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Abstract—The success of deep learning across a variety of
applications, including inference on edge devices, has led to
increased concerns about the privacy of users’ data and deep
learning models. Secure multiparty computation allows parties
to remedy this concern, resulting in a growth in the number
of such proposals and improvements in their efficiency. The
majority of secure inference protocols relying on multiparty
computation assume that the client does not deviate from the
protocol and passively attempts to extract information. Yet
clients, driven by different incentives, can act maliciously to
actively deviate from the protocol and disclose the deep learning
model owner’s private information. Interestingly, faults are
well understood in multiparty computation-related literature,
although fault attacks have not been explored. Our paper
introduces the very first fault attack against secure inference
implementations relying on garbled circuits as a prime example
of multiparty computation schemes. In this regard, laser fault
injection coupled with a model-extraction attack is successfully
mounted against existing solutions that have been assumed to
be secure against active attacks. Notably, the number of queries
required for the attack is equal to that of the best model-
extraction attack mounted against the secure inference engines
under the semi-honest scenario.

Keywords-Multiparty Computation, Garbled Circuits, Ma-
licious Adversary, Neural Network Inference, Laser Fault
Attack.

I. INTRODUCTION

Machine learning (ML), especially deep neural networks

(NNs), is widely adopted to create models performing

image recognition, identify fraudulent transactions, natural

language processing, and even drug discovery- to name

a few [1], [2]. Similar to other ML tasks, training and

inference are two typical phases involved in NN applications.

While a large amount of data is used to determine the

best parameter values of an NN during the training phase,

the already trained NN is applied to a new input in the

inference phase. Here we focus on inference tasks at the

edge, where the existing solutions either need clients to

send potentially sensitive data to servers or the model owner

stores their proprietary NN model on clients’ devices. The

latter is of great importance due to growing needs for

edge computing, which provides avenues to reduce network

congestion through computing near users as well as reducing

communication needed to reach resource-hungry services

cf. [3]. This can be achieved, of course, at the cost of

possible IP infringement, and consequently, harming the NN

owners’ business model or revealing information about the

training data and model weights [2]. In view of this, it is not

surprising that physical attacks have been mounted against

edge devices embodying NN models [4], [5], [6], [7], [8],

[9], [10]. Secure inference is the response to this challenge,

where the client and the NN owner interact so that the client

obtains the prediction result without disclosing any other

information about the client’s input or the model weights

(inputs’ privacy) [11].

To realize secure inference, numerous studies have been

devoted to secure multiparty computation (MPC), especially

secure two-party computation [11], [12], [13], [14], [15],

[16], [17], [18], [19], [20]. Thanks to their competitive

performance in terms of online latency and accuracy, the

application of MPC in NN inference would continue to gain

momentum. Albeit the fact that MPC-based NN inference

can guarantee the security of the user’s data and NN model

(see Figure 1 for an overview), implementation attacks can

compromise that. The question is whether these attacks are

beyond the adversary models of MPC protocols.

It is arguably inaccurate if one assumes that such attacks

are out of the scope of adversary models in secure two-

party computation. When it comes to passive attacks, side-

channel (or so-called side-information [21]) leakage has

been considered in the literature. Concretely, it is argued that

“Privacy is rarely absolute,” [21], meaning that some side

channels leak during the execution of the protocols. Such

side channels include the size of the circuit, its topology, or

even the circuit itself cf. [21], [22], [23]; nevertheless, the

parties’ inputs should not be disclosed, although recent work

has posed a serious challenge to this [24], [25]. Specifically,

the passive side-channel analysis in these works has led to

the private information leakage through power consumption

of the device or the execution time of the protocol [24], [25].

Regarding susceptibility of schemes to active implemen-
tation attacks, i.e., fault attacks, MPC-related literature has

understood faults as corruption either in the circuit or the

inputs cf. [26], [27], [28], [29], [30], [31]. Faults -or as

sometimes referred to Byzantine faults- differ from uninten-

tional machine failures and are concerned with the attacks

mounted by an external entity or a subset of the participating

parties [30]. Fault attacks aim to disclose parties’ private

inputs or cause the result of the computation to be incorrect,

violating privacy and correctness, respectively. To deal with

faults, the notions of “robust” and “fair” execution were

introduced [26], [32], which have found application in secure

NN inference. Fairness ensures that either all parties or

none learn the output [33], [34]. Besides, robustness, aka
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Figure 1: Overview of our attack scenario. The client has

physical access to the device at the edge running the garbled

NN to perform inference. The server represents the NN

owner whose private inputs are NN weights.

guaranteed output delivery, has been another crucial aspect

of running a protocol in the face of active attacks. In

this context, the malicious parties should not be able to

disrupt outputs’ delivery to other parties, i.e., carrying out a

“denial of service” attack [30]. The question that naturally

follows this discussion is whether there is any fault attack
that targets inputs’ privacy without violating privacy and
correctness, which cannot be avoided even after considering
fairness and robustness.
Contributions. Our paper gives a positive answer to the

question above for secure two-party NN inference realized

by garbled circuits (GCs), e.g., [12], [11] (see Section II for

their protocol). To this end, the following contributions can

be enumerated.

1) Our paper introduces the first fault-assisted cryptanalysis

against maliciously secure NN inference engines protected

through GCs. The fault attack reduces the scheme’s security

to that of an unprotected one, allowing the adversary to

mount a model-extraction attack. The usual countermeasures

ensuring robust and fair protocol execution as in maliciously-

secure schemes cannot stop our attack. The complexity

of our attack depends only on the number of network

parameters to be extracted, and not on other factors, e.g.,

the depth of the network. The number of faults is also only

linear in the number of parameters.

2) The attack is launched against an implementation of

NN inference engines on an FPGA with a general-purpose

processor. Such implementation has been widely adopted in

the literature [12], [35], [36], [37], [38], [39], [40]. Besides

the attack vector exploited in our paper, other possible points

of interest from fault analysis’ point of view are discussed.

3) Finally, we discuss possible countermeasures and future

research direction in that regard.

II. BACKGROUND AND ADVERSARY MODEL

A. Background on Garbled Circuits

Yao’s GC. Yao’s GC is a predominant example of MPC

with two parties, garbler and evaluator, which is also referred

to as the secure function evaluation (SFE) method for

Boolean circuits [41], [42], [43]. We highlight the primary

building blocks and optimizations within this scheme.

Figure 2: A generic garbling scheme G =
(Gb,En,De,Ev, ev) cf. [21]. Note that capital letters

on the arrows represent garbled (protected) values/functions

while lowercase represents raw (unprotected) ones. ev
denotes the typical, unprotected evaluation of the function

f against the input x to obtain the output y. F , X , e and d
are the counterparts of these in the garbling scheme G that

yields y after decoding Y .

Oblivious transfer (OT). In the 1-out-of-2 OT protocol, a

sender P1 has two messages m0 and m1. A receiver P2 with

a selection bit i ∈ {0, 1} learns mi, but not m1−i, while P1

does not learn i.
Garbling. Garbled circuits enable two parties to compute

the correct output of some agreed-upon function f applied to

their private inputs without revealing anything else. We use

the notions and definitions provided in [21] to formalize this

protocol to support modular and practical analyses. In this

context, a garbling algorithm Gb is a randomized algorithm

involving a degree of randomness. Gb(f) produces a triple

of functions (F, e, d) ← Gb(f) that accepts the function

f : {0, 1}n → {0, 1}m and the security parameter k. Gb(f)
has the following properties. In practice, F is composed

of garbled tables, encoded four-entry truth table of circuit

gates, whose input wires are L0,1
G and L0,1

E . The encoding

function e converts an initial input x ∈ {0, 1}n into a

garbled input X = e(x), which is given to the function

F to generate the garbled output Y = F (X). Here, e
encodes a list of tokens (labels), one pair for each bit in

x ∈ {0, 1}n: En(e, ·) uses the bits of x = x1 · · ·xn to select

from e = (X0,1
1 , X0,1

2 , · · · , X0,1
n ) and obtain the sub-vector

X = Xx1
1 , · · · , Xxn

n . By reversing this process, the decoding

function d generates the final output y = d(Y ), which

must equal f(x). In other words, f combines probabilistic

functions d ◦ F ◦ e. More precisely, the garbling scheme

G = (Gb,En,De,Ev, ev) consists of five algorithms as

shown in Figure 2, where the strings d, e, f , and F are

used by the functions De, En, ev, and Ev.

B. MIPS Processor Overview

The MIPS (microprocessor without interlocked pipeline

stages) [44] architecture is a RISC (reduced instruction

set computing) [45] processor architecture known for its

simplicity and efficiency. This architecture is widely used

when implementing GCs [37], [35], [46], [18]. The MIPS

architecture uses 32 general-purpose registers, each 32 bits
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wide, for data processing [47]. These registers are designated

as $0 to $31, with register $0 hardwired to zero for simpli-

fying operations. The other registers serve various purposes,

including holding temporary values, function arguments,

return values, and addresses [48]. MIPS supports arithmetic

and logic operations such as addition, subtraction, multipli-

cation, division, AND, OR, XOR, and NOT [47], performed

directly on register values. It follows a load/store model,

requiring data to be loaded from memory into registers or

stored from registers into memory [47]. MIPS instructions

are uniform in size (32 bits), aiding in the efficient design

of the instruction decoder [44].

There are three primary instruction formats in MIPS [44]:

R-Type (register), I-Type (immediate), and J-Type (Jump).
R-Type is used for arithmetic and logical instructions and

includes opcode (6 bits), source register rs (5 bits), second

source register rt (5 bits), destination register rd (5 bits),

shift amount shamt (5 bits), and function code func (6

bits). I-Type is used for operations with immediate values

and includes opcode (6 bits), source register rs (5 bits),

destination register rt (5 bits), and a 16-bit immediate

value. J-Type is used for jump instructions and includes

opcode (6 bits) and a 26-bit address.

C. Background on Garbled NN Inference

The implementation of the NN model using GC includes

two main modules: (1) the linear layer and (2) the ReLU

activation function (AF). In adapting the ReLU function

within GC, the binary representation of the input x is a

fundamental step. This input is expressed over n bits as

x =
∑n−1

i=0 xi2
i, where each xi is a binary digit, either “0”

or “1”. The most significant bit (MSB(x)), xn−1, serves as

the sign indicator in a two’s complement system, signifying

the input as negative when xn−1 = 1. To accommodate the

ReLU function for GCs, similar to the prior GC NN frame-

works [16], [49], [11], [14], a garbled multiplexer (MUX)

circuit becomes crucial. This MUX selectively outputs either

the actual input x or zero based on the MSB. The operation

of the MUX is encapsulated by the logic: if the MSB is “0”

(indicating non-negativity), the output should be x; if the

MSB is “1” (indicating negativity), the output should default

to zero. The functional logic of the MUX is as follows:

MUX(x, MSB(x)) = (1− MSB(x)) · x
This setup ensures that inputs deemed negative result in a

zero output, according to the ReLU function’s definition.

The linear layers of NN model implementation include

the multiplication functions. The steps for implementing

multiplication in GC are as follows: first, the weights and

the input of the neuron are encrypted to their corresponding

labels. In the next step, a bitwise garbled AND operation is

executed to create partial products. Then, at the last step,

a garbled addition circuit is executed to sum the partial

products.

D. Adversary Model

Adversary model from MPC perspective. When it comes

to the adversary models, some schemes assume that both

the client and the NN owner follow the protocol rules, i.e.,

honest-but-curious (HbC) parties. On the other hand, a ma-
licious adversary deviates from the protocol arbitrarily [50].

Malicious activities involve using corrupted inputs or circuits

to extract information about the other party’s inputs as

discussed in [30]. Such corruption can be made by injecting

faults [26], [27], [28], [29], [30], [31]. If the NN owner

cheats and is caught acting maliciously, the consequences

would be very serious due to public accountability [11], [50].

Clients, on the contrary, can use a wide range of setups under

their control to act maliciously to extract the NN model’s

parameters and obtain a similar model.

In this context, the malicious behavior of both parties

has been formulated in the literature [51], [52], where the

client’s malicious behavior has been mainly studied under

the notion of input consistency. Constructing an incorrect,

garbled circuit maliciously is particularly associated with

the malicious party who generates the circuits, i.e., the NN

owner in our scenario, not the client.

Our adversary model follows that of a client-server setting,

where the client acts maliciously and attempts to extract the

model’s weights held by the server cf. [53], [12], [11]. In

accordance with related studies on secure MPC-based NN

inference, the neural network configuration is known to both

client and server. In line with this, the client either has

knowledge of the processor layout or is able to profile the

processor on the chip to target points of interest. We stress

that this is a reasonable assumption, as the processor circuit

itself is not supposed to be protected through MPC. Still,

the NN model’s parameters are proprietary to the NN owner,

i.e., the server. We further assume that the malicious client

is capable of mounting physical fault attacks, such as laser

fault injection, against the edge device running garbled NN.

In this regard, the client holds the raw value of her inputs

and the NN model output. She takes advantage of the intrin-

sic characteristics of maliciously-secure inference protocols,

where the client evaluates the neural network in a layer-by-

layer fashion on a general-purpose processor, see, e.g., [11],

[12], [35], [36], [37], [38], [39], [40]. This is a key driver

of our attack because by injecting fault into instructions,

the adversary can change their functionality and extract the

weights in a divide-and-conquer way. In this regard, our

attack discloses the weights of NNs that are composed of

alternating linear (fully connected, convolutional, etc.) and

non-linear ReLU layers as typical blocks of NNs.

III. METHODOLOGY

A. Model Extraction Attacks

One of the earliest attempts to extract NN models’ weights

has been presented by Carlini et al. [54], where the NN was
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Figure 3: A high-level flow of an iterative GC-based NN

inference. L0,1
G,k and L0,1

E,k: garbler’s and client’s labels for

kth layer (1 ≤ k ≤ �). x and X: client’s raw and garbled

inputs received via OT; y: client’s raw outputs; L: the

intermediate layer garbled output.

not embedded in any MPC protocol. By carefully choosing

inputs that differ slightly and observing the changes in the

outputs, the attack identifies critical points where the ReLU

activation function (AF) changes its behavior. Such critical

points reveal information about the model’s parameters. The

process is repeated layer by layer, allowing the client to

reconstruct the entire neural network with high precision

and significantly fewer queries than traditional methods. This

attack is extended in [11] to target secure inference protocols

that rely on additive secret sharing in the HbC setting.

Similar to the attack in [54], layer-by-layer evaluation of

NNs is the main ingredient in mounting the attack against

those protocols. The attack starts with the last layer of the

NN and moves toward the first one, where for each layer,

the client malleate its shares fed to the intermediate layers.

Malleating means adding a small, controlled amount to the

intermediate layer input, which changes the final output. By

observing these changes, the client can extract the model’s

actual weights after receiving the final output, which is

decoded and in plaintext at the final stage of the protocol.

While Carlini et al. [54] leverages the ReLU linear part,

the attack in [11] exploits weaknesses in the protocol’s

implementation and forces ReLU to behave linearly. Both

attacks achieve efficient model extraction, but focus on

different vulnerabilities.

B. Fault Injection for Model Extraction

Our attack can be seen as a fault-assisted cryptanalysis

against garbled NN protocols. Concretely, we focus on NN

models containing ReLU, where the protocol evaluates the

NN model layer-by-layer. The NN models coming under our

attack are fully connected, where -for the sake of simplicity

and comparison- the linear layers do not have any additive

bias value as also considered in [11]. In contrast to the target

in [11], the intermediate values in the garbled NN inference

engine are either “0” or “1,” making the attack even more

straightforward, as explained below.

1) Recovering the last layer’s weights: Figure 3 illus-

trates the interactions between the NN owner and the ma-

licious client when computing the kth layer of the garbled

NN on the client’s inputs x to obtain the output y. As the

first step in launching our attack, the malicious client aims

to extract the last layer weights, i.e., k = �. The client sets

her input value x = {0}n.

Evaluation as usual. At this stage, the client oblivi-

ously receives an array of encrypted input labels X =
(X0,1

1 , X0,1
2 , · · · , X0,1

n ), the encrypted inputs labels corre-

sponding to x = {0}n (see Figure 3). The client then

honestly evaluates the model until the last layer, i.e., the

last layer, as M�(ReLU(M�−1(· · · ReLU(M1(x))))), where

Mk := (AND, XOR) represents the neural network linear

layer operations i.e., an AND followed by ADD operation.

M� ∈ R
m×t (its image is R

m) denotes the last layer with

t connections and m classes to be determined by the NN.

Figure 3 illustrates the linear layer execution of the last layer,

M�, for one neuron. To calculate the jth last layer neuron

output, Yj , the garbler label, L0,1
G,� which is the last layer

weights, are multiplied by the client label, L0,1
E,� which is

the output of the previous intermediate layer, as follows

Yj = L0,1
G,�L

0,1
E,�, 1 ≤ j ≤ m,

where m is the number of neurons in the last layer. Af-

ter this step, the client holds the garbled output, Y =
[Y1, Y2, · · · , Ym]. Using the received decryption label from

the garbler, d, the client decrypts Y and finds its raw output

value as (y1, y2, · · · , ym) = De(d, Y ).

Weight disclosure through fault injection. The decrypted

output yj (1 ≤ j ≤ m) gives no information about the last

layer weights w� (the decrypted version of the L0,1
G,�) as the

input to the NN and the biases are “0.” Now, if the client

injects a fault to change the AND in the last layer to XOR,

the decrypted output yj = w� ⊕ 0 = w� (the clients knows

the input x = {0}n); hence, observing the decrypted output

reveals the weights in the last layers.

2) Recovering intermediate layers’ weights: At this stage,

the client has already extracted the weights in the last layers,

e.g., for one neuron in that layer w�. The extraction of the

intermediate layers is similar to the last layer but requires an

additional step: forcing all the ReLU AFs after the targeted

intermediate layer to behave linearly or like a buffer. After

the extraction of the last layer weights, w�, the client extracts

the intermediate layer weights layer by layer, M�−1 · · ·M1.

Weight disclosure through fault injection. As for the last

layer, the client sets its input to x = {0}n and evaluates the

NN model honestly. Suppose the target intermediate layer is

the kth layer: Mk(ReLU(Mk−1(· · · ReLU(M1(x))))), where

1 ≤ k ≤ � − 1. This process includes linear and non-linear

operations, Mk and ReLU = (1−MSB(x)).x, respectively; see

Figure 3. The client injects the fault in the AND operation of

Mk, to change it to XOR, similar to the last layer. We denote

this faulty linear layer by M ′
k. The output of the intermediate

layer, L, is L = ReLU(M ′
k(L

0,1
G,k, L

0,1
E,k)) = ReLU(L0,1

G,k ⊕
L0,1
E,k), which can be written as follows after integrating the
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bit-wise operation of ReLU:

L = (1− MSB(L0,1
G,k ⊕ L0,1

E,k)) AND (L
0,1
G,k ⊕ L0,1

E,k)

The ReLU function outputs “0” on negative values; there-

fore, to propagate the negative weights to L, the client injects

another fault into ReLU to force it to behave linearly, i.e.,

as a buffer. In doing so, instead of (1 − MSB(x)) ANDx,

ReLU operates as (1 OR MSB(x)) ANDx (see Section III-C

for details). This way, the output of (1 OR MSB(x)) ANDx is

altered to (1 ANDx) = x, which means the functionality of

the ReLU becomes a buffer. As a result, we have

L = (1 OR MSB(L0,1
G,k ⊕ L0,1

E,k)) AND (L
0,1
G,k ⊕ L0,1

E,k)

= (L0,1
G,k ⊕ L0,1

E,k).

L is given to the following intermediate layers, where the

ReLU functions of the neurons receiving L are faulty:

Yj = M�(M�−1(· · ·Mk+1(L
0,1
G,k ⊕ L0,1

E,k))),

where in M� · · ·Mk+1, w� · · ·wk+1 are known values ex-

tracted in previous steps. Hence, after decoding, the output

of the NN model can be derived by:

yj = w�w�−1 · · ·wk+1(wk ⊕ 0) = w�w�−1 · · ·wk+1︸ ︷︷ ︸
Known

wk.

This process can be repeated until all layers weights are

extracted, refer to V-A for the queries and fault injection

requirements for this.

C. Fault Injection into Garbled NN Inference Engines

Implementing GC inference engines on general-purpose

processors like MIPS [44] or ARM [55] offers significant

benefits, including practicality and efficiency. Moreover,

advanced development tools and software co-design enhance

accessibility and reduce development time [43]. Here, to

explain our attack in a straightforward manner, we focus

on one of the most commonly used general-purpose imple-

mentations using MIPS I architectures [35], [37]. However,

we should note that our attack is not limited to this type of

general-purpose processor and can be mounted against other

implementations on architectures with a similar instruction

set. We first elaborate on the possible locations of fault

injection to achieve our attack’s desired functionality then

choose one of these candidate locations to launch our attack

as an example. For this, we use the definitions provided in

Section II-B, and the architecture illustrated in Figure 4;

see [56] for more information on MIPS I instruction set.

Program counter (PC). During the processor’s instruction

execution, the first step is to run Instruction Fetch (IF) to

fetch the instruction from the instruction memory. The PC,

which holds the address of the current instruction, provides

this address to the instruction memory. The instruction at

that address is then returned, and the PC is incremented by

4 to point to the next instruction. The client can inject a

Figure 4: An abstract illustration of general-purpose pro-

cessor architectures, as modified in [35], and possible fault

injection locations. Here, func is the function code (6 bits),

i.e., an R-Type register; see Section II-B.

fault to change the PC value and force the core to fetch an

alternate instruction, such as XOR instead of AND operation

in the linear layer execution.

Decoded instruction. In the second step, instruction decode

(ID), the fetched instruction is decoded to understand what

operation it is supposed to perform. Changing the func
register is the second possible location for fault injection. In

this case, the client launches the fault attack to change the

function of the instruction within func register, to force the

core to execute an arbitrary function.

Read memory registers. In the third step, register read

(RR), the values in the source registers (rs and rt) are read

from the register file, which stores the 32 general-purpose

registers. In the case of an unprotected NN model evaluation

protocol, the client can change the value of the source

registers to a desired value. However, in the context of GC

protocol, the client cannot modify the value to a known

specific value due to the GC intrinsic protection of data

through garbling [21].

ALU. In the fourth step, execution (EX), the ALU performs

the operation specified by the instruction. The ALU Control

determines the specific operation based on the func field

and the opcode. For instance, if the func field indicates

an ADD operation, the ALU adds the values read from the

source registers and stores the result. This step is the third

possible location of fault injection in the context of GC, as

the client can alter the ALU logic or control flow to force

the core to execute an alternate function, such as forcing the

ReLU to behave linearly as a buffer.

The destination register. In the fifth step, Memory Access

(MEM), memory is accessed if needed, which is generally

not required for R-type instructions as they do not involve

memory access. In the final step, write back (WB), the result

of the ALU operation is written back to the destination reg-

ister. Similar to the fault injection in read memory registers,

the client can change the value of the destination register in

an unprotected NN model evaluation protocol; nevertheless,
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Figure 5: A high-level illustration of the control signals,

ALU procedure, and the location of our fault attack.

Table I: ALU function register value in MIPS I architecture

Function Binary Code Function Binary Code
NOTHING 6’b000000 OR 6’b000101
ADD 6’b000001 AND 6’b000110
SUBTRACT 6’b000010 XOR 6’b000111
LESS THAN 6’b000011 NOR 6’b001000
LESS SIGNED 6’b000100

since the data is garbled in the context of GC, the client

cannot change it to a desired known value.

Among possible fault injections, we elaborate on the fault

injection against the decoded instruction as an example. We

emphasize that this does not rule out the possibility that the

client can exploit other possible fault locations.

D. Fault Injection in NN model’s Decoded Instruction

We divide our attack into two parts: (1) change the

operation of the linear layer from AND to XOR to extract the

last layer weights and to propagate the intermediate layer

weights to the next layers, and (2) force ReLU to behave

linearly so that it acts as a buffer instead of ReLU. The latter

prevents ReLU from changing the negative intermediate

weights values to zero in order to extract the intermediates

layer’s weights (see Section III-B). Figure 5 depicts a

high-level presentation of control signals, ALU procedure,

and our attack fault injection location. To launch the first

part of our attack, the manipulation of the ALU function

(AND → XOR), we inject the fault in the func register,

illustrated in Figure 5, during the execution of the last

linear layer. This fault injection results in changing the ALU

functionality from AND to XOR, where the reason is explained

in Section III-B. This change ensures the propagation of the

target weight to the last layer. Table I contains the list of the

ALU functions in the R-Type instructions.

Recovering the last layer’s weights: As shown in

Table I, the register value corresponding to AND, 6′b000110,

has only one-bit difference with the register value corre-

sponding to XOR, 6′b000111 (the least significant bit (LSB)

is different). In practice, to launch the attack, the client

tracks the instruction decode path and determines the func
register location on the die. At the beginning of the time

window corresponding to the execution of the last layer, the

client targets the first bit of the func register. Afterward,

the operation of XOR takes place at the core, and the last

layer weights are propagated to the core output.

Recovering intermediate layers’ weights: To extract the

intermediate layers’ weights, the attack must first change the

operation of the target intermediate layer from AND to XOR,

similar to the attack against the last layer; then, she forces

all the ReLU functions from the layer that she targets on to

behave linearly, like a buffer. As explained in Section III-C,

the ReLU function in the context of GC is implemented as

(1− MSB(x))ANDx. Hence, the ReLU function is compiled

within the MIPS I instruction set as the following two

operations: SUB $result, $Constant_1, $MSB; or

AND $ReLUOutput, $result, $x; The client aims

to change the first operation from 1−MSB(x) to 1ORMSB(x),
the ReLU function turns from (1−MSB(x)) ANDx to 1 ANDx
as the OR of any value with 1 equals 1 and the AND with 1
buffers the input to the output.

To obtain the faulty ReLU, the client changes the func
register from SUB (6′b000010) to OR (6′b000101). To do

this, the client injects the fault in the 3 LSB bits of the

func register to flip them, 010 → 101. After that, first,

the core calculates the OR logic of the MSB(x) register and

Constant_1, which always results in Constant_1, then

executes the AND operation on the Constant_1 and x. As

the AND operation between x and Constant1 value gives x,

the value of x is then propagated to the output, unchanged.

This process is repeated for each weight, which requires

multiple faults and queries as discussed in Section V-A.

IV. EXPERIMENTAL SETUP

A. Device Under Test

A Genesys 2 development kit was employed for the laser

fault injection experiment. This kit contains an AMD/Xilinx

Kintex 7 (XC7K325T-2FFG900C) FPGA fabricated with

28 nm technology. The FPGA die is in a flip-chip package.

By removing the fan and heat spreader, access was gained

to the backside silicon of the FPGA (see Figure 6). No

additional modifications were made to the package or board,

e.g., silicon polishing. The FPGA core was operated at 1.0 V,

and the clock frequency was 200 MHz for all experiments.

B. Laser Setup

We used an ALPhANOV S-LMS [57] setup for near-

infrared (NIR) microscopy and laser fault injection. The

microscope consists of a camera system for capturing images

and a lens on an XYZ stage to focus on a region. We used

20X and 50X magnification lenses for the experiment. The

20X lens is a standard Resolution (NA=0.6) with a typical

field of 480 × 380 μm, while the 50X lens is an Ultra High

Resolution (NA=0.7) with a typical field of 190 × 150 μm.

The combined setup is controlled using the software and

hardware switches to control the XYZ stage and camera

options. The software provides an IR view of the die, which
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Figure 6: Iterative magnification of the device under the AlphaNOV setup (from left to right): the Genesys2 board and the

die shown is the Kintex 7 FPGA with the heatsink removed; the middle image depicts the die using the 20X lens to show

the corner where the FF for fault is placed; Lastly, the right-most image is captured using the 50X lens, illustrating the fault

injection at the point of interest (the white dot corresponds to the laser shot).

can be used for navigation. To capture the live feed of the

laser shots, the integration time for the image was kept at

0.1 ms with a frame rate of 60 Hz (the refresh rate of the

display).

The laser source used for the experiment is the High Pulse

Performance PDM laser source. The wavelength of the laser

is 1064 nm. The peak current used for the fault is 1 A, while

the pulse width is 250 ns with a frequency of 100 kHz. The

laser is controlled by the AplhaNOV control software in

combination with viewing the die using the camera software.

The combination results in a live feed to laser shots on the

desired fault region (a screenshot shown in 6).

C. Hardware Implementation

The FPGA and the microscope with controlling de-

vices form our experimental setup. Before programming the

FPGA, the laser setup is prepared by focusing the lens on the

desired location for the laser shot. The FPGA bitstream is

programmed then using Vivado 2021 [58] from a computer.

Once programmed, the design will generate a trigger signal

connected to the AplhaNOV laser module. This trigger

signal is used to control the laser pulse timing. The laser

is shot continuously using the settings mentioned in the

laser setup. The Genesys 2 development board has user-

programmable outputs used as flags to show a successful

fault. For more details, please see Section V-C.

V. RESULTS

A. Complexity of the Attack: Number of Faults and Queries

Here, we elaborate on the number of queries and faults

required to extract the weights of some common NN models

as discussed in the most relevant literature [11], [54]. To

extract the last layer weights, the client only needs 1 fault

per weight as L0,1
G,� is the corresponding label of 0 and 0

multiplied by any value results in 0; therefore, only the

weight of the faulty neuron with AND → XOR is propagated

to the output. Hence, for extracting the weights in the last

Table II: Query and fault complexity of our attack vs.

[11] and [54] (the number of faults is only applicable to

our attack). While our attack targets maliciously-secure NN

inference engine, [11] and [54] consider HbC-secure and

unprotected designs, respectively, which are indeed simpler

to be attacked.

Network
Dimensions

# Parameters
#Queries

#Fault
[11] [54] Ours

784-128-1 100,480 100,480 221.5 100,480 200,832

784-32-1 25,120 25,120 219.2 25,120 50,208

10-10-10-1 210 210 216 210 610

10-20-20-1 620 620 217.1 620 1820

layer, #fault = p�, where p� is the number of parameters

in the last layer.

To extract the intermediate weights, the same fault as in

the last layer must be injected to propagate the target weight

to the ReLU input. Another fault must be injected in the

target layer’s ReLU to make it a buffer. Additionally, one

fault in all the neurons’ linear calculation from the target

layer to the last layer, Mk,Mk+1, · · · ,M�, must be injected

to propagate the target weight value. Furthermore, the ReLU
of these layers has to be forced to act linearly like a buffer,

which results in an additional fault. Hence, we calculate the

number of faults to extract the NN model as follows:

#faults = (�(�− 1)/2
︸ ︷︷ ︸

ReLU

+ �(�− 1)/2
︸ ︷︷ ︸
AND→XOR

)·(p−p�)+p� = O(�2p)

where p is the total number of the NN model parameters,

p� is the number of parameters in the last layer, and � is

the number of the NN model layers. Moreover, the number

of queries is the same as the number of parameters, as per

parameter, input is given to the NN; therefore, the query

complexity of the attack is similar to that of a state-of-the-art

model extraction attack, although we target a much harder

scheme protected against the malicious adversary.

Table II shows the comparison between our attack against

GC NN inference protected against the malicious adversary
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Figure 7: Simulation of the alu_func register during the

computation of one neuron in the first layer (blue: the

execution window of one neuron, purple: the execution

window of one multiplication and summation corresponding

to each connected input; yellow: the execution of the ReLU).

and the cryptanalysis in [11] that has been mounted against

HbC-secure inference engine. Notice that the cryptanalysis

in [54] targets unprotected NN models. Besides, we consider

GC-based NN inference while [11] mounts attacks against

NN inference engine with secret-sharing linear layer and

only GC-based ReLU layers. Moreover, our attack is fault-

assisted in contrast to the one in [11] that requires “mal-

leating” (not specified how) the user’s share into the linear

layer implemented using secret sharing. As [11] and [54] did

not launch any fault attack against NN models, the number

of faults is only applicable to our attack. In Table II, our

attack requires up to 30× fewer queries compared to [54]. It

matches the queries requirement in [11] to extract the entire

NN model weights, even though their attack has launched

on an HbC-secure NN model while our attack is launched

against a maliciously-secure NN model. This shows that the

client can extract a maliciously secure NN model without

extra query requirements. Our attack, however, requires the

fault injection, which the client can do.

B. Simulation Results

To evaluate the success of our attack against garbled

NN inference engines, we first simulate the impact of the

fault. For all experiments, single-bit faults were attempted.

We implemented a proof-of-concept multi-layer perception

(MLP), hereafter called target model, with two hidden lay-

ers, each with 5 neurons, a last layer with 10 neurons, and an

input layer with 5 inputs, similar to benchmark MLPs [18],

[12], [59] (for results on scalability of the attack, see

Section V-A). We used the GC Lite MIPS implementation

proposed in [60] to evaluate the target model. In doing so,

given an input, we can observe the labels and the output

in order to assess the impact of fault injection. To compile

the MLP to MIPS I instructions, we use GNU cc [61] as

advised in [35]. To simulate the fault injection, we utilize

SystemVerilog assertion (SVA) in Vivado Suite 2023 [62].

We set the clock period to 50ns. In the simulation results,

the value of the alu_func register follows the order of

ALU functions in Table I, starting from 0 to 8.

Figure 7 shows the simulation results for the alu_func
register during the execution of the target model using

MIPS I. The blue rectangle is the alu_func register

value during the execution window of one neuron in the

Figure 8: Simulation of the alu_func register during

the computation of one neuron in the last layer (blue: the

execution window of one neuron; purple: the execution

window of one multiplication and summation corresponding

to each connected input).

Figure 9: Simulation of the alu_func register during the

computation of one neuron in the last layer after fault

injection (blue: the execution window of one neuron, purple:

the changed data register value due to the fault injection,

orange: the value of the alu_func after fault injection).

first hidden layer, including the neuron multiplication and

the ReLU . The purple rectangle shows the execution of

one multiplication (AND = 6′b000110) followed by one

summation (ADD = 6′b000010). The yellow rectangle shows

the execution of the ReLU at the end of the neuron multi-

plication, which includes a subtraction (SUB = 6′b000011)

and a multiplication (ADD = 6′b000010). The blue execution

window is repeated for each connected input value. As it

can be observed in Figure 7, each neuron execution in the

first hidden layer of the target model takes 12 clock cycles:

two clock cycles for each input connected to a neuron (10
clock cycles for 5 inputs), and 2 clock cycles for the ReLU

. Hence, the execution of each neuron in the hidden layer

takes 12 × 50ns= 600ns, where 50ns is our defined clock

period. The target model includes two hidden layers and 5
neurons in each layer; therefore, the same execution process

shown in Figure 7 takes 6000ns in total. Afterward, the linear

layer and the last layer are executed.

Figure 8 shows the simulation of the alu_func register

in the execution window of one neuron placed in the target

model’s last layer. The blue rectangle is the alu_func
register value during that period, whereas the purple rect-

angle shows the execution of one multiplication (AND =
6′b000110) followed by one summation (ADD = 6′b000010).

According to Figure 8, the execution time of each neuron

in the last layer takes 2 clock cycles per connection. With

5 connections per neuron, 10 clock cycles passed to run the

computation of a neuron, equal to 500ns. The target model’s

last layer includes 10 neurons; therefore, the execution

process shown in Figure 7 takes 500 × 10 = 5000ns in

total.
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Figure 10: Simulation of the alu_func register during the

computation of one neuron in the first intermediate layer
(blue: the execution window of one neuron; purple: the

changed data register value due to the fault injection; orange:

the value of the alu_func after fault injection).

1) Fault injection in the last layer: We target the second

neuron of the last layer as an example to demonstrate the

successful change in alu_func due to the fault injection;

see Figure 9 for the result. The orange rectangle depicts

the effect of fault injection in the alu_func register. The

fault is injected on the LSB of alu_func register, and as a

result, alu_func register value changed from 6 to 7, which

means the core executes the XOR = 6′b0000111 instead of

the AND = 6′b0000110.

The purple rectangle shows the changed output data after

the fault injection. To assess the impact of our attack, we

obtain the garbled output label for the target neuron (the

second neuron in the last layer). The weight of this neuron

is intentionally set to 1 to observe the output when changing

AND and XOR on the label 0 and weight 1. Before the attack,

according to Figure 8, the core generates “0x092d4010,”

which is the corresponding label of 0 calculated as 0AND1 =
0 based on the output given by the tool [60]. After injecting

the fault, as illustrated in Figure 9, the core generates

“0x0241200c.” This value corresponds to the label of 1
according to the results we get from the tool [60]. This value

is generated as the result of the operation XOR on input 0
and weight value 1, 0⊕ 1 = 1, which confirms the success

of our attack to extract the second neuron on the last layer.

To extract the weights of the rest of the neurons in the last

layer, the same steps with the same fault location can be

launched but in a different time frame.

2) Fault injection in the intermediate layers: The attack

against intermediate layers is done by repeating steps of

injecting fault against the last layer on the target intermediate

layer and extra fault injection to force the ReLU in the rest

of the path to the last layer to behave linearly, as a buffer. For

the latter, we target the first neuron in the first hidden layer,

where Figure 10 shows the simulation results for that. The

orange rectangle illustrates where the fault is injected into

the alu_func register during the execution of the ReLU.

As it is observable in Figure 10, the operation of SUB =
6′b000010 is changed to OR = 6′b000101 after the fault

injection. This means the ReLU operation is changed from

(1 − MSB(x)) ANDx to (1 OR MSB(x)) ANDx = 1 ANDx = x.

This changes the ReLU function to a buffer and propagates

the output of the target neuron to the output of the ReLU. To

check its effect, we intentionally set the intermediate weights

to −1 and all its input to 1; hence, the neuron outputs −5,

as it is connected to five inputs. The core passes the neuron

output to the ReLU, and the ReLU’s output becomes 0, as

its input is a negative value. After the fault injection, we

observe the changes in the LSB of the ReLU output. If the

ReLU’s output is 0, the LSB is the label corresponding to

that value. If the output of the ReLU is a negative value,

the LSB becomes 1, as the core uses the extended sign

format, which is the two’s complement of the positive value:

5 = 0b101 and −5 = 0b011.

As observable in Figure 10, the value of the data register

LSB becomes “0x024340c4,” which is the label correspond-

ing to value 1 according to the labels generated by the

tool [63]. However, the data register LSB in the absence of

any fault register is “0x0afffffa”, according to the results

illustrated in Figure 7, the corresponding label of value 0
generated by the tool [60]. This confirms that our fault

injection changes the functionality of the ReLU to a buffer.

Using this step and the fault injection on the linear layer, a

client can extract the entire NN model weights by injecting

fault (see Section III-B for the steps in the cryptanalysis).

C. Laser Fault Injection Results

The laser fault injection is used to validate the practicality

of the results presented in section V-B. The design used for

the laser fault is the same MIPS implementation with the

neural network program stored in the program memory. The

flip-flop for the opcode is located in slice X1Y138 of the

Kintex 7 FPGA This slice is located at one of the corners

of the FPGA; see Figure 6. First, the 20X lens is used to

navigate to the corner, and then the 50X lens to localize the

target slice and irradiate the laser. Our target is the opcode

FF for the last layer to demonstrate that we can flip the bit to

change the instruction from AND to XOR. Once flipped, we

expect the same behavior as shown in the simulated fault. To

ensure that the fault only affects the target bit and not other

portions of the circuit, we deployed flag outputs to check for

multiple stages of the fault and the correct output. We used a

flag corresponding to the fault bit, i.e., the bit of the opcode

that we are faulting. Moreover, we used an output to compare

the ALU output with the desired known faulty value after the

fault injection. Lastly, we checked the next instruction output

to see if the program continued working correctly. From our

experiment, we got all 3 outputs to trigger, demonstrating

successful weight extraction from the last layer. Note that

the faults were transient, i.e., the faulty register will be

overwritten with the correct instruction values in the next

clock cycle(s) or after resetting the processor. The NN model

was recovered after the attack, i.e., no degradation in NN

accuracy was observed. The success rate was 1, meaning that

each fault successfully flipped the bit. Following the same

procedure, the laser fault injection could also be applied to

other layers.
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VI. DISCUSSION

A. Why Cut-and-choose Fails to Prevent Our Attack

Countermeasures devised to stop malicious parties lever-

age various techniques, with cut-and-choose constructions

being one of the most prominent ones [23], which we

focus on due to its widespread application in schemes. The

principle behind the cut-and-choose technique is simple but

effective: a set of circuits presumably computing the same

function are generated and sent to the client. After selecting

some of the circuits, the client inspects them to verify that

all the check circuits have been generated correctly. Despite

its efficacy in preventing malicious circuit generation, it does

not account for the client’s malicious behavior.

In fact, the cut-and-choose approach [64] forces the party

generating the garbled circuit, i.e., garbler, to stick with the

correct circuit. From the theory point of view, this indicates

that cut-and-choose would not thwart our attack. From a

practical perspective, one should consider when to launch

an attack if a scheme’s security is boosted through cut-

and-choose. Under this scenario, first, the garbler constructs

a large number of garbled circuits sent to the client, who

chooses a subset of the circuits to open and check. If all of

these circuits are correct, the second step is as follows: the

client runs the protocol against all the remaining circuits and

takes the majority output value as the output. Our malicious

adversary follows these steps accurately, but inject faults into

only one circuit in the second step and observe the output

to extract the weights. This process clearly does not violate

the principle of the maliciously secure GCs.

B. Vulnerabilities of Other General-purpose Processors

General-purpose processors, including MIPS [44],

ARM [55], x86 [65], PowerPC [66], SPARC [67], and

RISC [45], all utilize the fundamental fetch-decode-execute

cycle to process instructions. During the fetch stage, the

processor retrieves the instruction from memory based on

the PC. After decoding the instructions, the results are

stored in a set of registers as control signals, similar to the

func register explained in Section II-B, which direct the

ALU to execute the specified arithmetic or logical operation

using the provided operands. This systematic approach

ensures efficient processing of a wide range of tasks.

These control signal registers, containing crucial opera-

tional directives for the ALU, can become targets of fault

injection attacks if an adversary identifies their locations on

the hardware platform. Since the architectural information

for these processors is publicly available [44], [55], [66],

[65], [67], [45], adversaries can potentially manipulate the

ALU function operands register, func register, leading to

the manipulation of the ALU operations. Despite the differ-

ences in the design of the architectures mentioned above,

the fetch-decode-execute cycle remains a core operational

process across them. Hence, our attack could potentially be

conducted against these architectures by adjusting the value

of the func register to the desired ALU operation value.

This should be done according to the target architecture

instruction sets information, as described in Section III-C.

C. Possible Countermeasures

Our attack’s success is based on our knowledge of the NN

model function running on the general-purpose processor

architectures. Knowing this, the client can find the correct

location to inject a fault and extract the NN model assets,

although it might be protected through GC. A possible way

of combating our attack is to evaluate it in the context of

private function evaluation (PFE). In the PFE setting, the

function is also garbled along with the data to prevent the

attacker from knowing how the function is computed. An

implementation of PFE can be found in these studies [37],

[46], [18]. Although effective against our attack, it suffers

from tremendous resource overhead, a burden for cost-

efficient implementation.

Another possible countermeasure is the interactive fault-

tolerant maliciously secure GC frameworks. Two ex-

amples of such frameworks are MiniLEGO [68] and

TinyLEGO [31]. In these frameworks, the circuit’s XOR-

homomorphic commitments ensure that each gate’s output

is a function of the entire path reaching it in the circuit

instead of solely the gate’s inputs. Therefore, if any fault

occurs in any part of the path, the outputs of the gates on

the path to the target gate become invalid as they no longer

follow the XOR-homomorphic properties of the commitment

scheme. Needless to say, these frameworks impose the

computation overhead and require massive communication

between parties.

Seen from the hardware security perspective, one ap-

proach is to extend the instruction sets so that the Hamming

distance between binary codes corresponding to different

functions is larger than one. As a result, more than a

single fault per function is needed to launch the attack,

increasing the cost of the attack. Nevertheless, if sticking

with the current instruction sets, other approaches should

be applied. Another promising solution can be reducing

the predictability of the process by introducing random

delays [69]. In doing so, the adversary cannot use a precise

time-base to determine the best time to inject the fault. We

will study this countermeasure as part of future work.

VII. CONCLUSION

In this paper, we present the first fault attack against se-

cure NN inference implementations relying on GC, a prime

example of MPC schemes. Our work demonstrates that laser

fault injection, along with a model-extraction attack, can

effectively break the security of existing solutions. This

implies that the private inputs of the NN owner, i.e., the

NN’s parameters, are disclosed. Remarkably, the number of

queries required for our attack is equivalent to that of the
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state-of-the-art model-extraction attacks, although garbled

NN inference is much harder to target than what has been

considered in the literature. Our findings emphasize the need

for robust countermeasures to address fault injection threats.

We have further discussed possible countermeasures to en-

sure the privacy and security of NN models and user data

in practical applications. Given possible shortcomings of

countermeasures, future research should focus on developing

advanced fault-tolerant techniques to fortify NN inference

engines against fault attacks.
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