize the population.

Based on the assumption that light increased the maximum
transcription rate, the model predicted that the very same coupling
that synchronizes the oscillators to a one-cluster state in DD will
induce a two-cluster state corresponding to a split circadian rhythm.
The simulations revealed two fundamentally different types of split
rhythm: with globally coupled single population, a stable two-cluster
state can be obtained, where the clusters do not form discernible
domains and the cluster configurations are determined by initial
conditions. Such states were also observed with a modular coupling
topology. However, with modular coupling, another type of split
rhythm was also possible when each of the two populations is syn-
chronized to a one-cluster state, but the collective rhythms of the
two populations are anti-phase synchronized. This latter is consis-
tent with the experimental observation that split circadian rhythm
in hamsters is due to anti-phase synchronization of the left- and the
right-brain SCN.40,41 It should also be noted that with other animal
models and different light protocols, the synchronization can form
complex structures such as desynchronization,75 ventral–dorsal (in
contrast to left–right) anti-phase oscillations,45,76 and asymmetries
in addition to the left–right split.77 In particular, the presence of two
clocks in each side of the SCN45 can be consistent with our compu-
tational predictions in dim LL where the two-cluster states in each
module are synchronized.

In dim LL, the simulations predicted bistability between split
and non-split circadian rhythm. This prediction can explain that
when animal models are transferred to the LL condition, only about
50% shows the split circadian rhythm.38 It is possible that the dif-
ferent animals have different extents of synchronization in DD due
to animal-to-animal changes in the SCN properties, and thus only
those animals with less synchronized initial conditions can produce
splitting. Light pre-treatment procedures have been used in practical
settings to improve the stability of splitting.78,79 The simulations also
point out a difficulty in studying the split rhythm as the transient
times can be long (months or even years), which further complicate
obtaining accurate dynamical information about the synchroniza-
tion structures in the SCN. Nonetheless, the simulations predict that
the applied light intensity plays an important role in the splitting
behavior, and thus further experiments with varying light intensi-
ties are essential in improving the description of the spatiotemporal
organization of the gene expressions in the SCN.

In dim LL conditions where in a single population there was a
bistability between the one-cluster and two-cluster states, in a mod-
ular network the simulations predict a weak-chimera state where
one population remains in one-cluster and the other in a two-
cluster state with different frequencies (or periods). These states
have similar dynamical properties to those predicted by phase mod-
els, numerical simulations, and experiments with electrochemical
oscillators.25,26 In terms of actograms, such a state could be detected
by three bouts of activity: one band for the one-cluster state with
a given period and two bouts separated by 12 h with a different
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period. Note that the detection of such rhythms in the experiment
is complicated by various factors. First, long recording is required
to separate overlapping activities, and second initial conditions are
required where one population starts in one-cluster and the other
population in the two-cluster states. In the experiments with electro-
chemical oscillators,25,26 synchronization engineering techniques16

were applied to design initial states with the closed loop feedback
techniques. Optogenetic perturbation could provide a means to
implement such feedback;80 however, concurrent imaging biolumi-
nescent markers in the SCN slice is difficult because the isolated
SCN lacks retinal input so that the cells remain synchronized to
each other but not to environmental inputs.81,82 Long exposures to
light conditions that induce splitting behavior could result in an
adaptation of the circadian network rewiring, similar to photope-
riodic adaptation to summer/winter light cycles,83 so that some of
the properties of the circadian behavior could be retained.

Some of the inspiration of the interest in chimera states origi-
nated from unihemispheric sleep of birds and dolphins.84 Our pro-
posed model predicts a chimera mechanism driven by the dynamics
of the circadian system. This is quite different from other scenar-
ios in which the synchronization of spiking neurons is modulated
by circadian rhythms, resulting in chimeras on the very short time
scale (on the order of seconds).85–87 For example, a brain model
with Hindmarsh–Rose neural oscillators under periodic circadian
modulation of the injected current parameter showed differences
in the alternations of sleep-promoting and wake-promoting regions
between the hemispheres.85 In contrast, in our model, the circadian
drive of the SCN is split, which can affect the spiking behavior of
the hemispherical neurons. This comparison illustrates that com-
bination of brain models on different time-scales could open new
avenues for complex chimera states in the brain.
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