FlexiCores: Low Footprint, High Yield, Field Reprogrammable
Flexible Microprocessors

Nathaniel Bleier
University of Illinois
Urbana, Illinois, USA
nbleier3@illinois.edu

Antony Sou
PragmatIC Semiconductor
Milton, Cambridge, UK

ABSTRACT

Flexible electronics is a promising approach to target applications
whose computational needs are not met by traditional silicon-based
electronics due to their conformality, thinness, or cost requirements.
A microprocessor is a critical component for many such applications;
however, it is unclear whether it is feasible to build flexible processors
at scale (i.e., at high yield), since very few flexible microprocessors
have been reported and no yield data or data from multiple chips has
been reported. Also, prior manufactured flexible systems were not
field-reprogrammable and were evaluated either on a simple set of
test vectors or a single program. A working flexible microprocessor
chip supporting complex or multiple applications has not been

demonstrated. Finally, no prior work performs a design space exploration

of flexible microprocessors to optimize area, code size, and energy
of such microprocessors.

In this work, we fabricate and test hundreds of FlexiCores -
flexible 0.8 um IGZO TFT-based field-reprogrammable 4 and 8-bit
microprocessor chips optimized for low footprint and yield. We
show that these gate count-optimized processors can have high
yield (4-bit FlexiCores have 81% yield - sufficient to enable sub-
cent cost if produced at volume). We evaluate these chips over a
suite of representative kernels - the kernels take 4.28 ms to 12.9 ms
and 21.0 yJ to 61.4 pJ for execution (at 360 nJ per instruction). We
also present the first characterization of process variation for a
flexible processor - we observe significant process variation (relative
standard deviation of 15.3% and 21.5% in terms of current draw of
4-bit and 8-bit FlexiCore chips respectively). Finally, we perform
a design space exploration and identify design points much better
than FlexiCores - the new cores consume only 45-56% the energy
of the base design, and have code size less than 30% of the base
design, with an area overhead of 9-37%.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA 22, June 18-22, 2022, New York, NY, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8610-4/22/06...$15.00
https://doi.org/10.1145/3470496.3527410

Calvin Lee
University of Illinois
Urbana, Illinois, USA

clee3@illinois.edu

Scott White
PragmatIC Semiconductor
Milton, Cambridge, UK

Francisco Rodriguez
PragmatIC Semiconductor
Milton, Cambridge, UK

Rakesh Kumar
University of Illinois
Urbana, Illinois, USA
rakeshk@illinois.edu

ACM Reference Format:

Nathaniel Bleier, Calvin Lee, Francisco Rodriguez, Antony Sou, Scott White,
and Rakesh Kumar. 2022. FlexiCores: Low Footprint, High Yield, Field
Reprogrammable Flexible Microprocessors. In The 49th Annual International
Symposium on Computer Architecture (ISCA °22), June 18-22, 2022, New
York, NY, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3470496.3527410

1 INTRODUCTION

As incredible as it sounds, the reach of computing, while impressive,
is still limited. A vast set of applications with ultra-low-cost, thinness,
and conformality requirements — for example wearable patches [21],
garments [78], packaging [29] for fast moving consumer goods
(FMCG), low-end healthcare products such as smart bandages [14],
and disposable sensors for food [9], pharmaceuticals [2], agriculture
and forestry [86], and environment [60] — have not seen much
penetration of computing.

The primary reason is that today’s computing is based on silicon,
but silicon-based electronics has inherent limitations in terms of
thinness [16], conformality [38], and cost [37]. For example, the
inherently high processing cost of metal-oxide-semiconductor
field-effect transistors (MOSFETs) fabricated on crystalline silicon
wafers have prevented sub-cent costs of silicon-based processing
devices in spite of economies of scale. This prevents targeting
applications such as item-level tagging, which require sub-cent
costs [76]. Similarly, many applications have thinness and conformality
requirements [16] that cannot be naturally met by silicon.

Flexible electronics is a promising approach to target applications
whose computational needs cannot be met by traditional electronics
due to their conformality, thinness, or cost requirements [4, 5].
Flexible electronic devices are built on flexible substrates (e.g.,
paper [50], plastic [101], or metal foil [52]) using active thin-film
semiconductor materials (e.g., organic [50] or metal oxide [49], or
amorphous-silicon [77]). Although traditional MOSFETs outperform
thin-film transistors (TFTs) in power, area, and performance [51, 83],
TFTs have much lower fabrication cost [91, 93, 100]; also, the
corresponding substrates are naturally thin, flexible, and low cost.
This makes flexible electronics an enticing technology for these
applications [3, 12, 27, 57, 98].

In this work, we focus on flexible microprocessors. The cost
benefits and programability of microprocessors make them a critical
electronic component even for the applications we target [4]. There

https://doi.org/10.1145/3470496.3527410
https://doi.org/10.1145/3470496.3527410
https://doi.org/10.1145/3470496.3527410

» [0.8 um IGZO TFT Characteristics
J Characteristic Mean Standard Deviation

xterna

: Vo (V) 1.29 0.19
FlexiCore m anddbata S. . (Videc) 0.1 0.03
Processor Ln (nA) 214 0.59
emo Lot (1A) 34.85 7.9

Hysteresis (V) 0.04 0.02

i ['200 mm Polyimide Wafer |
3 | &
z

Standard Cell Librar
Cell Type _Varaints _# in FlexiCore
BUF 2
DFF 2

- - INV 2

w Parameter Value MUX 1 59

1

3

1

1

Wafer Diameter 200mm o
Wafer Substrate Polyimide yor
Total Thickness < 30um yNoR
Material Layers 13

Metal Layers 4

Figure 1: A FlexiCore flexible processor reads and executes
an arbitrary program resident in an external program
memory and can interact with external input and output
devices. FlexiCore designs, described in Verilog HDL, were
synthesized to a 0.8 ym IGZO cell library and fabricated
using PragmatIC’s commercial ‘fab-in-a-box’ manufacturing
line, FlexLogIC. FlexiCore is the first field-reprogrammable
flexible microprocessor.

have been several attempts at integrating thinned silicon microprocessor

dies on to flexible substrates [59, 88]. While this hybrid integration
can sometimes meet conformality requirements, cost continues to
be a limitation [92] due to the high cost of silicon manufacturing
(integration costs increase as well). What the targeted applications
really need are low footprint and high yield (and, therefore, low
cost) natively flexible microprocessors.

Unfortunately, manufacturing natively flexible microprocessors
has been a challenge and very few such processors have been
reported [4, 35, 69] (Section 2). This is not surprising since processors
typically require integration of a relatively large number of devices,
which is hard in the emerging TFT technology. In the small number
of cases where a flexible microprocessor has been successfully
manufactured and tested, no yield data has been reported. Data
from multiple chips has not been reported either for a given flexible
microprocessor. As a result, it is still unclear whether it is feasible
to build natively flexible processors at scale (i.e., at high yield). In
fact, to the best of our knowledge, no prior non-silicon processor has
been shown to yield at scale.

Prior manufactured flexible systems were not field reprogrammable
and were tested either on a simple set of test vectors or a single
program. A working flexible microprocessor chip supporting complex
or multiple applications has not been demonstrated (Section 5).

Finally, no prior work looks carefully at the design space of
flexible microprocessors to understand how different architectural
and microarchitectural optimizations impact area, code size, and
energy of such microprocessors. As such, it is unclear if flexible
microprocessors should support accumulator-based ISA or load-
store ISA, single cycle, multi-cycle or pipelined implementation,
certain set of operations, etc.

In this work, we fabricate and test hundreds of flexible processor
chips to establish the feasibility of building low footprint, high
yielding, field reprogrammable flexible processors. We observe that

while recent work [4] demonstrated a 32-bit Indium-Gallium-Zinc-
Oxide (IGZO)-based natively flexible Cortex-M microprocessor,
many use cases for flexible electronics do not require the performance
and expressiveness of a Cortex-M core (Section 5). Therefore, instead
of building a relatively complex, 32-bit Cortex-M-like circuitry with
high gate counts, we focus on low levels of computation with simple
4-bit and 8-bit architectures optimized for footprint and yield, so
that low-cost points can be achieved in volume production.

We design and fabricate three flexible processors - FlexiCores.
We optimized the architecture and micro-architecture of FlexiCores
for these attributes through a careful selection of ISA, and are the
first to report high yield levels suitable for commercial volume
production. In fact, this may be the first demonstration of any
non-silicon processor at scale.

Furthermore, since our processors are field reprogrammable, we
demonstrate performance and energy characteristics of FlexiCore
processors over a suite of kernels, including relatively complex
kernels representing sensor processing, control, and machine learning
applications. Our kernels take 4.28 ms to 12.9ms and 21.0 pyJ to
61.4pJ for execution (at 360 nJ per instruction). This is the first
demonstration of a working flexible microprocessor chip supporting
multiple applications.

We also present the first characterization of process variation for
a flexible processor. We find that flexible processors demonstrate
significant process variation (relative standard deviation of 15.3%
and 21.5% in terms of current draw of 4-bit and 8-bit FlexiCore
chips respectively).

We leverage our experience with FlexiCores to set up a design
space exploration for flexible microprocessors. We explore how
different architectural and microarchitectural decisions impact trade-
offs between area, code size, and energy. Our exploration yields
design points that are considerably more efficient than FlexiCores.
The resulting cores consume only 45-56% the energy of the base
design, and have code size less than 30% of the base design, with
an area overhead of 9-37%.

This paper makes the following contributions:

e We design, fabricate, and test FlexiCore chips - natively
flexible 4-bit and 8-bit microprocessors optimized for low
footprint and yield.

e We show that it is feasible to manufacture natively flexible
microprocessors at high yield, provided their architecture
and microarchitecture have been optimized for low gate
count.

e We show performance and energy data for FlexiCores for
a suite of representative kernels. We also present process
variation data for FlexiCores chips. These are first such
studies for flexible microprocessors.

e We present a design space exploration for flexible processors
and identify design points much better than FlexiCores.

2 RELATED WORK

Early work on flexible microprocessors was based on low-temperature

poly-silicon TFTs [13, 42, 53, 87]. However, poly-silicon TFT technologies

have high manufacturing costs and lateral device architecture scaling
is limited to the > 1 um range [67].

Table 1: Example applications and their performance/precision requirements

Sample

Sample

Application Rate f;letz) Du;zri((j)}(;cle Application Rate g)r;(s:) Du;zri}:icle
(Hz) (Hz)

Blood Pressure Sensor [70] < 100 <8 Hours [19] Body Temperature Sensor [70] <1 <8 Minutes [44]
Odor Sensor [70] 16-25 <8 Minutes [73] Smart Bandage [65] <001 <38 Continuous to Hours [23]
Heart Beat Sensor [70] <4 1 Seconds [90] Tremor Sensor [33] <25 16 Seconds [20]
Pressure Sensor [31] 1-5.5 12 Continuous to Hours [81] Oral-Nasal Airflow [70] <25 <8 Seconds
Light Level Sensor [70] <1 <8 Continuous to Hours [22] Perspiration Sensor [47] <25 <8 Minutes [99]
Trace Metal Sensor [47] 25 16 Minutes Pedometer [72] <25 1 Seconds [72]
Food Temp. Sensor [70] <1 <8 5 minutes [82] Timer [40] 1 1 Single Use
Alcohol Sensor [48] 1 <8 Single Use [64] POS Computation [63] < 100 <38 Single Use [63]
Humidity Sensor [34] 10 16 Continuous to Hours [80] Smart Labels [7] 1 <38 Seconds
Pseudo-RNG n/a <8 Seconds Error Detection Coding <100 <8 Continuous to Hours

Recent work on flexible microprocessors includes a 16-bit RISC-V
microprocessor built using flexible carbon-nanotube (CNT) TFTs [35].
a one-bit microprocessor [94] built using flexible molybdenum
disulfide transistors. However, although the devices were flexible,
the microprocessors themselves were fabricated on conventional
silicon wafers, and thus the resulting ICs were not flexible.

Some recent work on flexible processors is based on metal-oxide
TFTs. Such TFTs are low-cost and scale well and are, therefore, a
good fit for building complex components such as microprocessors.
Myny et al. [69] report an 8-bit ALU built using metal-oxide TFTs
and integrated with a polyimide-based print-programmed ROM.
Ozer et al. [74] report a flexible machine learning classifier. Biggs
et al [4] report a 32-bit natively flexible ARM-v6m microprocessor.

Our work differs on multiple counts. First, no previous work
has reported yield rate or data from multiple chips. We are the
first to report yield information. We are also the first to report
process variation data for flexible processors. Second, most previous
efforts in flexible microprocessors have featured fixed or factory-
programmable ROMs [4, 69], while FlexiCores can execute (and
modify) programs stored in off-chip memories. This allows us to
present the first performance and energy evaluation of a flexible
microprocessor over a suite of representative kernels. Third, most
prior work does not explicitly look to identify characteristics of a
good ISA or microarchitecture for flexible processors. We explicitly
optimize the ISA and the microarchitecture for low footprint and
high yield. Furthermore, we perform a design space exploration to
explicitly look for design points better than FlexiCores. This is the
first such design space exploration for flexible processors.

There are other works on tiny, low gate count processors with
high variation and high static power [17, 43, 71]. Our work differs
in focus (flexible processors) and technology (0.8 um IGZO). Also,
our applications have much more relaxed performance constraints
(Table 1). Our area constraints are also far more stringent due
to yield concerns (Section 3). Another related work is a design
space exploration of printed microprocessors [5]. However, the
target technology was different (inkjet printed electrolyte-gated
field effect transistors) and no microprocessors were fabricated.

While this work focuses on flexible microprocessors, it is important
to note that such microprocessors may be part of a bigger IGZO
TFT-based system. An example system may consist of flexible
sensors and use near field communication implemented in flexible

technology to perform IO operations with a flexible microprocessor.
IGZO TFTs are already used in manufacturing flexible RFID tags
consisting of antenna, modulator, rectifier, and RFID logic circuit [39,
75, 97]. IGZO electronics are also widely used in flexible sensors,
including gas sensors [18, 89], pressure sensors [96], and in-situ
biological sensors [8].

3 FLEXICORES: ARCHITECTURE AND
MICROARCHITECTURE

ISA and microarchitecture design for FlexiCores depends both on
the fabrication technology as well as the targeted applications.

3.1 Technology: Characteristics and Constraints

Our study focuses on metal-oxide TFT-based flexible microprocessors
due to the well known cost and scalability advantages of such
TFTs [67]. In particular, we explore design of 0.8 pm IGZO-based
TFTs [56] using FlexLogIC, a state-of-art commercial ‘fab-in-a-box’
production line [79] (Figure 1). A large volume of commercial
flexible integrated circuits has been manufactured using 0.8 um
IGZO TFTs [39, 97]. Several prior works on flexible processors [4,
11] also use this technology for manufacturing.

FlexLogIC supports IGZO circuits made using n-type TFTs with
resistive pull-up. The circuits are manufactured on a 30 pm flexible
polyimide substrate which enables the TFTs to flex up to a radius
of curvature of 3 mm without damage [41]. To fabricate IGZO
integrated circuits, FlexLogIC uses a proprietary manufacturing
process that deposits layers of IGZO TFTs and resistors and four
routable aurum-free metal layers onto a 200 mm wafer of polyimide
which has been spin-coated onto a glass backing. After fabrication,
the flexible polyimide wafer can be removed from the glass backing.

As with the nMOS silicon integrated circuits of the 1970s and
1980s, n-type logic-based 0.8 pm IGZO presents several challenges
to computer architects. First, the devices have poor noise margin,
high power consumption, and significant variation in V;j, [4], all
of which lead to yield and energy efficiency concerns. Second, the
technology is several generations behind silicon-based CMOS in
terms of size and speed [4], which leads to footprint concerns and
limits applications to ones with relaxed performance requirements.
Third, unlike silicon-based CMOS, nearly all power consumption

(>99%) in 0.8 um IGZO is static power consumption [4]. This requires
power reduction to be achieved primarily through area reduction.

Overall, the technology characteristics of 0.8 um IGZO suggest
that FlexiCores ISA and microarchitecture should be designed to
reduce gate count to achieve low footprint and high yield, even if it
is at the expense of performance. A low gate count implementation
should also improve energy efficiency.

3.2 Applications: Expressiveness and
Performance Requirements

The performance and energy characteristics of 0.8 pm IGZO (slow,
high energy) suggest that the best applications for flexible processors
are ones where the latency requirements are lax and the duty
cycles are low. Also, yield concerns with 0.8 um IGZO suggest
that applications with low precision and data memory requirement
would be a better fit than applications that require high precision or
data memory (since support for higher precision and data memory
in hardware usually requires higher gate count). Finally, the unique
cost, thinness, and conformality advantages of 0.8 um IGZO suggest
that target applications must have cost, thinness, or conformality
as one the primary requirements.

Table 1 lists a set of example applications that meet the above
characteristics. Note that several of these applications are classifier
applications; a large number of flexible applications may need to
make classification decisions in the field. For example, a flexible
smart bandage [65] may need to determine if a wound has healed.
A flexible odor sensor on the package [85] may need to determine
if milk has expired. A wearable, disposable skin patch can monitor
blood pressure [46]. Several of the applications, such as Heart Beat
Sensor, Light Level Sensor, Food Temperature Sensor, Humidity
Sensor, Body Temperature Sensor, and Pedometer process and
then perform thresholding on an input stream. Point of Sale (POS)
Computation and Smart Labels require the ability to efficiently look-
up data stored in a simple database or other data structure, and
may make use of pseudo-randomness (e.g., in a visually dynamic
display). Error Detection Coding (EDC) improves reliability of
wireless communication, and thus any flexible microprocessor
which transmits or receives data wirelessly must be able to execute
computationally inexpensive error detection encoding or decoding.

Applications in Table 1 are drastically different than those supported

by traditional 8 bit microprocessors (e.g., video games, pre-emptive
multiprocessing operating system, spreadsheet applications, etc).
For these flexible applications, duty cycle is often measured in
seconds or longer, which means most architectures can satisfy the
application performance requirements, even 4-bit architectures.
This also means that performance is important only in so far as
improved performance leads to improved energy. For example,
any performance optimization makes sense only if it improves
performance more than it increases static power consumption
(recall, nearly all power consumption in 0.8 um IGZO is static
power). Furthermore, performance can be easily traded off if it
helps improve area, energy, or yield.

Another observation is the data precision requirements for these
applications are limited, with many applications requiring < 8 bit of
precision. As such, not only are conventional 32-bit microcontroller
architectures (e.g., ARM, RISC-V, MIPS) an overkill, even ‘tiny’ 8-bit

microcontrollers (e.g., PIC10F, ATtiny102) support wider datapaths
than are needed for many applications.

We use the above as guiding principles while designing ISA and
microarchitecture for FlexiCore processors.

33 ISA

We decided to design a flexible microprocessor ISA with the following
constraints, aimed at minimizing area (and thus increasing yield and
decreasing energy), while sacrificing performance and expressiveness:
the ISA must 1) support designs with < 800 NAND2 equivalent
area, 2) have a < 8bit datapath, 3) support single-cycle instruction
execution (since multi-cycle and pipelined designs may have energy
and area implications), 4) have no more than 32 logic input and
output ports (due to IO ring limitations in the current manufacturing
process), 5) support integrated data memory (since external data
memory may be cost-prohibitive for target applications).

We emphasize that our area constraint (< 800 NAND2 equivalent)
is quite stringent. For reference, the area of the flip-flops in an
ARMv6-m machine’s register file is more than three times our
allowable area. The on-chip data memory of the smallest PIC MCU
(PIC10F200) is 704 NAND2 equivalent area, 88% of our area limit.
The architectural registers of the Intel 4004, the first commercial
microprocessor on an integrated circuit, have the area of 638 NAND
gates, or nearly 80% of the area limit. Implementing only the register-
file and memory of the subthreshold architecture of [71] would
use more than 132% of the area limit. Since, like the PIC10F200
(and unlike the ARM or Intel machines), we assume limited access
to external data memory, two things become clear. First, only
applications which can be implemented with some small amount
of finite memory can be supported. Second, data memory will be a
significant fraction of die area, which further limits the combinational
logic needed to implement ALU and control. As such, we look to an
ISA which enables efficient instruction decoding and control word
generation, and which has ALU operations which are inexpensive
to implement.

Figure 2a shows FlexiCore4’s (4-bit FlexiCore) ISA in terms
of binary encoding of its instructions and a description of their
semantics. FlexiCore4 supports a four-bit datapath (vs 32-bit datapath
in [4] and 8-bit datapaths in [69]) since four bits is adequate for
many target applications, while supporting our goal of high yield.
FlexiCore4 ISA consists of a seven-bit program counter, a four-bit
accumulator register, an eight-word (four octet) integrated data
memory, and supports three arithmetic and logical functions (ADD,
NAND, and XOR). We chose these functions deliberately since
they support highly optimized ALU design (Section 3.4), while
still supporting the logic and arithmetic primitives required by
flexible processor applications. Since negation and conjunction
are complete with respect to propositional logic, all two-input
Boolean functions can be replicated with just the NAND and XOR
functions only at the cost of four inverters. By using an accumulator
architecture, we enable small instructions which allows an instruction
to be fetched each cycle. An accumulator architecture also means
only a single operand is stored in data memory, and thus only a
single memory port is required. Data is transferred between the
accumulator and memory using LOAD and STORE instructions.
Control flow in FlexiCore4 is conditioned on the value of the

7 6 0
Branch ‘ 1 ‘ target |

7 6 5 4 3 0
I-Type ‘ 0 ‘ 1 ‘ op ‘ imm |

ADD

7 6 s NAmD 4 3 2 0

M-Type ‘ 0 ‘ 0 ‘ op ‘ 0 ‘ src |
ADD

7 6 N);\CI‘VF:} a 3 2 0

Thee[o | 11 [o] addr |
LOAD
STORE
(a) FlexiCore4 ISA

15 8
\ o \

Load Byte 7 0
‘ 00001000 ‘

7 6 0
Branch ‘ 1 ‘ tgt ‘

7 6 B 4 3 2 1 0
M-Type ‘ 0 ‘ 0 ‘ opcode ‘ 0 0 src ‘

ADD

7 6 5 lengD a 3 0

I-Type ‘ 0 ‘ 1 ‘ opcode ‘ immé4 ‘
ADD

7 6 YoR 4 3 2 1 0

T-Type ‘ 0 ‘ 111 ‘ opcode ‘ 0 src ‘
LOAD
STORE
(b) FlexiCore8 ISA

Figure 2: FlexiCore4’s (a) nine instructions. The ‘M-Type’
instructions use the value stored in memory location ‘addr’
as the second operand, while the accumulator is both the
first operand and the destination. The ‘I-Type’ instructions
second operand is encoded directly in the ‘imm4’ field of
the instruction. The ‘Branch’ instruction sets the program
counter to the value stored in the ‘imm?7’ field if and only
if the most significant bit of the accumulator is set. The “T-
Type’ instructions perform loads and stores — moving data
between the accumulator and the memory address stored in
‘addr’. FlexiCore8 (b) has all of the instructions of FlexiCore4,
but with the addition of a ‘Load Byte’ instruction. This
instruction loads an octet stored in the ‘imm8’ field into
the accumulator.

accumulator, allowing conditional execution of basic blocks. This
differs from the architecture in [69], which does not allow conditional
execution of code. FlexiCore4 contains two four-bit IO buses — an
input bus, and an output bus, used to asynchronously communicate
with peripheral devices. These IO buses are memory mapped to
addresses 0 and 1 of the internal data memory. The 8-bit instructions
are delivered to the core asynchronously from an off-chip program
memory. FlexiCore4’s ISA is orthogonal — all ALU instructions
may use either of the addressing modes: accumulator-immediate or
accumulator-memory. The branch instruction jumps execution to
an immediate program address conditioned on the most-significant
bit of the accumulator. All instructions are encoded with a fixed
eight-bit width.

In order to support applications with > 4 bit data requirements,
we also designed an 8-bit ISA for FlexiCore8 - the 8-bit FlexiCore.
The binary encoding of FlexiCore8s instructions is in Figure 2b.
As with FlexiCore4, FlexiCore8 is designed to support a simple

microarchitecture. Since doubling the size of the internal data-
memory was area prohibitive (given the 800 NAND2-equivalent
area restriction), we instead halved the number of words in memory,
while doubling their width from a nibble to an octet. FlexiCore8
adds an additional LOAD BYTE instruction, which loads an 8-bit
immediate value into the accumulator.

Since an important goal is to minimize logic area due to yield
concerns with 0.8 pm IGZO, the ISAs reduce the complexity of the
instruction decoders by embedding datapath control directly into
the instructions themselves. For example, in FlexiCore4, instruction
bits 5 and 4 are wired directly to the ALU output multiplexer select
lines, and instruction bit 6 is wired directly into the input ALU Mux,
selecting between immediate and memory based operands. Across
both ISAs, only FlexiCore8’s ‘Load Byte’ instruction is not encoded
using 8 bit. This enables single cycle execution and removes the
need for a complex state-machine based controller (a single flip-
flop is used in FlexiCore8, and no state is used in FlexiCore4).
These ISAs, then, are in stark contrast to earlier silicon-based
commercial microprocessors with low device counts; their ISAs
were optimized to enable compact programs instead. As such, these
earlier microprocessors (e.g., MOS 6502, Intel 8080) often used
variable length instruction encodings, and complex and stateful
controllers to generate control words for each cycle of a multicycle
execution. In the MOS 6502, for example, the ‘/ROM’ portion of a
controller produced 130 distinct 21-bit control words, depending
on which stage of which instruction was being executed. Such an
approach is infeasible for FlexiCores, which prioritize ultra low
device count and high yield over compact programming.

Listing 1: Lack of expressivity leads to bloated code. This
subroutine to perform a logical shift-right requires far more
instructions than it would given a more expressive ISA.

acc_right_shift:
store r2; nandi 0; addi -3; store r4;
nandi 0; store r5;
reverse_loop:
load r2; br set_1; load r3; add r3;
store r3; nandi 0; br loop_tail;
set_1:
load r3; add r3; addi 1; store r3;
loop_tail
load r4; addi 1; store r4; br left shift;
load r2; add r2; store r2; nandi 0;
br reverse_loop;
left_shift:
load r5; br done; load r3; add r3;
store r2; load r5; addi 1; store r5
nandi 0; br reverse_loop;
done:

The tradeoff of expressivity for architectural simplicity in the
ISAs for FlexiCore4 and FlexiCore8 is not without drawbacks. Listing 1
shows how the FlexiCores’ lack of expressivity can lead to a large
number of static and dynamic instructions in program code. In this
example, we see how performing a right-shift requires 36 static
instructions and over 60 dynamic instructions. Although the cost

of higher number of dynamic instructions is somewhat offset by
FlexiCore4’s single-cycle execution (as opposed to tens of cycles
for many CISC microprocessors), the high static instruction count
leads to a requirement for larger program memory, which may
offset the low cost of FlexiCores.

FlexiCore

1PORT (301

wsTR (7.01

(a) FlexiCore Microarchitecture

(b) FlexiCore’s ALU

Figure 3: FlexiCore4’s microarchitecture. The ALU’s logical
implementation shows how the ALU’s three functions can be
built out of a single ripple-carry adder and a small number
of additional gates.

3.4 Microarchitecture

indicates that the next byte fetched from program memory is not
an instruction, but rather data to load into the accumulator.

A typical technique in traditional 8-bit microprocessors, which
were often packaged in dual in-line packages with limited pin-
counts, was to multiplex a single bus for both instructions and
data (e.g., MOS 6502, Intel 8080). However, in order to achieve a
single-cycle design (and thus not require additional flip-flops for
registering partial instruction or data fetches), bus multiplexing
is avoided in FlexiCores. Also, the IO ring in FlexiCores does not
support inout buses. So, data multiplexing would have not been
possible anyway.

We considered but ultimately rejected multicycle microarchitectures
for FlexiCores (though we revisit the question later — Section 6). A
multicycle microarchitecture can typically be used to minimize core
area by temporally multiplexing hardware structures. However, due
to FlexiCores’ very simple ISAs, the amount of structure which can
be reused is limited: the ALU’s adder can be used to increment
the program counter. Therefore, the area savings from this limited
reuse are offset by the added control complexity (additional flip-flop,
multiplexer, and control word generation), and such a multicycle
microarchitecture would double the core’s CPI (and hence double
energy consumption).

3.5 Comparing FlexiCore processors

In this section, we present an analysis of area and power of FlexiCore
processors and their components to quantitatively justify our ISA
and microarchitectural design choices.

We designed a standard cell library of thirteen cells implemented
in n-type logic with resistive pull-up (Figure 1) and using two
of the four metal layers in the process. With this standard cell
library, a standard EDA tool-flow can take a hardware design
from SystemVerilog description to tape-out in GDSII, just as in
conventional digital IC design. For physical design, we used an IO
cell library with its own IO ring power supply (at 3V and 4.5 V).
Input IO cells have simple ESD protection to improve reliability
and yield.

After synthesis and place and route, FlexiCore4 and FlexiCore8
have area of 5.56 mm? and 6.06 mm? respectively and static power
of 1.8 mW and 2.4 mW respectively. For reference, we also synthesized
a small, conventional silicon microcontroller, the TI MSP430, using
the openMSP430 RTL [30]. In 0.8 um IGZO, this core has an area of
170 mm?, 30x larger than FlexiCore4. The MSP430 also consumes
41.2mW static power, 23X more than FlexiCore4.

The results expectedly show that our choice of ISA and microarchitecture
leads to much smaller core sizes than conventional simple microcontrollers
such as MSP430. We also see that FlexiCore8 uses 9% more area

FlexiCore4 is implemented as a single cycle machine (Figure 3) to
minimize area. Also, microarchitectural decisions are made throughout

the implementation to reduce gate count. For example, the ALU’s
ripple-carry adder performs bitwise logical exclusive disjunction
and conjunction on the input words, meaning the ALU produces
AND and XOR functions as side effects of addition, without requiring
additional gate count. Similarly, we use the AND side effect to create
the NAND function at the cost of only four inverters.
FlexiCore8’s microarchitecture is similar to FlexiCore4’s, with
the required changes to datapath width and data memory. The only
significant difference is that, upon identifying the LOAD BYTE
opcode, FlexiCore8’s decoder/controller sets a ‘load byte’ flag which

than FlexiCore4, to support 8 bit datatypes. Section 4 discusses how
this modest increase in area may impact yield.

Tables 2 and 3 show the area and power breakdown of the
component modules of FlexiCore4 and FlexiCore8. Note that some
core logic is not included in the submodules, and thus the sum of
the module percentages does always add to 100%.

We observe that the on-chip data memory is the largest contributor
to area and static power in both cores, with the on-chip data memory
using the majority of design area and power in FlexiCore4. As this
memory already uses a single read/write port, this suggests that

Table 2: Contribution of FlexiCore4 modules to overall core
area and static power. The on-core, single-port data memory
is the largest contributor to core area and power.

ALU Decoder Regfile/Memory PC Acc. Total Core
Area (% Non-Comb) 0% 0% 44% 27% 28.5% 36%
Area (% Comb) 100% 100% 55% 71% 71.5% 64%
Area (% of Core) 9% 1% 58.3% 23.4% 5.4% 100%
Static Power (% of Core) 7.9% 0.8% 57.5% 20.9% 5.8% 100%

Table 3: Contribution of FlexiCore8 modules to overall core
area and static power. The on-core, single-port data memory
is the largest contributor to core area and power.

ALU Decoder Regfile/Memory PC Acc. Total Core
Area (% Non-Comb) 0% 25.6% 41.5% 29% 71.5% 28.6%
Area (% Comb) 100% 74.4% 58.5% 71% 28.5% 71.4%
Area (% of Core) 155% 2.9% 40.9% 17.9% 10.8% 100%
Static Power (% of Core) 14.9% 2.7% 36.7% 17.4% 11.6% 100%

our choice of accumulator architecture for FlexiCores was a good
decision since a choice of a different architecture (e.g., using load-
store or memory-memory architecture instead of an accumulator
architecture) would have required a second read-only access port.
We estimated that adding a second port would have increased the
data memory area by 39% and 25% for FlexiCore4 and FlexiCores8,
respectively.

The relative sizes of the components differ between FlexiCore4
and FlexiCore8. In FlexiCore4, the combinational area of the data
memory is larger than in FlexiCore8 in both relative and absolute
terms. This is because the cost of the access port increases with the
number of data words, and FlexiCore4 supports eight words, while
FlexiCore8 supports only four words. Not surprisingly, FlexiCore8’s
ALU and accumulator are roughly twice as large as FlexiCore4’s,
due to 8 bit vs 4 bit datapaths. FlexiCore8 also has a larger controller,
since FlexiCore8’s load-byte instruction requires a more complex,
stateful controller, while FlexiCore4’s controller is stateless.

The high cost of data memory also suggests that architectures
with support for small bitwidth datatypes are attractive. By supporting
4 bit datatypes, FlexiCore4’s data memory can store twice as many
words as FlexiCore8’s. For the same reason, the decision to choose
an ISA which can minimize decoder, ALU, and datapath area was
important — all microarchitectural area (thus power) savings must
come from these portions of the design for a given data memory
size.

The low cost of the instruction decoder (< 3% area and power for
both FlexiCores) suggests that a more complex decoder (and hence
amore dense instruction encoding) may be a useful optimization for
decreasing code size and reducing the number of IO pins required
by the instruction memory bus.

Both FlexiCore4 and FlexiCore8 both have fiqx of 12.5kHz,
which is considerably higher than the needs of most of our applications
(Table 1). This further justifies our ISA and microarchitectural
design decisions that trade off performance for lower gate count.

Instructions could be stored in an integrated program ROM
whose contents are determined at tape-out (via mask ROM as
in the flexible ARM processor [4]) or post-manufacturing (via
write-once, read many laser programmable ROM). However, such

an approach is inflexible as in either case the total program size
must be known at tape-out, and a fixed program is insufficient
for post-silicon testing. Instead, FlexiCores’ programs are stored
off-chip, and instructions are fetched via the dedicated instruction
bus. This enables a single chip to support multiple applications,
and allows arbitrary application sizes using an off-chip memory
management unit (Section 5). It also enables rigorous testing of
each manufactured chip, ensuring accurate yield measurements
(Section 4). This approach is similar to that used in the flexible ALU
work [69], which stored programs (and the program counter) on a
separate flexible foil. A non-integrated program memory and oft-
chip memory management unit was a common technique used in
low cost consumer electronics computing systems of the 1970s
and 1980s. For example, the Nintendo Entertainment System’s
(NES’s) CPU was a Ricoh 2A03 capable of addressing 64 KiB of
off chip program and data memory, and the system itself contains
a 2KiB SRAM chip. However, as software often required both
more data memory and significantly more than 64 KiB of address
space to store program data, software was distributed in cartridges
which contained ROMs for program data, additional SRAMs, and
a ‘memory management controller’ (MMC) which facilitated the
bank switching used to expand the default address space [15]. Banks
were selected by writing to memory mapped registers in the MMC.

4 FLEXICORES: PHYSICAL IMPLEMENTATION
AND ANALYSIS

FlexiCore4 and FlexiCore8s were fabricated in 0.8 pm IGZO on
multiple wafers with using FlexLogIC. Figure 4 shows a 200 mm
biodegradable polyimide wafer containing 123 FlexiCore4 dies.
The die photos shows the 336 gate FlexiCore4 and the 366 gate
FlexiCore8. Each die is 9 mm? (including IO ring and pads), even
though the FlexiCore4 and FlexiCore8 logic fit in areas of 5.56 mm?
and 6.06 mm? respectively. FlexiCore4 uses 24 data pads and 8
power pads, while FlexiCore8 uses 31 data pads and 8 power pads.
All power pads are duplicated. The die overlays show the relative
sizes of core components. For FlexiCore8, the larger accumulator
and datapath make up a large portion of the die area relative to
FlexiCore4, whose area is dominated by data memory and the
program counter. FlexiCore8 also has a considerably larger decoder
(FlexiCore4’s is less than 1% of die area and is not shown on the
overlay).

4.1 Yield Analysis

Figure 5 shows the test-set up used to test the FlexiCore dies. After
fabrication, the FlexiCore chips were tested on a semi-automated
wafer probe station MPI TS2000 while still attached to a glass carrier.
Yield is not significantly affected when chips are removed from
the carrier. A test pattern derived from a Verilog simulation was
translated to input signals generated by a NI PXIe-6570 Digital
Pattern Instrument. Output signals were captured using the same
instrument. All measurements were carried out at both3 Vand 4.5V
at clock frequencies up to 12.5kHz. Due to limitations in the IO
ring output buffers’ ability to drive cable capacitance of the external
test instruments, the circuits cannot be tested beyond 12.5 kHz. The
FlexiCore dies were tested with over 100,000 cycles of random and
directed test vectors. The test vectors stimulate all regions of the

PC and Branch Logic

EEEEEEEEEEEN
(b) Blow-up of a FlexiCore8 die

die

Figure 4: A 200 mm polyimide wafer with FlexiCore4 dies, and
blow-up photos of a FlexiCore4 die and a FlexiCore8 die. The

red ring on the wafer indicates the 16 mm ‘exclusion’ zone.
Subfloat (c) is a die shot of FlexiCore4+, discussed in Section 6.

Note that each chip has a different ratio of areas allocated to
its components.

cores, with gates toggling on average 24,060 times, and all gates
toggle at least once. The chips have been verified to work correctly
more than six months after manufacturing, and can survive flexing
to an 5 mm radius of curvature over 100 cycles.

Figure 6 shows the results of testing (in terms of number of
observed errors) for FlexiCore dies at 3V and 4.5 V for one randomly
chosen wafer each for FlexiCore4 and FlexiCore8. We count a core
as fully-functional if, at 3V (4.5 V) supply voltage, a 1.5V (2.25V)
threshold between logical LOW and HIGH, and 12.5 kHz clock rate,
there are zero measured differences between its output and the
expected output as determined by RTL simulation across all test
vectors (i.e., the number of errors is zero). Table 5 shows yields for
FlexiCore4 and FlexiCore8 at both voltages.

Ignoring the dies in the most external 16 mm of the wafer (due
to edge effects), we achieved 81% yield for FlexiCore4 at 4.5V,
sufficient for sub-cent cost at high volume. This demonstrates the
feasibility of building a flexible microprocessor at scale. Decreasing
supply voltage from 4.5V to 3V degrades yield by 30%, likely due
to timing faults. For FlexiCore8, the yield at 4.5V is significantly
lower (57%) than FlexiCore4’s, likely due to the 9% higher gate
count compared to FlexiCore4. This justifies our decision to target

(c) Blow-up of a FlexiCore4+ (Section 6)

Table 4: Comparison of different FlexiCores. Due to
process refinement which occurred between manufacturing
FlexiCore4 and FlexiCore8, FlexiCore8’s power consumption
is lower than FlexiCore4’s. The process refinement involved
increasing pull-up resistance by 50%. Applying the same
refinement to FlexiCore4, we anticipate FlexiCore4 to
consume 3.2 mW on average.

FlexiCore4 FlexiCore8 FlexiCore4+

Area (mm?) 5.56 6.05 6.4
Voltage (V) 4.5 4.5 4.5
Mean Power (mW) 4.9 3.9 3.4
Yield 81% 57% n/a
Pin Count 25 31 24
Devices 2104 2335 2420
Clock Freq (kHz) 12.5 12.5 12.5
Datapath Width (bit) 4 8 4
Flexible Yes Yes Yes

PXI Test System

5 Oy
v v

SMU 1 SMU 2 || Digital Pattern
Instrument

i

(a) Test set-up schematic

(b) A FlexiCore4 on glass carrier
attached to probe-card.

First 12 cycles of A Directed Test

CcLK

IPORT ox1 ox0 X ox1.

H

INSTR —ox50 Y078 Y070)01)_oxrs)_oxez Y oxer Y 0@z) _0x0 X owar) _oxo)_oxai

Outputs

PC 000 o001 Y o0z ¥ o003 X o4 X ox0s X oxos Y oxor) ox0z Y ox03 Y oxoa Y oxos
X

OPORT 0x0 oxf X 0x0 0x0L

Measured outputs match expected outputs of RTL simulation.

(c) Measured outputs of a working core

Figure 5: Schematic (a) and realization (b) of test set-up.
Test vectors consist of over 100,000 cycles of directed and
randomized tests. A FlexiCore die passes testing if and only
if all measured results on all output ports match the expected
output (c).

cores with physically small (< 800 NAND2 equivalent area) designs
- recall that our ISA and microarchitectural decisions were made
with this goal in mind. We also observe that decreasing supply
voltage from 4.5V to 3V leads to a marked decrease in yield for
FlexiCore8, rather than the modest decrease in yield experienced
by FlexiCore4. This is likely due to FlexiCore8’s 8-bit ripple-carry
adder having a critical path twice as long as FlexiCore4’s 4-bit adder.

6 20 4 6 s 100 130 10 160 180 200 6 20 4 e g 160 130 140 160 180 200
el el

(a) FlexiCore4 at 3V (b) FlexiCore4 at 4.5V

6 2 do 6 s 10 130 1o 160 180 200 6 2 4 6 s 10 130 10 160 180 200
col cal

(c) FlexiCore8 at 3V (d) FlexiCore8 at 4.5V

Figure 6: Number of output errors on test vectors for
FlexiCore cores at 3V and 4.5V. Green color means zero
output errors and a functionally correct core.

0001 0002

L0075

6 20 4 s s 10 10 10 10 180 200 6 % 4 s s o 1o o w0 o 200

(a) FlexiCore4 at 3V (b) FlexiCore4 at 4.5V

6 B b 4 H @ D b b oo b o 0 10 0 b 0
w

(d) FlexiCore8 at 4.5V

(c) FlexiCore8 at 3V

Figure 7: Current draw on test vectors for FlexiCore cores at
3Vand4.5V.

The increased delay at 3V prevents these circuits from meeting the
12.5 kHz timing requirement.

4.2 Process Variation

Process variation not only affects FlexiCores’ yield (as discussed
above), it also produces variability in power consumption. Figure 7
shows the current draw of FlexiCore4 and FlexiCore8 cores at 3V

Table 5: Yield for FlexiCore4 and FlexiCore8 at 3V and 4.5 V.
The table shows yield across the entire wafer, and yield after
disregarding cores in the edge exclusion zone of the wafer.

Full Wafer Inclusion Zone Only

3V 45V 3V 45V
FlexiCore4 44% 63% 55% 81%
FlexiCore8 5% 42% 6% 57%

and 4.5 V. Since previous work has focused on developing one-off
prototypes of flexible microprocessors, this is the first report on
the effects of process variation on flexible microprocessors.

The average current draw for fully functional FlexiCore4 cores is
1.1mA (0.73 mA) and current draw ranges from 0.8 mA to 1.4 mA
(0.53 mA to 0.89 mA) on average during testing at 4.5V (3 V). The
average current draw for fully functional FlexiCore8 cores (on a
different wafer - post a power reducing process update) is 0.75 mA
(0.65mA) and current draw ranges from 0.60 mA to 1.4 mA (0.36 mA
to 0.42mA) on average during testing at 4.5V (3V).

Both FlexiCore designs have large standard deviation in current
draw at 4.5V (> 0.16 mA). However, at 3V, the deviation is much
more significant in FlexiCore4 than in FlexiCore8 (0.1 mA vs 0.03 mA).
This is likely statistical noise due to the small number of FlexiCore8
cores which can operate at the target frequency at 3 V.

The high process variation can have significant impact on the
number of usages of a flexible microprocessor given an energy
budget. Techniques to reduce process variation and operate microprocessors
efficiently in spite of it will be important.

4.3 FlexiCores in MOSFET CMOS

Given the low complexity of FlexiCores, their implementation in
5nm process technology would allow hundreds of thousands of
~ 0.03 mm X 0.03 mm FlexiCores per 300 mm silcon wafer. However,
such small cores would be impractical to dice, with chips requiring
50 um to 200 pm spacing using conventional diamond blades [102],
wasting more than half to 90% of the wafer and increasing cost.
Plasma dicing technology can reduce spacing to 10 um, but is
expensive [54]. Additionally, such a small die would be severe-
ly IO-limited, as each side will support 1-2 IOs at a 10 pm pitch,
which is insufficient for a FlexiCore.

5 APPLICATION-LEVEL RESULTS

The field-reprogrammability of FlexiCore processors allows us to
evaluate their performance and energy characteristics over a suite
of representative kernels.

5.1 Representative Applications

Table 6 shows a list of benchmark kernels representative of computation
in flexible computing applications (Table 1) that we use for our
evaluations.

The ‘calculator’ application is a four function calculator which
performs multiplication, division, addition, or subtraction of two
inputs. Multiplication performs a 4 bitx4 bit multiplication, producing
an 8 bit output. Division produces the quotient and remainder of a
4 bit dividend and a 4 bit (non-zero) divisor. Addition (subtraction)

Table 6: Benchmark applications evaluated on FlexiCore. The
‘interactive’ four-function Calculator takes input operands
and operations from the user before returning the desired
computation. ‘Reactive’ applications interact with and run
on the demand of a larger system. ‘Streaming’ applications
perform computation on a stream of sensor inputs.

Static Instructions Application Type Input Size

Calculator 352 Interactive Operands + Operation
Four-tap FIR 177 Streaming Per input
Decision Tree 210 Reactive Depth 4, 3 features
IntAvg 132 Streaming Per input
Thresholding 102 Streaming Per input
Parity Check 105 Reactive 8-bit
XorShift8 186 Reactive 8-bit

generates a 4-bit sum (difference) with overflow (underflow). ‘Decision
Tree’ performs inference on a randomly generated depth-four decision

tree (such decision trees are suitable for several of the inference
applications found in Table 1 [66]). ‘IntAvg’ performs exponential
smoothing on an input sequence, perhaps generated by a sensor,
generating a rolling, weighted average of the inputs as an output
sequence. Exponential smoothing acts as a autoregressive infinite
impulse response low-pass filter, and is a common mechanism
for de-noising input sequences. As such, it may be used as pre-
processing for thresholding applications such as Food Temperature
Sensor, Light Level Sensor, and Humidity Sensor. Like, ‘IntAvg’,
‘Four-tap FIR’ benchmark applies a filter to an input stream, perhaps
generated by a sensor, generating a filtered (low-pass, high-pass, or

band-pass) output stream. Filter coefficients are in {—1, 1}. “Thresholding’

checks an input sequence for values greater than a specified threshold.
The application places a non-zero value on the output bus if and
only if the input sequence contains such an extreme value. ‘Parity
Check’ computes the parity of an 8 bit word. Parity checking is a
computationally inexpensive error detection code. “XorShift8’ [61]
is a pseudo-random number generator which, given a non-zero seed,
produces a length-255 sequence of non-repeating 8 bit numbers.
Programs are written in a highly readable assembly language.
Programs are assembled into machine code binaries by a custom
assembler written in Python. Some of the programs require more
than 128 instructions (e.g., Calculator, Decision Tree). In order to
execute these programs, we assume an off-chip memory management
unit (MMU) which is driven by FlexiCore’s output port. The MMU
allows extending the program memory address space beyond the
128 instructions enabled by the 7 bit program counter alone. The
MMU consists of finite-state transducer based controller, and a
four-bit register. When the controller identifies a specific sequence
of values on the FlexiCore’s output port, it stores the value of
the output port into the register after a short delay. This allows
software to signal a ‘page change’ to one of sixteen different 128-
instruction pages, and then branch to a desired location within that
page. This technique can be extended to support arbitrary number
of pages. This technique is non-standard and differs from traditional
techniques using memory mapped IO, such as the NES’s MMC. This
nonstandard technique is used due to the IO constraints imposed
by 1) lack of inout busses, and 2) desire to support single cycle and

pipelined execution (versus Ricoh 2A03’s CMOS 6502 multicycle
core used in the Nintendo computer).

5.2 Performance and energy

Time (ms)
Energy (uJ)

Figure 8: Performance and Energy for FlexiCore4 on
benchmark kernels. From the calculator, we show the
multiplication and division subroutines, as addition and
subtraction are supported natively. Latency and energy
includes time spent performing IO.

Previous works on flexible processors have relied on a simple set
of test vectors or a single program to perform post-manufacturing
validation. A working flexible microprocessor chip supporting
complex or multiple applications has not been demonstrated by
prior works.

Figure 8 shows measured energy and performance of FlexiCore4
on benchmark kernels. As the number of dynamic instructions is
dependent on the input values, these values are based on the mean
application latency given uniform sampling over the input space.
When possible, we perform exhaustive tests across the input space.
For Decision Tree we randomly sample from the input space, due to
the large size of the input space. For the streaming kernels (IntAVG,
Thresholding, FIR Filter), the latency and energy consumption is
per input.

The latency of these kernels, on the order of ms, is acceptable
given the duty cycles required of flexible computing applications
(Table 1). However, energy consumption is high, and thus the
performance of the FlexiCores may be constrained by energy rather
than by performance limitations. For example, a FlexiCore4 which
performs IIR filtering and then thresholding on an input stream in
which data arrives once per second would consume 3.6] d-1, given
perfect power gating. Using a commercially available 3V, 5mAh
flexible battery [6], (and ignoring power consumption of program
memory), this core can be powered for two weeks. This may be
suitable for some applications, but other applications may need
longer run-times; longer life-time may also decrease deployment
cost [26]. Optimizations which reduce energy consumption may be
needed to increase battery life and reduce system costs.

Table 7: Comparison of FlexiCore4 to other flexible ICs.

This Work PlasticARM [4] Sharp Z80 [55] UHF RFCPU [53] 8bit ALU [68] MLIC [74] Intel 4004
Device Count 2104 56,340 13,00 133,000 3504 3132 2250 Transistors
Area (mmz) 5.6 59.2 169 93.45 225.6 5.6 12
Pin Count 28 28 40 N/A (RFID) 30 23 16
Voltage (V) 4.5 3 5 1.8 65 45 15
Power (mW) 4.05 21 15 0.81 Not Reported 7.2 1000
Clock Freq (kHz) 125 29 3000 1120 21 104 1000
Technology 0.8 um IGZO-TFT 0.8 um IGZO-TFT 3pm c.g-Si TFT 0.8 um poly-Si TFT 5 pm organic + m-ox TFT 0.8ym IGZO-TFT 10pm
Logic Family NMOS NMOS CMOS CMOS CMOS NMOS PMOS
NAND2 Equiv. Area 801 18,334 Not Reported Not Reported 876 1024 N/A (Custom Logic)
Power Density (mW mm’z) 0.723 0.355 0.0888 0.00867 Not Reported 129 833
Processor Single-cycl ISA pele (pipelined fetch) ArmV6-m Multicycle (Z80 ISA) Multicycle 8-bit ALU + Print P ROM Fixed-fi ASIC Multicycle 14004
Flexible Yes Yes No (Corning 1737 Glass Substrate) ~ Yes Yes Yes No
P bility Field Rey At tape-out (integrated Mask ROM) Field Reprogrammable At tape-out (integrated Mask ROM) Via seperate printed PROM and PC "foil” None Field Reprogrammable
Yield 81% Not Reported Not Reported Not Reported Not Reported Not Reported Commercial
Datapath Width (bit) 4 32 8 8 8 5 4
: : : : area cells Code Size
5.3 Comparison to Existing Flexible Processors W area W
Prior flexible processors with prototypes are listed in Table 7. The
. . 1.5
fabricated ‘PlasticARM’ processor [4] uses a mask ROM for programs
and is, therefore, not programmable. In any case, the ARMv6-m
is significantly more expressive than the FlexiCores’ ISAs. The
resulting core, therefore, is an order of magnitude larger than
FlexiCore4, and consumes > 5X the power of FlexiCore4. The Sharp 05
Z80 is an implementation of the 8-bit Z80 ISA using TFTs. The P S*,_nmé “oarre +doyle e
. . . fa I] h Il
fabricated processor has area ~ 30X the size of FlexiCore4. The G S e oA e na NS

UHF RFCPU on a glass substrate is an inflexible prototype of a
potentially flexible system that includes an antenna, an 8 bit CISC
CPU, and 512 B of memory, built out of polysilicon TFTs. The CPU
portion of this system is ~ 3X the size of FlexiCore4. The ‘8bit-ALU’
in [68] is built out of organic and metal-oxide TFTs and operates
at fmax = 2.1kHz. However, it can only support programs of 16
instructions, and its ISA does not support conditional branching,
meaning it is incomparable to FlexiCores for most applications
(e.g., decision tree, parity check, XorShift8, Calculator, FIR Filter).
In addition to the cores in Table 7, FlexiCores greatly outperform
the printed flexible processors described in [5, 69]. This is due to
three orders of magnitude better switching performance of 0.8 ym
IGZO than the organic and electrolyte-gated TFTs in those works.

6 OPTIMIZING FLEXIBLE PROCESSORS

Due to FlexiCore’s emphasis on minimal core area, we traded ISA
expressiveness for microarchitectural simplicity (Section 3). This
trade-off enables commercially viable yield and sub-cent pricing for
both FlexiCore4 and FlexiCore8, but it also increases programming
difficulty and code size. Increased code size, in turn, can decrease
energy efficiency and yield depending on the implementation, since
storing the static code consumes power and area, and the high
dynamic instruction count leads to increased program latency and
energy. Therefore, it is important to find the right trade-off between
core size and ISA expressiveness. This section considers the impact
of supported operations and the number of operands per instruction,
and microarchitecture on code size, core size, performance, and
energy.

6.1 Revisiting operations in FlexiCore ISA

Listing 2: Unconditional branch with base FlexiCore ISA

Branch TGT
Xori 0x8
Branch PRETGT

Figure 9: Changes in test code size and core area. With
additional functionality, core size tends to increase while
code size tends to decrease. Increasing the size of data-
memory does not effect test code size, but it does allow for
more complex programs which have larger data memory
requirements.

PRETGT:
Xori
TGT:

0x8

We first explore the impact of increasing the expressiveness of
the FlexiCore ISAs. Figure 9 shows the area, cell count, and code-
size of FlexiCore4 with additional instructions or features enabled
relative to the base design (Section 3). The features considered are a
result of analysis of benchmark code — we identified ‘code macros’
and other small subroutine-like code sequences which are used
repeatedly throughout the benchmark programs. Listing 2 shows
how an unconditional branch which preserves the accumulator
requires four static instructions in the base ISA. Three instructions
are required to perform the branch, and an additional instruction is
required ahead of the branch target to restore the accumulator to its
original value. Data coalescing instructions (add with carry, subtract
with borrow) enable addition and subtraction of integers which do
not fit into 4-bits, and enable easily inspecting arithmetic overflow.
Thus we consider adding ADC instruction. While left shifts are
straightforward to perform in the base ISA through addition (and
since the accumulator is 4-bits, the number of additions to implement
left shift is never more than three), performing a right shift requires
reversing the bit-order, performing a left shift, and then reversing
the bit-order again. Thus, we consider a 4-bit barrel shifter which
supports arithmetic and logical right shifts. Since branches in the
FlexiCore4 are dependent only on the sign of the accumulator, many

control flow constructs are verbose (e.g., unconditional branches,
which require multiple instructions). We consider enhancing the
expressivity of branches by adding a three-bit branch mask which
enables branching on whether the accumulator is negative, zero, or
positive. We also consider adding a hardware multiplier, which
can output either the top four or bottom four bits of a 4bit X
4bit multiplication. Finally, we consider doubling the size of the
register-file. While this optimization does not affect code size, it
enables running additional programs whose data does not fit into
FlexiCore’s limited memory. Figure 10 shows the impact of these
ISA extensions on benchmarks.

W ADC W RSNR W BranchFlags B Mutipicalon [Accumulator Exchange [Subloutines

sion Relative to Base IS

Code Size Wih Exten

FIR Fiter Dec.Tree Party Chisck Xorstifs InAVG Thresholding ng

Figure 10: Code size of benchmarks with ISA extensions
relative to baseline FlexiCore4 ISA.

The tradeoffs shown in Figure 9 allow us to revise the set of
operations and features to be supported in a FlexiCore-like flexible
processor. Due to the modest (< 10%) increase in area associated
with the coalescing instructions, barrel shifter, and condition codes,
we determine these instructions to be viable additions. Since the
barrel shifter enables efficient computation of multiplication in
software (or microcode), we decide to not add the hardware multiplier
to the revised list considering the high gate count overhead for the
multiplier. We also determine that the larger register file is not a
viable change to the ISA due to its high (> 70%) area cost. We also,
at the cost of 8 flip-flops, add a return address register, to the revised
list enabling efficient subroutine calls. We also add an instruction
that exchanges the values between the accumulator and a location
in memory.

As such, the final set of operations to support are Add(i), Adc(i),
Sub, Swb, And(i), Or(i), Xor(i), Neg, Xch (Mov(i) in load-store), Load,
Store, Branch nzp, Call, Ret, Asr(i), Lsr(i).

We manufactured a small number of 4 bit, single-cycle accumulator
machines with several of the ISA extensions (barrel shifter, branch
condition flags). Figure 4c shows one of these ‘FlexiCore4+’ dies,
which contains 15% more devices than FlexiCore4. At 4.5V, these
cores draw on average measured current of 0.75mA, which is
roughly the same as FlexiCore8.

6.2 Revisiting operands

While the above study shows that the ISA should support a number
of additional features in order to increase code density, we recognize

that overall energy and core area also depends upon the number of
operands in the instructions, as well as microarchitectural features
such as pipeline depth, and bus width. We performed a design space
exploration in which we vary the number of operands (accumulator
vs load-store), pipeline depth (single stage, dual stage, and multi-
cycle), and instruction bus width. The cores are assumed to support
the revised set of operations and operate at their SP&R fiqx-

Figure 12 shows the normalized code size (in bits) and core
area for the accumulator and load-store machines. Despite larger
instructions, the load-store ISA has a slightly higher code density
due to the extra expressivity of a second operand. However, the
accumulator cores are smaller than the load-store cores. The single-
cycle accumulator machine is the smallest design, as it requires
neither pipeline nor controller state registers, and its datapath
requires only a single data-memory port. Adding a second pipeline
stage to the accumulator machine requires pipeline registers after
decoding the fetched instruction. However, these additional registers
are still less area than the additional area imposed by the single-
cycle load-store architecture (i.e., a second data-memory port).

For the accumulator ISA, the multicycle design is the largest
design, as not only does it require additional registers, it also
requires generation of multiple sets of control words — one for
each cycle of instruction execution. Since there is very limited
opportunity for structure reuse (Section 3), overall area is higher
than other accumulator-based designs. In the load-store architecture,
the multicycle microarchitecture enables removal of the second
register file port, and thus leads to an area savings substantial
enough to offset the additional control complexity.

Figure 13 shows the energy consumption of the cores in two
cases. First, we assume that the core has a program memory bus
wide enough to fetch an entire instruction each cycle, as is the case
in FlexiCore (Section 3). Under this assumption, the best performing
core is the 2-stage load-store machine, which consumes less than
half the energy of the baseline accumulator machine. However,
when the program bus is restricted to the size of instructions used
by FlexiCore, the load-store machine is incapable of fetching a
new instruction each cycle, and thus the single cycle and 2-stage
versions of the load-store machine are not possible. Hence, the best
performing core is the 2-stage accumulator machine.

6.3 Application-level Results

Figure 11 shows the performance and energy of the new designs
normalized against the baseline of FlexiCore4 for different benchmark
kernels. Despite the 9-37% higher power consumption of the new
cores (due to increased gate count to support new instructions as
well pipelining), their improved performance leads to significant
energy reduction (on average, the single-cycle and pipelined cores
outperform FlexiCore4 by 53-115%, and consume only 45-56% of
the energy of FlexiCore4), which was the primary goal of the ISA
and microarchitecture optimizations.

Benefits depend on the kernel. Due to the increased sophistication
of the branching instructions, the Decision Tree and Parity Check
workloads, which feature a high percentage of branching instructions,
see significant increase in performance. Both XorShift8 and IntAVG
use right-shifts, and as such, we see significant improvements to

B FlexiCore4 [Acc SC AccP [AccMC W LSSC LSP LS MC
15
1.0
| |
05 LAl il 11
Decision 1 Parity Thresholdi
EIR Filter IlTree XorShift8 Check: IntAVG Calculator I ng Avg
[THTT 0 (T i1 T Anini Y 1il

(a) Performance

B FlexiCore4 [AccSC AccP [AccMC W LSSC LSP LS MC

2.0

15

) | | |

0.5 | Déci_szon I Parity, I Three!holdi I
FIR Filter hree Xorshifts [Check INtAVG ~ Calculator "ng‘ AVg
1] 1] 11 1] LIV (1T} Y [t

(b) Energy

Figure 11: Performance and Energy Results of the DSE Cores on the Benchmark Applications normalized against FlexiCore4.

‘ SC P MC
1 [] []] -
(5]
RS
wv
o 095 — —|
B
o n Acc
MC SC P
0.9 |-| 0 Load-Store o 0 fe) -
| : : ! ! ! ! !
0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
Area

Figure 12: Normalized core area vs code size for accumulator
and load-store machines with single-cycle (SC), two-stage
pipelined (P), and multicycle (MC) microarchitectures.

Wmsc mP MC [SC(Bus) M P (Bus) MC (Bus)

[

Acc

LS

Figure 13: Relative energy consumption of the cores.

performance on these workloads, due to the difficulty of right-
shifts on FlexiCore4 (Listing 1). The Calculator kernel sees large
performance improvement on the load-store ISA, but only minimal
improvement on the accumulator ISA. Although the data-coalescing
instructions (ADC, SWB) do help to lower the dynamic (and static)
instruction counts in the accumulator ISA, these savings are not
significant on this kernel (recall, the kernel involves fetching operands
and an operation from the user, doing a single computation, and
then return the result, thus the ratio of I/O to computation is
high). In thresholding, the increased expressiveness of the DSE
ISAs leads to significant performance improvement. This is due to
both the data-coalescing instructions and the improved branching
instructions.

When a FlexiCore is built with an integrated program memory,
the pipelined load-store architecture provides the best latency
and energy characteristics, and is thus the preferred design point.
When a FlexiCore is built without integrated program memory
(necessitating IOs to fetch instructions), the pipelined accumulator

design point is preferred, as its single-operand instructions require
fewer IOs to fetch than the double-operand load-store instructions.
As static power consumption continues to increase relative to
total power consumption in traditional electronics, the techniques
used to minimize FlexiCore gate-count (e.g., using instructions as
control word, choice of operations to minimize ALU complexity,
accumulator-based ISA, etc) may become appealing even for ultra
low power traditional electronics. In IGZO-TFT, a 95% reduction in
device count led to a > 90% reduction in static power for FlexiCore4
compared to PlasticARM[4]. This ratio should be similar for electronics
in traditional technologies. This could result in significant average
power reduction for traditional electronics for low duty cycle designs,
or for designs implemented in leading edge CMOS technologies -
in both cases, static power is a significant fraction of overall power.

7 SUMMARY AND CONCLUSIONS

Natively flexible microprocessors have drawn a lot of recent interest
as critical component to target applications whose computational
needs cannot be met by traditional silicon-based electronics due
to their conformality, thinness, or cost requirements. However,
previous work has not shown that it is feasible to build flexible
processors at scale (i.e., at high yield). Also, prior manufactured
flexible systems were not field-reprogrammable and were evaluated
either on a simple set of test vectors or a single program. A working
flexible microprocessor chip supporting complex applications or
multiple applications has not been demonstrated. Finally, no prior
work performs a design space of flexible microprocessors to optimize
area, code size, and energy of such microprocessors.

In this work, we fabricated and tested hundreds of FlexiCores -
flexible 0.8 um IGZO TFT-based field-reprogrammable 4 and 8-bit
microprocessor chips optimized for low footprint and yield and
showed for the first time that suitably-optimized flexible processors
can have high yield (4-bit FlexiCores have 81% yield - sufficient to
enable sub-cent cost if produced at volume). We evaluated these
chips over a suite of representative kernels - the kernels take
4.28ms to 12.9ms and 21.0 yJ to 61.4J for execution (at 360 nJ
per instruction) - and measured process variation (relative standard
deviation of 15.3% and 21.5% in terms of current draw of 4-bit and
8-bit FlexiCore chips respectively). These are first such studies
for flexible microprocessors. Finally, we perform a design space
exploration and identify design points much better than FlexiCores
- the new cores consume only 45-56% the energy of the base design,

and have code size less than 30% of the base design, with an area
overhead of 9-37%.

8 ACKNOWLEDGEMENTS

We thank the anonymous reviewers as well as the members of the
Passat group for their feedback and the NSF for partial support.

REFERENCES

[1] Nathan Altice. 2015. I am error: The Nintendo family computer/entertainment
system platform. MIT Press, One Broadway 12th Floor Cambridge, MA 02142.

[2] Marcio F Bergamini, André L Santos, Nelson R Stradiotto, and Maria Valnice B
Zanoni. 2005. A disposable electrochemical sensor for the rapid determination
of levodopa. Journal of pharmaceutical and biomedical analysis 39, 1-2 (2005),
54-59.

[3] Christopher J Bettinger. 2018. Recent advances in materials and flexible
electronics for peripheral nerve interfaces. Bioelectronic medicine 4, 1 (2018),
1-10.

[4] John Biggs, James Myers, Jedrzej Kufel, Emre Ozer, Simon Craske, Antony Sou,
Catherine Ramsdale, Ken Williamson, Richard Price, and Scott White. 2021. A
natively flexible 32-bit Arm microprocessor. Nature 595, 7868 (2021), 532-536.

[5] Nathaniel Bleier, Muhammad Husnain Mubarik, Farhan Rasheed, Jasmin
Aghassi-Hagmann, Mehdi B Tahoori, and Rakesh Kumar. 2020. Printed
microprocessors. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). IEEE, IEEE, Piscataway, NJ, 213-226.

[6] Blue Spark Technologies 2015. UT Series Printed Batteries. Blue Spark
Technologies.

[7] RD Bringans and Janos Veres. 2016. Challenges and opportunities in flexible
electronics. In 2016 IEEE International Electron Devices Meeting (IEDM). IEEE,
IEEE, Piscataway, NJ, 6—-4.

[8] Myung-Sic Chae, Ju Hyun Park, Hyun Woo Son, Kyo Seon Hwang, and Tae Geun
Kim. 2018. IGZO-based electrolyte-gated field-effect transistor for in situ
biological sensing platform. Sensors and Actuators B: Chemical 262 (2018),
876-883.

[9] Yu Chen, Guoging Fu, Yael Zilberman, Weitong Ruan, Shideh Kabiri Ameri, Eric

Miller, and Sameer Sonkusale. 2017. Disposable colorimetric geometric barcode

sensor for food quality monitoring. In 2017 19th International Conference on

Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, IEEE,

Piscataway, NJ, 1422-1424.

Zheng Chen, John WF To, Chao Wang, Zhenda Lu, Nan Liu, Alex Chortos,

Lijia Pan, Fei Wei, Yi Cui, and Zhenan Bao. 2014. A three-dimensionally

interconnected carbon nanotube-conducting polymer hydrogel network for

high-performance flexible battery electrodes. Advanced Energy Materials 4, 12

(2014), 1400207.

Nitin Dahad. 2021. Flexible 6502 takes us back to the future. https://www.

eetimes.com/flexible-6502- takes-us-back-to-the-future/

Ravinder Dahiya, Nivasan Yogeswaran, Fengyuan Liu, Libu Manjakkal, Etienne

Burdet, Vincent Hayward, and Henrik Jorntell. 2019. Large-area soft e-skin:

The challenges beyond sensor designs. Proc. IEEE 107, 10 (2019), 2016—-2033.

Hiroki Dembo, Yoshiyuki Kurokawa, Takayuki Ikeda, Shusuke Iwata, Kazuaki

Ohshima, Junko Ishii, Takuya Tsurume, Eiji Sugiyama, Daiki Yamada, Atsuo

Isobe, et al. 2005. RFCPUs on glass and plastic substrates fabricated by TFT

transfer technology. In IEEE InternationalElectron Devices Meeting, 2005. [EDM

Technical Digest. IEEE, IEEE, Piscataway, NJ, 125-127.

Hossein Derakhshandeh, Sara Saheb Kashaf, Fariba Aghabaglou, Ian O

Ghanavati, and Ali Tamayol. 2018. Smart bandages: The future of wound

care. Trends in biotechnology 36, 12 (2018), 1259-1274.

Patrick Diskin. 2004. Nintendo Entertainment System Documentation. Tokyo:

Nintendo 1 (2004), 1-47.

Zihan Dong and Yuanwei Lin. 2020. Ultra-thin wafer technology and

applications: A review. Materials Science in Semiconductor Processing 105 (2020),

104681.

Ronald G Dreslinski, David Fick, Bharan Giridhar, Gyouho Kim, Sangwon Seo,

Matthew Fojtik, Sudhir Satpathy, Yoonmyung Lee, Daeyeon Kim, Nurrachman

Liu, et al. 2013. Centip3de: A 64-core, 3d stacked near-threshold system. IEEE

Micro 33, 2 (2013), 8-16.

Sunil Babu Eadi, Hyun-Jin Shin, P Senthil Kumar, Ki-Woo Song, R Yuvakkumar,

and Hi-Deok Lee. 2021. Fluorine-implanted indium-gallium-zinc oxide (IGZO)

chemiresistor sensor for high-response NO2 detection. Chemosphere 284 (2021),

131287.

Kazuo Eguchi, Sujith Kuruvilla, Gbenga Ogedegbe, William Gerin, Joseph E

Schwartz, and Thomas G Pickering. 2009. What is the optimal interval between

successive home blood pressure readings using an automated oscillometric

device? Journal of Hypertension 27, 6 (2009), 1172-1177. https://doi.org/10.1097/
hjh.0b013e32832a6€39

[10

(11

[12

(13

[14

[15

[16

[17

=
&

[19

[20]

[21

[22

[23]

[24]

[25]

[26

[27

[28
[29

[30]
[31

[32

[33

[34

[35

[36
[37

[38

[39]

[40

[41

[42

[43

[44

[45

Rodger J Elble and James McNames. 2016. Using portable transducers to measure
tremor severity. Tremor and Other Hyperkinetic Movements 6 (2016), 1-12.
Tamer Elfaramawy, Cheikh Latyr Fall, Soodeh Arab, Martin Morissette, Francois
Lellouche, and Benoit Gosselin. 2018. A wireless respiratory monitoring system
using a wearable patch sensor network. IEEE Sensors Journal 19, 2 (2018),
650-657.

enocean. 2017. Light Level Sensor - Ceiling Mounted. https:
//www.enocean.com/en/products/enocean_modules_902mhz/light-level-
sensor-ells-oem/user-manual-pdf.

Muhammad Fahad Farooqui and Atif Shamim. 2016. Low cost inkjet printed
smart bandage for wireless monitoring of chronic wounds. Scientific reports 6
(2016), 28949.

Muhammad Fahad Farooqui and Atif Shamim. 2016. Low Cost Inkjet Printed
Smart Bandage for Wireless Monitoring of Chronic Wounds. Scientific Reports
6 (29 Jun 2016), 28949 EP . https://doi.org/10.1038/srep28949 Article.

DRAM Fastest. 1984. QL’s Quest for business status. Electronics & Power 30,
11.12 (1984), 836—-. https://doi.org/10.1049/ep.1984.0437

Gregory P Forlenza, Taisa Kushner, Laurel H Messer, R Paul Wadwa, and Sriram
Sankaranarayanan. 2019. Factory-calibrated continuous glucose monitoring:
how and why it works, and the dangers of reuse beyond approved duration of
wear. Diabetes technology & therapeutics 21, 4 (2019), 222-229.

Wei Gao, Hiroki Ota, Daisuke Kiriya, Kuniharu Takei, and Ali Javey. 2019.
Flexible electronics toward wearable sensing. Accounts of chemical research 52,
3(2019), 523-533.

Byron D Gates. 2009. Flexible electronics. Science 323, 5921 (2009), 1566-1567.
David Tudor Gethin, Eifion Huw Jewell, and Tim Charles Claypole. 2013. Printed
silver circuits for FMCG packaging. Circuit World 39 (2013), 188-194.

O Girard. 2010. OpenMSP430 processor core, available at opencores. org.

Shu Gong, Willem Schwalb, Yongwei Wang, Yi Chen, Yue Tang, Jye Si, Bijan
Shirinzadeh, and Wenlong Cheng. 2014. A wearable and highly sensitive
pressure sensor with ultrathin gold nanowires. Nature communications 5, 1
(2014), 1-8.

Burton Grad. 2007. The creation and the demise of VisiCalc. IEEE Annals of the
History of Computing 29, 3 (2007), 20-31.

Giuliana Grimaldi and Mario Manto. 2010. Neurological tremor: sensors, signal
processing and emerging applications. Sensors (Basel, Switzerland) 10, 2 (2010),
1399-1422. https://doi.org/10.3390/s100201399

Pei He, JR Brent, Hui Ding, Jinxin Yang, DJ Lewis, Paul O’Brien, and Brian
Derby. 2018. Fully printed high performance humidity sensors based on two-
dimensional materials. Nanoscale 10, 12 (2018), 5599-5606.

Gage Hills, Christian Lau, Andrew Wright, Samuel Fuller, Mindy D Bishop,
Tathagata Srimani, Pritpal Kanhaiya, Rebecca Ho, Aya Amer, Yosi Stein, et al.
2019. Modern microprocessor built from complementary carbon nanotube
transistors. Nature 572, 7771 (2019), 595-602.

Holtek. 2018.

Tsung-Ching Huang, Kenjiro Fukuda, Chun-Ming Lo, Yung-Hui Yeh, Tsuyoshi
Sekitani, Takao Someya, and Kwang-Ting Cheng. 2010. Pseudo-CMOS: A design
style for low-cost and robust flexible electronics. IEEE Transactions on Electron
Devices 58, 1 (2010), 141-150.

YongAn Huang, Hao Wu, Lin Xiao, Yongqing Duan, Hui Zhu, Jing Bian, Dong Ye,
and Zhouping Yin. 2019. Assembly and applications of 3D conformal electronics
on curvilinear surfaces. Materials Horizons 6, 4 (2019), 642-683.

Ming-Hao Hung, Chung-Hung Chen, Yi-Cheng Lai, Kuan-Wen Tung, Wei-Ting
Lin, Hsiu-Hua Wang, Feng-Jui Chan, Chun-Cheng Cheng, Chin-Tang Chuang,
Yu-Sheng Huang, Cheng-Nan Yeh, Chu-Yu Liu, Jen-Pei Tseng, Min-Feng Chiang,
and Yu-Chieh Lin. 2017. Ultra low voltage 1-V RFID tag implement in a-IGZO
TFT technology on plastic. In 2017 IEEE International Conference on RFID (RFID).
IEEE, Piscataway, NJ, 193-197. https://doi.org/10.1109/RFID.2017.7945608
Texas Instruments. 2018. Nano-Power System Timer for Power Gating. http:
//www.ti.com/lit/ds/symlink/tpl5111.pdf.

Hye-Won Jang, Gi-Heon Kim, and Sung-Min Yoon. 2020. Analysis of Mechanical
and Electrical Origins of Degradations in Device Durability of Flexible InGaZnO
Thin-Film Transistors. ACS Applied Electronic Materials 2, 7 (2020), 2113-2122.
Nobuo Karaki, Takashi Nanmoto, Hiroaki Ebihara, Sumio Utsunomiya, Satoshi
Inoue, and Tatsuya Shimoda. 2005. A flexible 8b asynchronous microprocessor
based on low-temperature poly-silicon TFT technology. In ISSCC. 2005 IEEE
International Digest of Technical Papers. Solid-State Circuits Conference, 2005.
IEEE, IEEE, Piscataway, NJ, 272-598.

Ulya R Karpuzcu, Abhishek Sinkar, Nam Sung Kim, and Josep Torrellas. 2013.
Energysmart: Toward energy-efficient manycores for near-threshold computing.
In 2013 IEEE 19th International Symposium on High Performance Computer
Architecture (HPCA). IEEE, IEEE, Piscataway, NJ, 542-553.

W R Keatinge, M G Hayward, and N K Mciver. 1980. Hypothermia during
saturation diving in the North Sea. Bmj 280, 6210 (Feb 1980), 291-291. https:
//doi.org/10.1136/bmj.280.6210.291

Yasser Khan, Arno Thielens, Sifat Muin, Jonathan Ting, Carol Baumbauer,
and Ana C Arias. 2020. A new frontier of printed electronics: flexible hybrid
electronics. Advanced Materials 32, 15 (2020), 1905279.

https://www.eetimes.com/flexible-6502-takes-us-back-to-the-future/
https://www.eetimes.com/flexible-6502-takes-us-back-to-the-future/
https://doi.org/10.1097/hjh.0b013e32832a6e39
https://doi.org/10.1097/hjh.0b013e32832a6e39
https://www.enocean.com/en/products/enocean_modules_902mhz/light-level-sensor-ells-oem/user-manual-pdf
https://www.enocean.com/en/products/enocean_modules_902mhz/light-level-sensor-ells-oem/user-manual-pdf
https://www.enocean.com/en/products/enocean_modules_902mhz/light-level-sensor-ells-oem/user-manual-pdf
https://doi.org/10.1038/srep28949
https://doi.org/10.1049/ep.1984.0437
https://doi.org/10.3390/s100201399
https://doi.org/10.1109/RFID.2017.7945608
http://www.ti.com/lit/ds/symlink/tpl5111.pdf
http://www.ti.com/lit/ds/symlink/tpl5111.pdf
https://doi.org/10.1136/bmj.280.6210.291
https://doi.org/10.1136/bmj.280.6210.291

[46]

[47]

(48]

N
o)

[50]

[51

[52]

o
3

[54

[55

[56

o
=

(58

[59]

[60

[62

(63

[64

(65

[67

(68

Joshua Kim, En-Fan Chou, Jamie Le, Sabrina Wong, Michael Chu, and Michelle
Khine. 2019. Soft wearable pressure sensors for beat-to-beat blood pressure
monitoring. Advanced healthcare materials 8, 13 (2019), 1900109.

Jayoung Kim, William R. de Araujo, Izabela A. Samek, Amay J. Bandodkar,
Wenzhao Jia, Barbara Brunetti, Thiago R.L.C. Paixao, and Joseph Wang. 2015.
Wearable temporary tattoo sensor for real-time trace metal monitoring in human
sweat. Electrochemistry Communications 51 (2015), 41-45. https://doi.org/10.
1016/j.elecom.2014.11.024

Jayoung Kim, Jeerapan Itthipon, Somayeh Imani, Thomas Cho, Amay Bandodkar,
Stefano Cinti, Patrick Mercier, and Joseph Wang. 2016. Noninvasive Alcohol
Monitoring Using a Wearable Tattoo-Based Iontophoretic-Biosensing System.
Acs Sensors 1 (2016), 1011-1019.

Myung-Gil Kim, Mercouri G Kanatzidis, Antonio Facchetti, and Tobin] Marks.
2011. Low-temperature fabrication of high-performance metal oxide thin-film
electronics via combustion processing. Nature materials 10, 5 (2011), 382-388.
Yong-Hoon Kim, Dae-Gyu Moon, and Jeong-In Han. 2004. Organic TFT array
on a paper substrate. IEEE Electron Device Letters 25, 10 (2004), 702-704.
Markus Krammer, James W Borchert, Andreas Petritz, Esther Karner-Petritz,
Gerburg Schider, Barbara Stadlober, Hagen Klauk, and Karin Zojer. 2019. Critical
evaluation of organic thin-film transistor models. Crystals 9, 2 (2019), 85.
Lukas Kranz, Christina Gretener, Julian Perrenoud, Rafael Schmitt, Fabian
Pianezzi, Fabio La Mattina, Patrick Blosch, Erik Cheah, Adrian Chiril, Carolin M
Fella, et al. 2013. Doping of polycrystalline CdTe for high-efficiency solar cells
on flexible metal foil. Nature communications 4, 1 (2013), 1-7.

Yoshiyuki Kurokawa, Takayuki Ikeda, Masami Endo, Hiroki Dembo, Daisuke
Kawae, Takayuki Inoue, Munehiro Kozuma, Daisuke Ohgarane, Satoru Saito,
Koji Dairiki, et al. 2008. UHF RFCPUs on flexible and glass substrates for secure
RFID systems. IEEE journal of solid-state circuits 43, 1 (2008), 292-299.
Christof Landesberger, Sabine Scherbaum, and Karlheinz Bock. 2011. Ultra-thin
wafer fabrication through dicing-by-thinning. In Ultra-thin Chip Technology
and Applications. Springer, 11 W. 42nd St F1 15 New York, NY 10036, 33-43.
Buyeol Lee, Yasuhiro Hirayama, Yasushi Kubota, Shigeki Imai, Akihiko Imaya,
Mikio Katayama, Kiyoshi Kato, Akira Ishikawa, Takayuki Ikeda, Yoshiyuki
Kurokawa, et al. 2003. A CPU on a glass substrate using CG-silicon TFTs. In
2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical
Papers. ISSCC. IEEE, IEEE, Piscataway, NJ, 164-165.

Jae Sang Lee, Seongpil Chang, Sang-Mo Koo, and Sang Yeol Lee. 2010. High-
Performance a-IGZO TFT With ZrO2 Gate Dielectric Fabricated at Room
Temperature. IEEE electron device letters 31, 3 (2010), 225-227.

Sanghoon Lee, Qiongfeng Shi, and Chengkuo Lee. 2019. From flexible electronics
technology in the era of IoT and artificial intelligence toward future implanted
body sensor networks. APL Materials 7, 3 (2019), 031302.

Jongwoo Lim, Hyunsung Jung, Changyeon Baek, Geon-Tae Hwang, Jungho
Ryu, Daeho Yoon, Jibeom Yoo, Kwi-Il Park, and Jong Hee Kim. 2017. All-inkjet-
printed flexible piezoelectric generator made of solvent evaporation assisted
BaTiO3 hybrid material. Nano Energy 41 (2017), 337-343.

Muhammad Hassan Malik, Giovanna Grosso, Hubert Zangl, Alfred Binder,
and Ali Roshanghias. 2021. Flip Chip integration of ultra-thinned dies in low-
cost flexible printed electronics; the effects of die thickness, encapsulation and
conductive adhesives. Microelectronics Reliability 123 (2021), 114204.
Giovanna Marrazza, Iva Chianella, and Marco Mascini. 1999. Disposable DNA
electrochemical biosensors for environmental monitoring. Analytica Chimica
Acta 387, 3 (1999), 297-307.

George Marsaglia et al. 2003. Xorshift rngs. Journal of Statistical Software 8, 14
(2003), 1-6.

Tilo Meister, Koichi Ishida, Reza Shabanpour, Bahman K Boroujeni, Corrado
Carta, Frank Ellinger, Niko Miinzenrieder, Luisa Petti, Giovanni A Salvatore,
Gerhard Troster, et al. 2015. Bendable energy-harvesting module with organic
photovoltaic, rechargeable battery, and a-IGZO TFT charging electronics. In
2015 European Conference on Circuit Theory and Design (ECCTD). IEEE, IEEE,
Piscataway, NJ, 1-4.

microsensys GmbH. 2020. TELID 281.3Dm. https://ww.microsensys.
ww.microsensys.de/fileadmin/user_upload/pdf-dateien/ds_sensor-
transpond/TELID281M-03.pdf.

Larry Mobley, Brian McMillin, and James Lewis. 2006. Vehicle ignition interlock
systems having transdermal alcohol sensor.

P. Mostafalu, W. Lenk, M. R. Dokmeci, B. Ziaie, A. Khademhosseini, and S. R.
Sonkusale. 2015. Wireless Flexible Smart Bandage for Continuous Monitoring
of Wound Oxygenation. IEEE Transactions on Biomedical Circuits and Systems 9,
5 (Oct 2015), 670-677. https://doi.org/10.1109/TBCAS.2015.2488582
Muhammad Husnain Mubarik, Dennis D Weller, Nathaniel Bleier, Matthew
Tomei, Jasmin Aghassi-Hagmann, Mehdi B Tahoori, and Rakesh Kumar. 2020.
Printed machine learning classifiers. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, IEEE, Piscataway, NJ, 73-87.
Kris Myny. 2018. The development of flexible integrated circuits based on
thin-film transistors. Nature electronics 1, 1 (2018), 30-39.

Kris Myny, Steve Smout, Maarten Rockelé, Ajay Bhoolokam, Tung Huei Ke,
Soeren Steudel, Brian Cobb, Aashini Gulati, Francisco Gonzalez Rodriguez, Koji

[69

[70

[71

[72]

[73

[74]

[75

[76]

[77

[78]

[79

[80]

[81]

[82

[83]

[84
[85

[86

[87

[88

[89

Obata, et al. 2014. A thin-film microprocessor with inkjet print-programmable
memory. Scientific reports 4, 1 (2014), 1-6.

Kris Myny, Erik Van Veenendaal, Gerwin H Gelinck, Jan Genoe, Wim Dehaene,
and Paul Heremans. 2011. An 8-bit, 40-instructions-per-second organic
microprocessor on plastic foil. IEEE Journal of Solid-State Circuits 47, 1 (2011),
284-291.

L. Nazhandali, B. Zhai, A. Olson, A. Reeves, M. Minuth, R. Helfand, Sanjay Pant, T.
Austin, and D. Blaauw. 2005. Energy optimization of subthreshold-voltage sensor
network processors. In 32nd International Symposium on Computer Architecture
(ISCA’05), Vol. 33. IEEE, Piscataway, NJ, 197-207. https://doi.org/10.1109/ISCA.
2005.26

Leyla Nazhandali, Bo Zhai, A Olson, Anna Reeves, Michael Minuth, Ryan
Helfand, Sanjay Pant, Todd Austin, and David Blaauw. 2005. Energy optimization
of subthreshold-voltage sensor network processors. In 32nd International
Symposium on Computer Architecture (ISCA’05). IEEE, IEEE, Piscataway, NJ,
197-207.

NXP. 2016. Intelligent MotionSensing Pedometer. https://www.nxp.com/docs/
en/data-sheet/MMA9555L.pdf.

Alvaro Ortiz Pérez, Vera Kallfa3-de Frenes, Alexander Filbert, Janosch Kneer,
Benedikt Bierer, Pirmin Held, Philipp Klein, Jiirgen Wéllenstein, Dirk Benyoucef,
Sigrid Kallfaf3, et al. 2017. Odor-sensing system to support social participation
of people suffering from incontinence. Sensors 17, 1 (2017), 58.

Emre Ozer, Jedrzej Kufel, James Myers, John Biggs, Gavin Brown, Anjit Rana,
Antony Sou, Catherine Ramsdale, and Scott White. 2020. A hardwired machine
learning processing engine fabricated with submicron metal-oxide thin-film
transistors on a flexible substrate. Nature Electronics 3, 7 (2020), 419-425.
Nikolas Papadopoulos, Firat Tankut, Babak Kazemi Esfeh, Marc Ameys, Florian
De Roose, Bart Aerts, Steve Smout, Myriam Willegems, Raf Appeltans, and
Kris Myny. 2021. 2cm diameter Antenna & Sharp Multi-threshold Detection
Thin-film RFID Tags on Flexible substrate. In 2021 IEEE International Flexible
Electronics Technology Conference (IFETC). IEEE, IEEE, Piscataway, NJ, 0059-
0061.

P Muditha Perera and Chamath Keppitiyagama. 2011. A performance
comparison of hypervisors. In 2011 International Conference on Advances in
ICT for Emerging Regions (ICTer). IEEE, IEEE, Piscataway, NJ, 120-120.
Martin J Powell. 1989. The physics of amorphous-silicon thin-film transistors.
IEEE transactions on Electron Devices 36, 12 (1989), 2753-2763.

Alessandra Rinaldi, Claudia Becchimanzi, and Francesca Tosi. 2018. Wearable
Devices and Smart Garments for Stress Management. In Congress of the
International Ergonomics Association. Springer, Springer, 11 W. 42nd St Fl 15
New York, NY 10036, 898-907.

Pragmatic Semiconductor. 2022. FlexLogIC Fab. https://www.pragmaticsemi.
com/create-more/devices

Bosch Sensortec. 2018. Digital humidity, pressure and temperature
sensor. https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-
BME280-DS002.pdf.

Bosch Sensortec. 2018. Digital Pressure Sensor. https://ae-bst.resource.bosch.
com/media/_tech/media/application_notes/BST-BMP380-HS000.pdf.

Food Safety Inspection Service. 1989. USDA FSIS Directive 7110.3 Rev
1: Time/Temperature Guidelines for Cooling Heated Products. USDA, 1400
Independence Ave., SW. Washington, DC 20250.

Anand Sharma, Nitesh K Chourasia, Vishwas Acharya, Nila Pal, Sajal Biring,
Shun-Wei Liu, and Bhola N Pal. 2020. Ultra-low voltage metal oxide thin
film transistor by low-temperature annealed solution processed LiAlO 2 gate
dielectric. Electronic Materials Letters 16, 1 (2020), 22-34.

LTD ShenZhen B.J.X. Industrial Development Co. 2015.

Rajashekhar B Somasagar and Ashok Kusagur. 2017. Flavor Determination
for Milk Quality Assessment using Embedded Electronic Noses. In 2017 2nd
International Conference On Emerging Computation and Information Technologies
(ICECIT). IEEE, IEEE, Piscataway, NJ, 1-4.

Tomé4§ Syrovy, Robert Vik, Silvan Pretl, Lucie Syrova, Jifi Cengery, Ales
Hamacek, Lubomir Kuba¢, and Ladislav Mensik. 2020. Fully printed disposable
IoT soil moisture sensors for precision agriculture. Chemosensors 8, 4 (2020),
125.

Toru Takayama, Yumiko Ohno, Yugo Goto, Asami Machida, Masashi Fujita,
Junya Maruyama, Kiyoshi Kato, Jun Koyama, and Shumpei Yamazaki. 2004. A
CPU on a plastic film substrate. In Digest of Technical Papers. 2004 Symposium
on VLSI Technology, 2004. IEEE, IEEE, Piscataway, NJ, 230-231.

Toshihiro Takeshita, Yusuke Takei, Takahiro Yamashita, Atsushi Oouchi, and
Takeshi Kobayashi. 2020. Flexible substrate with floating island structure for
mounting ultra-thin silicon chips. Flexible and Printed Electronics 5, 2 (2020),
025001.

Hongyu Tang, Yutao Li, Robert Sokolovskij, Leandro Sacco, Hongze Zheng,
Huaiyu Ye, Hongyu Yu, Xuejun Fan, He Tian, Tian-Ling Ren, et al. 2019. Ultra-
high sensitive NO2 gas sensor based on tunable polarity transport in CVD-
WS2/IGZO pN heterojunction. ACS applied materials & interfaces 11, 43 (2019),
40850-40859.

https://doi.org/10.1016/j.elecom.2014.11.024
https://doi.org/10.1016/j.elecom.2014.11.024
https://ww.microsensys.ww.microsensys.de/fileadmin/user_upload/pdf-dateien/ds_sensor-transpond/TELID281M-03.pdf
https://ww.microsensys.ww.microsensys.de/fileadmin/user_upload/pdf-dateien/ds_sensor-transpond/TELID281M-03.pdf
https://ww.microsensys.ww.microsensys.de/fileadmin/user_upload/pdf-dateien/ds_sensor-transpond/TELID281M-03.pdf
https://doi.org/10.1109/TBCAS.2015.2488582
https://doi.org/10.1109/ISCA.2005.26
https://doi.org/10.1109/ISCA.2005.26
https://www.nxp.com/docs/en/data-sheet/MMA9555L.pdf
https://www.nxp.com/docs/en/data-sheet/MMA9555L.pdf
https://www.pragmaticsemi.com/create-more/devices
https://www.pragmaticsemi.com/create-more/devices
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280-DS002.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/application_notes/BST-BMP380-HS000.pdf
https://ae-bst.resource.bosch.com/media/_tech/media/application_notes/BST-BMP380-HS000.pdf

[90]
[91]

[92

(93]

)
s

[95

[96]

Harold Thorgersen. 2000. Heartbeat monitor for wearing during exercise.
Bhawna Tiwari, Pydi Ganga Bahubalindruni, Ana Santa, Jorge Martins, Priyanka
Mittal, Jodo Goes, Rodrigo Martins, Elvira Fortunato, and Pedro Barquinha. 2019.
Oxide TFT rectifiers on flexible substrates operating at NFC frequency range.
IEEE Journal of the Electron Devices Society 7 (2019), 329-334.

Ge Tong, Zhou Jia, and Joseph Chang. 2018. Flexible hybrid electronics: review
and challenges. In 2018 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, IEEE, Piscataway, NJ, 1-5.

Mani Teja Vijjapu, Sandeep Surya, Maruti Zalte, Saravanan Yuvaraja,
Maryam Shojaei Baghini, and Khaled N Salama. 2021. Towards a low cost fully
integrated IGZO TFT NO2 detection and quantification: A solution-processed
approach. Sensors and Actuators B: Chemical 331 (2021), 129450.

Stefan Wachter, Dmitry K Polyushkin, Ole Bethge, and Thomas Mueller.
2017. A microprocessor based on a two-dimensional semiconductor. Nature
communications 8, 1 (2017), 1-6.

Zifeng Wang, Funian Mo, Longtao Ma, Qi Yang, Guojin Liang, Zhuoxin Liu,
Hongfei Li, Na Li, Haiyan Zhang, and Chunyi Zhi. 2018. Highly compressible
cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery
and a flexible battery—-sensor system. ACS applied materials & interfaces 10, 51
(2018), 44527-44534.

Chen Xin, Longlong Chen, Tongkuai Li, Zhihan Zhang, Tingting Zhao, Xifeng
Li, and Jianhua Zhang. 2018. Highly sensitive flexible pressure sensor by the

[97

[98

[99

[100

[101

[102

integration of microstructured PDMS film with a-IGZO TFTs. IEEE Electron
Device Letters 39, 7 (2018), 1073-1076.

Byung-Do Yang, Jae-Mun Oh, Hyeong-Ju Kang, Sang-Hee Park, Chi-Sun Hwang,
Min Ki Ryu, and Jae-Eun Pi. 2013. A transparent logic circuit for RFID tag in
a-IGZO TFT technology. Etri Journal 35, 4 (2013), 610-616.

Yiran Yang and Wei Gao. 2019. Wearable and flexible electronics for continuous
molecular monitoring. Chemical Society Reviews 48, 6 (2019), 1465-1491.
Murat A Yokus, Cheyanne Hass, Talha Agcayazi, Alper Bozkurt, and Michael A
Daniele. 2017. Towards a wearable perspiration sensor. In 2017 IEEE SENSORS.
IEEE, IEEE, Piscataway, NJ, 1-3.

Xiaogin Yu, Dan Liu, Lixing Kang, Yi Yang, Xiaopin Zhang, Qianjin Lv, Song Qiu,
Hehua Jin, Qijun Song, Jin Zhang, et al. 2017. Recycling strategy for fabricating
low-cost and high-performance carbon nanotube TFT devices. ACS applied
materials & interfaces 9, 18 (2017), 15719-15726.

Dalong Zhao, Devin A Mourey, and Thomas N Jackson. 2010. Fast flexible
plastic substrate ZnO circuits. IEEE Electron Device Letters 31, 4 (2010), 323-325.
Wang ZhiJie, Sonder Wang, JH Wang, Stephen Lee, Yao Su Ying, Richard Han,
and YQ Su. 2005. 300mm low K wafer dicing saw study. In 2005 6th International
Conference on Electronic Packaging Technology. IEEE, IEEE, Piscataway, NJ, 262—
268.

	Abstract
	1 Introduction
	2 Related Work
	3 FlexiCores: Architecture and Microarchitecture
	3.1 Technology: Characteristics and Constraints
	3.2 Applications: Expressiveness and Performance Requirements
	3.3 ISA
	3.4 Microarchitecture
	3.5 Comparing FlexiCore processors

	4 Flexicores: Physical Implementation and Analysis
	4.1 Yield Analysis
	4.2 Process Variation
	4.3 FlexiCores in MOSFET CMOS

	5 Application-level Results
	5.1 Representative Applications
	5.2 Performance and energy
	5.3 Comparison to Existing Flexible Processors

	6 Optimizing Flexible Processors
	6.1 Revisiting operations in FlexiCore ISA
	6.2 Revisiting operands
	6.3 Application-level Results

	7 Summary and Conclusions
	8 Acknowledgements
	References

