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Abstract. The connected sum construction, which takes as input Gorenstein
rings and produces new Gorenstein rings, can be considered as an algebraic
analogue for the topological construction having the same name. We determine
the graded Betti numbers for connected sums of graded Artinian Gorenstein
algebras. Along the way, we find the graded Betti numbers for fiber products
of graded rings; an analogous result was obtained in the local case by Geller

[Proc. Amer. Math. Soc. 150 (2022), pp. 4159–4172]. We relate the connected
sum construction to the doubling construction, which also produces Gorenstein
rings. Specifically, we show that, for any number of summands, a connected
sum of doublings is the doubling of a fiber product ring.

1. Introduction

The connected sum is a topological construction that takes two manifolds to
produce a new manifold [Mas91, p. 7]. An algebraic analog of this surgery con-
struction was introduced by H. Ananthnarayan, L. Avramov, and W.F. Moore in
their paper [AAM12] in the local case. In this paper, we elucidate some properties
of this construction in the graded case.

Let A and B be two graded Artinian Gorenstein (AG) K-algebras with the
same socle degree d, let T be an AG K-algebra of socle degree k < d, and suppose
there are surjective maps πA : A → T , and πB : B → T . From this data, one
forms the fiber product algebra A×T B as the categorical pullback of πA, πB; the
connected sum algebra A#TB is the quotient of A×T B by a certain principal ideal
〈(τA, τB)〉 ⊂ A×T B. The connected sum is again an AG K-algebra (see Definition
2.10).

In [Gel22] and [CGS23], the authors determined the minimal free resolution of a
two-factor fiber product A×T B of local rings. In this paper, we turn to the setting
of fiber products of graded rings where we derive the minimal free resolution of
a two-factor fiber product of graded rings using methods adapted to the graded
setting. We extend this to fiber products involving multiple factors. In contrast to
the local scenario, managing degrees leads not only to novel proofs, but also to a
necessary increase in the complexity of the results especially in the multiple factor
case. We also consider connected sums of graded rings, for which minimal graded
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2 NASRIN ALTAFI ET AL

free resolutions have not been constructed in the literature before this work. We
pose Question 1.1:

Question 1.1. Fix A1, . . . , Ar graded AG K-algebras with the same socle degree.
What are the graded Betti numbers of their fiber product over K? What are the
graded Betti numbers of their connected sum over K?

Our first series of main results answers the above question. For specific formulas
we refer the reader to Theorem 3.2, Theorem 3.7, Theorem 3.13, Theorem 3.15 and
their corollaries.

Celikbas, Laxmi andWeyman solved a particular case of Question 1.1 in [CLW19,
Corollary 6.3]. Specifically, they determined a minimal free resolution of the con-

nected sum of K-algebras Ai := K[xi]/(x
di

i ) by using the doubling construction
(see section 2.5). A second goal of this paper is to generalize their result and inves-
tigate conditions for a connected sum of AG K-algebras A1, . . . , Ar with the same
socle degree to be a doubling. More precisely we ask:

Question 1.2. Assume that A1, . . . , Ar are graded AG K-algebras with the same
socle degree. Is the connected sum A = A1#K · · ·#KAr a doubling? More pre-
cisely: if Ai is a doubling of Ãi, is A a doubling of Ã1 ×K · · · ×K Ãr?

We answer the above question in the affirmative in Theorem 4.3. While it might
not come as a surprise that findings concerning the Betti numbers of connected
sums can be generalized from two to multiple factors, the confirmation of a similar
phenomenon for structural aspects, such as being a doubling, seems significantly
less evident. In light of this, we find Theorem 4.3 pleasantly surprising.

Our paper is structured as follows: section 2 introduces the necessary background
and develops the basic properties of multi-factor fiber products and connected sums,
section 3 computes the graded Betti numbers for multi-factor fiber products and
connected sums, and section 4 analyzes connected sums that arise as doublings of
certain fiber products.

2. Background

In this section, we fix some notation and recall some basic facts on Artinian
Gorenstein (AG) algebras, fiber products, connected sums of graded Artinian alge-
bras, as well as on Macaulay dual generators needed in the sequel.

2.1. Oriented AG algebras. Throughout this paper, K is an arbitrary field.
Given a graded K-algebra A, its homogeneous maximal ideal is mA = ⊕i≥1Ai. A
K-algebra A is called Artinian if it is a finite dimensional vector space over K. The
socle of an Artinian K-algebra A is the ideal (0 : mA); its socle degree is the largest
integer d such that Ad �= 0. The socle degree of an Artinian K-algebra agrees with
its Castelnuovo-Mumford regularity, which is denoted by reg(A). The type of A is
the vector space dimension of its socle.

The Hilbert series of a graded K-algebra A is the generating function HA(t) =∑
i≥0 dim(Ai)t

i. The Hilbert function HFA of a K-algebra A is the sequence of
coefficients of its Hilbert series.

Suppose that A has a presentation A = R/I as a quotient of a graded K-
algebra R. The graded Betti numbers of A over R are the integers βR

ij(A) =

dimK TorRi (A,K)j. These homological invariants are our main focus. The graded
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BETTI NUMBERS FOR CONNECTED SUMS OF GRADED AGA’S 3

Poincaré series of A over R is the generating function PR
A (t, s) =

∑
i,j β

R
ij(A)tisj .

If R is regular, then the Poincaré series is in fact a polynomial.
A graded Artinian K-algebra A with socle degree d is said to be Gorenstein if its

socle (0 : mA) is a one dimensional K-vector space. For any Artinian Gorenstein
graded K-algebra A with socle degree d and for any non-zero morphism of graded
vector spaces fA : A → K(−d), known as an orientation of A, there is a pairing

(2.1) Ai ×Ad−i → K defined by (ai, ad−i) �→ fA(aiad−i)

which is non-degenerate. We call the pair (A, fA) an oriented AG K-algebra.

Definition 2.1 ([IMS22, Lemma 2.1]). Let (A, fA) and (T, fT ) be two oriented
AG K-algebras with reg(A) = d and reg(T ) = k, and let π : A → T be a graded
map. There exists a unique homogeneous element τA ∈ Ad−k such that fA(τAa) =
fT (π(a)) for all a ∈ A; we call it the Thom class for π : A → T .

Remark 2.2. Restating [IMS22, Remark 2.8], we have that τA is the image of 1 ∈ T
under the composite map T (−k) ∼= Extn(T,Q) → Extn(A,Q) ∼= A(−d), where the
middle map is Extn(π,Q).

Example 2.3. Let (A, fA) be an oriented AGK-algebra with socle degree reg(A) =
d. Consider (K, fK) where fK : K → K is the identity map. Then the Thom class
for the canonical projection π : A → K is the unique element s ∈ Ad such that
fA(s) = 1.

Note that the Thom class for π : A → T depends not only on the map π, but
also on the orientations chosen for A and T .

2.2. Macaulay dual generators. Let Q = K[x1, . . . , xn] be a polynomial ring
and let Q′ = K[X1, . . . , Xn] be a divided power algebra, regarded as a Q-module
with the contraction action

xi ◦X
j1
1 ..Xji

i ..Xjn
n =

{
Xj1

1 ..Xji−1
i ..Xjn

n if ji > 0

0 otherwise.

We regard Q as a graded K-algebra with degXi = deg xi.
For each degree i ≥ 0, the action of Q on Q′ defines a non-degenerate K-bilinear

pairing

(2.2) Qi ×Q′
i −→ K with (f, F ) �−→ f ◦ F.

This implies that for each i ≥ 0 we have an isomorphism of K-vector spaces Q′
i
∼=

HomK(Qi,K) given by F �→ {f �→ f ◦ F}.
It is a classical result of Macaulay [Mac94] (cf. [IK99, Lemma 2.14]) that an

Artinian K-algebra A = Q/I is Gorenstein with socle degree d if and only if I =
AnnQ(F ) = {f ∈ Q | f ◦ F = 0} for some homogeneous polynomial F ∈ Q′

d.
Moreover, this polynomial, termed a Macaulay dual generator for A, is unique up
to a scalar multiple.

A choice of orientation on A corresponds to a choice of Macaulay dual generator.
Every orientation on A can be written as the function fA : A → K defined by
fA(g) �→ (g◦F )(0) for some Macaulay dual generator F of A (the notation (g◦F )(0)
refers to evaluating the element g ◦ F of Q′ at Xi = 0).
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4 NASRIN ALTAFI ET AL

2.3. Fiber product. We start by recalling the definition of the fiber product.

Definition 2.4. Let A, B and T be graded K-algebras and πA : A → T and
πB : B → T morphisms of graded K-algebras. We define the fiber product of A and
B over T as the graded K-subalgebra of A⊕B:

A×T B = {(a, b) ∈ A⊕B | πA(a) = πB(b)}.

If πA and πB are surjective, then there is a degree-preserving exact sequence

(2.3) 0 → A×T B → A⊕B → T → 0

which allows to compute the Hilbert series of the fiber product as

(2.4) HFA×TB(t) = HFA(t) +HFB(t)−HFT (t).

While presentations of arbitrary fiber products can be unruly, the case T = K
is best-behaved.

Lemma 2.5. Let R = K[x1, . . . , xm] and S = K[y1, . . . , yn] be polynomial rings
over K with homogeneous maximal ideals x = (x1, . . . , xm) and y = (y1, . . . , yn),
respectively. Let Q = R⊗KS = K[x1, . . . , xm, y1, . . . , yn]. If A = R/a and B = S/b
have canonical projections πA : A → K and πB : B → K, then the fiber product
over K has presentation

(2.5) A×K B =
Q

x ∩ y + a+ b
,

where in (2.5) a, b,x,y denote extensions of the respective ideals to Q. In particular,
if A and B are graded, then A×K B is a bigraded algebra with

[A×K B](i,j) =

{
K if (i, j) = (0, 0),

Ai ⊕Bj if (i, j) �= (0, 0).

Proof. The presentation of the fiber product is given in [IMS22, Proposition 3.12].
The fact that the fiber product is bigraded follows from noticing that the relations
in (2.5) are homogeneous with respect to the natural bigrading of Q. Finally, the
formula for the graded components of A ×K B follows from (2.3), which can be
interpreted as an exact sequence of bigraded vector spaces. �

Example 2.6. Consider the standard graded complete intersection algebras

A =
K[x, y, z]

(x3, y4, z4)
and B =

K[u, v]

(u5, v5)
.

Their Hilbert functions are given by

HFA = (1, 3, 6, 9, 10, 9, 6, 3, 1) and

HFB = (1, 2, 3, 4, 5, 4, 3, 2, 1).

Set R = K[x, y, z] and S = K[u, v]. The minimal free resolutions of A and B are
the Koszul complexes

0 → R(−11) → R(−7)2 ⊕R(−8) → R(−4)2 ⊕R(−3) → R → A → 0,

and
0 → S(−10) → S(−5)2 → S → B → 0.

The fiber product C = A×K B of A and B and its Hilbert function are

C = K[x, y, z, u, v]/(xu, xv, yu, yv, zu, zv, x3, y4, z4, u5, v5),
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Table 1. Betti table of C in Example 2.6

0 1 2 3 4 5
total 1 11 25 24 11 2
0: 1 . . . . .
1: . 6 9 5 1 .
2: . 1 2 1 . .
3: . 2 4 2 . .
4: . 2 6 6 2 .
5: . . 2 4 2 .
6: . . 1 2 1 .
7: . . . . . .
8: . . 1 4 5 2

and
HFC = (1, 5, 9, 13, 15, 13, 9, 5, 2).

The Betti table of C as a K[x, y, z, u, v]-module is shown in Table 1.
Note that C is an Artinian level K-algebra of type 2, i.e., all the elements of its

socle have the same degree and the socle has dimension 2.

Recall that an Artinian K-algebra A has the strong Lefschetz property (SLP) if
there exists a linear form � such that the multiplication map ×�k : Ai → Ai+k has
maximal rank (i.e, it is injective or surjective) for all i and k. It is known that if A
and B are two AG K-algebras with the same socle degree, and both have the SLP,
then A×K B also has the SLP [IMS22, Proposition 5.6].

We also consider multi-factor fiber products, which we now define.

Definition 2.7. Let A1, . . . , Ar and T be graded K-algebras and let πi : Ai → T
morphisms of graded K-algebras. We define the fiber product of A1, . . . , Ar over T
as

(2.6) A1 ×T · · · ×T Ar =

{(a1, . . . , ar) ∈ A1 ⊕ · · · ⊕Ar | πi(ai) = πj(aj), 1 ≤ i, j ≤ r}.

Remark 2.8. The multi-factor fiber product construction coincides with iteratively
applying the two-factor fiber product construction to the list A1, . . . , Ar a total of
r − 1 times, that is

A1 ×T · · · ×T Ar = ((A1 ×T A2)×T · · · )×T Ar.

We will need the following generalizations of equations (2.3) and (2.5), which
describe a presentation for fiber products with arbitrarily many summands over
the residue field.

Lemma 2.9. Let R1, . . . , Rr be polynomial rings over K with maximal ideals
x1, . . . ,xr, and let Q = R1 ⊗K · · · ⊗K Rr. Suppose Ai = Ri/ai, for some ho-
mogeneous ideal ai of Ri. For r ≥ 2, A1 ×K · · · ×K Ar

∼= Q/J with

J = a1 + · · ·+ ar +
∑

1≤i �=j≤r

(xi ∩ xj)

and there is an exact sequence of graded Q-modules

(2.7) 0 → A1 ×K · · · ×K Ar → A1 ⊕ · · · ⊕Ar → Kr−1 → 0.
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6 NASRIN ALTAFI ET AL

Proof. This follows by induction on r with (2.5) settling the case r = 2.
Setting Q′ = R1 ⊗K · · · ⊗K Rr−1, consider the ideal of Q′

J ′ = a1 + · · ·+ ar−1 +
∑

1≤i<j≤r−1

(xi ∩ xj).

Applying (2.5) to A1 ×K · · · ×K Ar−1
∼= Q′/J ′, we get

A1 ×K · · · ×K Ar
∼= Q′/J ′ ×K Rr/ar ∼= Q/J,

where the ideal J is given by

J = J ′ + ar + xr ∩ (x1 + · · ·+ xr−1)

= a1 + · · ·+ ar−1 + ar +
∑

1≤i<j≤r−1

(xi ∩ xj) +
∑

1≤i≤r−1

(xi ∩ xr)

= a1 + · · ·+ ar +
∑

1≤i �=j≤r

(xi ∩ xj).

This yields the claimed presentation.
By Definition 2.7, we have that A1×K · · ·×KAr is aK-subalgebra of A1⊕· · ·⊕Ar.

The inclusion A1×K · · ·×K Ar ⊆ A1⊕· · ·⊕Ar gives the first nonzero map in (2.7),
while the second map can be defined by

(a1, . . . , ar) �→ (π2(a2)− π1(a1), π3(a3)− π1(a1), . . . , πr(ar)− π1(a1)),

where the maps πi : Ai → K are the canonical projections. The claim regarding
exactness of (2.7) follows from Definition 2.7. �

2.4. Connected sum. Let (A, fA), (B, fB) and (T, fB) be oriented AGK-algebras
with reg(A) = reg(B) = d and reg(T ) = k and let πA : A → T and πB : B → T
be surjective graded K-algebra morphisms with Thom classes τA ∈ Ad−k and τB ∈
Bd−k, respectively. We assume that πA(τA) = πB(τB), so that (τA, τB) ∈ A×T B.

Definition 2.10. The connected sum of the oriented AG K-algebras A and B over
T is the quotient ring of the fiber product A×T B by the principal ideal generated
by the pair of Thom classes (τA, τB), i.e.

A#TB = (A×T B)/〈(τA, τB)〉.

Note that this definition depends on πA, πB and the orientations on A and B.
By [IMS22, Lemma 3.7] the connected sum is characterized by the following

exact sequence of vector spaces:

(2.8) 0 → T (k − d) → A×T B → A#TB → 0.

Therefore, the Hilbert series of the connected sum satisfies

(2.9) HFA#TB(t) = HFA(t) +HFB(t)− (1 + td−k)HFT (t).

We recall the following characterization of connected sums.

Theorem 2.11 ([IMS22, Theorem 4.6]). Let Q = K[x1, . . . , xn] be a polynomial
ring, and let Q′ = K[X1, . . . , Xn] be its dual ring (a divided power algebra). Let
F,G ∈ Q′

d be two linearly independent homogeneous forms of degree d, and suppose
that there exists τ ∈ Qd−k (for some k < d) satisfying

(a) τ ◦ F = τ ◦G �= 0, and
(b) Ann(τ ◦ F = τ ◦G) = Ann(F ) + Ann(G).
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Table 2. Betti table of D in Example 2.12

0 1 2 3 4 5
total 1 12 29 29 12 1
0: 1 . . . . .
1: . 6 9 5 1 .
2: . 1 2 1 . .
3: . 2 4 2 . .
4: . 2 6 6 2 .
5: . . 2 4 2 .
6: . . 1 2 1 .
7: . 1 5 9 6 .
8: . . . . . 1

Define the oriented AG K-algebras

A =
Q

Ann(F )
, B =

Q

Ann(G)
, T =

Q

Ann(τ ◦ F = τ ◦G)
,

and let πA : A → T and πB : B → T be the natural projection maps. Then there are
K-algebra isomorphisms

(2.10) A×T B ∼=
Q

Ann(F ) ∩ Ann(G)
, A#TB ∼=

Q

Ann(F −G)
.

Conversely, every connected sum A#TB of graded AG K-algebras with the same
socle degree over a graded AG K-algebra T arises in this way.

In particular, when T = K the polynomials F and G in the above theorem
are polynomials expressed in disjoint sets of variables. The connected sum A#KB
is a graded K-algebra, but it is not bigraded. Moreover, it is shown in [IMS22,
Proposition 5.7] that if A and B satisfy the SLP and they have the same socle
degree, then A#KB also satisfies the SLP.

Example 2.12. We will now build the connected sum of the standard graded com-
plete intersection K-algebras A = K[x, y, z]/(x3, y4, z4) and B = K[u, v]/(u5, v5)
described in Example 2.6. The connected sum D = A#KB is isomorphic to

K[x, y, z, u, v]/(xu, xv, yu, yv, zu, zv, x3, y4, z4, u5, v5, x2y3z3 + u4v4).

Its Hilbert function is

HFD = (1, 5, 9, 13, 15, 13, 9, 5, 1)

and its Betti table is given in Table 2.
So, D is an AG K-algebra with socle degree 8.

An important feature of the connected sum of AG K-algebras is that it is also
an AG K-algebra with the same socle degree as A and B (see [IMS22, Lemma 3.8]
or [AAM12, Theorem 1]), in contrast to the fiber product which is an algebra of
type two, hence not Gorenstein.

As before, we consider multi-factor connected sums. The multi-factor connected
sum construction defined below coincides with iteratively applying the two-factor
construction to the list A1, . . . , Ar a total of r− 1 times. In order to define this, we
need to define an appropriate orientation and find the Thom class of a connected
sum.
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8 NASRIN ALTAFI ET AL

Lemma 2.13. Consider the setup of Section 2.4 and denote by τA and τB the Thom
classes of πA and πB respectively. Then A#TB is an oriented AG K-algebra with
orientation f : A#TB → K defined by f(a, b) = fA(a)− fB(b).

Moreover, provided that πA(τA) = 0, the surjective morphism

π : A#TB → T with π(a, b) = πA(a) = πB(b)

has Thom class τ = (τA, 0).

Proof. Recall from Theorem 2.11 that if the Macaulay dual generators of A and
B are F and G respectively (chosen to correspond to the given orientations fA
and fB), then the Macaulay dual generator of A#TB is F − G. This defines an
orientation by

g �→ (g ◦ (F −G)) (0) = (g ◦ F )(0)− (g ◦G)(0).

If g = (a, b) ∈ A#TB, then (g ◦ F )(0) = fA(a) and (g ◦G)(0) = fB(b).
To establish the claim regarding the Thom class we verify that

f(τg) = fT (π(g)) for all g ∈ A#TB.

With g = (a, b), we have τg = (τA, 0)(a, b) = (τAa, 0) since

f(τg) = fA(τAa) = fA(πA(a)) = f(π(g)).

�

We establish the convention that every connected sum in this paper will be
oriented according to the orientation f in Lemma 2.13.

Definition 2.14. Let A1, . . . , Ar and T be graded AG K-algebras with socle de-
grees reg(Ai) = d and reg(T ) = k and let πi : Ai → T be morphisms of graded
K-algebras with Thom classes τ1, . . . , τr, respectively such that πi(τi) = 0. We
define the multi-factor connected sum A1#T · · ·#TAr by

(2.11) A1#T · · ·#TAr =

A1 ×T · · · ×T Ar/〈(τ1, 0, . . . , 0, τi, 0, . . . , 0) | 2 ≤ i ≤ r〉.

Remark 2.15. Note that Definition 2.14 coincides with iterating the two-factor
connected sum construction. Indeed, repeatedly applying Lemma 2.13 shows that
the Thom class of the iterated connected sum

((A1#TA2)#TA3) · · ·#TAi−1

is (τ1, 0, . . . , 0). Thus, to obtain

(((A1#TA2)#TA3) · · ·#TAi−1)#TAi,

one goes modulo 〈(τ1, 0, . . . , 0, τi)〉.

Lemma 2.16. In the setup of Definition 2.14, there is a short exact sequence

(2.12) 0 → T (d− k)r−1 α
−→ A1 ×T · · · ×T Ar → A1#T · · ·#TAr → 0,

where the map α sends the generator of the i-th summand T to the image of
(τ1, 0, . . . , 0, τi+1, 0, . . . , 0) in A1 ×T · · · ×T Ar.

Proof. It is clear from Definition 2.14 that the connected sum is the cokernel of α.
It remains to justify that this map is injective. This follows from [IMS22, Lemma
2.6], where it is shown that the Gysin map ι : T (d−k) → Ai that satisfies ι(1) = τi
is injective. �
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2.5. Doubling. Let us start by recalling the doubling construction and some basic
facts needed later on.

Definition 2.17. Set R = K[x1, . . . , xn]. The canonical module of a graded R-

module M is ωM = Extn−dimM
R (M,R).

For example, one has ωK
∼= K.

Definition 2.18 ([KKR+21, Section 2.5]). Let J ⊂ R be a homogeneous ideal of
codimension c, such that R/J is Cohen-Macaulay and ωR/J is its canonical module.
Furthermore, assume that R/J satisfies the condition G0 (i.e., it is Gorenstein at
all minimal primes). Let I be an ideal of codimension c+ 1. I is called a doubling
of J via ψ if there exists a short exact sequence of R/J modules

(2.13) 0 → ωR/J(−d)
ψ
→ R/J → R/I → 0.

By [BH93, Proposition 3.3.18], if I is a doubling, then R/I is a Gorenstein ring.

Doubling plays an important role in the theory of Gorenstein liaison. Indeed,
in [KMMR+01], doubling is used to produce suitable Gorenstein divisors on arith-
metically Cohen-Macaulay subschemes in several foundational constructions. It is
not true that every Artinian Gorenstein ideal of codimension c+1 is a doubling of
some codimension c ideal (see, for instance, [KKR+21, Example 2.19]).

Moreover, the mapping cone of ψ in (2.13) gives a resolution of R/I. If it is
minimal, then one can read off the Betti table of R/I from the Betti table of
R/J . This mapping cone is the direct sum of the minimal free resolution F• of
R/J with its dual (reversed) complex Hom(F•, R) which justifies the terminology
of “doubling”.

Lemma 2.19. Let C = R/J be a Cohen-Macaulay K-algebra. Then:

(a) regωC = dimC; and

(b) if C is a doubling of a Cohen-Macaulay K-algebra C̃, i.e., dim C̃ = dimC+
1 and there is an exact sequence of graded R-modules

0 → ωC̃(−t) → C̃ → C → 0,

then t = regC − dimC.

Proof. (a) Consider a graded minimal free resolution of C as an R-module

0 → Fc → · · · → F1 → R → C → 0,

where c = dimR− dimC denotes the codimension. Dualizing and then shifting it,
we obtain a graded minimal free resolution of ωC of the form

0 → R(− dimR) → F ∗
1 (− dimR) → · · · → F ∗

c (− dimR) → ωC → 0.

Claim (a) follows using the characterization of regularity by graded Betti numbers.
(b) The Tor sequence of the given short exact sequence begins

0 → TorRc (C,K) → TorRc−1(ωC̃ ,K)(−t) → · · · .

Since C is a Gorenstein algebra, TorRc (C,K) is concentrated in degree c + regC.

The above resolution of ωC shows that TorRc−1(ωC̃ ,K)(−t) is concentrated in degree
t+ dimR. It follows that c+ regC = t+ dimR, which proves Claim (b). �

Licensed to Univ of Nebraska-Lincoln. Prepared on Sat Nov 30 09:32:19 EST 2024 for download from IP 129.93.169.156.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 NASRIN ALTAFI ET AL

3. Graded Betti numbers of the Connected Sum

For notational ease in this section, given a K-algebra A, we write Tori(A) instead
of Tori(A,K).

3.1. Two summands. Let R = K[x1, . . . , xm] and S = K[y1, . . . , yn] be poly-
nomial rings over K with the standard grading, and let x = (x1, . . . , xm) and
y = (y1, . . . , yn) denote the homogeneous maximal ideals of R and S, respectively.
Set

Q = R⊗K S ∼= K[x1, . . . , xm, y1, . . . , yn].

Let A = R/a and B = S/b be standard graded K-algebras. We will assume
a1 = b1 = 0, that is, the ideals a and b do not contain any non-zero linear forms.
Note that R×K S = Q/(x ∩ y) by Lemma 2.5. We start by determining the Betti
numbers of this ring. Note that the ideal x∩y of Q is a so-called Ferrers ideal and
admits a minimal graded free cellular resolution that is supported on the join of
two simplices (see [CN09]). We show other useful fact about this resolution below.

Henceforth, we set
(
a
b

)
= 0 if b > a.

Lemma 3.1. The ideal x ∩ y of Q has a 2-linear minimal free graded resolution
over Q and, for i ≥ 1, we have

[TorQi (Q/x ∩ y)]i+1
∼=

coker
(
[TorQi+1(Q/x)⊕ TorQi+1(Q/y)]i+1 → [TorQi+1(K)]i+1

)
.

In particular, one has

dimK [TorQi (Q/x ∩ y)]i+1 =

(
m+ n

i+ 1

)
−

(
m

i+ 1

)
−

(
n

i+ 1

)

and PQ
Q/x∩y

(t, s) = t−1[(1 + st)m − 1][(1 + st)n − 1] + 1.

Proof. The first part is well-known (see, e.g., [CN09, Theorem 2.1]). It also follows
from the Mayer-Vietoris sequence

0 → Q/x ∩ y → Q/x⊕Q/y → Q/x+ y → 0.

Observe that Q/x+y ∼= K as a Q-module. Thus, for any integer i ≥ 0, the induced
long exact sequence in Tor gives

[TorQi+1(Q/x ∩ y)]i+1 → [TorQi+1(Q/x)⊕ TorQi+1(Q/y)]i+1 →

[TorQi+1(K)]i+1 → [TorQi (Q/x ∩ y)]i+1 → [TorQi (Q/x)⊕ TorQi (Q/y)]i+1.

The left-most module in this sequence is zero because x∩y has a 2-linear resolution.
Similarly, the right-most module is zero because x and y have linear resolutions.
Thus, the second claim follows. The last claim can be verified directly based on the
second. �

The following result gives a formula to compute the graded Betti numbers of the
fiber product A×K B.

Notation. Given a power series P (t, s) =
∑

cijs
jti ∈ Z[s][[t]], we set P̃ (t, s) =∑

j>i

cijs
jti to be the sum of the terms of P (t, s) having j > i.
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BETTI NUMBERS FOR CONNECTED SUMS OF GRADED AGA’S 11

Theorem 3.2. For any integer i ≥ 1, there is an isomorphism of graded K-vector
spaces

[TorQi (A×K B)]j

∼=

⎧
⎪⎪«
⎪⎪¬

0 if j ≤ i,

[TorQi (A)]i+1 ⊕ [TorQi (B)]i+1 ⊕ [TorQi (Q/x ∩ y)]i+1 if j = i+ 1,

[TorQi (A)]j ⊕ [TorQi (B)]j if j ≥ i+ 2.

In particular, one has

PQ
A×KB(t, s) = P̃Q

A (t, s) + P̃Q
B (t, s) + PQ

Q/x∩y
(t, s)

and

reg(A×K B) = max{regA, regB}.

Proof. Consider the exact sequence (2.3) of graded Q-modules

0 → A×K B → A⊕B → K → 0.

Its long exact sequence in Tor gives exact sequences

(3.1) TorQi+1(K) → TorQi (A×K B) → TorQi (A)⊕ TorQi (B) → TorQi (K).

As a Q-module, K is resolved by a Koszul complex, which shows in particular

[TorQi (K)]j �= 0 if and only if 0 ≤ i = j ≤ m+n. Considering the sequence (3.1) in
degree j, we conclude that

[TorQi (A×K B)]j ∼= [TorQi (A]j ⊕ [TorQi (B)]j

if j ≥ i+ 2.
Using the fact that A×K B ∼= Q/(x ∩ y, a, b)—as in (2.5)—and that the initial

degree of (x ∩ y, a, b) is two since a and b do not contain any linear forms by
assumption, we see that for j ≤ i,

[TorQi (A×K B)]j = 0.

It remains to consider [TorQi (A×K B)]i+1. To this end, we use a longer part of
the exact Tor sequence and consider it in degree i+ 1:

[TorQi+1(A)⊕ TorQi+1(B)]i+1
γ

−→ [TorQi+1(K)]i+1 →

[TorQi (A×K B)]i+1 → [TorQi (A)⊕ TorQi (B)]i+1 → [TorQi (K)]i+1.

The right-most module in this sequence is zero because K has a linear resolution as
a Q-module. Note that there are isomorphisms of graded Q-modules A ∼= Q/(a,y)
and B = Q/(x, b). Since a1 = b1 = 0, it follows that

[TorQi+1(A)⊕ TorQi+1(B)]i+1
∼= [TorQi+1(Q/y)⊕ TorQi+1(Q/x)]i+1.

Therefore, the cokernel of the map γ is equal to the cokernel of the map [TorQi+1(Q/x)

⊕ TorQi+1(Q/y)]i+1 → [TorQi+1(K)]i+1. By Lemma 3.1, the latter is isomorphic to

[TorQi (Q/x ∩ y)]i+1. Hence, the above sequence proves the claim for [TorQi (A ×K

B)]i+1.
The claim regarding the Poincaré series follows by taking the dimensions of the

Tor modules and using the isomorphism in the first part of the theorem. �

Licensed to Univ of Nebraska-Lincoln. Prepared on Sat Nov 30 09:32:19 EST 2024 for download from IP 129.93.169.156.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



12 NASRIN ALTAFI ET AL

Remark 3.3. The previous result allows us to write the Betti numbers of the fiber
product in terms of those of the summands:

βQ
i,j(A×K B) =

⎧
⎪⎪«
⎪⎪¬

0 if j ≤ i

βQ
i,i+1(A) + βQ

i,i+1(B) + βQ
i,i+1(Q/x ∩ y) if j = i+ 1

βQ
i,j(A) + βQ

i,j(B) if j ≥ i+ 2.

In Theorem 3.2, we have computed the graded Betti numbers of the fiber product
A ×K B in terms of the graded Betti numbers of A and B as Q-modules and we
will now convert these formulas into formulas depending only on [TorRi (A)]j and

[TorSi (B)]j .

Notation. We set [x]+ = max{0, x}.

Proposition 3.4. The identities

PQ
A (t, s) = PR

A (t, s) · (1 + st)dimS , and

PQ
B (t, s) = PS

B(t, s) · (1 + st)dimR

yield

P̃Q
A (t, s) = (PR

A (t, s)− 1) · (1 + st)dimS , and

P̃Q
B (t, s) = (PS

B(t, s)− 1) · (1 + st)dimR.

Thus, with m = dimR and n = dimS, we have

βQ
i,j(A) =

min(i,m)−1∑

�=0

(
n

[i−m]+ + �

)
βR
min(i,m)−�,j−�−[i−m]+

(A), and

βQ
i,j(B) =

min(i,n)−1∑

�=0

(
m

[i− n]+ + �

)
βS
min(i,n)−�,j−�−[i−n]+

(B).

Proof. Since Q is a free R-module, we have PQ
Q/a(t, s) = PR

R/a(t, s) = PR
A (t, s). We

know A = Q/(a + y), and TorKi (Q/a, Q/y) = 0 for i ≥ 1, so the minimal free
resolution of A as a Q-module is obtained by tensoring the minimal free resolutions
of Q/a and Q/y. This justifies the identity

PQ
A (t, s) = PQ

Q/a(t, s) · P
Q
Q/y(t, s) = PR

A (t, s) · (1 + st)dimS .

Since the terms with equal exponents for s and t in PQ
A (t, s) arise from the constant

term of the first factor multiplied with the second factor, removing this term yields

P̃Q
A (t, s).
Therefore, using the convention

(
n
a

)
= 0 if a > n, we conclude that

βQ
i,j(A) =

{∑i−1
�=0

(
n
�

)
βR
i−�,j−�(A) if 1 ≤ i ≤ m, and∑m−1

�=0

(
n

i−m+�

)
βR
m−�,j−i+m−�(A) if m < i ≤ m+ n.

The claims regarding B are justified similarly. �

Combining Lemma 3.1, Theorem 3.2 and Proposition 3.4, we get:
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Corollary 3.5. For integers a, b, c and a module M over a ring P denote

sPa,b,c,d(M) =

min(a,b)−1∑

�=0

(
c

[i− b]+ + �

)
βP
min(a,b)−�,d−�−[a−b]+

(M).

With the above notation, we have

PQ
A×KB(t, s) = (PR

A (t, s)− 1) · (1 + st)n + (PS
B(t, s)− 1) · (1 + st)m+

+ t−1[(1 + st)m − 1][(1 + st)n − 1] + 1,
(3.2)

that is,

βQ
i,j(A ×K B) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

0 if j ≤ i, (i, j) �= (0, 0),

1 if i = j = 0,

sRi,m,n,i+1(A) + sSi,n,m,i+1(B)

+
(
m+n
i+1

)
−
(

m
i+1

)
−
(

n
i+1

) if j = i+ 1,

sRi,m,n,j(A) + sSi,n,m,j(B) if j ≥ i+ 2.

Remark 3.6. The identity (3.2) extends [Gel22, Theorem 1.1] to the graded case.
It can be checked that the two results agree upon substituting s = 1 in (3.2).

We now turn to the graded Betti numbers of the connected sum. AG K-algebras
with socle degree two have been classified by [Sal79]. Explicitly, if A = R/a has
h-vector (1, n, 1) then, up to isomorphism, one has

a = (xixj | 1 ≤ i �= j ≤ n) + (x2
1 − x2

2, . . . , x
2
1 − x2

n).

The graded minimal free resolution of A as an R-module has the form

0 → R(−n− 2) → R(−n)βn−1 → · · · → R(−2)β1 → R → A → 0,

and a straightforward computation gives us

βi = βn−1−i = i

(
n

i+ 1

)
+ (n− i)

(
n

n− i+ 1

)

for 1 ≤ i ≤ n − 1. Thus, it is harmless to consider AG K-algebras whose socle
degree is at least three.

Theorem 3.7. Assume that A and B are AG K-algebras such that reg(A) =
reg(B) = e ≥ 3. For any integer i ≥ 1, there is an isomorphism of graded K-vector
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14 NASRIN ALTAFI ET AL

spaces

[TorQi (A#KB)]j ∼=⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

0 if j ≤ i and (i, j) �= (0, 0),

K if (i, j) = (0, 0),

[TorQi (A)]i+1 ⊕ [TorQi (B)]i+1

⊕[TorQi (Q/x ∩ y)]i+1 if j = i+ 1,

[TorQi (A)]j ⊕ [TorQi (B)]j if i+ 2 ≤ j ≤ i+ e− 2,

[TorQi (A)]j ⊕ [TorQi (B)]j

⊕[TorQm+n−i(Q/x ∩ y)]m+n−i+1 if j = i+ e− 1,

K if (i, j) = (m+ n, e+m+ n),

0 if j ≥ e+ i and

(i, j) �= (m+ n, e+m+ n);

equivalently,

PQ
A#KB(t, s) = P̃Q

A (t, s) + P̃Q
B (t, s) + PQ

Q/x∩y
(t, s)

+ sm+n+etm+nPQ
Q/x∩y

(t−1, s−1).

Proof. Consider the exact sequence (2.8) of graded Q-modules

0 → K(−e) → A×K B → A#KB → 0.

Its long exact Tor sequence gives exact sequences

[TorQi (K)]j−e → [TorQi (A×K B)]j →

[TorQi (A#KB)]j → [TorQi−1(K)]j−e.

Since TorQi (K) is concentrated in degree i we conclude that

[TorQi (A#KB)]j ∼= [TorQi (A×K B)]j

if j /∈ {e+i−1, e+i}. Combined with Theorem 3.2, this determines [TorQi (A#KB)]j
if j ≤ e+ i− 2.

Using the fact that reg(A#KB) = regA = regB = e which can be deduced from

(2.9), we know that [TorQi (A#KB)]j = 0 if j ≥ e + i+ 1. It remains to determine

[TorQi (A#KB)]j if j ∈ {e+ i− 1, e+ i}. To this end we utilize the fact that A#KB
is Gorenstein. Thus, its graded minimal free resolution is symmetric. In particular,
since dimQ = m+ n, one has

[TorQi (A#KB)]j ∼= [TorQm+n−i(A#KB)]e+m+n−j .

Similarly, for A and B we have TorQi (A)j ∼= [TorQm+n−i(A)]e+m+n−j and TorQi (B)j
∼= [TorQm+n−i(B)]e+m+n−j .

Combined with Theorem 3.2 and using e ≥ 3, which implies that the degrees
e + i − 1, e + i are not self-dual under the isomorphisms given above, the claim
regarding Tor modules follows.
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The Poincaré series formula follows from the above considerations and the iden-
tities

m+n∑

i=0

βm+n−i,m+n−i+1(Q/x ∩ y)tisi+e−1

=

m+n∑

j=0

βj,j+1(Q/x ∩ y)tm+n−jsm+n−j+e−1

= tm+nsm+n+e
m+n∑

j=0

βj,j+1(Q/x ∩ y)t−js−j−1

= tm+nsm+n+ePQ
Q/x∩y

(t−1, s−1).

�

Using again Lemma 3.1 and Proposition 3.4, we can convert Theorem 3.7 into
explicit formulas depending only on the Betti numbers of A as an R-module and of
B as an S-module.

Corollary 3.8. Consider the setup of Theorem 3.7. For integers a, b, c and a
module M over a ring P denote

sPa,b,c,d(M) =

min(a,b)−1∑

�=0

(
c

[i− b]+ + �

)
βP
min(a,b)−�,d−�−[a−b]+

(M).

With the above notation we have:

βQ
i,j(A#KB)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

0 if j ≤ i, (i, j) �= (0, 0),

1 if (i, j) = (0, 0),

sRi,m,n,i+1(A) + sSi,n,m,i+1(B)

+
(
m+n
i+1

)
−
(

m
i+1

)
−
(

n
i+1

)
if j = i+ 1,

sRi,m,n,j(A) + sSi,n,m,j(B) if i+ 2 ≤ j ≤ i+ e− 2,

sRi,m,n,i+1(A) + sSi,n,m,i+1(B)

+
(

m+n
m+n−i−1

)
−
(

m
m−i−1

)
−
(

n
n−i−1

)
if i ≤ m+ n, j = i+ e− 1,

1 if (i, j) = (m+ n, e+m+ n),

0 if j ≥ e+ i and

(i, j) �= (m+ n, e+m+ n).

3.2. Arbitrarily many summands. For i = 1, . . . , r, consider standard graded
polynomial rings Ri = K[xi,1, . . . , xi,ni

] with irrelevant maximal ideals xi =
(xi,1, . . . , xi,ni

). Also, let Q = R1 ⊗K · · · ⊗K Rr. In the following, we abuse
notation to write xi to also denote the extensions of these ideals to ideals of Q.
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16 NASRIN ALTAFI ET AL

Lemma 3.9. Consider ideals I1, . . . , Ir of a commutative ring P and the map

ϕ : P/
⋂r

j=1 Ij
ϕ

−→
⊕r

j=1 P/Ij, where ϕ maps the image of p ∈ P in P/
⋂r

j=1 Ij
onto the image of (p, . . . , p) ∈ P r in

⊕r
j=1 P/Ij. The annihilator of cokerϕ as a

P -module is
⋂r

i=1

(
Ii +

⋂
j �=i Ij

)
.

Proof. First, we prove the inclusion Ann(cokerϕ) ⊆
⋂r

i=1

(
Ii +

⋂
j �=i Ij

)
. Consider

a ∈ Ann(cokerϕ) and let m be the image of (1, 0, . . . , 0) ∈ P r in
⊕r

j=1 P/Ij , so

that am ∈ imϕ. Then there exists p ∈
⋂

j �=1 Ij such that a − p ∈ I1, which shows

that a ∈ I1 +
⋂

j �=1 Ij . Repeating the argument with 2 ≤ i ≤ r proves the desired
inclusion.

For the reverse inclusion, observe that every a ∈ I1 +
⋂

j �=1 Ij annihilates the

image of (1, 0, . . . , 0) ∈ P r in cokerϕ, and similarly for 2 ≤ i ≤ r. �

Lemma 3.9 will be applied to the following family of ideals.

Lemma 3.10. Define the ideals Ij of Q by

Ij = x1 + · · ·+ x̂j + · · ·+ xr

so that Q/Ij ∼= Rj . Then one has

∑

1≤i �=j≤r

xi ∩ xj =
r⋂

j=1

Ij .

Proof. We proceed by induction on r ≥ 2, the base case follows immediately from
the definitions.

Assume the statement holds for r − 1, i.e.

∑

1≤i �=j≤r−1

xi ∩ xj =
r−1⋂

j=1

Ĩj ,

where Ĩj = x1 + · · ·+ x̂j + · · ·+ xr−1. Then we have

r⋂

j=1

Ij =
r−1⋂

j=1

Ij ∩ Ir =
r−1⋂

j=1

(Ĩj + xr) ∩ Ir =

⎛
¿

r−1⋂

j=1

Ĩj + xr

À
⎠ ∩ Ir

=

⎛
¿ ∑

1≤i �=j≤r−1

xi ∩ xj + xr

À
⎠ ∩ Ir =

∑

1≤i �=j≤r−1

xi ∩ xj +
∑

1≤i≤r−1

xi ∩ xr

because xi ∩ xj ⊂ Ir whenever 1 ≤ i �= j ≤ r − 1. �

Combining Lemma 3.9 with Lemma 3.10, we obtain:

Corollary 3.11. There is an exact sequence of graded Q-modules

(3.3) 0 → Q/

⎛
¿ ∑

1≤i �=j≤r

xi ∩ xj

À
⎠→

r⊕

j=1

Rj → Kr−1 → 0.

Proof. Consider the ideal I1, . . . , Ir of Q as defined in Lemma 3.10. Observe that
Q/Ij ∼= Rj and

⋂r
j=1 Ij =

∑
1≤i �=j≤r xi∩xj . Thus, the map in Lemma 3.9 becomes

ϕ : Q/
(∑

1≤i �=j≤r xi ∩ xj

)
→
⊕r

j=1 Rj .
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The definition of the ideals Ij implies that for each i, Ii +
⋂

j �=i Ij is the max-
imal ideal m generated by all the variables of Q. Hence, Lemma 3.9 shows that
Ann(cokerϕ) = m.

Notice that imϕ is a cyclic Q-module whose minimal generator can also be
taken as a minimal generator of

⊕r
j=1 Rj . It follows that cokerϕ is minimally

generated by r − 1 elements of degree zero. Since Ann(cokerϕ) = m, we conclude
that cokerϕ ∼= Kr−1, which completes the argument. �

We compute the Betti numbers for the leftmost term in the short exact sequence
(3.3).

Lemma 3.12. The ideal
∑

i �=j xi ∩ xj has a 2-linear minimal free resolution, and
for t ≥ 1 we have that
⎡
£TorQt (Q/

∑

i �=j

xi ∩ xj)

¤
⎦
t+1

∼= coker

⎛
¿
⎡
£

r⊕

j=1

TorQt+1(Q/Ij)

¤
⎦
t+1

→

⎡
£

r−1⊕

j=1

TorQt+1(K)

¤
⎦
t+1

À
⎠ .

Thus with N = n1 + · · ·+ nr,

βQ
t,t+1

⎛
¿Q/

∑

i �=j

xi ∩ xj

À
⎠ = (r − 1)

(
N

t+ 1

)
−

r∑

k=1

(
N − nk

t+ 1

)
.

Proof. Since reg(Q/Ij) = 0 for each 1 ≤ j ≤ r and reg(K) = 0, the short exact
sequence (3.3) implies, by means of the formula

reg

⎛
¿Q/

∑

i �=j

xi ∩ xj

À
⎠ ≤ max

⎧
«
¬reg(

r⊕

j=1

Q/Ij), reg(K
r−1) + 1

«
¬
­ = 1,

that
∑

i �=j xi ∩xj has a 2-linear minimal free resolution. Moreover, for every t ≥ 0,
it induces the following long exact sequence.
⎡
£TorQt+1

⎛
¿Q/

∑

i �=j

xi ∩ xj

À
⎠
¤
⎦
t+1

→

⎡
£

r⊕

j=1

TorQt+1(Q/Ij)

¤
⎦
t+1

→

⎡
£

r−1⊕

j=1

TorQt+1(K)

¤
⎦
t+1

→

⎡
£TorQt

⎛
¿Q/

∑

i �=j

xi ∩ xj

À
⎠
¤
⎦
t+1

→

⎡
£

r⊕

j=1

TorQt (Q/Ij)

¤
⎦
t+1

.

Since reg(
∑

i �=j Q/xi ∩ xj) = 1 and reg(Q/Ij) = 0, the left-most and right-most

modules in the above long exact sequence are zero. Since the Q-modules Q/Ij
and K are minimally resolved by Koszul complexes, the dimensions of the second
and third terms of the sequence are given by sums of the appropriate binomial
coefficients. Therefore, taking the difference of these dimensions yields the desired
formula for the Betti numbers. �
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18 NASRIN ALTAFI ET AL

For every i = 1, . . . , r we consider a standard graded ring Ai = Ri/ai with
ai ⊆ (xi)

2. We abuse notation to write ai to also denote the extensions of these
ideals to ideals of Q.

Theorem 3.13. For every t ≥ 1, we have that

[TorQt (A1 ×K · · · ×K Ar)]s =⎧
⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪¬

0 if s ≤ t,

r⊕

i=1

[TorQt (Ai)]t+1 ⊕

⎡
£TorQt

⎛
¿Q/

∑

i �=j

xi ∩ xj

À
⎠
¤
⎦
t+1

if s = t+ 1,

r⊕

i=1

[TorQt (Ai)]s if s ≥ t+ 2.

Proof. Consider the short exact sequence of graded Q-modules (2.7)

0 → A1 ×K · · · ×K Ar → A1 ⊕ · · · ⊕Ar → Kr−1 → 0.

For every t ≥ 0, it induces the following long exact sequence.

TorQt+1(K
r−1) → TorQt (A1 ×K · · · ×K Ar)

→ TorQt (A1 ⊕ · · · ⊕Ar) → TorQt (K
r−1).

We have that [TorQt (K
r−1)]s �= 0 if and only if 0 ≤ t = s ≤ n1 + · · ·+nr. Thus, for

every s ≥ t+ 2, we get

[TorQt (A1 ×K · · · ×K Ar)]s ∼=

r⊕

i=1

[TorQt (Ai)]s.

Restricting to degree s = t+ 1, we get the exact sequence:

r⊕

i=1

[TorQt+1(Ai)]t+1 → [TorQt+1(K
r−1)]t+1

→ [TorQt (A1 ×K · · · ×K Ar)]t+1 →

r⊕

i=1

[TorQt (Ai)]t+1 → 0.

For every 1 ≤ i ≤ r, we have Ai = Q/(Ii, ai), and since we assume that each ai is
generated in degrees at least two, we also have

r⊕

i=1

[TorQt+1(Ai)]t+1
∼=

r⊕

i=1

[TorQt+1(Q/Ii)]t+1.

This implies that

[TorQt (A1 ×K · · · ×K Ar)]t+1
∼=

r⊕

i=1

[TorQt (Ai)]t+1

⊕ coker

(
r⊕

i=1

[TorQt+1(Q/Ii)]t+1 →

r−1⊕

i=1

[TorQt+1(K)]t+1

)
.

Using Lemma 3.12, we get the desired formula. �
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BETTI NUMBERS FOR CONNECTED SUMS OF GRADED AGA’S 19

From the previous result, we can compute the graded Betti numbers of the
fiber product A1 ×K · · · ×K Ar in terms of the graded Betti numbers of the Ai as
Q-modules. A straightforward computation allows us to translate into a formula
depending only on the Betti numbers of the Ai as Ri-modules.

Corollary 3.14. With N = n1 + · · ·+ nr, we have

PQ
A1×K ···×KAr

(t, s) =

r∑

i=1

(PRi

Ai
(t, s)− 1)(1 + st)N−ni

+ (r − 1)
(1 + st)N −Nst− 1

t

−

r∑

i=1

(1 + st)N−ni − (N − ni)st− 1

t
+ 1.

Proof. The generating series is derived from Theorem 3.13, the numerical formula
in Lemma 3.12, and an analogue of Proposition 3.4. �

Recall that it is harmless to assume that an AG K-algebra has socle degree at
least three because AG algebras with smaller socle degrees are well understood (see
the description above in Theorem 3.7).

Theorem 3.15. Assume that A1, . . . , Ar are AG K-algebras with reg(A�) = e ≥ 3
for all 1 ≤ � ≤ r. Then, for any integer t ≥ 0, the graded Betti numbers of the
connected sum A1#K · · ·#KAr over the polynomial ring Q with dim(Q) = N are
given by

[TorQt (A1#K · · ·#KAr)]s ∼=⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪«
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪¬

0 if s ≤ t and (t, s) �= (0, 0),

K if (t, s) = (0, 0),
⊕r

i=1[Tor
Q
t (Ai)]t+1

⊕[TorQt (Q/
∑

i �=j xi ∩ xj)]t+1 if t = s+ 1,
⊕r

i=1[Tor
Q
t (Ai)]s if t+ 2 ≤ s ≤ t+ e− 2,

⊕r
i=1[Tor

Q
t (Ai)]s

⊕[TorQN−t(Q/
∑

i �=j xi ∩ xj)]N−t+1 if s = t+ e− 1,

K if (t, s) = (N, e+N),

0 if s ≥ e+ t and

(t, s) �= (N, e+N).

Proof. We denote C = A1#K · · ·#KAr and D = A1 ×K · · · ×K Ar, and consider
the exact sequence of graded Q-modules (2.12)

0 → Kr−1(−e) → D → C → 0.

Its long exact Tor sequence gives exact sequences

[TorQt (K
r−1)]s−e → [TorQt (D)]s → [TorQt (C)]s → [TorQt−1(K

r−1)]s−e.

Since TorQt (K) is concentrated in degree t we conclude that

[TorQt (C)]s ∼= [TorQt (D)]s
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20 NASRIN ALTAFI ET AL

if s /∈ {e+ t− 1, e+ t}. Combined with Theorem 3.13, this determines [TorQt (C)]s
if s ≤ e+ t− 2.

Using that reg(C) = regAi = e, we know [TorQt (C)]s = 0 if s ≥ e + t + 1. It

remains to determine [TorQt (C)]s if s ∈ {e+ t− 1, e+ i}. To this end, we utilize the
fact that C is Gorenstein. Thus, its graded minimal free resolution is symmetric.
In particular, one has

[TorQt (C)]s ∼= [TorQN−t(C)]e+N−s

and similarly, we have TorQt (Ai)s ∼= [TorQN−t(A)]e+N−s for each Ai.
Combined with Theorem 3.13 and using e ≥ 3, which implies that the degrees

e + i − 1, e + i are not self-dual under the isomorphisms given above, the claim
regarding the Tor modules follows. �

Corollary 3.16. With the notation of Theorem 3.15, we have

PQ
A1#K ···#KAr

(t, s) =
r∑

i=1

(PRi

Ai
(t, s)− 1)(1 + st)N−ni + 1

+ (r − 1)
(1 + st)N −Nst− 1

t

−

r∑

i=1

(1 + st)N−ni − (N − ni)st− 1

t

+ (r − 1)sN+etN+1[(1 + s−1t−1)N −
N

st
− 1]

− sN+etN+1
r∑

i=1

[
(1 + s−1t−1)N−ni −

N − ni

st
− 1

]
.

Proof. As a first step, we show

PQ
A1#K ···#KAr

(t, s) =

r∑

i=1

PQ
Ai
(t, s) + PQ

Q/
∑

i�=j xi∩xj
(t, s)

+ sN+etNPQ
Q/

∑
i�=j xi∩xj

(t−1, s−1)− 2.

This formula follows from Theorem 3.15 and the identities

N∑

u=0

βN−u,N−u+1

⎛
¿Q/

∑

i �=j

xi ∩ xj

À
⎠ tusu+e−1

=

N∑

v=0

βv,v+1

⎛
¿Q/

∑

i �=j

xi ∩ xj

À
⎠ tN−vsN−v+e−1

= tNsN+e
N∑

v=0

βv,v+1

⎛
¿Q/

∑

i �=j

xi ∩ xj

À
⎠ t−vs−v−1

= tNsN+ePQ
Q/

∑
i�=j xi∩xj

(t−1, s−1).

Substituting the formulas of Corollary 3.14 and Lemma 3.12 into the formula above
yields the claim. �
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Table 3. Betti tables of R/I and R/J in Example 4.1

0 1 2 3
total 1 3 3 1
0: 1 . . .
1: . 3 2 .
2: . 2 3 .
3: . . . 1

0 1 2 3
total 1 3 3 1
0: 1 . . .
1: . 3 2 .

4. Connected Sum as a Doubling

4.1. Motivating examples. We discuss examples of monomial complete inter-
sections. Using the so-called doubling method, Celikbas, Laxmi and Weyman
solved a particular case of Questions 1.1 and 1.2. Indeed, in [CLW19, Corollary
6.3], they determine a minimal free resolution of the connected sum of K-algebras

Ai = K[xi]/(x
di

i ) by using the doubling construction. The goal of this section is to
generalize their result to AG K-algebras with the same socle degree. We start with
a toy example.

Example 4.1. The Betti table of the connected sum

C =
K[x]

(x4)
#K

K[y]

(y4)
#K

K[z]

(z4)

is described on the left in Table 3.
It should be understood as follows. The connected sum C has the presentation

C =
K[x, y, z]

(xy, xz, yz, x3 + y3, x3 + z3)
.

Let Q = K[x, y, z], I = (xy, xz, yz, x3 + y3, x3 + z3) and J = (xy, xz, yz). Then the
Betti table of Q/J is given on the right in Table 3. It follows from this that ωQ/J

has two generators and there is an exact sequence

0 → ωQ/J (−3) → Q/J → C → 0,

which maps the generators of ωQ/J to the elements x3+y3 and x3+z3 in Q/J . The
resolution of C is obtained as a mapping cone from the previous exact sequence.

Each of the summands in C is obtained by doubling a polynomial ring. Indeed,
the short exact sequence

0 → ωK[x](−3) → K[x] →
K[x]

(x4)
→ 0

sending the generator of ωK[x]
∼= K[x](−1) to x4, shows that K[x]/(x4) is a dou-

bling of K[x]. Similarly, the remaining summands are doublings of K[y] and K[z],
respectively. Furthermore, the ring Q/J from above can be identified with the fiber
product of the rings being doubled

Q/J = K[x]×K K[y]×K K[z].

Example 4.2 is the first generalization of the [CLW19, Corollary 6.3] to every
monomial complete intersection.
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22 NASRIN ALTAFI ET AL

Example 4.2. We focus on the connected sum A = A1#K · · ·#KAr of complete
intersection algebras

Ai := K[xi,1, . . . , xi,ni
]/(x

di,1

i,1 , . . . , x
di,ni

i,ni
)

for i = 1, . . . , r, satisfying

(4.1)

ni∑

j=1

di,j − ni =

ni′∑

j=1

di′,j − ni′ whenever 1 ≤ i, i′ ≤ r.

Let Ri = K[xi,1, . . . , xi,ni
], Q = R1 ⊗K · · · ⊗K Rr and let c be the quantity

defined in (4.1). The connected sum of the K-algebras Ai admits the presentation
A ∼= Q/I where

I = (xi,jixh,jh | 1 ≤ i < h ≤ r, 1 ≤ ji ≤ ni, 1 ≤ jh ≤ nh)

+
(
x
di,li

i,li

∣∣∣ 1 ≤ i ≤ r, 1 ≤ li ≤ ni − 1
)

+
(
x
di,1−1
i,1 · · ·x

di,ni
−1

i,ni
+ x

d1,1−1
1,1 · · ·x

d1,n1
−1

1,n1

∣∣∣ 2 ≤ i ≤ r
)
.

It can be verified that A is a doubling of Ã = Q/J , where J is an ideal defining r co-
ordinate points in A

n1

K ×· · ·×A
nr

K with multiplicity; more precisely, J =
⋂

i=1,...,r Ji,
where

Ji =
(
xj,h, x

di,li

i,li

∣∣∣ j �= i, 1 ≤ h ≤ nj , 1 ≤ li ≤ ni − 1
)
.

More importantly, setting Ãi = Ri/(x
di,li

i,li
| 1 ≤ li ≤ ni − 1), we see that each ring

Ai is a doubling of Ãi via the sequence

0 → ωÃi
(−c) → Ãi → Ai → 0

sending the generator of ωÃi
(−c) ∼= Ãi(−di,ni

) to x
di,ni

i,ni
, and that Ã = Ã1 ×K

· · · ×K Ãr. The Betti numbers of Ã can thus be obtained via Corollary 3.14.

We shall explain this observation as part of a general phenomenon in the following
result.

Theorem 4.3. Let A1, . . . , Ar be graded AG K-algebras with reg(Ai) = d for all
1 ≤ i, j ≤ r. Suppose that for each 1 ≤ i ≤ r, Ai is a doubling of some 1-
dimensional Cohen-Macaulay algebra Ãi, then the connected sum A1#K · · ·#KAr

is a doubling of Ã1 ×K · · · ×K Ãr.

Proof. We proceed by induction on r. We first prove the base case where r = 2.
Set Ã1 = R/ã1 and Ã2 = S/ã2 and let Q = R1 ⊗K R2. By [AAM12, Lemma

1.5] the ring Ã1 ×K Ã2 is Cohen Macaulay of dimension one. By Lemma 2.19, our
assumptions imply that for each i we have exact sequences

(4.2) 0 → ωÃi
(−d) → Ãi → Ai → 0.

Considering these in degree zero we conclude that

(4.3) [ωÃi
]−d = 0.

Combining the exact sequences (4.2) for i ∈ {1, 2} with the sequence in (2.3),
we obtain the following commutative diagram of Q-modules with exact rows and

Licensed to Univ of Nebraska-Lincoln. Prepared on Sat Nov 30 09:32:19 EST 2024 for download from IP 129.93.169.156.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BETTI NUMBERS FOR CONNECTED SUMS OF GRADED AGA’S 23

middle column.

0 0
⏐⏐&

⏐⏐&

(ωÃ1
⊕ ωÃ2

)(−d) −−→
=

(ωÃ1
⊕ ωÃ2

)(−d)
⏐⏐&

⏐⏐&

0 −−→ Ã1 ×K Ã2
σ

−−→ Ã1 ⊕ Ã2
μ

−−→ K −−→ 0
⏐⏐&

⏐⏐&
⏐⏐&=

0 −−→ A1 ×K A2 −−→ A1 ⊕A2 −−→ K −−→ 0
⏐⏐&

⏐⏐&

0 0

(4.4)

The vertical map Ã1×K Ã2 → A1×KA2 in (4.4) is uniquely determined by viewing
A1 ×K A2 as a pullback in the category of K-algebras and utilizing the universal
property of this categorical construction. Moreover, by the snake lemma, the kernel
of this map is the module (ωÃ1

⊕ ωÃ2
)(−d).

Applying the functor Hom(−, Q) to the diagram (4.4) yields a new commutative
diagram (4.5). The middle row in (4.5) comes from the top of (4.4), and the top row
of (4.5) contains the non-vanishing Ext modules for the Q-modules in the middle
row of (4.4). According to Remark 2.2, the map marked ν satisfies ν(1) = (τA1

, τA2
)

after identifying ωA1
⊕ ωA2

∼= A1 ⊕A2.

0 0
⏐⏐&

⏐⏐&

0 ←−− K ←−− ωÃ1×KÃ2
←−− ωÃ1

⊕ ωÃ2
←−− 0

⏐⏐&η

⏐⏐&

(Ã1 ⊕ Ã2)(d) ←−−
=

(Ã1 ⊕ Ã2)(d)
⏐⏐&

⏐⏐&χ

0 ←−− ωA1×KA2
←−− ωA1

⊕ ωA2
←−− K ←−− 0

⏐⏐&
⏐⏐&

0 0

(4.5)

The snake lemma applied to (4.5) yields a connecting isomorphism θ : K → K.
Let s ∈ ωÃ1×KÃ2

be such that ξ(s) = θ(1). Then χ(η(s)) = ν(1) can be identified

with (τA1
, τA2

) ∈ A1⊕A2, that is, η(s) is equivalent to (τA1
, τA2

) modulo the image
of ωÃ1

⊕ ωÃ2
.

We want to compare the image of

η[−d] : ωÃ1×KÃ2
(−d) → Ã1 ⊕ Ã2

and the kernel of the map μ from Diagram (4.4). The image of η[−d] is trivial in
degree zero by Equation (4.3). Since K is concentrated in degree zero, the map μ
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24 NASRIN ALTAFI ET AL

has zero image in every degree other than zero. It follows that the image of η[−d]

is contained in kerμ = im σ ∼= Ã1 ×K Ã2. Hence η[−d] induces an injective graded
Q-module homomorphism

δ : ωÃ1×KÃ2
(−d) → Ã1 ×K Ã2.

Its existence proves that ωÃ1×KÃ2
(−d) can be identified with an ideal of Ã1×K Ã2.

The following diagram combines the left column of Diagram (4.4) and the top
row of (4.5). By previous considerations indicating that δ(s) = η(s) is equivalent
to (τA1

, τA2
) modulo the image of ωÃ1

⊕ωÃ2
, the diagram commutes provided that

ξ(s) is mapped by τ to (τA1
, τA2

) ∈ A1 ×K A2. With this choice, the cokernel of τ
is A1#KA2 by Definition 2.10.

0 0
⏐⏐&

⏐⏐&

(ωÃ1
⊕ ωÃ1

)(−d)
=

−−→ (ωÃ1
⊕ ωÃ2

)(−d)
⏐⏐&

⏐⏐&

0 −−→ ωÃ1×KÃ2
(−d) −−→

δ
Ã1 ×K Ã2 −−→ C −−→ 0

⏐⏐&ξ

⏐⏐&

0 −−→ K(−d) −−→
τ

A1 ×K A2 −−→ A1#KA2 −−→ 0
⏐⏐&

⏐⏐&

0 0

Setting C be the cokernel of δ, the snake lemma yields an isomorphism C ∼=
A1#KA2. This shows that A1#KA2 is a doubling of Ã1 ×K Ã2, as desired for
the base case of induction.

Now, we assume that the AG K-algebra A1#K · · ·#KAr−1 is a doubling of

Ã1 ×K · · · ×K Ãr−1. The base case applied to AG K-algebras A1#K · · ·#KAr−1

and Ar implies by way of Remarks 2.8 and 2.15 that A1#K · · ·#KAr is a doubling
of Ã1 ×K · · · ×K Ãr completing the proof. �

Theorem 4.3 generalizes [CLW19, Theorem 5.5], which considered the case of
AG algebras A1, . . . , Ar of embedding dimension one, establishing an analogous
doubling result.
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