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Principal symmetric ideals were recently introduced by Harada et al. in [The minimal
free resolution of a general principal symmetric ideal, preprint (2023), arXiv:2308.03141],
where their homological properties are elucidated. They are ideals generated by the
orbit of a single polynomial under permutations of variables in a polynomial ring. In
this paper, we determine when a product of two principal symmetric ideals is princi-
pal symmetric and when the powers of a principal symmetric ideal are again principal
symmetric ideals. We characterize the ideals that have the latter property as being gen-
erated by polynomials invariant up to a scalar multiple under permutation of variables.
Recognizing principal symmetric ideals is an open question for the purpose of which we
produce certain obstructions. We also demonstrate that the Hilbert functions of sym-
metric monomial ideals are not all given by symmetric monomial ideals, in contrast to
the non-symmetric case.

Keywords: Principal symmetric ideal; symmetric group; ideal powers; Hilbert function.
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1. Introduction

Principal symmetric ideals, abbreviated in this paper as psi’s, were introduced in [2].
We recall this notion. Given an element f of the polynomial ring R = k[z1, ..., z4],
the principal symmetric ideal (f)s, is the ideal generated by the orbit of f under
the natural action of the symmetric group Sz on R. In detail, the definition states

(f)sd = (f(xo(l)a . 'axa(d)) HES Sd)

Throughout this paper, we make the assumption that the generator f of a psi is
a homogeneous polynomial. In this case the psi (f)s, is a homogeneous ideal and
we may consider its invariants such as the minimal number of generators and the
Hilbert function.

In this paper, we address a fundamental question.

Question 1.1. How can one determine whether a given ideal is a psi or not?

Whereas an ideal may be a psi despite not being written given in the form dis-
played above, this is a difficult question. An important ingredient in the remainder
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of our results consists of developing obstructions for an ideal to be a psi based on
its number of generators and other characteristics. We investigate this paradigm in
more detail in Sec. 3. A highlight of our analysis is Theorem 3.6, whose statement
is too technical to state here.

Next, we consider powers and products of psi’s. Simple examples show that pow-
ers, and hence products of psi’s need not be psi’s; see Example 5.2. We investigate
the questions.

Question 1.2. When is a product of psi’s a psi? When are the powers of a psi
psi’s?

We settle the question regarding products completely in the case of monomial
psi’s and in the case of psi’s in two-dimensional polynomial rings in Theorems 5.4
and 5.9, respectively. This characterization is in terms of k-symmetric polynomials,
which are those only changed by a multiplication by a constant upon the action
of any permutation of the variables. Regarding powers, we characterize psi’s whose
sufficiently large powers are also psi’s as follows.

Theorem. (Abstracted from Corollary 5.5, Theorem 5.7, and Corol-
lary 5.10) Let I be a homogeneous principal symmetric ideal. Consider the state-
ments

(1) I™ is a principal symmetric ideal for all n > 1.

(

2)
(3) I? is a principal symmetric ideal.
(4)

Statements (1), (2), and (4) are equivalent for all I. Statement (3) is equivalent to
the rest when I is a monomial ideal and when I is an ideal of k|x1, x2).

1™ is a principal symmetric ideal for all sufficiently large integers n.

1 is generated by a k-symmetric polynomial.

Macaulay’s classical work [3] yields that for every homogeneous ideal I there
exists a monomial ideal having the same Hilbert function as I. We ask whether
an analogous phenomenon takes place in the category of symmetric homogeneous
ideals.

Question 1.3. Given a symmetric ideal I, does there exist a symmetric monomial
ideal with the same Hilbert function as I?

In Theorem 6.2, we show that the answer to the question above is negative when
I ranges over a large class of psi’s. Once again the key to this observation is an
analysis of the number of generators of general psi’s performed in [2] versus that
of monomial psi’s in a large number of variables. We study monomial psi’s in more
detail in Sec. 4, where we show the following useful characterization:

Theorem. (Corollary 4.4) A principal symmetric ideal I is a monomial ideal if
and only if I = (m)g, for some monomial m.

Our work opens up avenues of investigation into a series of related questions
which we list in Sec. 7.
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2. Terminology

Throughout the paper, N denotes the set of natural numbers (including zero) and R
denotes the polynomial ring k[x1, ..., x4]. All facts stated in this paper are true for
d = 1, but to avoid trivialities we assume henceforth that the number of variables
is d > 2. The symmetric group Sy acts on R by means of setting for ¢ € Sy and
fER

g f(:Ela' : 'ax'ﬂ) = f(xa(l)v'--vxo(n))-

Working with the symmetric group 54 leads naturally to partitions with d parts.

Definition 2.1. A partition is a tuple a = (a1, ...,aq) € N such that a; > --- >
aq. Its number of parts is d and the sum of its parts is |a] = a1 + - - + aq.

We denote by P(n) the number of partitions of n into arbitrary number of parts,
that is,

P(n) =#{a:|a| = n}.

Partitions are in bijection with equivalence classes of monomials under the action
of the symmetric group.

Definition 2.2. Let a = (a1,...,aq4) be a partition with d parts. A monomial
m € k[x1,...,z4] is said to be of order type a if
m=x,"" .. 257 for some o € Sj.

We denote by R, the k-linear span of all monomials of order type a in R =
k[z1,...,2q] and by (Ra) the ideal generated by this set.

Let k denote the number of distinct values in the tuple a and let {n;}*_, be the
number of occurrences of each value in a. Then we have

d!
dimg Ry = ——. 2.1
ik fa nl'ng‘nk' ( )
We single out a class of polynomials which generate psi’s having well-controlled

generators.

Definition 2.3. Let f be a homogeneous polynomial. We say that f is strongly
homogeneous if all monomials in f have the same order type. If f is strongly homo-
geneous, then the order type of f is the order type of a monomial in f.

Note that the property of strong homogeneity and the order type of a polynomial
are preserved under permutation of variables.

Definition 2.4. An ideal I is strongly homogeneous if I is generated by strongly
homogeneous polynomials fi,..., f, such that all f;’s have the same order type.
A strongly homogeneous psi is a principal symmetric ideal generated by a strongly
homogeneous polynomial.
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For example, principal symmetric ideals generated by a monomial are strongly
homogeneous psi’s. Note that a strongly homogeneous psi is also a strongly homoge-
neous ideal in the sense of Definition 2.4. Whether a homogeneous ideal is strongly
homogeneous can be checked using any minimal generating set.

Definition 2.5. If I is a homogeneous ideal of a graded k-algebra, it admits a
decomposition [ = ®n20 I,, where I,, is the k-vector space of elements of degree
n in I. The Hilbert function of I is the function H; : N — N, Hj(n) = dimy Z,.

3. Recognizing Principal Symmetric Ideals

In this section, we are concerned with the problem of identifying whether a given
ideal is a psi. This is highly nontrivial as the ideal may have a different set of
generators than the one expected in the definition of a psi. Thus, the difficulty of the
problem consists in the non-uniqueness of minimal generating sets for homogeneous
ideals.

In this section, we focus on obstructions preventing a homogeneous ideal from
being a psi. For a homogeneous ideal I we denote by p(I) its minimal number of
generators. Since a psi I has all its generators in a single degree, say degree n,
one can compute the minimal number of generators of I as u(I) = dimg(Z,). The
number of generators, when too large, can be construed as an obstruction to being
a psi by means of the following observation.

Lemma 3.1. Let I is homogeneous psi of k[z1,...,x4], then p(I) < d!.

Proof. By definition, a set of (not necessarily minimal) generators of I is in bijec-
tion with the group Sy. O

For a polynomial f we denote by f(1) the element of k obtained by evaluating
fat x; =1 for 1 < i < d. Note that every element in the Sy orbit of f has the
same value when evaluated at 1. More can be said regarding obstructions to being
a psi in terms of this invariant.

Lemma 3.2. Let f be a strongly homogeneous polynomial in k[xi,...,zq] with
order type a. If f(1) = 0 then (f)s, € (Ra). In particular p((f)s,) < dimy Ra — 1.

=

Proof. The containment (f)s, C (Ra) follows because f € R, implies 0 - f € R,
for any o € S4. The condition f(1) = 0 implies (o - f)(1) = 0 for all 0 € S; and
moreover g(1) = 0 for any polynomial g in the degree |a| component of I. Therefore
there are elements of R, not in I, for example, no monomials of degree a are in 1.

This gives the strict containment and hence the claimed inequality. O

The following technical lemmas are the main ingredients in the proof of Theo-
rem 3.6 as well as Theorem 4.3.

Lemma 3.3. Let f be a homogeneous polynomial and write f = g1 + -+ + gy,
where the monomials in each of the g;’s share no order types. Suppose there exists
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a homogeneous polynomial g € (f)s, such that deg(g) = deg(f), g shares order
types only with g1 among all g;’s, and g(1) # 0. Then for all i # 1, g;(1) = 0.
Thus, (1) = g1(1).

Proof. Suppose that g € (f)s, with g(1) # 0. Since deg(g) = deg(f), there exist
constants ¢, € k such that

9= Z CUU'(91+"'+QT): ZCUU'QI+"'+ Z Co0 " Gr.
ogESy o€Sy o€Sy

Since g shares order types only with g; and the g;’s share no order types, we conclude
from the identity displayed above that g =3 g co0-g1 and ) g co0-g; =0
for ¢ > 1. Hence,

g(1) = Y crlo-g1)(1)

o€Sy

= Z Cagl(]-)

g€Sy
=g1(1) Z Co
o€Sy

Since g(1) # 0, it follows that > g co # 0. For i > 1, we deduce from ) 5 50"
g; = 0 that

0= co(o-gi)(1)

o€Sy
= Z ngi(l)
og€Sy
= g:(1) Z Co
g€Sy
Since >, cg, o # 0, this yields g;(1) = 0 for i > 1, as desired, and thus
f) =a1(1). O

Lemma 3.4. Let f be homogeneous and g € (f)s, be a homogeneous polynomial
such that deg(g) = deg(f). Then f = g’ + h for some g’ which contains precisely
the same order types as g and for some h which shares no order types with g. Also,

if (1) # 0, then g'(1) # 0.

Proof. Since g € (f)s, and deg(g) = deg(f), there exist ¢, € K such that
g= Z o0 - f.
g€Sy
Since order types are invariant under permutation, f must contain a nonzero term

for every order type present in g. Let ¢’ contain precisely those terms of f whose
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order type is present in g. Let h = f — ¢’, so that f = ¢’ + h and h shares no order
types with g.
Now, suppose that g(1) # 0. Note that

g= ZCUU'(9/+h): 2000-9/4— cha-h.

gESy gESy oceSy

Since h shares no order types with g, > g co0-g' =gand > g co0-h =0.
Thus,

so g'(1) # 0. O
We illustrate the previous lemma with an example.

Example 3.5. Let f = 23 — 23 + 2223 + xow374 € Q[21, T2, T3, 74]. One can verify,
for example by using Macaulay2 [1], that ¢ = z123 + z17324 € (f)s,. Among the
terms of f, those which share order types with g are z2x3 and xowswz4, while 3
and —z3 do not. So, the proof of Lemma 3.4 tells us to set ¢’ = x2x3 + z22374 and
h' = 23 — x3. Observe that g(1) # 0 and also g'(1) # 0.

Theorem 3.6. Let I be a homogeneous ideal generated in degree n. Let g1, g2 be
homogeneous polynomials of degree n that share no order types such that g1(1) # 0
and g2(1) # 0. If g1,92 € I then I is not a principal symmetric ideal.

Proof. Assume to the contrary that I is a principal symmetric ideal generated by
some f. Then by Lemma 3.4, f = g} + hi and f = g + ha where g, and h; share no
order types and moreover g; contains precisely the same order types as g;. Thus,
the identity ¢} + h1 = g4 + h2 combined with the fact that g1, g2 share no order
types shows that the terms of g} are a subset of the terms of ho and the terms of
g5 are a subset of the terms of hy.

Let ' = hs — g] and note that h’ shares no order types with g1, g5. Indeed,
R’ shares no order types with g; since all terms of ¢} cancel in hy — ¢g] and these
are exactly the terms of hy of the same order type with terms in ¢g7. Moreover, h’
shares no order types with g5 since the terms of h’ are a subset of the terms of ho
and hs shares no order types with gj.

Then, f = g] + g5 + h'. Since ¢1(1), g2(1) # 0, we may deduce ¢}(1), g5(1) #
0 by Lemma 3.4. We now apply Lemma 3.3 for ¢ = ¢1 € (f)s, based on the
decomposition f = ¢ + g5 + h’. To verify the hypothesis of this lemma, note that
g1 shares order types only with g7, but not with g5 or A’. This is true since the
order types of g} are precisely the order types of go and g; shares no order types
with go, while A’ shares no order types with g}, as established above, but ¢} has
exactly the same order types as g;. In view of this, Lemma 3.3 yields that g5(1) = 0
and A/(1) = 0. The former identity provides the desired contradiction. O

2550320-7
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4. Monomial Principal Symmetric Ideals

As a matter of terminology, a monomial principal symmetric ideal may be inter-
preted to be a psi that is also a monomial ideal or a psi generated by a monomial,
that is, an ideal of the form (m)g,, where m is a monomial. We prove in Corol-
lary 4.4 that these two potential interpretations describe the same class of ideals.

Lemma 4.1. Assume (f)s, is a monomial ideal. If f contains a term of order type
a, then Ra C (f)s,. If, in addition, f is strongly homogeneous, then (Ra) = (f)s, -

Proof. Suppose that f contains a term which is a scalar multiple of a monomial m
of order type a and let I = (f)s,. Since f € I and I is assumed to be a monomial
ideal, we deduce m € I. Since the ideal I is symmetric, (m)s, € (f)s,. Since the
monomials of order type a are a basis for R, and any monomial of order type a
can be expressed as a permutation of m, we conclude that (Ra) = (m)s, C (f)s,-

If f is strongly homogeneous order type a, then all terms of f are in R,, therefore
f € Ra and (f)s, € (Ra). O

Lemma 4.2. Let (f)s, be a monomial ideal, where f is homogeneous. Decompose
f into a sum of strongly homogeneous components of pairwise distinct order types,
f =g+ -+ gt Then, for each i, (gi)s, is a monomial ideal and (g;)s, = (Ra)
for some vector a € N¢ that depends on i.

Proof. Let a be the order type of g;. By Lemma 4.1,

Ra C(f)sy = (914 +gt)s, € (g1)s, + -+ (9t)s,-

Since g; has a different order type than the other g;’s, Ra C (¢:)s,. Also, the
minimal generators of (g;)s, form a subset of Ra, so (¢i)s, = (Ra). Thus, (¢;)s, is
a monomial ideal. O

Theorem 4.3. Assume (f)s, is a monomial ideal. If f is homogeneous, then f is
strongly homogeneous and (f)s, = (m)s, for some monomial m.

Proof. Assume to the contrary that f contains monomial terms of different order
types, ai, ..., a; say. Then we can write f = g1 +-- -+ g+, where each g; is the sum
of the terms of order type a;.

We show that

(gl +eoet gt)sd = (f)Sd = (gl)sd +o (gt)sd' (41)

Clearly, one containment holds

(fse=(g1+ - +gt)s, € (g1)s, + -+ (9t)5.-

By Lemma 4.2, we have (g;)s, = (Ra,;) and by Lemma 4.1 there are containments
Ra, € (f)s,- Hence, there is a containment

(Ra;) + -+ (Ra,) = (91)s, + -+ (9t)s, € (f)sy = (91 + -+ gt) s,

2550320-8
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Since every term of f is in (Ra,) + - - + (Ra,), the claimed equality follows. In
particular, we see that g; € (f)s, for each .

Since g; is strongly homogeneous and (g;)s, = (Ra;), Lemma 3.2 yields that
gi(1) #0for all 1 <¢ <t Ift > 1, then Theorem 3.6 contradicts the fact that I is
a psi. Hence, t = 1 and therefore f is strongly homogeneous. O

Corollary 4.4. A principal symmetric ideal I is a monomial ideal if and only if
I =(m)g, for some monomial m.

Proof. The forward direction follows from Theorem 4.3. For the backward direc-
tion, note that all ideals (m)g,, where m is any monomial, are both psi’s and
monomial ideals. O

5. Products and Powers of Principal Symmetric Ideals

Simple examples show that powers, and hence products, of psi’s need not be psi’s.

Example 5.1. Consider the ideal (z1)s, = (%1, x2). Its square I? = (23, 1122, 73)
cannot be a psi in k[x1, 2] since it has three minimal generators whereas a psi with
respect to the action of the symmetric group S has at most two generators by
Lemma 3.1.

A contrasting behavior is offered by the following family of examples.

Example 5.2. Suppose that f is a k-symmetric polynomial and g is arbitrary.
Then (f)s,(9)s, = (fg)s, and ((f)s,)" = (f")s, are principal symmetric ideals.

In view of Example 5.2 one may wonder whether this class of examples char-
acterizes the affirmative answer to Question 1.2. In Theorem 5.4, Corollary 5.5,
Theorem 5.7, and Theorem 5.9 we confirm that this is indeed the case.

We start with a result on the number of generators of a product of psi’s of
importance to the future developments in this section.

Theorem 5.3. Let I = (f)s, be a principal symmetric ideal and let J =
(91,---,9m) be a homogeneous ideal generated in a single degree. Assume that f
s not k-symmetric. Then

u(1J) = p(J) + 1.
In particular, if I, J are principal symmetric ideals neither of which is generated by

a k-symmetric polynomial, then p(IJ) > max{u(I),u(J)} + 1.

Proof. We may assume that f has no k-symmetric divisor and that the polynomials
g1, - - - » §m have no non-constant common divisor since dividing by such divisors does
not change any of the quantities involved. Then there is an irreducible factor of f,
call it p, that does not divide all polynomials o - f. Indeed, if p | o - f for all 0 € Sy

2550320-9
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then o=! - p | f and therefore (Ilses, @ - p) | f. Since the product [[,cq,0 - p is
k-invariant we have obtained a contradiction.

Pick o0 € S4 so that p{ o - f. Let U be the span of the minimal generators of
1J and let V' be the span of the minimal generators of J. Let h = ¢ - f. Then U
contains fV + AV and consequently we have

p(1J) = dimy U
> dimy (fV + hV)
> dim(fV) + dime(hV) — dimy (fV N AV)
> dimy (fV) + 1 = dimy (V) + 1

=nu(J)+ 1.
The only inequality that requires explanation is dimy(hV') — dimy(fV N AV) > 1,
equivalently dimy(hV) > dimk(fV N AV) or AV 2 fVNAV. Assume towards a
contradiction that hV = fV NAV. Then each element of hV isin fV. For example,
hg; € fV for each i, which yields that f, and therefore also p, divides hg; for each
1. However, p is coprime to h by assumption, so p divides each g;. This contradicts
the assumption that g1, ..., g, have no non-constant common divisor, thus proving
the claim. O

5.1. Products and powers of monomial principal symmetric ideals

The following theorem answers Question 1.2 for products of monomial psi’s.

Theorem 5.4. Let I,J be monomial principal symmetric ideals. Then IJ is a
principal symmetric ideal if and only if I = ((x1---xq4)™)s, or J = ((x1---xa)™)s,
for some n > 0.

Proof. < follows from Example 5.2.

= Suppose that I # ((x1---24)")s, and J # ((x1---24)")s, for all n > 0. Let
a, b be partitions such that I = (x®)g, and J = (xP)g,, where x* = z{* - - - 25 and
xP = :Ulfl . -de. We now show that IJ is not strongly homogeneous and thus not a
monomial psi in view of Theorem 4.3. By assumption, a,b # (n,...,n) for any n.
Therefore, there exist 7, j, which we pick to be smallest possible, such that a; # a;

and by # b;. Without loss of generality assume that j > i. We can write
a:(al,...,al ,ai,...),
——
1 — 1 times
b=(by,....,b1 ,bj,...),
——
j — 1 times
(1j)-b=(bj, bi,...,b1 ,...).
N—

7 — 1 times

2550320-10
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Furthermore,

a+b:(a1+b1’..7a1+b17a1+b17")

7 — 1 times
and

a—l—(lj)-b:(a1—i—bj,al+b1,...,a1—i—bl,ai—l—bl,...).

i — 2‘Eimes

Since a,b are monotonic non-increasing vectors, a; + b1 > ay + by for any
i’,j'. Furthermore, since a1 > a; > ay and by > b; > b for i’ > 1,5' > j, every
component of a+(17)-b after the first ¢ terms is strictly less than aq +b1. Therefore,
a+ (17) - b contains precisely i — 2 components with maximum value, while a+ b
contains i — 1 components with maximum value. Hence, a+b and a+ (1 5)-b must
have different order types. Therefore, since both x2*? and x2+(19)® are minimal
generators for 1.J, I.J is not strongly homogeneous and thus not principal monomial
symmetric. O

Corollary 5.5. Let I be a monomial principal symmetric ideal of k[x1,...,x4].
The following statements are equivalent:

(1) I™ is a principal symmetric ideal for all integers n > 1.
(2) I? is a principal symmetric ideal.
(3) I is generated by a k-invariant monomial of the form (x1 -+ -x4)" for somet > 1.

Proof. The implications (1) = (2) and (3) = (1) are clear. The implication (2) =
(3) follows from Theorem 5.4 by setting J = I. |

Another way to phrase Theorem 5.4 is that for monomial psi’s I and J, IJ is
a psi if and only if u(I) = 1 or u(J) = 1. Example 5.6 shows that in general, for
(not necessarily monomial) psi’s I, .J, the invariants p(7), u(J) are not sufficient to
determine if 1.J is principal symmetric.

Example 5.6. Let [ = (z122)s, and J = (x122 + x314) g, and J = (x1 — 22)g,-
Then p(J) = p(J') = 3 as computed using Macaulay2 [1]. Note that I.J is not
principal symmetric by Theorem 3.6 since zixsx3z4 + w%xi and x2x§x4 + xlxga:i
are elements of minimal degree of I.J that share no order types and are nonzero
when evaluated at 1. However, I.J' = (z122(x1 — 23))s, is principal symmetric.

5.2. Powers of principal symmetric ideals

We now turn our attention to powers of arbitrary psi’s.

Theorem 5.7. Let I be a nonzero principal symmetric ideal. The following are
equivalent:

(1) I™ is a principal symmetric ideal for all integers n > 1.

2550320-11
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(2) I™ is a principal symmetric ideal for all sufficiently large integers n.
(3) I is generated by a k-invariant polynomial.

Proof. The implications (1) = (2) and (3) = (1) are clear. For (2) = (3)
assume towards a contradiction that I is not generated by a k-invariant poly-
nomial and note that applying Theorem 5.3 inductively it follows that p(I™) >
wu(I)+n—1. For sufficiently large n we conclude that p(I™) > d!, which contradicts
Lemma 3.1. O

Comparing Corollary 5.5 and Theorem 5.7 we see that the result concerning
monomial ideals is stronger. However, outside the case of monomial psi’s it is not
the case that I? being a psi forces I to be generated by a k-invariant polynomial,
as the following example demonstrates.

Example 5.8. Let k be a field of characteristic not equal to 2 and consider I =
(x1 — x2)s,. Note that x1 — z2 is not a k-invariant polynomial in k[z1, ..., z4] for
d > 2. We show that I? = ((x1—x2)?)s, is a psi. Since the inclusion ((z; —22)?)s, C
I? is evident, equality follows from expressing the generators of I? as elements of
((z1 — 22)?)s, as shown below

2(xi — zj)(zp — 24q)
= (2zq —m; —x;)(w; — @) + (—22p + 2 + 3;) (75 — 35)

= (wq — xz’)Q — (g — xj)Q + (zj — "Ep)2 —(z; — mp)2~

5.3. The two-variable case
The case of psi’s in the ring k[z1, z2] closely resembles the monomial case.

Theorem 5.9. Let I = (f)s, and J = (g)s, be homogeneous principal symmetric
ideals of K[x1,x2]. Then I.J is a principal symmetric ideal if and only if f or g is
k-symmetric.

Proof. Assume that neither f nor g are k-symmetric. Since f and g are not k-
symmetric pu(I), u(J) # 1, so u(I) = 2 and p(J) = 2 according to Lemma 3.1.
Therefore, by Theorem 5.3, it follows that

pw(lJ)>2+1=3>2=|5%|.
Thus, by Lemma 3.1, IJ is not a principal symmetric ideal. O

We have obtained an analogue of Corollary 5.5.

Corollary 5.10. Let I = (f)s, be a homogeneous principal symmetric ideal of
k[z1,z2]. Then I™ is a principal symmetric ideal for all integers n > 1 if and only
if I? is a principal symmetric ideal if and only if f is k-symmetric.

To see that the equivalence I? is a principal symmetric ideal if and only if f is
k-symmetric does not extend to d > 2 variables, consider Example 5.8.
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5.4. Analysis of products in terms of stabilizers

Definition 5.11. For f € k[z1,...,24], let Staby = {0 € Sg: 0 f = ¢f for some
nonzero ¢ € k} be the k-stabilizer of f.

Note that Stabs is a subgroup of S4. Also, let ¢ be the identity permutation
of Sd.

Proposition 5.12. Let I = (f)s, and J = (g9)s,. If Sq¢ = Stabj Stab,, then
I1J=(fg)s,, so IJ is a principal symmetric ideal.

Proof. By definition one has I.J = ((o - f)(7-g) : 0,7 € Sq). For each o - (fg) in
the generating set of (fg)s,, o-(fg) = (o f)(o - g). Thus, o - (fg) € IJ yields
(fg)sd clJ.

Given (o - f)(7 - g), by assumption, 0~ !7 € Stab Stab,, so o7'r = 47157}
for some v € Staby and § € Stab,. Hence, ¢ = yo~!74. By definition of Staby
and Stab,, c1(cy™) - f =0 - f and c2(78) - g = 7 - g for some nonzero ¢y, ¢y € k.
Therefore,

1

(0 f)(7-g) = (c1(oy™") - F)(ea(10) - g)

oy )76 g)

oy o) ((oy7h - f)(76 - 9))

= c1c2(o7™!) - ((yo oy f)(yo T T8 - g))
oy (fyoT rd - g)))
=ciea(oy™ - (fg)) (since yo~l7é =1).

The displayed computations show that (o - f)(7-g) € (fg)s,, thus, IJ C (fg)s,
a

= C1C9

Corollary 5.13. Let I = (f)s, and J = (g)s,. If Staby = Ay (the alternating
group) and | Staby | =2, then IJ = (fg)s, is a principal symmetric ideal.

Proof. Note that Stabs Staby = {07 : 0 € S¢, 7 € Sy}. Furthermore, we show that
all such products are distinct. Suppose that o7 = ¢’7’ for some 0,0’ € Staby and
7,7" € Staby. If 7 = 7/, then clearly, o = o’. If 7 # 7/, then since | Staby | = 2, one
of 7,7/ is the identity . Without loss of generality assume that 7 = ¢, then o = o/7/,
so 7/ = 0’710 € Stabs. Now, 7/ € Stab, has order 2, so it is a transposition, which
is an odd permutation. Hence 7" ¢ Agq = Staby, which is a contradiction.

Since all the products in StabsStab, are distinct, |StabsStab,| =
| Staby || Staby | = |S4|. Hence, we have that Staby Stab, = Sy, so by the above
proposition, IJ = (fg)s,. O

Example 5.14. Consider the polynomial ring k[z1,z2, 73] and let f = x3wy +
r3z3 + 2321 and g = x1 — 9. Then Staby = Asz,Stab, = {(12),:} and thus
(f)Ss (g)Ss = (fg)S:s by Corollary 5.13.
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6. Hilbert Functions of Principal Symmetric Ideals

A symmetric monomial ideal is a monomial ideal J that is closed under the action
of the symmetric group, that is, ¢ - m € J for any m € J and o € Sy. In this
section, we consider Question 1.3 which aims to compare the collection of Hilbert
functions of psi’s to that of symmetric monomial ideals (not necessarily monomial
psi’s). We are not aware of a characterization of all Hilbert functions attained by
psi’s. However, in [2] the Hilbert function of “most” psi’s is determined. We now
review the relevant facts.

Fix n € N. A parameter space for the set of principal symmetric ideals gener-
ated in degree n is PV~!, where N = (”+ff_1). Indeed, let M,, denote the set of
monomials of degree n in R = k[z1,...,z4] listed as M,, = {mq,...,my} in an
arbitrary order. Points in PV ~! parametrize principal symmetric ideals generated
in degree d via the assignment

® : PV~ — principal symmetric ideals

N
®(cy:---:en):i=(fc)s,, where fo= chmz
i=1

The map ® above is onto, but not one-to-one. It allows us to formulate a notion
of a general principal symmetric ideal, which we now formalize. We will say that a
general principal symmetric ideal generated in degree d satisfies property P if there
exists a non-empty Zariski-open set U of PV so that for each ¢ € U, the principal
symmetric ideal ®(c) = (f.)s, satisfies the property P. The following was shown
in [2].

Theorem 6.1 (Partial statement of [2, Theorem 8.4]). Suppose char(k) =0
and fix an integer n > 2.* For sufficiently large d, a general principal symmetric
ideal I of klz1,...,x4] generated in degree n yields a quotient ring with Hilbert
function
dimg R, ifi <d-—1,
Hpy(i) == dimg(R/I); = §{ P(n) —1 ifi=d,
0 if i >d.

In the following, we will refer to a psi I or to a polynomial f such that I = (f)sg,
as general provided that it satisfies the conclusion of Theorem 6.1. Heuristically,
since non-empty Zariski open sets are dense, “most” polynomials homogeneous f
of a fixed degree are general.

Theorem 6.2. Let k be a field of characteristic 0, and let f € R = k[z1,...,xq] be

a polynomial of degree n. If d is sufficiently large satisfying in particular d > n™/n!

2Note that the meanings of n and d in this reference are interchanged compared to our notation
here.
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and d > n, and if f is general then there exists no monomial symmetric ideal J
that satisfies H;j(n) = Hg)g (n) for alln € N.

Proof. Let J be a symmetric monomial ideal. Using the notation in Definition 2.2
we have a decomposition of the vector space R, of homogeneous polynomials of

Ry = (P Ra,

la|=n

degree n as

where a ranges over the set of partitions of sum n. Due to the fact that J is
symmetric, Ry N J # 0 implies Ry C J. Thus, there is an induced decomposition
of J,, of the form

Jo=JNR,= P Ra

laj]=n
RaNJ#0
and consequently we obtain
Hp(n) = Z dimg Ra and Hj(n) = Z dimy, Ra. (6.1)
la|=n laj]=n
RaNJ#0
We write this concisely as
Hp)s(n) = Hr(n) — Hy(n) = > dim Ra. (6.2)
Ry

Let a be a partition of n, let k denote the number of distinct values in a and {n;}*_,
the number of occurrences of each value. By Eq. (2.1), we have

dimy By = —— L (6.3)
ni1not---Ng!
A partition a of n has at most n parts, where the possible value of the ith part
a; satisfies 0 < a; < %. Indeed, the inequality ia; < |a| = n can be deduced from
the fact that the parts are ordered non-increasingly and the sum of the first ¢ parts
does not exceed |a|. So, we must have the following upper bound for P(n):
n nn
Pn)<]]- = <d

i=1

=3

Since a is a partition of n having d parts and since d > n, no part can be
repeated d times as this would imply that n = |a| is divisible by d, a contradiction.
Thus, n; < d for each 1 < ¢ < k and in particular we have that k£ > 2. Since there
are d factors in the product nilns!--- ng! at least two of which are equal to 1, we
deduce that

d! d!
> =
nylng! - ng! = (d— 1)1!

> P(n). (6.4)

nilng!- - ng! < (d— DN de dimg Ry = d
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Let n = deg f and assume that there is some symmetric monomial ideal J such
that H;(n) = H(y),, (n) for all n € N. By Theorem 6.1, for sufficiently large d and
general f we have

Hi(n) = Hy(n) = Ha(n) — Hipys, (1) = P(n) — 1. (6.5)
Equations (6.5) and (6.2) show there exists a partition a of n with d parts such
that

dimy Ry < P(n) — 1.
This contradicts Eq. (6.4), which yields dimy Ry > P(n) for every partition a. O

Next, we consider the case of two variables.

Definition 6.3. For f € k[z1,z2] and o = (12) let g = ged(f, o f). The symmetric
reduction of f, or sRed(f) is defined as sRed(f) = f/g.

Note that the symmetric reduction of a polynomial is only well defined up to
multiplication by a unit. However its degree is well defined and this suffices for our
purpose.

We observe that the Hilbert function of a psi in the two-dimensional ring
depends only on the degree of the generator and its symmetric reduction. In the
following, for a graded module M we employ the standard notation M (—i) to
mean the graded module which has the same underlying set as M and satisfies
M(—i)p = My —;.

Lemma 6.4. Let f € R = klxy,x2] be homogeneous, let k = deg(f) and ¢ =
deg(sRed(f)). Then for every integer n the following holds®:

H[(n) :2HR(’I’L—]€)—HR(TL—]C—Z).

Proof. Set I = (f)s, and g = ged(f,o- f). Assume first that f is not k-symmetric,
therefore ¢ > 0 and deg(g) = k — ¢. The Hilbert function of I can be deduced from
the isomorphism

I = g(sRed(f),o - sRed(f)) = (sRed(f),o - sRed(f))(—k + £),

where C' = (sRed(f), o - sRed(f)) is generated by a regular sequence. The isomor-
phism provides the equality Hr(n) = Ho(n — k + ¢) and the Hilbert function of C
is obtained from the Koszul complex

0 — R(—2¢) - R*(—{) - C — 0

which yields Ho(n) = 2Hg(n—{)— Hg(n—2¢). This establishes the claimed formula
in the case £ > 0.

Assume now that f is k-symmetric, therefore £ = 0. Then, as (f)s, = (f) is a
principal ideal in the usual sense we have H )y (n) = Hr(n — k). This agrees with
the claim. O

PRecall that Hr(i) = 0 for i < 0.
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Proposition 6.5. Let f € k[z1,x2] be homogeneous, let { = deg(sRed(f)) and k =
deg(f). There exists a monomial symmetric ideal J, such that Hy), (n) = H;(n)
if and only if k4 ¢ is even.

Proof. Set I = (f)s,. From Lemma 6.4 applied in degree n > k+ ¢ with n odd we
obtain

Hi(n)=2Hr(n—k)—(n—k—{4+1)=n—k—{¢+1 (mod 2).

Suppose that J is a symmetric monomial ideal such that Hs), (n) = H;(n) for all
n € N. Fix n to be an odd integer. Then since d = 2 and there are no partitions
a of an odd integer n with two equal parts we see by Eq. (2.1) that dimy Ry = 2
for all a with |a] = n. Consequently by Eq. (6.1), H;(n) is even. Since H;(n) =
Hi(n) = k+ ¢ (mod 2) we conclude that k + ¢ must be even.

Conversely, assume k-+/ is even, set a = kT% and g = x‘f“x%. By Lemma 6.4 the
Hilbert function of J = (g)g, is uniquely determined by deg(sRed(g)) and deg(g).
Since sRed(g) = %, which has degree £ and since deg(g) = k = deg(f) we obtain

H(Q)SQ(TL) :H[(n). |

7. Open Problems

Satisfactory partial answers to Questions 1.1 and 1.2 of Sec. 1 have been provided
in this paper, however these questions are still open in full generality. We single out
a few additional questions which result from our work.

In view of Example 5.8, where the polynomial x1 — x5 symmetrically generating
the relevant ideal is k-invariant under the action of the subgroup S5 of S; we ask:

Question 7.1. Is it true that if I and I? are principal symmetric ideals, then I =
(f)s, for some polynomial f which is k-invariant under the action of a symmetric
subgroup of 547

We remark that [2, Lemma 5.1] and Theorem 6.1 give an upper bound on the
minimal number of generators of any principal symmetric ideal I generated by a
polynomial of degree n in the ring k[x1, ..., z4] with d sufficiently large, namely

ul) < (“55;1) ~ P()+ 1.

On the other hand several of our results proceed by way of estimating lower bounds
on the number of minimal generators of various ideals as well as their products
and powers; see for example, Theorem 5.3. It is therefore of interest to continue the
search for such bounds.

Problem 7.2. Find (nontrivial) upper and lower bounds for the number of minimal
generators of the product of two homogeneous principal symmetric ideals.

Find (nontrivial) upper and lower bounds for the number of minimal generators
of the powers of a homogeneous principal symmetric ideal.
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Finally, Theorem 6.2 opens up the search for a non-monomial ideal analogue
of Macaulay’s theorem in the category of homogeneous symmetric ideals. Evidence
from [2] suggests that binomial ideals could replace monomial ideals in the desired
result.

Question 7.3. If k is a field of characteristic zero and [ is a homogeneous symmet-
ric ideal of k[z1,...,z,] that does not have k-symmetric polynomials in any set of
minimal generators, does there exists a symmetric ideal J, generated by monomials
and binomials, so that Hy(n) = H;(n) for all n € N?

The answer to Question 7.3 is affirmative if I is a general psi by [2, Propo-
sition 6.12] and Theorem 6.1. The answer is also affirmative in two-dimensional
polynomial rings without any restriction on the generators of I, as we show next.

Proposition 7.4. Let k be a field of characteristic different from two and let
f € k[x1,x2] be a homogeneous polynomial. Then there exists a symmetric ideal
J generated by binomials or monomials such that Hj(n) = H(y,, (n).

Proof. Let ¢ = deg(sRed(f)), k = deg f > ¢. Consider the binomial

= otk 4k = ol 4 k)
Thus deg(g) = k and since deg(sRed(g)) = ¢, Lemma 6.4 gives that H(s), (n) =
H(g)52 (n) O
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