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Abstract

Climate change is affecting how energy and matter flow through ecosystems, thereby altering global carbon and nutrient cycles.
Microorganisms play a fundamental role in carbon and nutrient cycling and are thus an integral link between ecosystems and climate.
Here, we highlight a major black box hindering our ability to anticipate ecosystem climate responses: viral infections within complex
microbial food webs. We show how understanding and predicting ecosystem responses to warming could be challenging—if not
impossible—without accounting for the direct and indirect effects of viral infections on different microbes (bacteria, archaea, fungi,
protists) that together perform diverse ecosystem functions. Importantly, understanding how rising temperatures associated with
climate change influence viruses and virus-host dynamics is crucial to this task, yet is severely understudied. In this perspective,
we (i) synthesize existing knowledge about virus-microbe-temperature interactions and (ii) identify important gaps to guide future
investigations regarding how climate change might alter microbial food web effects on ecosystem functioning. To provide real-world
context, we consider how these processes may operate in peatlands—globally significant carbon sinks that are threatened by climate
change. We stress that understanding how warming affects biogeochemical cycles in any ecosystem hinges on disentangling complex

interactions and temperature responses within microbial food webs.

Keywords: virus, food webs, climate change, microbiome, carbon cycle, ecosystem functioning

Introduction

Climate change is warming terrestrial carbon (C) reserves, mak-
ing them increasingly vulnerable to microbial respiration (Dor-
repaal et al. 2009, Jassey et al. 2015, Page and Baird 2016, Masson-
Delmotte et al. In Press). Because microbial respiration increases
with temperature (Zhou et al. 2012, Bradford et al. 2019, Smith
et al. 2019, Wieczynski et al. 2021), microbes will likely acceler-
ate carbon release at ever increasing rates as Earth warms, cre-
ating a positive atmospheric feedback loop not currently repre-
sented in predictive models of future climate (Cavicchioli et al.
2019). However, warming is expected to restructure microbial food
webs through changes in species composition (Petchey et al. 1999)
(but see (Thakur et al. 2021)) and species interactions (Lurgi et al.
2012, Barbour and Gibert 2021). Additionally, evidence from ma-
rine systems indicate that microbial impacts on carbon cycling
are likely mediated by viral infections of both microbes and their
predators (Wilhelm and Suttle 1999, Weitz et al. 2015, Fischhoff
et al. 2020). It has been assumed that viruses have similar im-
pacts in terrestrial systems (Williamson et al. 2017, Emerson et al.
2018), but evidence is lacking due to the difficulty of recovering
viruses from these systems. Soil viruses thus remain understud-
ied and more research is clearly needed to determine whether
viral infections influence microbial effects on terrestrial carbon

cycling as seems to be the case in marine ecosystems (Kuzyakov
and Mason-Jones 2018, Trubl et al. 2018). Despite the increasing
recognition that infectious agents like viruses are integral com-
ponents of food webs (Lafferty et al. 2008), the role they play
in microbial food webs and their associated temperature depen-
dencies remain poorly understood. Identifying and understanding
the temperature-dependence of these biotic controls on microbial
respiration is paramount to properly forecast current and future
ecosystem-climate feedbacks.

Autotrophic and heterotrophic bacteria, archaea, fungi, and
micro-eukaryotes play functionally unique roles in microbial
communities as primary producers, nitrogen (N)-fixers (dia-
zotrophs), and organic biomass decomposers. For example, mi-
crobial autotrophs provide about half of global primary produc-
tion (Field et al. 1998, Litchman et al. 2015). Decomposers recycle
carbon and nutrients from dead organic matter and act as ma-
jor carbon emitters by respiring carbon (CO, and CHy) into the
atmosphere (Falkowski et al. 2000, Canadell et al. 2021). The mat-
ter recycled by decomposers reaches higher trophic levels through
microbial predation—a process known as the “the microbial loop”
(Azam et al. 1983, Fenchel 2008). Predation by protists is a major
source of mortality among microbial primary producers (Geisen
et al. 2020) and decomposers (Sherr and Sherr 1988, Gao et al.
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2019) (Fig. 1), that can drastically impact carbon and nutrient cy-
cling by reducing microbial biomass, increasing nutrient turnover,
and altering microbial respiration rates (Trap et al. 2016, Geisen
et al. 2018, 2021, Gao et al. 2019, Rocca et al. 2021). Because of
these effects, protists have been called the “puppet masters” of the
microbiome (Gao et al. 2019). Due to changes in underlying physi-
ological processes, protist predation rates are expected to change
with warming (DeLong and Lyon 2020), altering species interac-
tions within microbial food webs (DeLong and Lyon 2020, Thakur
etal. 2021, Han et al. 2022) and influencing microbial biomass and
respiration rates (O’Connor et al. 2009, Yvon-Durocher and Allen
2012, Geisen et al. 2021). This complexity emphasizes the need
for a food web perspective to understand microbial responses
to changing environmental conditions (Thakur and Geisen
2019).

Perhaps our biggest oversight in understanding microbial food
web responses to global change is the neglected role of viruses,
who have also recently been described as “puppet masters” of the
microbiome (Breitbart et al. 2018). All microbes are potential hosts
for viruses, which may affect microbial food web composition and
functioning by increasing microbial mortality and, in turn, nu-
trient cycling (via the viral shunt) (Fuhrman 1999, Wilhelm and
Suttle 1999, Weinbauer 2004, Suttle 2005). Viruses are likely the
most abundant biological entities on Earth (Weinbauer 2004, Sut-
tle 2005); therefore, viral mediation of carbon and nutrient flux
within microbial food webs is likely widespread, having important
consequences for ecosystem functioning at both local and global
scales (Fuhrman 1999, Wilhelm and Suttle 1999, Weinbauer 2004,
Suttle 2005, Weitz et al. 2015). Many aspects of the viral infection
cycle and virus-host dynamics could potentially be affected by
warming (Table 1), yet the effects of temperature on these pro-
cesses is unclear and severely understudied (Fig. 2). Additionally,
there is a lack of understanding about how the effects of tempera-
ture may be different in distinct environments and across biomes,
undermining our ability to predict how microbial food webs will
respond to global change.

Although the individual effects of microbes and viruses on
ecosystem functioning have been discussed (Azam et al. 1983,
Fenchel 2008, Quaiser et al. 2015, Ballaud et al. 2016, Stough et al.
2017, Gao et al. 2019, Geisen et al. 2021, DeLong et al. 2022), we
lack a baseline understanding about how these top-down con-
trols jointly influence ecosystem processes within broader micro-
bial food webs and in response to novel climates. Here, we outline
the state-of-the-art regarding temperature effects on infections
within microbial food webs and propose ways to conceptualize
and address existing knowledge gaps, with a focus on potential ef-
fects of warming on carbon and nutrient cycling. First, we present
the current state of knowledge about the effects of temperature
on viruses and viral infections. Next, we conceptually and math-
ematically integrate viruses into microbial food webs to discuss
how viruses might mediate the effects of warming on food web
dynamics and functioning. Finally, to provide real-world context
for the potential effects of warming on viral infections within mi-
crobial food webs, we conclude with a short case study exploring
how virus-microbe responses to warming may alter ecosystem
processes in Sphagnum moss-dominated peatlands. These peat-
lands are particularly vulnerable to future climate change (Dor-
repaal et al. 2009, Bu et al. 2011, Jassey et al. 2013, Schuur et al.
2015, Page and Baird 2016, Hugelius et al. 2020) and, despite occu-
pying less than 3% of the Earth’s surface, store ~25%-30% of the
world’s soil carbon (Yu et al. 2010) and produce 5%-10% of global
atmospheric methane (Blodau 2002).

Temperature effects on viruses and viral
infections

All components of microbial food webs can be infected by viruses.
While it is recognized that rising temperatures influence the ecol-
ogy and physiology of microorganisms across environments (Lab-
bate et al. 2016), it is still unclear how the direct and indirect
effects of warming will influence viruses, their infection cycles,
and how that will ultimately cascade to influence microbial food
web functioning. Viral infection occurs in a sequence of steps
(Cann 2008) (Fig. 2) including (i) host cell encounter, (ii) adsorp-
tion, (iil) introduction of virus or genetic material into the cell, (iv)
synthesis of viral particles, and (v) assembly and release of viral
progeny. Any one, and likely all, of these steps could be tempera-
ture dependent (Fig. 2, Table 1; Table S2), but much research is still
needed to evaluate the extent and nature of these temperature
dependencies. Furthermore, temperature may affect viral produc-
tion directly by affecting the particle itself (Nagasaki and Yam-
aguchi 1998) or indirectly by altering host physiology (Kendrick
et al. 2014). Understanding each of these temperature effects is
paramount to determine how warming might impact carbon and
nutrient cycling within microbial food webs.

Increasing temperature can cause a decrease in latent period
(time from infection until release of viral progeny) and an increase
in burst size (number of viral progeny released) (Hadas et al. 1997,
Nagasaki and Yamaguchi 1998, Demory et al. 2017, Maat et al.
2017, Piedade et al. 2018) (Fig. 2), followed by a reversal of these
trends past a virus-specific thermal optimum (Top) (Kimura et al.
2008, Demory et al. 2017). Temperature effects on burst size and
latent period are likely the result of host metabolism and virus
synthesis kinetics, but direct evidence is lacking. Based on these
findings, we hypothesize that future warming may increase vi-
ral production in systems in which current in situ temperatures
are below Topt, While systems already near or at Top may produce
fewer viruses or undergo complete shutdown of viral propagation.

Encounter rates between viruses and hosts depend on virus
and host densities (Murray and Jackson 1992), host cell size, and
host motility (Wilhelm et al. 1998). Host cell sizes (Atkinson et al.
2003, Daufresne et al. 2009, Martin et al. 2020) and population
densities (Savage et al. 2004; Bernhardt et al. 2018) often decrease
while motility increases (Crozier and Federighi 1924, Maeda et al.
1976, Dell et al. 2011, 2014, Gibert et al. 2016) with temperature.
Consequently, warming could have positive or negative effects on
virus-host encounter rates, although more studies are needed (Ta-
ble 1, Fig. 2). Evidence suggests that the effect of temperature on
adsorption are dependent on the host-virus pair, in some cases in-
creasing (Seeley and Primrose 1980, Hadas et al. 1997), decreasing
(Kendrick et al. 2014), or remaining unchanged (Seeley and Prim-
rose 1980) with increases in temperature (Table 1, Fig. 2). While cell
membranes are more fluid and permeable at higher temperatures
(Marr and Ingraham 1962, Sinensky 1974), it is unknown whether
this alters viral infection. We are also unaware of studies that di-
rectly link temperature and virus synthesis rates (Fig. 2). Seasonal
changesinviral abundances (Nakayama et al. 2007, Payet and Sut-
tle 2007, Colombet et al. 2009) and community composition (Ly-
mer et al. 2008), as well as climatic differences in viral lysis rates
(Mojica et al. 2016), have been observed in freshwater, soils, and
marine environments, but confounding factors such as nutrient
availability and predation obscure the direct effects of tempera-
ture on viral infection cycles. Variation in viral life strategies (i.e.,
lysis vs. lysogeny in prokaryotes and/or latency in multicellular
eukaryotes (Correa et al. 2021)) is ecologically important (Stough
et al. 2017) and these strategies likely exhibit unique trends with
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Figure 1. Conceptual diagram outlining the documented and hypothesized temperature effects on processes influencing global carbon cycling,
including the impacts of decomposers (heterotrophic bacteria, archaea, and fungi), autotrophs (cyanobacteria and eukaryotic algae), heterotrophic
protists that consume all organisms, and viruses that infect all organisms. Note that some organisms (prokaryotes and eukaryotes) can occupy both
autotrophic and heterotrophic compartments (mixotrophs).
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Figure 2. Stages of the viral lytic infection cycle and published temperature effects. Orange arrows indicate a positive effect, purple arrows indicate a
negative effect, and interdictory symbols indicate no effect with warming. Gray thermometers indicate stages of the viral infection cycle that either
have no published experimental data or published effects are confounded by other environmental/biological factors (e.g. abundances from field
studies). Numbers correspond to references in Table 1. More details from these studies can be found in Table S2.
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Table 1. Select published studies of temperature effects on viruses. A more detailed description of each study, including summarized

results, can be found in Table S2.

Process Temperature Effects

Location or Host-Virus System

Viral decay Increases with temperature

- Backwater system of Danube River (Field) (Mathias, Kirschner and Velimirov 1995)*

- Heterosigma akashiwo (H93616, NM96) / Hav (HaV01, HaV08) (Lab) (Nagasaki and Yamaguchi 1998)?
- Bacteriophage 9A isolated from Arctic seawater (Lab) (Wells and Deming 2016)*
- Samples from Western Pacific Ocean (Lab) (Wei et al. 2018)*

- Escherichia coli / coliphage isolates from the River Swift (Lab) (Seeley and Primrose 1980)°

- Escherichia coli / T4 (Lab) (Hadas et al. 1997)°

- Chaetoceros tenuissimus / Cten DNAV and Cten RNAV (Lab) (Tomaru et al. 2014)’
Decreases with temperature - Chaetoceros tenuissimus / Cten DNAV and Cten RNAV (Lab) (Tomaru et al. 2014)’

- Emiliana huyxleyi CCMP374 / EnV86 (Lab) (Kendrick et al. 2014)8

Adsorption Increases with temperature
No effect of temperature
Burst size Increases with temperature

- Escherichia coli / coliphage isolates from the River Swift (Lab) (Seeley and Primrose 1980)°
- Backwater system of Danube River (Field) (Mathias, Kirschner and Velimirov 1995)*

- Escherichia coli / T4 (Lab) (Hadas et al. 1997)°

- Micromonas sp. MicA, MicB, MicC / MicVA, MicVB, MicVC (Lab) (Demory et al. 2017)°

- Micromonas polaris / MpoV (Lab) (Maat et al. 2017)°

- Micromonas polaris strain RCC2257, strain RCC2258 / Mpov-45T (Lab) (Piedade et al. 2018)™
Decreases with temperature - Backwater system of Danube River (Field) (Mathias, Kirschner and Velimirov 1995)*

- Micromonas sp. MicA, MicB, MicC / MicVA, MicVB, MicVC (Lab) (Demory et al. 2017)°

Latency period  Increases with temperature

- Micromonas sp. MicA, MicB, MicC / MicVA, MicVB, MicVC (Lab) (Demory et al. 2017)°

- Escherichia coli / coliphage (Lab) (Ellis and Delbriick 1939)'?
Decreases with temperature - Heterosigma akashiwo (H93616, NM96) / Hav (HaV01, HaV08) (Lab) (Nagasaki and Yamaguchi 1998)?

- Escherichia coli / T4 (Lab) (Hadas et al. 1997)°
- Micromonas sp. MicA, MicB, MicC / MicVA, MicVB, MicVC (Lab) (Demory et al. 2017)°
- Micromonas polaris / MpoV (Lab) (Maat et al. 2017)*°
- Micromonas polaris strain RCC2257, strain RCC2258 / Mpov-45T (Lab) (Piedade et al. 2018)**
- Escherichia coli / coliphage (Lab) (Ellis and Delbriick 1939)*
- Staphylococcus aureus / S. aureus phage (Lab) (Krueger and Fong 1937)**

Virus abundance Temperature effects unclear - Backwater system of Danube River (Field) (Mathias, Kirschner and Velimirov 1995)*
- Southern Beaufort Sea and Amundsen Gulf (Field) (Payet and Suttle 2007)**
- Lake Pavin (Field) (Colombet et al. 2009)*°
- Japanese paddy field (Field) (Nakayama et al. 2007)*®
- Michigan agricultural soils (Field) (Roy et al. 2020)"
- Metadata (Danovaro et al. 2011'%; Williamson et al. 2017'°)

Lysis thermal Temperature effects are
range host-dependent

- Heterosigma akashiwo (H93616, NM96) / Hav (HaV01, HaV08) (Lab) (Nagasaki and Yamaguchi 1998)?
- Bacteriophage 9A isolated from Arctic seawater (Lab) (Wells and Deming 2006)*

- Escherichia coli / coliphage isolates from the River Swift (Lab) (Seeley and Primrose 1980)°
- Metadata (Mojica and Brussaard 2014)

Virus-induced
host mortality

Increases with temperature

- North Atlantic Ocean (Field) (Mojica et al. 2016)

temperature that are currently unresolved (e.g., increasing tem-
peratures may or may not induce lysis (Shan et al. 2014)), ex-
posing a crucial gap in our understanding of the temperature-
dependencies of viral infection.

Viral production is linked to host cell physiology (Tomaru et al.
2014, Demory et al. 2017, Maat et al. 2017, Piedade et al. 2018)
because viruses depend on and rewire the metabolism of host
cells (Hurwitz et al. 2013). However, viral temperature ranges
can be independent of, and often surpass, those of their hosts
(Seeley and Primrose 1980, Mojica and Brussaard 2014, Tomaru
et al. 2014). Additionally, multiple viruses that infect the same
host can have different temperature optima (Tomaru et al. 2014),
potentially promoting niche differentiation and a shift in dom-
inant viral taxa with warming. This suggests that viruses could
be less susceptible to extinction under warming than their hosts,
but more research is needed to determine the extent of this
phenomenon and the resulting impacts on nutrient and carbon
cycling.

Finally, the potential consequences of viral temperature de-
pendencies for microbial food web dynamics and functioning
may be complex, context-dependent, and variable across sys-
tems. For example, Frenken et al. 2020 used aquatic mesocosm

experiments to show that, although warming advanced the sea-
sonal timing of viral infection, it did not increase viral abundance
or strengthen viral control over host populations. In addition,
(Danovaro et al. 2011) predicted that the effects of warming on vi-
ral abundance in marine systems will vary by oceanic region and
that a consistent response to rising temperatures across environ-
ments is unlikely. These examplesillustrate that the temperature-
dependent effects of viruses can manifest in different aspects of
viral infection/virus-host interactions and may vary by region. We
argue that controlled studies (e.g., mesocosms, synthetic commu-
nities) and in situ monitoring across diverse environments can aid
in identifying and predicting complex viral responses to tempera-
ture in different environmental contexts. Moreover, the vast ma-
jority of data available for temperature effects on viral dynam-
ics comes from marine environments or a select few model host-
virus systems (Table 1). Much less is known about infection dy-
namics and viral-mediated biogeochemical cycling in terrestrial
systems (Kuzyakov and Mason-Jones 2018, Trubl et al. 2018, Jans-
son and Wu 2022), highlighting the need to expand studies to dif-
ferent environments and new systems to better comprehend the
influences of virus-microbe interactions on ecosystem processes
under warming conditions.
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Integrating viral infections within microbial
food webs under warming

Although viruses are known to impact carbon and nutrient cy-
cling directly via the viral shunt (Wilhelm and Suttle 1999; Sulli-
van etal. 2017), how viruses might mediate microbial responses to
warming is poorly understood. Microbes account for a substantial
fraction of the biomass on Earth (Bar-On et al. 2018) and place ma-
jor controls on carbon and nutrient cycling in terrestrial (Schimel
and Schaeffer 2012), freshwater (Kayranli et al. 2010), and marine
(Zhang et al. 2018) ecosystems worldwide. Microbial communi-
ties are complex, functionally-diverse, multi-trophic food webs
(Bengtsson et al. 1996; Petchey et al. 1999; Gao et al. 2019; Thakur
and Geisen 2019) in which energy and matter flow between or-
ganisms that occupy different trophic positions and play a vari-
ety of functional roles (Fenchel 2008; Steinberg and Landry 2017).
Ecosystem responses to climate change are thus likely regulated
by changes in overall microbial food web dynamics and organiza-
tion (Thakur and Geisen 2019; Kuppardt-Kirmse and Chatzinotas
2020). Viruses could play important roles in these changes that de-
pend on (i) the relative infection rates of hosts in different func-
tional groups, (ii) the temperature dependencies of the viral in-
fection cycle, (iii) thermal matching between virus-host pairs, and
(iv) changes in host physiology, population dynamics, and species
interactions associated with viral infection.

Broadly speaking, how viruses mediate microbial controls on
ecosystem responses to warming hinges on how they impact the
overall balance of carbon and nutrient uptake (via photosynthe-
sis and decomposition), storage in biomass, sequestration in sed-
iment, and release (via respiration) (Figs 2 and 3). Respiration
and decomposition rates are expected to increase with warming
(Petchey et al. 1999, Kirschbaum 2000, Smith et al. 2019) and may
be more sensitive to temperature change than photosynthetic
rates (Allen et al. 2005) (although temperature sensitivities vary
significantly among different microbial groups (Smith et al. 2019)).
This suggests that warming could tip some ecosystems from
productivity-dominant carbon sinks (storing carbon in biomass
and sediment) to respiration-dominant carbon sources (releas-
ing carbon into the atmosphere) (Yvon-Durocher and Allen 2012).
However, increases in microbial primary productivity should at
least partially offset this uneven increase in carbon release (Zhou
etal. 2012, Wyatt et al. 2021). Furthermore, warming is expected to
alter the biomass and composition of microbial food webs, affect-
ing ecosystem processes like CO, release via respiration (Geisen
etal. 2021, Rocca et al. 2022). How viruses mediate this balance be-
tween carbon uptake and release under warming is poorly under-
stood, but will likely involve differential impacts on the dynamics
and mortality of hosts that perform different ecosystem functions
(Sarmento et al. 2010, Danovaro et al. 2011, Vaqué et al. 2019).

Potential climate-driven shifts in nutrient and carbon cycling
can be studied using mathematical models that track the col-
lective responses of several essential organisms within micro-
bial food webs (Fig. 3). Each organism plays a unique role in
carbon and nutrient cycling depending on its metabolic require-
ments, trophic mode (autotroph, heterotroph), trophic position,
stoichiometry, temperature sensitivity, etc. The fate of carbon—
storage in biomass, storage in sediment, or respiration into the
atmosphere—is therefore controlled by the composition and orga-
nization of microbial food webs. As a way to put forward testable
hypotheses about the effects of viruses on nutrient and carbon
cycling, we develop a conceptual model describing a simplified,
hypothetical microbial food web and examine potential impacts
of warming on ecosystem functioning. We describe the basic com-
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ponents of our model below, but a detailed, technical explanation
of the model and its formulation is provided in the Supporting In-
formation.

Organisms

® Decomposers like heterotrophic bacteria and fungi recycle
dead organic matter produced primarily by plants (C uptake)
and are major contributors to microbial respiration (C re-
lease) and soil organic carbon via mortality (C sequestration).

® Nitrogen-fixers like cyanobacteria, methanogenic archaea,
and some heterotrophic bacteria transform atmospheric ni-
trogen (N3) into biologically usable forms that are metaboli-
cally required by all organisms and photosynthetic nitrogen-
fixers also require carbon dioxide for photosynthesis (C up-
take).

® Predators include protists such as heterotrophic flagellates,
ciliates, and mixotrophs that consume both decomposers
and nitrogen-fixers, altering elemental flows by reducing prey
biomass and potentially increasing respiration (C release) and
storing recycled carbon and nutrients in predator biomass
(C uptake). We use the term “predators” here to differentiate
these protists from those that also eat other protists (termed
“top predators” below).

® Eukaryotic algae include protists that use carbon dioxide for
photosynthesis (C uptake) and may represent a significant
offset to microbial respiration.

® Top predators constitute a subnetwork within the overall
food web and include larger protists (e.g., testate amoebae)
that consume recycled carbon via predation on all trophic
levels, altering biomass and elemental flows throughout (C
uptake or release).

® Viruses impact elemental flows directly through lysis (C re-
lease) and indirectly by altering biochemistry and the popula-
tion dynamics of host organisms in all of the categories above
(C uptake or release).

Essential elements

® Inorganic carbon from the atmosphere (CO,) is fixed and
stored in biomass during photosynthesis and is released
through respiration.

® Organic carbon is produced by mortality and viral lysis/decay
and is transferred between organisms through decomposi-
tion and predation.

® Essential nutrients like nitrogen and phosphorus are re-
quired by all organisms and can affect competitive and
trophic dynamics depending on the stoichiometric require-
ments of organisms. For example, inorganic nitrogen is re-
quired for growth by both nitrogen-fixing and heterotrophic
bacteria and converted into organic forms that are then
transferred to higher trophic levels through predation.

The impacts of global warming on the carbon cycle will ulti-
mately depend on the temperature dependencies of several differ-
ent processes within microbial food webs, including photosynthe-
sis, respiration, predation, viral infection, and mortality, many of
which are poorly understood for most of these organisms (Fig. 1).
However, photosynthesis is generally less sensitive to increases
in temperature (activation energy of ~0.32 eV (Allen et al. 2005,
Lépez-Urrutia et al. 2006, O’Connor et al. 2009, Yvon-Durocher and
Allen 2012)) than respiration and predation (~0.65 eV (Brown et al.
2004, Dell et al. 2011, 2014)), while mortality lies somewhere in be-
tween (~0.45 eV (Brown et al. 2004, Savage et al. 2004)).
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Figure 3. (A) Hypothetical microbial food web in Sphagnum peatlands including organisms and nitrogen and carbon flow. Arrows represent flow
between components. Each type of organism consumes elements or other organisms based on its unique stoichiometric requirements and is also
subject to infection by viruses (V). Unused elements are released into the atmosphere or stored in the lithosphere. (B-E) The effects of warming on
equilibrium concentrations of nitrogen and carbon in the model microbial food web in (A). Four scenarios are shown to assess the influences of
different food web components: (B) non-protists only (N + D), (C) non-protists + viruses (N + D + V), (D) non-protists + protists (N+ D + A + P + T),

and (E) all organisms and viruses.

Accounting for these temperature dependencies in our hypo-
thetical food web suggests that warming will have little effect
on the balance of carbon storage and release in systems com-
posed of only decomposers, fungi, and protists—where carbon re-
leased into the atmosphere (Cporganic) 18 expected to exceed car-
bon stored in the sediment (Coyganic) (Fig. 3B and D). Protists sig-
nificantly increase the amount of carbon stored but also reduce
the amount of bioavailable nitrogen (Nporganic) (Fig. 3D). However,
in a system with prokaryotes, protists, and viruses, warming is ex-
pected toincrease the amount of carbon both released and stored,
but stored carbon is expected to surpass released carbon with a
margin that increases with temperature (Fig. 3E), suggesting one
possible way that viral infections may weaken the negative effects
of warming on the global carbon cycle. Based on these preliminary
model results, we hypothesize that warming could strengthen vi-
ral controls on decomposers, N-fixers, and protists, leading to re-
duced microbial biomass, increased nutrient cycling and respira-
tion, shorter mean residence time of carbon in microbial food web
compartments, and shifts in the balance of carbon sequestration
and release into the atmosphere (Fig. 3E).

These results are merely suggestions based on limited knowl-
edge of parameter space and many simplifying assumptions.
True temperature responses will depend on changes in the com-
position and structure of specific microbial food webs, several
temperature-dependencies that are poorly understood across or-
ganisms (Figs 1 and 4), possible changes in size across taxa that
could change predation rates (Brose et al. 2012), and temperature-
dependence at all stages of viral infection (Table 1). We stress that
all of the parameters, interactions among organisms, and tem-
perature dependencies outlined in this model are poorly under-
stood and should be the subject of much-needed future investi-
gation. The primary role of this model is to provide a roadmap
that identifies the components of microbial food webs that could
have important impacts on carbon flux. Hence, the generality of
these effects is very difficult to judge given how much uncer-

tainty remains about the effects of temperature on viral infection,
virus-host dynamics, and the impacts of viruses on microbial food
web structure. We advocate that investigating these unknowns is
a critical step towards more accurately predicting ecosystem re-
sponses to climate change.

Peatlands as a model system to study how
viral infections mediate microbial food web
responses to warming

Here, we highlight peatlands as a case study to provide real-world
context for the ideas explored above. Peatlands include all of
the essential components outlined in this perspective: a clearly-
defined and functionally-diverse microbial food web, viruses that
infect all organisms within that food web, a well-documented key
role in global carbon and nutrient cycling, and high sensitivity to
warming. Hence, peatlands provide an ideal model system to close
some of the gaps in our current understanding about how viral in-
fections may influence the effects of microbial activity on carbon
and nutrient cycling in a warming world.

Peatlands are typically dominated by Sphagnum peat mosses,
storing more carbon (in both living biomass and peat)—and there-
fore arguably having a greater influence on global carbon cycling
and climate—than any other single genus of plants (Clymo and
Hayward 1982, Gorham 1991). While Sphagnum plays a primary
role in carbon dynamics (Slate et al. 2019), it serves a secondary
role by insulating permafrost, thus dampening the impacts of ris-
ing temperatures on vast amounts of carbon stored in the arctic
tundra (Camill and Clark 1998). Peatland microbial food webs are
uniquely well-suited systems for studying ecosystem responses
to global change due to (i) their net impact on the global carbon
cycle (Gorham 1991, Dorrepaal et al. 2009, Yu et al. 2010, Bu et al.
2011), (ii) the functional diversity of their constituent microbial
taxa (Gilbert et al. 1998, Trap et al. 2016, Geisen et al. 2018, Thakur
and Geisen 2019), (iii) their vulnerability to changes in tempera-
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Figure 4. Sphagnum moss and associated microbial food web. Microbial species inhabit both water-filled hyaline cells of Sphagnum tissue and the
external aquatic habitat. First inset shows cyanobacteria (in red) living inside Sphagnum tissue (in green, image taken using a Zeiss LSM 710 laser
scanning confocal microscope, image credit: Andrea Timm and Collin Timm).

ture (Richardson et al. 2018, Norby et al. 2019, Smith et al. 2019,
Turetsky et al. 2019, Geisen et al. 2021), and (iv) the ability to grow
and study Sphagnum moss and associated microbial communities
in the laboratory (Altermatt et al. 2015, Geisen et al. 2018, Carrell
et al. 2019, 2022b). Doing so, however, will require a multifaceted
approach—including characterization of microbial communities
in the field, microbial experiments in the laboratory, -omics ap-
proaches, and mathematical modeling (Singh et al. 2010, Geisen
et al. 2017), all of which can benefit from cross-scale integration.
We propose that the response of Sphagnum-dominated peat-
lands to warming is regulated by poorly understood controls on
carbon and nutrient cycling from microbes and viral infections
(Fig. 1). Microbes play diverse functional roles in peatlands both
within the soil as well as in the aquatic environment above the
soil (Gilbert et al. 1998, Gilbert and Mitchell 2006, Lara et al. 2011,
Kostka et al. 2016, Carrell et al. 2022a). For example, bacterial and
fungal decomposers are primarily responsible for breaking down
dead organic material stored within peatlands (Gilbert et al. 1998,
Gilbert and Mitchell 2006), a process being accelerated by warm-
ing (Dorrepaal et al. 2009). Additionally, Sphagnum’s ability to per-
sist in harsh peatland habitats with extremely low mineral ni-
trogen availability depends on symbiotic interactions with micro-
bial associates (Lindo et al. 2013, Kostka et al. 2016, Carrell et al.
2022a)—including diazotrophs that colonize the cell surface and
water-filled hyaline cells in host plants (Kostka et al. 2016) (Fig. 4).
Bacterial methanotrophs are also prevalent in boreal peat bogs
(Liebner and Svenning 2013, Vile et al. 2014) and not only fix Ny,
but supply 5%-20% of CO, necessary for Sphagnum photosynthe-
sis via methane oxidation (Larmola et al. 2014). Sphagnum’s micro-
bial community composition varies widely with climate (Singer
et al. 2019) and is expected to shift considerably under warming
(Carrell et al. 2019, Basinska et al. 2020), likely altering associated
microbial food webs (Bengtsson et al. 1996, Petchey et al. 1999,
Geisen et al. 2018, Gao et al. 2019, Thakur and Geisen 2019).
Peatland ecosystems also harbor a diverse group of viruses that
infect prokaryotes and eukaryotes (Ballaud et al. 2016, Emerson

et al. 2018, Stough et al. 2018) and are correlated with overall con-
centrations of both CO, and CH, (ter Horst et al. 2021). Surpris-
ingly, the inferred frequency of protist infections in the Sphagnum
microbiome was found to be higher than that of bacterial infec-
tion by phages (Stough et al. 2018), although the functional role
of protist infection in this system remains unclear. Fungal viruses
can have considerable downstream ecological consequences by
lysing or altering the phenotypes of fungal decomposers, sym-
bionts, or pathogens in Sphagnum (Sutela et al. 2019). In peatlands,
viral community composition, abundance, and lifestyle strategies
are influenced by environmental factors, including temperature
(Ballaud et al. 2016, Emerson et al. 2018). However, how warming
might modify the direct (lytic release of elements) and indirect (al-
tered host phenotype/dynamics and food web processes) effects
of viral infections on Sphagnum-associated microbial food webs—
and carbon and nitrogen cycling in peatlands—is not well under-
stood. Our simple model suggests that viral infections and micro-
bial activity may jointly accelerate the positive effects of warming
on C sequestration in peatlands (Fig. 3). However, this simple con-
ceptual model is intended as a first attempt to generate hypothe-
ses about the potential impacts of warming, rather than predict
future scenarios. Indeed, the mechanisms and parameters gov-
erning such interactions between temperature, viruses, protists,
and prokaryotes in this model—and the magnitude and direction
of resulting changes in carbon cycling—have little empirical ver-
ification and will require much more experimental investigation
toresolve, thus highlighting the importance of these missing data.
A deeper understanding about how these ecological interactions
occur in nature and how they are influenced by warming is direly
needed, but peatland microbial food webs provide a promising
system to begin to develop this understanding.

Conclusions

Microbial food webs play a central role in the global carbon cy-
cle by processing and storing vast amounts of carbon. We suggest

$20z Asenuer | ¢ uo Jasn sjeoipolad 1daq sjeuas boy Aq 98/50//9 1 0PeI/E/66/3101e/08sWa)/woo dno olwapede//:sdiy woll pepeojumod



8 | FEMS Microbiology Ecology, 2023, Vol. 99, No. 3

that viral infections within microbial food web components that
play distinct functional roles, and their associated temperature-
dependencies, could control changes in carbon cycling and stor-
age in response to global warming. We highlight the importance of
studying the complex dynamics of microbial food webs to better
understand and predict whether rising temperatures will lead to
net carbon sequestration or release in globally important ecosys-
tems like Sphagnum-dominated peatlands. But we also stress that
these ecological interactions and their temperature-dependencies
are poorly understood, highlighting several gaps for future re-
search. Based on the information gathered in this perspective, we
propose the following list of broad questions to serve as a guide
moving forward:

1) How will warming influence different aspects of the viral
infection cycle, including both host-dependent and host-
independent processes? (Section 1)

2) How will virus-host interactions be affected by warming, in-
cluding virus and host temperature sensitivities, niches, and
matching? (Section 1)

3) How will warming affect virus life strategies? (Section 1)

4) How will viral infections mediate the rewiring of
functionally- and trophically-diverse microbial food webs
under warming? (Section 2)

5) How do viral infections alter host physiology, population dy-
namics and species interactions? (Section 2)

6) Will viral infections of functionally distinct microbial groups
affect how warming shifts the balance of carbon uptake,
storage, and release? (Section 2)

7) What are the relative viral abundances and infection rates
across microbial hosts in real ecosystems like peatlands?
(Section 3)

8) How can we leverage empirical data from systems like
peatlands and models to study the coordinated impacts of
warming and viral infection on microbial carbon and nutri-
ent cycling? (Section 3)

Resolving these uncertainties will require a combination of
empirical and theoretical analyses that specifically evaluate
temperature-dependencies and virus-host interactions within mi-
crobial food webs. The effects of these important processes on mi-
crobial population dynamics and carbon flow may then shed light
on the broader impacts of warming on carbon cycling and storage
within and across whole ecosystems.
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