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ABSTRACT
Migration of symmetric tilt grain boundaries (STGBs) in face-centered cubic 
(FCC) metals under shear loading is investigated in this work. The STGBs have 
a tilt axis of [110], and the angle � between the (111) invariant planes ranges from 
8° up to 28° with a 2° increment. Interesting phase transformation and twinning 
are observed during GB migration in Cu, Ni but not in Al. The results show that 
for low values of � , under shear loading, a hexagonal close-packed (HCP) phase 
is formed along the original GB and the HCP phase grows via shear coupling of 
one of the two interfaces between the HCP and the FCC grain. As � increases, both 
interfaces between the HCP and the grains become mobile and the HCP region 
traverses and transforms the lattice of one grain into the other. Thus, shear cou-
pling is accomplished and facilitated through FCC → HCP → FCC phase transfor-
mations. As � further increases to 18° and greater, instead of FCC → HCP phase 
transformation, a {111} twin is formed along the original GB. The twin expands 
via shear coupling of the new GB between the twin and the FCC grain. Lattice cor-
respondences are carefully analyzed for the phase transformation and twinning. 
The analyses indicate that the mobility of GBs is predominantly determined by 
how readily lattice transformation can be accomplished. The lattice correspond-
ence in HCP twinning modes provide key insight on the observed GB migration 
behavior.

Introduction

When an external shear strain is applied parallel to a 
grain boundary (GB), how the GB responds to the 
shear strain has been an interesting problem that is of 
great significance in physical metallurgy. The shear 
strain may drive the GB into motion via shear coupling 

or sliding or both [1]. Shear coupling is referred to the 
coupled motion of a GB simultaneously in the GB nor-
mal direction and in parallel to the GB plane and has 
been observed in experiments and atomistic simula-
tions [1–9]. The coupling factor β is defined as � =

v∥

v⟂

 
[1], where v∥ is the lateral velocity component parallel 
to the GB plane, and v⟂ the velocity component along 

Received: 23 January 2023 
Accepted: 16 August 2023 
Published online: 
28 September 2023 

© The Author(s), under 
exclusive licence to Springer 
Science+Business Media, LLC, 
part of Springer Nature, 2023

Handling Editor: N. Ravishankar.

Address correspondence to E-mail: binl@iastate.edu

http://orcid.org/0000-0003-0687-8976
http://crossmark.crossref.org/dialog/?doi=10.1007/s10853-023-08863-z&domain=pdf


J Mater Sci (2023) 58:14740–14757	

the GB normal. In their pioneering work, Cahn et al. 
[1] showed that some coincidence site lattice (CSL [10]) 
GBs in face-centered cubic (FCC) copper (Cu) with 
[001] tilt axis migrated via shear coupling when an 
external shear strain was applied parallel to the GB 
plane. They observed two branches of coupling factor: 
One corresponds to the (100) invariant plane, and the 
other to the (110) invariant plane. These invariant 
planes are very similar to the second invariant planes 
defined in classical twinning theory [11, 12]. During 
GB migration via shear coupling, atoms on the invari-
ant plane of one grain are homogenously sheared to 
the corresponding plane which is the crystallographi-
cally equivalent plane of the neighboring grain. In 
other words, no distortion should happen to the invar-
iant plane during GB migration. The acute angle � 
between the invariant planes of the neighboring grains 
can be used to define � = 2tan

�

2

 [1]. Note that this defi-
nition is essentially the same as the definition of “mag-
nitude of twinning shear” in the classical twinning 
theory. The similarity between GB shear coupling and 
deformation twinning was noted by a number of 
researchers in terms of invariant planes and the mag-
nitude of shear [6, 9].

Recently, Li and Leung [13] showed that in shear 
coupling, the choice of the invariant plane generally 
follows the rules of the classical twinning theory. The 
active invariant plane should be a low-index plane 
with highest atom density such that the number of 
atoms that are directly sheared to the lattice of neigh-
boring grain is maximal, and accordingly, the atomic 
shuffles involved in the lattice transformation is rela-
tively simple. For example, for CSL GBs with [001] tilt 
axis, it was found that the invariant plane alternated 
between the two low-index planes (100) and (110) as 
the misorientation angle varied [1]. From the litera-
ture data of GB migration kinetics via shear coupling, 
it can be seen that the value of � , which determines 
the magnitude of shear, is directly correlated with the 
migration velocity of GBs via shear coupling. For a 
specific invariant plane, smaller values of � always 
give rise to faster migration velocities, irrespective of 
GB coherency, structure and energy. Immediately, it 
follows that for those symmetric tilt GBs (STGBs) with 
boundary plane not far away from the close-packed 
plane, i.e., {111} plane of FCC metals, their mobility 
via shear coupling should be very low. This brings up 
an interesting question: How those STGBs with ⟨110⟩ 
tilt axis and {111} invariant planes migrate under shear 
loading?

Kinetics of shear coupling of STGBs in the [110]-
[110]-[001] orientations with ⟨110⟩ tilt axis in Ni was 
systematically studied by Homer et al. using syn-
thetic driving force approach [14]. Shear response of 
Σ9⟨110⟩{221} and Σ11⟨110⟩{131} STGB in FCC metals 
was also investigated by Wan and Wang [15, 16]. In 
this work, we present interesting simulation results of 
shear coupling of GBs over a range of value of � in the 
[110]-[111]-[112] orientation with [110] tilt axis in FCC 
metals Cu, Ni and Al. Novel analyses of structural 
evolution, especially lattice correspondences, are con-
ducted to reveal the mechanisms for GB motion. Phase 
transformation and twinning are activated at the GBs 
under shear loading and facilitate GB migration via 
shear coupling. The results obtained provide new 
insight on the physics of GB migration and mobility.

Simulation method

Grain boundaries with [110] tilt axis are constructed 
based on the STGB model. A bi-crystal model in our 
simulations is shown in Fig. 1. From the previous 
work [13], the GB motion mode, i.e., shear coupling or 
sliding, is directly determined by the angle � between 
the invariant planes of the two grains. The tilt angle 
� , which is the angle between the (111) planes of the 
two grains, is not a convenient structural parameter 
to describe GB motion or mobility. This is because 
for rotation axes such as [001] and [110], more than 
one invariant plane may be present as the tilt angle 
� varies. For the (111) invariant plane, � is related to 
� by: � = 39

◦ − � . On the other hand, no matter how 
the value of � changes, mode of motion is always 
directly related to � which is the angle between the 
active invariant planes of two neighboring grains and 
uniquely defines the magnitude of shear s. To inves-
tigate how s influences the motion of the STGBs with 
[110] tilt axis, � is chosen from 8°, 10°,…, up to 28°, at 
an interval of 2°. After relaxation, the actual values of � 
may slightly deviate from the chosen values, but such 
deviation is not expected to affect the overall trend 
and the conclusions drawn from the results. We also 
find that, as � further increases, the invariant plane 
shifts from the (111) to another plane and details of GB 
motion for those larger values of � will be presented 
elsewhere.
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First, we construct two identical single crystals 
but the misorientation angle between them is chosen 
such that � equals the preselected values. Then the 
two single crystals are bonded together, followed by 
relaxation to form a STGB. The system size is about 
680000 atoms, with dimensions of 20 nm × 20 nm × 
20 nm. Embedded atom method (EAM) [17, 18] type 
of interatomic potentials for Cu [19], Ni [20] and Al 
[20] is used for our simulations. The simulation tem-
perature is fixed at 100 K by using the Nosé–Hoover 
thermostat [21, 22]. This temperature is chosen so as 
to reduce thermal noise in structural analyses. The 
simulation results are similar when the temperature 
is set at 300 K. To generate GB migration via shear 
coupling, a shear strain is created by displacing the 
atoms on the top surface of the system at a constant 
rate (0.02 Å/ps) while those atoms on the bottom sur-
face are fixed. The shear strain rate is about 1.0 × 108 
/sec. The time step size equals 1.0 fs. The system is 
relaxed for 50 ps before the shear loading is applied. 

Large-scale atomic/molecular massively parallel simu-
lation (LAMMPS) package [23] is used for the simula-
tions. OVITO [24], which provides functions for struc-
tural visualization and analyses, is used to analyze the 
structural evolution during GB migration.

In our simulations, no periodic boundary condition 
is applied along any dimension. In periodic boundary 
condition, atoms on the opposite boundaries interact. 
If the simulated lattice system lacks a well-defined 
periodicity in that crystal orientation, interatomic 
interaction on these boundaries would differ from the 
interaction between bulk atoms. Thus, unintended and 
undesirable internal stresses would be present in the 
system and spurious structures might be created by 
such internal stresses.

Results

We present our simulation results starting with the 
low values of � . Only the results for Cu are presented 
in the main text, and the results for Ni and Al are pre-
sented in Supplemental Material. Figure 2a shows the 
relaxed GB when � = 8°. Common neighbor analysis 
(CNA) [25] is used to distinguish different crystal 
structures. In this color scheme, the FCC is displayed 
in green, the HCP is displayed in red, whereas atoms 
on the free surfaces and interfaces are displayed in 
white. In this plot, the (111) planes of Grain 1 and 
Grain 2 are preselected and colored in blue and yellow 
and this color pattern is retained throughout the simu-
lation. Thus, these planes, also the invariant planes, 
serve as marker lines that help track the evolution of 
the GB during simulation. Interestingly, after relaxa-
tion, some atoms on the GB are already recognized 
as in HCP in OVITO, which actually has a faulted 
structure as analyzed in the following. This relaxed 
structure is similar to the report by Rittner et al. [26] 
in which narrow stacking faults (SFs) were identified 
after relaxation. As the shear strain increases, surpris-
ingly, a region of hexagonal close-packed (HCP) Cu 
is formed along the original GB. The formation of the 
HCP creates two new interfaces or GBs between the 
FCC and the HCP structures (Fig. 2b). Note that these 
red atoms are not on either of the two {111} planes of 
Grain 1, and thus they are not formed by Shockley par-
tial dislocations. The HCP phase grows into Grain 1 as 
the top GB migrates upward. At this time, the bottom 
GB remains almost still. Note that the HCP structure 

Figure  1   Initial bi-crystal that forms a symmetric tilt grain 
boundary in FCC Cu. The rotation axis is [110]. One of the (111) 
planes of the top grain is preselected and highlighted in blue. 
This plane is the invariant plane during GB migration. Common 
neighbor analysis is used to distinguish crystal structures. The 
angle θ between the invariant planes of the two crystals is a key 
parameter that describes the characteristics of GB motion. ϕ is 
the angle between the (111) planes of the bi-crystal, or the tilt 
angle, and ϕ = 39° − θ.
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has a high density of SFs on the (0002) basal plane 
(Fig. 2c). The property of these SFs will be analyzed 
below. As the shear strain further increases, the HCP 
region expands at the expense of Grain 1. Meanwhile, 
the bottom GB slightly moves away from the horizon-
tal position and migrates upward (Fig. 2d). Now, if we 
treat the HCP as a new grain, two pairs of correspond-
ing invariant planes can be defined: the (111) plane of 
Grain 1 and the (0002) of the HCP, and the (111) plane 
of Grain 2 and the (0002) plane of the HCP. (The angle 
between them is denoted by �  .) Note that � ≠ � , and 
� ≈ 11.5° in this particular case. The lattice transforma-
tion can be described as:

As � is increased to 10° (Fig.  3a), similar 
FCC → HCP phase transformation is observed. Fig-
ure 3a shows the initial relaxed GB when � = 10°. 
Under the shear strain, an HCP phase is formed 
between the two FCC grains. This HCP region grows 
at the expense of Grain 1. It can also be seen that 

(111)
grain 1

→ (0002)
HCP

the density of basal stacking faults decreases as � 
increases. Note that as � increases, the value of angle 
� decreases, and this will affect the mobility of the 
bottom interface between the HCP and Grain 2. The 
lattice transformation can also be described as:

As � is further increased to 12°, not only the top 
interface, but the bottom interface between the FCC 
and the HCP is also mobile. Figure  4a displays 
the relaxed GB when � = 12°. As the shear strain 
increases, an HCP region is formed along the GB. 
However, a different scenario can be seen. The bot-
tom interface is also moving upward. As a result, as 
the HCP region is moving upward and consuming 
Grain 1, the HCP phase is also transforming back 
into FCC that is becoming part of Grain 2. The lattice 
transformation in this scenario can be described as:

(111)
grain 1

→ (0002)
HCP

(111)
grain 1

→ (0002)
HCP

→ (111)
grain 2

Figure 2   a Relaxed GB 
when θ = 8°. The (111) 
planes of the bi-crystal are 
preselected and highlighted 
in blue and yellow. b Under 
the shear strain, a band of 
HCP Cu is forming along the 
GB and grows into Grain 1. 
The HCP phase is displayed 
in red in common neighbor 
analysis. c The HCP phase 
keeps growing at the expense 
of Grain 1. Note that the 
(111) plane is transformed 
into the (0002) basal plane of 
the HCP. d Most of Grain 1 
is transformed into the HCP. 
ψ ≈ 11.5°, which is the angle 
between the (0002) of the 
HCP and the (111) of Grain 
2.
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As � is further increased to a larger value of 14° 
(Fig. 5a), a different behavior is observed. Under the 
shear strain, the HCP phase evolves into a thin strip 
and the whole region moves upward, transforming 
Grain 1 into Grain 2 (Fig. 5b and c). This indicates that 
the top and the bottom interface between the HCP and 
the FCC have close mobility and both migrate upward 
at similar velocities. Eventually, most of Grain 1 is 
transformed into Grain 2. The lattice transformation 
can also be described as:

When � is increased to 16° (Fig. 6a), the top inter-
face between the HCP and Grain 1 has the highest 
migration velocity. The bottom interface also has finite 
mobility but migrates slower than the top interface, 
leading to a wide HCP region. Some part of the HCP 
has a low density of basal SFs.

(111)
grain 1

→ (0002)
HCP

→ (111)
grain 2

Further increase of � to 18° (Fig. 7a) results in an 
interesting transition in the GB motion. Twinning 
occurs at the GBs. As the shear strain increases, ini-
tially, the GB evolves into a thin strip of an HCP 
structure that moves upward. The lattice of Grain 1 
is transformed into the lattice of Grain 2, as seen from 
the deflected blue trace of ( 111 ). Some blue atoms of 
the ( 111 ) in Grain 1 are aligned to the ( 111 ) of Grain 
2 (Fig. 7b). Surprisingly, as the shear strain further 
increases, the HCP strip stops moving upward, 
instead, a thin layer of FCC twin is formed along the 
top interface between Grain 1 and the HCP (Fig. 7c). 
The twinning plane is exactly the ( 111 ) of Grain 1. The 
twinned region separates the HCP strip from Grain 
1, and the HCP strip reverses it migration direction 
from upward to downward. As the HCP strip moves 
downward, the twinned region expands at the expense 
of Grain 2. Obviously, the twin growth has nothing 
to do with Shockley partial dislocations that glide on 
twin boundaries (TB) and mediate twin growth in FCC 
metals in classical twinning.

Figure 3   a Relaxed GB 
when θ = 10°. b Under the 
shear strain, an HCP phase 
is formed and grows at the 
expense of Grain 1. Again, 
the lattice transformation is 
such that the (111) of Grain 1 
is transformed into the (0002) 
basal plane of the HCP. ψ ≈ 
10.6°.

Figure 4   a Relaxed GB 
when θ = 12°. b Under the 
shear strain, an HCP phase is 
formed and grows into Grain 
1. But interestingly, the two 
interfaces or GBs between 
the FCC and HCP are both 
moving upward. The (111) 
of Grain 1 is transformed 
into the (0002) basal plane 
of the HCP, and the latter is 
transformed into the (111) of 
Grain 2. ψ ≈ 9.8°.
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Similar twin formation between a migrating GB 
and an FCC matrix is observed in all other values of � , 
i.e., 20°,…, 28°. For comparison, we only present the 
results from � = 28°. Figure 8a shows the relaxed GB 
in common neighbor analysis. For this large value of 
� , the GB does not move upward as the shear strain 
increases, instead, an FCC twin is formed and grows 
between the GB and Grain 1 (Fig. 8b). For clarity, a 

magnified view of the twinned region is shown in 
Fig. 8c. It can be seen that, as the twin is formed, not 
through the glide of twinning dislocations because the 
twin boundary remains still, the blue (111) of Grain 1 
is transformed into the (111) of the twin, and then the 
yellow (111) of Grain 2 is transformed into the (111) of 
the twin through the downward migration of the GB 
which has been rotated.

Figure 5   a Relaxed GB 
when θ = 14°. b Under the 
shear strain, the initial GB 
evolves into a narrow zone of 
HCP structure which moves 
into Grain 1. c As the HCP 
strip moves upward, the (111) 
of Grain 1 is transformed into 
the (111) of Grain 2. d As the 
HCP zone moves upward, 
most of Grain 1 is consumed 
as a result of the migration 
of the two interfaces between 
the FCC and the HCP. ψ ≈ 
8.3°.

Figure 6   a Relaxed GB 
when θ = 16°. b As the 
shear strain increases, an 
HCP phase is formed and 
consumes Grain 1. The top 
GB migrates faster than does 
the bottom GB, so the HCP 
region expands. ψ ≈ 8.1°.
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Simulations on STGBs with [110] tilt axis in Ni show 
very similar behavior to that in Cu (see Fig. S1 and 
S2 in Supplemental Material). For small values of � , 
FCC → HCP transformation occurs at the GBs. Further 
increase of � leads to twin formation at the GBs. In 
sharp contrast, no FCC → HCP phase transformation 
and twinning are observed in Al, irrespective of the 
value of � , and only GB sliding is observed (Fig. S3).

Analysis and discussion

Lattice correspondence analysis 
in the FCC → HCP → FCC phase 
transformations

Our simulation results reveal interesting FCC → HCP 
phase transformation and twinning at STGBs with 
[110] tilt axis in FCC Cu and Ni. The phase transfor-
mation and twinning facilitate GB shear coupling. 
These results bring up a crucially important feature 
in GB migration, that is, GB mobility is dominated by 

how readily the lattice of a grain can be transformed 
into the lattice of the neighboring grain. If no phase 
transformation or twinning occurs, the mobility of 
GBs can be described by a single structural param-
eter � . In general, smaller values of � give rise to faster 
migration velocities or higher GB mobility [1, 13, 14]. 
For the STGBs with [110] tilt axis and (111) being the 
invariant plane, the GB plane is not far away from the 
close-packed plane (111) (Figs. 1, 2, 3, 4, 5, 6, 7, 8), and 
lattice transformation for these close-packed planes 
could be difficult via direct shear coupling. This is 
because the corresponding plane in the other grain 
may be irrational or more than one non-close-packed, 
high-index planes need to be combined to accomplish 
the lattice correspondence (see analysis below). When 
phase transformation or twinning occurs at the GBs, 
such a structural change makes the lattice transfor-
mation from one grain into the other much easier 
and thus facilitates GB migration via shear coupling, 
because lattice correspondence also exists in GB shear 
coupling [13]. From Fig. 2b, after the HCP phase is 
formed, the invariant planes between Grain 1 and the 

Figure 7   a Relaxed GB 
when θ = 18°. b As the shear 
strain increases, at first the 
GB migrates upward. c Then, 
a twin structure is formed 
along the moving GB. d The 
twinned region expands as 
the thin HCP region changes 
the migration direction to 
downward. ψ ≈ 22°.
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HCP becomes the (111)
FCC

 and (0002)
HCP

 . The new 
angle between these two invariant planes �′ becomes 
actually larger than the initial � , and �′ increases with 
increasing � . If we only consider the value of � which 
determines the magnitude of shear s, the FCC → HCP 
transformation is not favorable because a larger s cor-
responds to a lower GB mobility [13]. However, the 
special structure of the new interface between Grain 
1 and the HCP renders these interfaces with high 
mobilities.

The concept of “lattice correspondence” or “lattice 
transformation” in the solid-state phase transforma-
tion and deformation twinning was well stated by 
Christian [27]: “A deformation which is physically 
significant implies a one to one correspondence 
between vectors in the two lattices. Each vector in one 
lattice may be associated unambiguously with a ‘cor-
responding’ vector of the other lattice into which it is 
converted by the transformation.” A key implication 
of this statement is that a crystallographic plane of 
one lattice must be transformed to its corresponding 
plane of the other lattice. In other words, atoms on a 

crystallographic plane of the parent lattice must reside 
on its corresponding plane of the product lattice after 
the interface (a GB, TB or interphase boundary) con-
necting the two lattices migrates progressively into the 
parent. This requires that the displacements of indi-
vidual atoms are a small fraction of the lattice param-
eter. Mathematically, such a lattice correspondence, 
which is a linear transformation, can be described by a 
second rank tensor [28]. In the following we show that, 
for the STGBs with [110] tilt axis and (111) being the 
invariant plane, phase transformation and twinning 
at the GBs do facilitate GB shear coupling, despite the 
increase in �′ . The analyses of the lattice transforma-
tions involved in the FCC → HCP phase transforma-
tion and in the twinning are presented below.

First, we analyze the lattice correspondence in the 
FCC → HCP → FCC transformations involved in the 
low values of � where no twinning occurs. From the 
simulation results (Figs. 2, 3, 4, 5, 6), it can be seen 
that, after the HCP is formed along the GB, two new 
interfaces are created between the FCC and the HCP. 
The top interface always has a good mobility. To 

Figure 8   a Relaxed GB 
when θ is further increased 
to 28°. b Under the shear 
strain, a twin is formed with 
respect to Grain 1. The GB 
is now migrating downward, 
leading to the growth of the 
twin. c A magnified view of 
the twin, twin boundary and 
GB. Due to the formation of 
the twin, the invariant plane 
has shifted to the (111) of the 
twin, leading to the change 
in migration direction of the 
GB. ψ ≈ 12°.
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demonstrate how lattice correspondence analysis is 
conducted, we take � = 16° as an example. Because 
the FCC and HCP are both close-packed structures, 
it is of interest to examine how the close-packed 
plane in the FCC is transformed to its correspond-
ing plane in the HCP. First, we preselect a (111) plane 
of Grain 1 at an early time step before the HCP trav-
erses through, and “dye” the atoms on this plane in 
blue (Fig. 9a). After the HCP grows and consumes 
Grain 1, the blue atoms are now in the HCP lattice 
(Fig. 9b). It can be readily seen that the preselected 
blue atoms are now residing on the {1100} , i.e., the 
prismatic plane of the HCP. Thus, the lattice corre-
spondence in the FCC → HCP phase transformation 
can be described as:

To understand how this lattice transformation is 
accomplished, a magnified view of the top interface is 
shown in Fig. 9c. It is now clear that the top interface 
is composed of a series of small facets (on the order of 

(111)
FCC

→ {1100}
HCP

one to two nanometers). The crystallographic plane 
of these facets falls exactly between the (111) of FCC 
and the {1100} of HCP, i.e., the facets are the interfaces 
between the (111)

FCC
 and the {1100}

HCP
 . The traces of 

(111)
FCC

 and {1100}
HCP

 are denoted by the dashed blue 
lines. Another interesting behavior can also be seen—
if the HCP is treated as a new grain, the average GB 
plane (denoted by the dashed black line) falls on the 
position that bisects the obtuse angle between the (111) 
invariant planes of the FCC and the HCP.

The above analysis indicates that there must be 
a very easy pathway for the (111) of Grain 1 to be 
transformed into the {1100} of HCP. Figure 10a com-
pares the structure of (111)

FCC
 with the structure of 

{1100}
HCP

 . Seven atoms are taken out of the prese-
lected blue (111) plane in Fig. 9a. After the (111)

FCC
 is 

transformed to the {1100}
HCP

 , the structures of the two 
planes are compared. The viewing direction of these 
plots is along the normal to the (111)

FCC
 plane. It can 

be seen that the structure of (111)
FCC

 and the struc-
ture of {1100}

HCP
 , when viewed along their normal 

direction, are very close with only minor differences 

Figure 9   Lattice cor-
respondence analysis in 
FCC → HCP phase trans-
formation (θ = 16°). a A 
(111) plane of Grain 1 is 
preselected and highlighted 
in blue. b As the HCP phase 
grows into Grain 1, the pre-
selected (111) plane is trans-
formed into the {1100} plane, 
i.e., the prismatic plane of 
the HCP phase. c Magni-
fied view of the top interface 
between the FCC and HCP. 
The interface consists of 
multiple small facets that 
are (111)

FCC
∥ {1100}

HCP
 . 

If the HCP is treated as a 
new grain, the average GB 
plane approximately bisects 
the obtuse angle between the 
(111) invariant planes.
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in dimensions. The major difference comes from the 
fact that the {1100}

HCP
 has a double-layered structure 

in the plane normal direction. This means that some 
atoms of the (111)

FCC
 must shuffle along the plane 

normal so that the originally single-layered (111)
FCC

 
becomes a double-layered {1100}

HCP
.

The shuffling-dominated lattice transformation in 
Fig. 10a is the root cause of the basal SFs in the HCP 
phase shown in Figs. 2, 3, 4, 5, 6, 7, 8. These SFs are 
called “partial stacking faults (PSFs)” and a magni-
fied view of an example PSF is shown in Fig. 10b. 
The concept of PSF was first proposed by Song and 
Gray [29] to distinguish them from conventional SFs 
such as I1 type (SFs produced by Frank partials on the 
close-packed planes [30–32]) and I2 type (SFs produced 
by the glide of Shockley partials [33]). PSFs are typi-
cally observed inside {1012}⟨1011⟩ and {1011}⟨1012⟩ 

twins in HCP structures that require quite large and 
complex shuffles [29, 34–38], but not in {1122}⟨1123⟩ 
and {1121}⟨1126⟩ modes which only involve simple 
shuffles [39–42]. Song and Gray [29] conducted trans-
mission electron microscopy (TEM) observations on 
deformed HCP metals such as Ti and Zr and found 
high density basal SFs inside {1012}⟨1011⟩ twins which 
is the most commonly observed twinning mode in 
HCP structures. These basal SFs presented anoma-
lous diffraction contrast and were not associated with 
Shockley partial dislocations. Figure 10b shows the 
analysis of stacking sequence in the faulted HCP struc-
ture, and the meaning of “PSF” is clearly explained. 
Starting from the lower right, the stacking sequence 
in the perfect HCP is marked as “…BABAB…”. When 
the first PSF is present, the stacking sequence changes 
to “BCBC.” Thus, the positions of those atoms on the 
B layers are not changed when the SF is formed, and 
only those atoms on the A positions are displaced. This 
indicates that only atoms on every other basal plane or 
only 50% of atoms are displaced by the basal SFs, fun-
damentally different from SFs produced by Shockley 
partials and Frank partials that displace all the atoms 
by the Burgers vector of the partial dislocations. Simi-
lar analysis can be performed for the second and third 
PSFs and similar behavior can be clearly seen.

Song and Gray [29, 43, 44] attributed these basal 
SFs to atomic shuffles that are required in {1012}⟨1011⟩ 
twinning. They also proposed that {1012}⟨1011⟩ twin-
ning was not mediated by twinning dislocations but 
rather by movements of a large number of atoms. 
Li and Ma [45] conducted atomistic simulations on 
{1012}⟨1011⟩ twinning in magnesium and found that 
this twinning process was accomplished by the lat-
tice transformation of (0002)

parent
→ {1100}

twin
 and 

{1100}
parent

→ (0002)
twin

 , i.e., the parent basal plane 
must be transformed into the twin prismatic plane and 
vice versa. Li and Zhang [46, 47] further proved that 
such lattice transformations exclude any possible shear 
along the {1012} twinning plane because the structure 
of the {1012} twinning plane must be distorted and 
the requirement that the twinning plane of a twinning 
mode must not be distorted, i.e., maintain invariant 
in the classical twinning theory [11, 12] does not hold. 
Thus, such lattice transformations only involve atomic 
shuffles, rendering {1012} twin boundaries, mostly 
are (0002) ∥ {1100} (i.e., B/P or P/B) type of interfaces, 
extremely mobile and reversible. Note that both FCC 

Figure  10   a Magnified views of the structure of the (111) of 
FCC and the structure of (1100) , i.e., the prismatic plane of HCP. 
The viewing direction is along the normal of the preselected 
(111) . The two planes have a very close similarity in structure 
and mutual transformation between these two planes is extremely 
easy, rendering the interfaces between them highly mobile. Only 
minor atomic shuffles are needed for the transformation. b Mag-
nified view of the basal stacking faults (SFs) inside the HCP. The 
analysis of the stacking sequence indicates that these SFs are par-
tial stacking faults (PSFs), i.e., only those atoms on every other 
basal plane are displaced by the formation of the SFs.
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and HCP are close-packed structures, and the struc-
ture of (111)

FCC
 is exactly the same as the (0002)

HCP
 . 

Therefore, the lattice transformation in FCC → HCP 
phase transition is essentially similar to the easy lattice 
transformation in {1012}⟨1011⟩ twinning. This analysis 
perfectly explains the formation of HCP phase at the 
GB, and why such a phase transformation generates 
a very mobile interface between the FCC and HCP, 
and thus facilitates GB migration via shear coupling. 
Disconnections were proposed on incoherent {1012} 
twin boundaries with B/P and/or P/B interfaces [48, 
49], as well as STGBs [7, 8, 50, 51], but how the defined 
disconnections transform one lattice into the other was 
not considered in the disconnection model.

As the value of � increases to 12° and 14°, not only 
the top interface, but also the bottom interface between 
the FCC and HCP becomes mobile (Figs.  4, 5). To 
understand this behavior, we take the two interfaces 
when � = 12° and show their structures in Fig. 11. The 
structure of top interface is shown in Fig. 11a. Again, 
it can be seen that the top interface is composed of a 
series of small facets that are of (111)

FCC
∥ {1100}

HCP
 . 

As analyzed above, such an interface has a high mobil-
ity in the FCC → HCP phase transformation. In con-
trast, the bottom interface is composed of a series of 
short facets that are of {1101}HCP ∥ (111)FCC (Fig. 11b). 
Hence, when the bottom interface is migrating 
upward, it transforms the {1101}HCP into the (111)

grain2
 . 

The lattice transformation can be described as:

This type of {1101}HCP ∥ (111)FCC interfaces also has 
a finite mobility. As shown above, the structure of 
(111)FCC is exactly the same as (0002)HCP because both 
are close-packed planes. Thus, the bottom interface 
can be treated as {1101}HCP ∥ (0002)HCP . Immediately, 
this is exactly the {1101}−(0002) pair of correspond-
ing planes in {1011}⟨1012⟩ twinning mode, the so-
called “compression twinning” in HCP metals with 
c/a ratios below 

√
3 [52]. In this twinning mode, the 

migration of a {1011} coherent twin boundary trans-
forms the (0002) of parent into the {1011} of twin and 
vice versa. The lattice transformation between these 
two planes is shown in Fig. 12. We first preselect a 
group of ten atoms on the (111) of FCC (see Fig. 13), 
after the (111)

FCC
 is transformed to the {1101}

HCP
 , 

we compare the structures of these two planes. To 
accomplish this lattice transformation, two columns 

{1101}
HCP

→ (111)
FCC

of atoms of (111)
FCC

 need to shuffle along the [110] 
direction, with a magnitude about 1

2

a
0
 ( a

0
 is the lat-

tice parameter) which is fairly large. Along with 
other minor shuffles including the shuffles that 
make the single-layered (111)FCC into a double-lay-
ered {1101}HCP , the (111)FCC can be transformed into 
the {1101}HCP . Because the magnitude of the shuf-
fles involved in this lattice transformation is pretty 
large, the mobility of {1101}HCP ∥ (111)FCC interface, 
i.e., the bottom interface, is lower than that of the 
{1100}HCP ∥ (111)FCC interface, i.e., the top interface. 
The reason why the bottom interface becomes more 
mobile as � increases to 12° and 14° is because �  , 
which is the angle between the invariant planes of 
Grain 2 and the HCP, decreases with increasing � , 
leading to a smaller magnitude of shear s and a bet-
ter GB mobility. On the other hand, the HCP is a 
metastable phase and tends to shrink via the motion 
of the bottom interface to lower the system energy.

Figure  11   Magnified views of the structure of the GBs 
in Fig.  14 (θ = 12°). a The top GB is composed of a series 
of small facets (the white atoms) that are interfaces of 
(111)

FCC
∥ {1100}

HCP
 . b The bottom GB is composed of a series 

of small facets that are interfaces of (111)
FCC

∥ {1101}
HCP

 . This 
indicates that the {1101}

HCP
 is transformed into the (111)

FCC
 of 

Grain 2 when the bottom GB is migrating upward.
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The {1101}HCP ∥ (0002)HCP type of interfaces or GBs 
with finite mobility has been observed in deformed 
HCP metals. Most recently, Liu et al. [53] conducted 
in situ TEM observations on c-axis compression of 
single crystal magnesium with submicron sizes. 
They found that the initial plastic deformation was 
dominated by glide of pyramidal or ⟨c + a⟩ disloca-
tions [54]. When the plastic strain reached about 36%, 
the single crystal suddenly evolved into polycrystal 
which was composed of multiple fine grains, accom-
panied by a large strain burst. The specimen abruptly 
pancaked with a total reduction in height over 60% 
without any signs of fracture. High-resolution TEM 
analyses revealed that many of the GBs between the 
fine, new grains were of {1101}HCP ∥ (0002)HCP type, 
and they called this type of GBs “Py/B” boundaries. 
They also conducted atomistic simulations on the 
formation mechanism of this type of GBs and found 
that these GBs were indeed mobile. Kou et al. [55] 
performed in situ atomic-scale TEM observation of 
deformation of single crystal Ti. Formation of a new 
grain inside the specimen was revealed. The orien-
tation relationship between the new grain and the 
matrix satisfies (0111) ∥ (0002) , i.e., the pyramidal 
plane of the new grain is parallel to the basal plane 
of the matrix. This orientation relationship is exactly 
the same as the observed {1101}HCP ∥ (111)FCC inter-
face in our simulation.

In addition to the above-analyzed lattice transfor-
mations, i.e.,

(111)grain1 → (0002)HCP and (111)grain1 → {1100}HCP , 
how the (111) of Grain 2 is transformed is still 
unknown. This is another close-packed plane of Grain 
2 and it should correspond to a plane in the HCP and 
a plane in Grain 1 for the sequential phase transforma-
tions. To perform the lattice correspondence analysis, 
first we take a time step when � = 14°. At this time step 
the HCP phase has traveled to near the top of Grain 
1. Then we select a plane that contains a portion of 
the (111) plane of Grain 2 and a portion of the {1101} 
of the HCP region (Fig. 13a). Atoms on this plane are 
highlighted in blue. Then we rewind the simulation 
to an earlier time step (Fig. 13b). Immediately, it can 
now be seen that the corresponding plane in Grain 
1 to the {1101}HCP is (331) , not one layer of (331) but 
two. Hence, as the HCP region is moving upward, 
two neighboring (331) planes are combined and trans-
formed into the double-layered {1101}HCP mostly via 
atomic shuffling. While the bottom interface is also 

Figure 12   Magnified views of the structure of (111) of FCC and 
the structure of (1101) of HCP. If the two columns of atoms on 
(111) shuffle upward (or downward) as indicated by the black 
arrows, together with other minor shuffles, the (111) of FCC is 
transformed into the (1101) of HCP.

Figure  13   Analysis of lattice correspondence in 
FCC → HCP → FCC phase transformations (θ = 14°). a A layer 
of atoms which contains a portion of (111) plane of the Grain 
2, and a portion of the {1101} of the HCP are preselected and 
highlighted in blue. b The simulation is rewound to an earlier 
time step. It is clear that, as the HCP region moves upward, the 
(331) of the Grain 1 is transformed into the {1101} of the HCP, 
whereas the {1101} of the HCP is transformed into the (111) of 
Grain 2.
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moving upward, it transforms the {1101}HCP into the 
single-layered (111)FCC of Grain 2. The lattice corre-
spondence can be described as:

Without the formation of HCP along the 
GB,  the latt ice transformation would be 
2 × (331)grain1 → 1 × (111)grain2 , which would be diffi-
cult to accomplish. It is now clear that, with the for-
mation of HCP lattice, two neighboring (331) planes of 
Grain 1, which have a pretty large interplanar spacing 
(~ 0.83 Å), becomes a double-layered {1101}HCP . The 
double layers of a single {1101}HCP has a reduced spac-
ing (~ 0.35 Å), compared to that of two (331) planes 
(Fig. 13b). Then the bottom interface transforms the 
double-layered {1101}HCP into a single-layered (111)FCC 
of Grain 2. Therefore, the formation of HCP does facili-
tate shear coupling of the GBs.

Transitory phase transformations in twin bound-
ary migration were observed in atomistic simulations 
of deformation of HCP Mg and Ti. Chen et al. [56] 
observed HCP → BCC → HCPtwin at the beginning of 
{1012} twinning in Ti. The presence of BCC phase facil-
itated the lattice transformation for {1012} twinning 
in which the lattice transformation is {1100} ↔ (0002) , 
similar to the (111)FCC → {1100}HCP in Fig. 9. After a 
{1012} twin was formed, an FCC phase formed and 
separated the matrix from the {1012} twin. Similar HCP 
→ FCC → HCPtwin transformations was also observed 
in Mg [57]. Formation of metastable FCC phase was 
observed in experiments as well. He et al. [58] con-
ducted atomic-resolution in situ TEM observations of 
deformation of single crystal HCP rhenium (Re). They 
found that an FCC phase was formed along the {1012} 
TB which had a structure of {1100} ∥ (0002) . The FCC 
phase was formed at the intersections of the TB and 
the surfaces, accommodating the misfit strains pro-
duced by {1012} twinning.

Lattice correspondence analysis in twinning 
at the GBs

As the value of � increases, the position of the top 
interface between Grain 1 and the HCP becomes 
increasingly close to the (111)FCC of Grain 1 (Figs. 2, 3, 
4, 5, 6). Further increase of � to about 18° and larger 
leads to the formation of a twin with respect to Grain 
1 and the migration of the GB changes from upward 

2 × (331)
grain1

→ 1 × {1101}
HCP

→ 1 × (111)
grain2

to downward (Figs. 7, 8). There are two reasons that 
drive this transition from HCP formation to twin 
formation. The first reason is that, as � increases, 
the obtuse angle between the (111) of Grain 1 and 
the (0002) of HCP (see Fig.  6b) becomes increas-
ingly close to the angle between the second invari-
ant planes of {111} twinning, i.e., the obtuse angle 
between the deflected blue (111) planes (see Fig. 8c). 
At smaller values of � when an HCP phase forms, the 
top interface between Grain 1 and the HCP trans-
forms the (111) of Grain 1 into the {1100} of HCP (see 
Fig. 6b). But as � increases and gets closer to the twin 
orientation, the formation of {1100}HCP is no longer 
favorable; instead, formation of (111)twin becomes 
favorable and can easily be accomplished by trans-
formation of {1100}HCP into (111)FCC (Fig. 10a). The 
second reason is that, as � increases to the range that 
favors twinning (Figs. 7, 8), the value of ψ, which is 
the angle between the (111) planes of Grain 2 and 
the twin, decreases with increasing � . The decrease 
in magnitude of shear s facilitates shear coupling of 
the GB between the twin and Grain 2.

Obviously, in the twin formation, the (111) of 
Grain 1 is transformed into the (111) of the twin and 
these two planes are the second invariant planes in 
{111} twinning of FCC metals. However, it is clear 
that the twin growth is fundamentally different 
from the classical twinning. Classically, a {111} twin 
grows by the glide of Shockley partial dislocations 
on consecutive {111} close-packed planes [12, 59–63]. 
After a twinning dislocation passes through, the twin 
boundary migrates by one layer of {111} toward the 
parent lattice. This way the twinning plane must 
always be on the {111}, i.e., the first invariant plane. 
The twin growth in Figs. 7 and 8 is, however, not 
mediated by Shockley partial dislocations because 
the twin boundary remains still during shear defor-
mation. Instead, the twin growth is mediated by 
the motion of the GB via shear coupling. This raises 
a question as to how the lattice correspondence 
is accomplished in such a non-classical twinning 
behavior.

To conduct lattice correspondence in the twinning 
process in the case of � = 28° (similar analyses can be 
done for all other values of � ), a (111) plane of the 
twin is preselected at the final time step (Fig. 14a), 
and the atoms of the preselected (111) are colored 
in blue. Then the simulation is rewound to an ear-
lier time step before the GB traverses through the 
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preselected atoms (Fig. 14b). It can now be seen that 
the corresponding plane in Grain 2 is an irrational 
plane that is composed of multiple small facets on 
the (111) planes of Grain 2. To better reveal the struc-
ture of the corresponding plane in Grain 2, a magni-
fied view is shown in Fig. 15a. The size of the facets 
is less than 1.0 nm. Despite the facets, the average 
plane of the blue atoms is approximately parallel 
to the twin boundary. Figure 15b shows a time step 
when the GB is migrating downward and halfway 
through the preselected blue atoms. After the GB 
traverses through the blue atoms, the faceted blue 
plane is now a single-layered (111) plane of the twin.

Figures 14 and 15 clearly show that the twin growth 
is mediated by the migration of GB via shear coupling 
which is facilitated by the formation of a {111} twin 
along the original GB. The twin formation reduces the 
magnitude of shear s that favors shear coupling.

Effect of stacking fault energy and twinnability 
of FCC metals

In the present work, phase transformation and twin-
ning only occur in the STGBs with [110] tilt axis in 
Cu and Ni, but not in Al. It is well known that twin-
ning is closely related to SF energy (SFE) of the close-
packed {111} plane because a twin can be considered 
a pile of SFs produced by Shockley partial dislocation 
on consecutive {111} planes. Classically, FCC ↔ HCP 
transformation is mediated by Shockley partial dislo-
cations on every other close-packed planes. Thus, both 

twinning and phase transformation are related to SFE. 
In general, the lower the SFE, the easier for twinning 
and FCC ↔ HCP phase transformation to happen in 

Figure 14   Lattice correspondence analysis in twinning (θ = 28°). 
a A (111) plane of the twin is preselected and highlighted in blue. 
b The simulation is rewound to an earlier time step before the 
GB traverses through the preselected blue atoms which are now 

located on a series of (111) small facets of Grain 2. The average 
GB plane of the blue atoms is irrational but nearly parallel to the 
twin boundary. The trace of (111) of Grain 2 is denoted by the 
dashed blue line.

Figure 15   Magnified views of lattice transformation during twin 
growth. a The blue atoms sit on a series of small segments that 
are on the (111) of grain 2. (The trace is indicated by the dashed 
line.) b As the GB migrates downward and traverses through, the 
blue atoms are aligned to the (111) plane of the twin.
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FCC metals. SFE can be obtained in atomistic or ab ini-
tio calculations by computing the gamma surfaces (aka 
generalized SFE or GSFE) [64]. Cahn et al. [1] com-
puted the gamma surfaces for {100} and {110} planes 
and related the GSFE to the shear coupling modes in 
Cu observed in their simulations.

From the literature data of ab initio calculations, the 
SFEs are 40–43 mJ/m2 for Cu, 110–133 mJ/m2 for Ni 
and 130–160 mJ/m2 for Al [65]. Thus, the FCC → HCP 
phase transformation and twinning should be rela-
tively easy to occur in Cu in the scenarios that such 
phase transformation and twinning facilitate GB shear 
coupling, as shown in our simulations. For Al, the SFE 
is relatively high, and no phase transformation and 
twinning are observed in Al (Fig. S3), and GBs only 
move by sliding. The SFE of Ni is also rather high, but 
phase transformation and twinning can readily occur 
at the GBs (Fig. S1 and S2). Hence, SFE may not be the 
sole factor that plays a role in the observed behavior. 
Considering that the stresses for twinning in FCC met-
als are not well correlated with SFEs, Tadmor and 
Bernstein [62] proposed the concept of twinnability for 
FCC metals. The twinnability � of an FCC metal was 
defined as: � =

L

�4

√
�us

�ut
 , where L is a material factor, �us 

the unstable SFE (the energy barrier for shearing on a 
{111} along the twinning direction), and �ut the unsta-
ble twin fault energy (the energy barrier for subse-
quent shearing on the neighboring {111} along the 
twinning direction). According to their calculations, 
Al has the second lowest twinnability in FCC metals. 
This may explain the observed GB behavior in Al in 
our simulations.

The energy barrier to the (111)FCC → {1100}HCP 
(Figs. 9b and 10a) lattice transformation is computed 
in our simulation results. A group of seven atoms on 
the (111)FCC are preselected and the energy evolution 
of each atom is plotted. Figure 16a shows the result. In 
this case, atom 1 experiences the highest energy bar-
rier, about 137 meV/atom. After the FCC → HCP phase 
transformation, the energy of HCP is slightly higher 
than that of FCC by ~ 10 meV/atom. The energy bar-
rier to {111} twinning is shown in Fig. 16b. Similarly, 
the energy profile of seven atoms on the preselected 
(111) facet (Fig. 15a) are plotted. The highest energy 
barrier is about 129 meV/atom, experienced by atom 
1. The two energy barriers are fairly close. Thus, both 

can occur when the value of � is suitable for activating 
one of them.

Conclusions

In this work, we investigate migration of STGBs with 
[110] tilt axis and (111) invariant plane in FCC met-
als under shear loading. GB shear coupling does not 
occur directly but is facilitated by FCC → HCP phase 
transformation and {111} twinning. The following con-
clusions can be drawn:

(1)	 For low values of � , FCC → HCP phase trans-
formation occurs along the original GB. One of 
the two interfaces between the FCC and HCP is 
highly mobile because it transforms the (111)FCC 
into the {1100}HCP . This lattice transformation 
is very similar to that of {1012} twinning mode 
which is the most popular mode in HCP metals. 
As � increases, both interfaces are mobile and the 
HCP region moves by transforming the lattice 
of one grain into the other. The other interface 
transforms the {1101}HCP into the (111)FCC of the 
growing grain. This lattice transformation is very 
similar to one of the lattice correspondences in 
{1011} twinning mode in HCP metals

(2)	 As � further increases, the FCC → HCP phase 
transformation is no longer favorable, and {111} 
twinning occurs along the original GB. The GB 
migration switches its direction via shear cou-
pling. The twin grows by GB shear coupling, 
rather than the glide of Shockley partial disloca-
tions on the twin boundary

(3)	 The lattice transformations involved the 
FCC → HCP phase transformation and {111} twin-
ning on the GBs facilitates GB migration via shear 
coupling
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