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ABSTRACT. The connected sum construction, which takes as input Gorenstein
rings and produces new Gorenstein rings, can be considered as an algebraic
analogue for the topological construction having the same name. We determine
the graded Betti numbers for connected sums of graded Artinian Gorenstein
algebras. Along the way, we find the graded Betti numbers for fiber products
of graded rings; an analogous result was obtained in the local case by Geller
[Proc. Amer. Math. Soc. 150 (2022), pp. 4159-4172]. We relate the connected
sum construction to the doubling construction, which also produces Gorenstein
rings. Specifically, we show that, for any number of summands, a connected
sum of doublings is the doubling of a fiber product ring.

1. INTRODUCTION

The connected sum is a topological construction that takes two manifolds to
produce a new manifold [Mas91, p. 7]. An algebraic analog of this surgery con-
struction was introduced by H. Ananthnarayan, L. Avramov, and W.F. Moore in
their paper [AAM12] in the local case. In this paper, we elucidate some properties
of this construction in the graded case.

Let A and B be two graded Artinian Gorenstein (AG) K-algebras with the
same socle degree d, let T be an AG K-algebra of socle degree k < d, and suppose
there are surjective maps m4: A — T, and mg: B — T. From this data, one
forms the fiber product algebra A x B as the categorical pullback of 74, 7g; the
connected sum algebra A#r B is the quotient of A X7 B by a certain principal ideal
((1a,7B)) C Axp B. The connected sum is again an AG K-algebra (see Definition
2.10).

In [Gel22] and [CGS23], the authors determined the minimal free resolution of a
two-factor fiber product A X1 B of local rings. In this paper, we turn to the setting
of fiber products of graded rings where we derive the minimal free resolution of
a two-factor fiber product of graded rings using methods adapted to the graded
setting. We extend this to fiber products involving multiple factors. In contrast to
the local scenario, managing degrees leads not only to novel proofs, but also to a
necessary increase in the complexity of the results especially in the multiple factor
case. We also consider connected sums of graded rings, for which minimal graded
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2 NASRIN ALTAFI ET AL

free resolutions have not been constructed in the literature before this work. We
pose Question 1.1:

Question 1.1. Fix Aq,..., A, graded AG K-algebras with the same socle degree.
What are the graded Betti numbers of their fiber product over K7 What are the
graded Betti numbers of their connected sum over K7

Our first series of main results answers the above question. For specific formulas
we refer the reader to Theorem 3.2, Theorem 3.7, Theorem 3.13, Theorem 3.15 and
their corollaries.

Celikbas, Laxmi and Weyman solved a particular case of Question 1.1 in [CLW19,
Corollary 6.3]. Specifically, they determined a minimal free resolution of the con-
nected sum of K-algebras A; := K[z;]/(z%) by using the doubling construction
(see section 2.5). A second goal of this paper is to generalize their result and inves-
tigate conditions for a connected sum of AG K-algebras Ay,..., A, with the same
socle degree to be a doubling. More precisely we ask:

Question 1.2. Assume that Ay, ..., A, are graded AG K-algebras with the same
socle degree. Is the connected sum A = Aj#f - #xk A, a doubling? More pre-
cisely: if A; is a doubling of A;, is A a doubling of Ay X --- xx A7

We answer the above question in the affirmative in Theorem 4.3. While it might
not come as a surprise that findings concerning the Betti numbers of connected
sums can be generalized from two to multiple factors, the confirmation of a similar
phenomenon for structural aspects, such as being a doubling, seems significantly
less evident. In light of this, we find Theorem 4.3 pleasantly surprising.

Our paper is structured as follows: section 2 introduces the necessary background
and develops the basic properties of multi-factor fiber products and connected sums,
section 3 computes the graded Betti numbers for multi-factor fiber products and
connected sums, and section 4 analyzes connected sums that arise as doublings of
certain fiber products.

2. BACKGROUND

In this section, we fix some notation and recall some basic facts on Artinian
Gorenstein (AG) algebras, fiber products, connected sums of graded Artinian alge-
bras, as well as on Macaulay dual generators needed in the sequel.

2.1. Oriented AG algebras. Throughout this paper, K is an arbitrary field.
Given a graded K-algebra A, its homogeneous maximal ideal is ma = @;>14;. A
K-algebra A is called Artinian if it is a finite dimensional vector space over K. The
socle of an Artinian K-algebra A is the ideal (0 : m4); its socle degree is the largest
integer d such that A; # 0. The socle degree of an Artinian K-algebra agrees with
its Castelnuovo-Mumford regularity, which is denoted by reg(A). The type of A is
the vector space dimension of its socle.

The Hilbert series of a graded K-algebra A is the generating function H4(t) =
Yoo dim(A;)t". The Hilbert function HF4 of a K-algebra A is the sequence of
coefficients of its Hilbert series.

Suppose that A has a presentation A = R/I as a quotient of a graded K-
algebra R. The graded Betti numbers of A over R are the integers ﬁg(A) =

dim g TorzR (A, K);. These homological invariants are our main focus. The graded

Licensed to Univ of Nebraska-Lincoln. Prepared on Sat Nov 30 09:32:19 EST 2024 for download from IP 129.93.169.156.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BETTI NUMBERS FOR CONNECTED SUMS OF GRADED AGA’S 3

Poincaré series of A over R is the generating function P (t,s) = Do (At S,
If R is regular, then the Poincaré series is in fact a polynomial.

A graded Artinian K-algebra A with socle degree d is said to be Gorenstein if its
socle (0 : my) is a one dimensional K-vector space. For any Artinian Gorenstein
graded K-algebra A with socle degree d and for any non-zero morphism of graded
vector spaces fa : A — K(—d), known as an orientation of A, there is a pairing

(2.1) A; x Ag—; — K defined by (a;, a4—;) — fa(a;aq—;)
which is non-degenerate. We call the pair (A, fa) an oriented AG K -algebra.

Definition 2.1 ([IMS22, Lemma 2.1]). Let (A4, fa) and (T, fr) be two oriented
AG K-algebras with reg(A) = d and reg(T) = k, and let 7 : A — T be a graded
map. There exists a unique homogeneous element 74 € Ay such that fa(74a) =
fr(m(a)) for all a € A; we call it the Thom class for m: A — T.

Remark 2.2. Restating [IMS22, Remark 2.8], we have that 74 is the image of 1 € T
under the composite map T'(—k) = Ext" (T, Q) — Ext" (A, Q) = A(—d), where the
middle map is Ext" (7, Q).

Example 2.3. Let (A4, f4) be an oriented AG K-algebra with socle degree reg(A) =
d. Counsider (K, fx) where fx : K — K is the identity map. Then the Thom class
for the canonical projection m : A — K is the unique element s € A, such that

fA(S) =1.

Note that the Thom class for 7 : A — T depends not only on the map 7, but
also on the orientations chosen for A and T'.

2.2. Macaulay dual generators. Let Q = K|[zy,...,2,] be a polynomial ring
and let @' = K[X4,...,X,] be a divided power algebra, regarded as a @-module
with the contraction action

XXX it g >0

z; 0 X X7 X =
‘ ! ¢ " {O otherwise.

We regard @) as a graded K-algebra with deg X; = degx;.
For each degree ¢ > 0, the action of Q on Q' defines a non-degenerate K-bilinear
pairing

(2.2) Qi X Q — K with (f,F) > foF.

This implies that for each ¢ > 0 we have an isomorphism of K-vector spaces @} =
Hompg (Q;, K) given by F — {f — fo F}.

It is a classical result of Macaulay [Mac94] (cf. [IK99, Lemma 2.14]) that an
Artinian K-algebra A = @Q/I is Gorenstein with socle degree d if and only if I =
Amng(F) = {f € Q | f o F = 0} for some homogeneous polynomial F' € Q.
Moreover, this polynomial, termed a Macaulay dual generator for A, is unique up
to a scalar multiple.

A choice of orientation on A corresponds to a choice of Macaulay dual generator.
Every orientation on A can be written as the function fs : A — K defined by
fa(g) — (goF)(0) for some Macaulay dual generator F' of A (the notation (goF')(0)
refers to evaluating the element g o F of Q' at X; = 0).
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4 NASRIN ALTAFI ET AL

2.3. Fiber product. We start by recalling the definition of the fiber product.

Definition 2.4. Let A, B and T be graded K-algebras and 74 : A — T and
mp : B — T morphisms of graded K-algebras. We define the fiber product of A and
B over T as the graded K-subalgebra of A ® B:

Axp B={(a,b) e A® B | ma(a) =mp(b)}.

If 74 and 7wp are surjective, then there is a degree-preserving exact sequence

(2.3) 0>AxpB—-A$B—-T—0
which allows to compute the Hilbert series of the fiber product as
(2.4) HFpx.p(t) = HFA(t)+ HFp(t) — HFr(t).

While presentations of arbitrary fiber products can be unruly, the case T = K
is best-behaved.

Lemma 2.5. Let R = Klz1,...,2m] and S = Kly1,...,yn] be polynomial rings
over K with homogeneous mazximal ideals x = (x1,...,Zm) and ¥y = (Y1, .-, Yn),
respectively. Let Q = RQx S = K[x1,...,Zm,Y1,---,Yn]. If A=R/a and B = S/b
have canonical projections w4 : A — K and mp : B — K, then the fiber product
over K has presentation

@

xNy+a+b’

where in (2.5) a, b, X,y denote extensions of the respective ideals to Q. In particular,
if A and B are graded, then A Xk B is a bigraded algebra with

LS if (i,5) = (0,0),
[A xk Bl = {Ai ®B;  if (4,5) # (0,0).

Proof. The presentation of the fiber product is given in [IMS22, Proposition 3.12].
The fact that the fiber product is bigraded follows from noticing that the relations
in (2.5) are homogeneous with respect to the natural bigrading of @. Finally, the
formula for the graded components of A X B follows from (2.3), which can be
interpreted as an exact sequence of bigraded vector spaces. O

(2.5) AxgB=

Example 2.6. Consider the standard graded complete intersection algebras
—————~ and B = .
@, yh ) T T W)
Their Hilbert functions are given by
HF, =(1,3,6,9,10,9,6,3,1) and
HFp =(1,2,3,4,5,4,3,2,1).

A:

Set R = Klx,y,2] and S = K|u,v]. The minimal free resolutions of A and B are
the Koszul complexes
0— R(—11) = R(-7)>® R(-8) = R(-4)>® R(-3) = R — A — 0,
and
0 — S(—10) = S(=5)> =S = B — 0.
The fiber product C = A xi B of A and B and its Hilbert function are

C = Klz,y, z,u,v]|/(xu, v, yu, yv, zu, zv, 23yt 24P, 1)5),
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TABLE 1. Betti table of C in Example 2.6

0o 1 2 3 4 5
total | 1 11 25 24 11 2
0: 1 . . .
1: 6 9 5 1
2: 1 2 1
3: 2 4 2
4: 2 6 6 2
5: 2 4 2
6: 1 2 1
7 .
8: 1 4 5 2

and
HFe =(1,5,9,13,15,13,9,5,2).
The Betti table of C' as a K[z, vy, z,u, v]-module is shown in Table 1.
Note that C' is an Artinian level K-algebra of type 2, i.e., all the elements of its
socle have the same degree and the socle has dimension 2.

Recall that an Artinian K-algebra A has the strong Lefschetz property (SLP) if
there exists a linear form ¢ such that the multiplication map x¢* : A; — A;; has
maximal rank (i.e, it is injective or surjective) for all 4 and k. It is known that if A
and B are two AG K-algebras with the same socle degree, and both have the SLP,
then A Xk B also has the SLP [IMS22, Proposition 5.6].

We also consider multi-factor fiber products, which we now define.

Definition 2.7. Let Ay,..., A, and T be graded K-algebras and let 7; : A; — T
morphisms of graded K-algebras. We define the fiber product of Ay, ..., A, over T
as

(26) Al XT"'XTAr:
{(alv-- -7a7‘) S Al D--- @Ar | Wi(ai) = Wj(aj),l S Z,] S ’I"}.
Remark 2.8. The multi-factor fiber product construction coincides with iteratively

applying the two-factor fiber product construction to the list Aq,..., A, a total of
r — 1 times, that is

A1 Xpoee XTAT: ((Al XTAQ) XT"') XTAT.
We will need the following generalizations of equations (2.3) and (2.5), which

describe a presentation for fiber products with arbitrarily many summands over
the residue field.

Lemma 2.9. Let Ry,..., R, be polynomial rings over K with mazximal ideals
X1,..yXp, and let Q@ = Ry ®k -+ Qg R,. Suppose A; = R;/a;, for some ho-
mogeneous ideal a; of R;. Forr >2, Ay Xk -+ xg A, 2 Q/J with

J=a+-+a+ Y (xNx)
1<i#j<r
and there is an exact sequence of graded @QQ-modules

(2.7) 0= Ay xg XAy > A1 @ DA, - K1 = 0.
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6 NASRIN ALTAFI ET AL

Proof. This follows by induction on r with (2.5) settling the case r = 2.
Setting Q' = Ry Qk -+ @k R,_1, consider the ideal of @’

J=a+ota+ Y (x0x).
1<i<j<r—1
Applying (2.5) to A1 Xk - X A1 2 Q'/J', we get
Ay XX A, 2Q' )T Xk Rpfa, 2 Q/J,
where the ideal J is given by
J=J +a +xN(x1+ - +X_1)
=a+-ctatat Y (xOx)+ Y (xNx)
1<i<j<r—1 1<i<r—1
=a+---+a+ Z (x; Nx;).
1<iZj<r

This yields the claimed presentation.

By Definition 2.7, we have that A; X i - - - X ¢ A, is a K-subalgebra of A;®---QA,.
The inclusion A1 Xg - X A, C A1 ®--- D A, gives the first nonzero map in (2.7),
while the second map can be defined by

(al, ey ar) — (7r2(a2) - 71'1(0,1),7'&'3(0,3) — 7r1(a1), N ,’R’T(ar) — wl(al)),
where the maps m; : A; — K are the canonical projections. The claim regarding
exactness of (2.7) follows from Definition 2.7. O

2.4. Connected sum. Let (A, fa), (B, fg) and (T, fg) be oriented AG K-algebras
with reg(A) = reg(B) =d and reg(T) =k and let 14 : A > T and g : B—> T
be surjective graded K-algebra morphisms with Thom classes 74 € Ay—y and 75 €
B4k, respectively. We assume that m4(74) = m5(7p), so that (74,78) € A X1 B.

Definition 2.10. The connected sum of the oriented AG K-algebras A and B over
T is the quotient ring of the fiber product A xp B by the principal ideal generated
by the pair of Thom classes (74, 75), i.e.

A#rB = (A xr B)/((Ta,7TB))-

Note that this definition depends on w4, 7 and the orientations on A and B.
By [IMS22, Lemma 3.7] the connected sum is characterized by the following
exact sequence of vector spaces:

(2.8) 0—->T(k—d) —» Axy B— A#rB — 0.
Therefore, the Hilbert series of the connected sum satisfies
(2.9) HFap,5(t) = HEA(t) + HFp(t) — (1 +t""F)HFr(2).
We recall the following characterization of connected sums.
Theorem 2.11 ([IMS22, Theorem 4.6]). Let Q = Klz1,...,z,] be a polynomial
ring, and let Q' = K[Xq,...,X,] be its dual ring (a divided power algebra). Let

F,G € Q) be two linearly independent homogeneous forms of degree d, and suppose
that there exists T € Qq—y, (for some k < d) satisfying

(a) ToF=70G#0, and
(b) Ann(to F=70G) = Ann(F) + Ann(G).
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TABLE 2. Betti table of D in Example 2.12

01 2 3 4 5
total | 1 12 29 29 12 1
0: 1 . . . .
1: 6 9 5 1
2: 1 2 1
3: 2 4 2 .
4: 2 6 6 2
5: 2 4 2
6: . 1 2 1
T 1 5 9 6 .
8: 1
Define the oriented AG K -algebras
Q Q Q
A= Ann(F)’ b= Ann(G)’ r= Amn(to F =70G)’

and letma: A— T and wg: B — T be the natural projection maps. Then there are
K -algebra isomorphisms

Q Q
Ann(F) N Ann(G) Ann(F - G)’
Conwversely, every connected sum A#7B of graded AG K -algebras with the same
socle degree over a graded AG K-algebra T arises in this way.

(2.10) Axr B

) A#TB =

In particular, when T' = K the polynomials F' and G in the above theorem
are polynomials expressed in disjoint sets of variables. The connected sum A#x B
is a graded K-algebra, but it is not bigraded. Moreover, it is shown in [IMS22,
Proposition 5.7] that if A and B satisfy the SLP and they have the same socle
degree, then A# B also satisfies the SLP.

Example 2.12. We will now build the connected sum of the standard graded com-
plete intersection K-algebras A = K|z,v,2]/(23,9* 2*) and B = K[u,v]/(u%,v%)
described in Example 2.6. The connected sum D = A+# g B is isomorphic to

3,4 4,5 .5 .2 3.3 4,4
K[x,y,z,u,v}/(xu,xv,yu,yv,zu,zv,x Y2, un, v, YT uv )

Its Hilbert function is
HFp =(1,5,9,13,15,13,9,5,1)

and its Betti table is given in Table 2.
So, D is an AG K-algebra with socle degree 8.

An important feature of the connected sum of AG K-algebras is that it is also
an AG K-algebra with the same socle degree as A and B (see [IMS22, Lemma 3.8]
or [AAM12, Theorem 1}), in contrast to the fiber product which is an algebra of
type two, hence not Gorenstein.

As before, we consider multi-factor connected sums. The multi-factor connected
sum construction defined below coincides with iteratively applying the two-factor
construction to the list Aq,..., A, a total of » — 1 times. In order to define this, we
need to define an appropriate orientation and find the Thom class of a connected
sum.
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8 NASRIN ALTAFI ET AL

Lemma 2.13. Consider the setup of Section 2.4 and denote by T4 and 7 the Thom
classes of ma and wp respectively. Then A# 1B is an oriented AG K -algebra with
orientation f : A#rB — K defined by f(a,b) = fa(a) — fB(b).
Moreover, provided that wa(74) = 0, the surjective morphism
7w A#rB — T with 7(a,b) = ma(a) = 7p(b)
has Thom class T = (74,0).
Proof. Recall from Theorem 2.11 that if the Macaulay dual generators of A and
B are F and G respectively (chosen to correspond to the given orientations f4
and fg), then the Macaulay dual generator of A#rB is F — G. This defines an
orientation by
g (90 (F=G))(0) = (g0 F)0) = (g0G)(0).
If g = (a,b) € A# 1B, then (go F)(0) = fa(a) and (g o G)(0) = fu(b).
To establish the claim regarding the Thom class we verify that

f(rg) = fr(x(g)) for all g € A7 B.
With g = (a,b), we have 7g = (74,0)(a,b) = (Taa,0) since
f(79) = fa(raa) = fa(wa(a)) = f(7(g))-
O

We establish the convention that every connected sum in this paper will be
oriented according to the orientation f in Lemma 2.13.

Definition 2.14. Let Ay,..., A, and T be graded AG K-algebras with socle de-
grees reg(A;) = d and reg(T) = k and let m; : A; — T be morphisms of graded
K-algebras with Thom classes 71, ...,7,, respectively such that m;(7;) = 0. We
define the multi-factor connected sum Ai#tr - - #1A, by

(2.11)  Aa#tr---#rAr =
Al X XTAT/<(7'1,0,...,O,Ti,o,...,O) | 2<1< 7“>.
Remark 2.15. Note that Definition 2.14 coincides with iterating the two-factor

connected sum construction. Indeed, repeatedly applying Lemma 2.13 shows that
the Thom class of the iterated connected sum

((Aa#trA2)#rAz) - #1Ai 1

is (71,0,...,0). Thus, to obtain

((Aa#rAg)#1As) - #1Ai1)#1 A,
one goes modulo ((71,0,...,0,7;)).
Lemma 2.16. In the setup of Definition 2.14, there is a short exact sequence
(2.12) 0—=T(d—k)"' 5 Ay xp - xp Ay = Aidtr - #1A, = 0,
where the map a sends the gemerator of the i-th summand T to the image of
(11,0,...,0,7541,0,...,0) in Ay Xp -+ X7 A,.

Proof. Tt is clear from Definition 2.14 that the connected sum is the cokernel of a.
It remains to justify that this map is injective. This follows from [IMS22, Lemma
2.6], where it is shown that the Gysin map ¢ : T(d — k) — A; that satisfies ¢(1) = 7;
is injective. O
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2.5. Doubling. Let us start by recalling the doubling construction and some basic
facts needed later on.

Definition 2.17. Set R = K|z1,...,2,]. The canonical module of a graded R-
module M is wyy = Ext® ™M (M, R).

For example, one has wx = K.

Definition 2.18 ([KKR*21, Section 2.5]). Let J C R be a homogeneous ideal of
codimension ¢, such that R/.J is Cohen-Macaulay and wg s is its canonical module.
Furthermore, assume that R/J satisfies the condition Gy (i.e., it is Gorenstein at
all minimal primes). Let I be an ideal of codimension ¢+ 1. I is called a doubling
of J via 1 if there exists a short exact sequence of R/J modules

(2.13) 0 — wpyy(=d) 5 R/ — R/T = 0.
By [BH93, Proposition 3.3.18], if I is a doubling, then R/I is a Gorenstein ring.

Doubling plays an important role in the theory of Gorenstein liaison. Indeed,
in [KMMR™*01], doubling is used to produce suitable Gorenstein divisors on arith-
metically Cohen-Macaulay subschemes in several foundational constructions. It is
not true that every Artinian Gorenstein ideal of codimension ¢+ 1 is a doubling of
some codimension ¢ ideal (see, for instance, [KKR*21, Example 2.19]).

Moreover, the mapping cone of ¢ in (2.13) gives a resolution of R/I. If it is
minimal, then one can read off the Betti table of R/I from the Betti table of
R/J. This mapping cone is the direct sum of the minimal free resolution F, of
R/J with its dual (reversed) complex Hom(F,, R) which justifies the terminology
of “doubling”.

Lemma 2.19. Let C = R/J be a Cohen-Macaulay K -algebra. Then:
(a) regwe = dimC; and . .
(b) if C is a doubling of a Cohen-Macaulay K -algebra C, i.e., dim C' = dim C'+
1 and there is an exact sequence of graded R-modules

0= wa(—t) = C = C =0,
then t = regC' — dim C.
Proof. (a) Consider a graded minimal free resolution of C' as an R-module
0—-F.—--—>F—>R—-C—0,

where ¢ = dim R — dim C' denotes the codimension. Dualizing and then shifting it,
we obtain a graded minimal free resolution of we of the form

0 — R(—dimR) = Fy(—dimR) — --- = FJ(—dim R) — w¢c — 0.

Claim (a) follows using the characterization of regularity by graded Betti numbers.
(b) The Tor sequence of the given short exact sequence begins

0 — Torf(C,K) — Torffl(wé,K)(_t) .

Since C' is a Gorenstein algebra, Tor’(C, K) is concentrated in degree ¢ + reg C.
The above resolution of we shows that Torf | (wg, K)(—t) is concentrated in degree
t + dim R. Tt follows that ¢ + reg C' = ¢ + dim R, which proves Claim (b). O

Licensed to Univ of Nebraska-Lincoln. Prepared on Sat Nov 30 09:32:19 EST 2024 for download from IP 129.93.169.156.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



10 NASRIN ALTAFI ET AL

3. GRADED BETTI NUMBERS OF THE CONNECTED SUM

For notational ease in this section, given a K-algebra A, we write Tor;(A) instead
of Tor;(A, K).

3.1. Two summands. Let R = Klz1y,...,2,] and S = Kly1,...,ys] be poly-

nomial rings over K with the standard grading, and let x = (z1,...,2,,) and
y = (Y1, .-, Yn) denote the homogeneous maximal ideals of R and S, respectively.
Set

Q:R®KSgK[xly-u,l'm;yl,"'ayn]'

Let A = R/a and B = S/b be standard graded K-algebras. We will assume
a; = by = 0, that is, the ideals a and b do not contain any non-zero linear forms.
Note that R X S = Q/(xNy) by Lemma 2.5. We start by determining the Betti
numbers of this ring. Note that the ideal x Ny of @ is a so-called Ferrers ideal and
admits a minimal graded free cellular resolution that is supported on the join of
two simplices (see [CN09]). We show other useful fact about this resolution below.

Henceforth, we set (Z) =0if b > a.

Lemma 3.1. The ideal x Ny of Q has a 2-linear minimal free graded resolution
over @ and, fori > 1, we have

[Tor?(Q/x Ny)]it1 =
coker ([Tor,,(Q/%) ® Tor, (Q/y)lusr — [Tor ,(K)]isa).
In particular, one has
dimc[Tor? (Q/x Ny)]i+1 = (Tiln) - (le) - <z —:L 1)

and Pg/xmy(t, s) =t (1 + st)™ —1][(1 + st)™ — 1] + 1.

Proof. The first part is well-known (see, e.g., [CN09, Theorem 2.1]). It also follows
from the Mayer-Vietoris sequence

0-Q/xNy—-Q/xdQ/y - Q/x+y —0.

Observe that Q/x+y = K as a @Q-module. Thus, for any integer ¢ > 0, the induced
long exact sequence in Tor gives

[Torg_l(Q/x Ny)iv1 — [Torg_l(Q/x) &) Torg_l(Q/y)]iH —
[Tor? , (K)]is1 — [Tor?(Q/x Ny)lit1 — [Torf(Q/x) & Tor? (Q/y)]i+1-

The left-most module in this sequence is zero because xNy has a 2-linear resolution.
Similarly, the right-most module is zero because x and y have linear resolutions.
Thus, the second claim follows. The last claim can be verified directly based on the
second. (]

The following result gives a formula to compute the graded Betti numbers of the
fiber product A x g B.

Notation. Given a power series P(t,s) = > ¢;;s't" € Z[s][[t]], we set P(t,s) =
> ¢;js7tt to be the sum of the terms of P(t,s) having j > i.
j>i
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Theorem 3.2. For any integer i > 1, there is an isomorphism of graded K-vector
spaces

(Tor2(A x5 B)];

0 ifj <i,
= ¢ [Tor?(A)]it1 @ [Tor? (B)lit1 @ [Tor? (Q/x Ny)liya  ifj=i+1,
[Tor?(A)]; © [Tor?(B)); ifj>i+2.

In particular, one has

ngKB(t75) = Pfﬁg(tvs) + Pg(ta S) +Pg/xny(t75)

and
reg(A x g B) = max{reg A, reg B}.
Proof. Consider the exact sequence (2.3) of graded Q-modules
0—>AxgB—A®B— K — 0.

Its long exact sequence in Tor gives exact sequences

(3.1) Tor, | (K) — Tor?(A x i B) — Tor?(A) @ Tor?(B) — Tor? (K).

As a Q-module, K is resolved by a Koszul complex, which shows in particular
[Tor® (K)]; # 0if and only if 0 <4 = j < m+n. Considering the sequence (3.1) in
degree j, we conclude that

[Tor (A x ¢ B)]; = [Tor{ (A]; & [Tory (B));
ifj>i+2.
Using the fact that A xx B>~ Q/(xNy,a,b)—as in (2.5)—and that the initial

degree of (x Ny, a,b) is two since a and b do not contain any linear forms by
assumption, we see that for j < i,

[Tor?(A x i B)]; = 0.

It remains to consider [ToriQ (A x g B)]i+1. To this end, we use a longer part of
the exact Tor sequence and consider it in degree ¢ + 1:

[Tor, 1 (A) ® Tor?, (B)lix1 — [Tord, (K)|iv1 —

[Tor? (A x ¢ B)lit1 = [Tor? (A) & Tor? (B)]it1 — [Tor? (K)]is1.
The right-most module in this sequence is zero because K has a linear resolution as

a @-module. Note that there are isomorphisms of graded @-modules A = Q/(a,y)
and B = Q/(x,b). Since a; = by =0, it follows that

[Tor? ; (A) @ Tor ; (B)]i+1 =2 [Tor{ 1 (Q/y) ® Tor , (Q/x)]i+1-

Therefore, the cokernel of the map =y is equal to the cokernel of the map [Torz% (Q/%)
® Torg_l(Q/y)]iH — [Torg_l(K)]iH. By Lemma 3.1, the latter is isomorphic to
[ToriQ (Q/xNy))i+1. Hence, the above sequence proves the claim for [Toer(A X K

B)i+1.
The claim regarding the Poincaré series follows by taking the dimensions of the
Tor modules and using the isomorphism in the first part of the theorem. O
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12 NASRIN ALTAFI ET AL

Remark 3.3. The previous result allows us to write the Betti numbers of the fiber
product in terms of those of the summands:

0 if j<i
B (Axx B) = B (A)+ 8%, (B) + %, (Q/xNy) ifj=i+1
B(A) + B2(B) if j>i+2.

In Theorem 3.2, we have computed the graded Betti numbers of the fiber product
A X B in terms of the graded Betti numbers of A and B as ()-modules and we
will now convert these formulas into formulas depending only on [Torf*(A)]; and
[Tor? (B)];-

Notation. We set [z]+ = max{0, z}.
Proposition 3.4. The identities
Pg(t, s) = PY(t,s)- (1 +st)3™5 and
P(t,s) = Pg(t,s) - (1+ st)dimE
yield
ﬁf(t, s) = (PR(t,s) = 1) - (1 + s)3™5 and
PY(t,s) = (P5(t,s) — 1) - (1 + st)dim &,
Thus, with m = dim R and n = dim S, we have

min(i,m)—1
Q _ n R
ﬂi,j (A) - ([’L _ m]Jr + g) min(i,m)—[,j—f—[i—m]+(A)’ and

min(i,n)—1
Q _ m s
Bi,j(B) - ([’L _ n]+ + £> ﬂmin(i,n)—&j—f—[i—n]Jr(B)'
Proof. Since Q is a free R-module, we have Pg/a(t, s) = Pg/a(t, s) = PR(t,s). We

know A = Q/(a +y), and TorX(Q/a,Q/y) = 0 for i > 1, so the minimal free
resolution of A as a Q-module is obtained by tensoring the minimal free resolutions
of Q/a and Q/y. This justifies the identity

PAQ(t, s) = Pg/a(t, s) .Pg/y(t,s) = PR(t,s) (14 st)dmS,

Since the terms with equal exponents for s and ¢ in Pf (t, s) arise from the constant
term of the first factor multiplied with the second factor, removing this term yields
Pt s).

Therefore, using the convention (Z) =0 if a > n, we conclude that

BQ,(A) - { Zé (?) iR—Z,j—Z(A) if 1 <i<m, and
i,

-1 . .
=0 (i—:we)ﬁﬁ—z,j—wm—z(f‘l) fm<i<m-+n.

The claims regarding B are justified similarly. O

Combining Lemma 3.1, Theorem 3.2 and Proposition 3.4, we get:

Licensed to Univ of Nebraska-Lincoln. Prepared on Sat Nov 30 09:32:19 EST 2024 for download from IP 129.93.169.156.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BETTI NUMBERS FOR CONNECTED SUMS OF GRADED AGA’S 13

Corollary 3.5. For integers a,b,c and a module M over a ring P denote
min(a,b)—1 ¢
Sf,b,c,d(M) = Z ([’L _ b]+ + E) Biin(a,b)—ﬁ,d—e—[a—b]Jr (M)

£=0

With the above notation, we have

P L(t,s) = (PR(t,s) — 1) - (1+st)" + (P5(t,s) — 1) - (1 + st)"+

(3.2) AxxB
+t7 (L4 st)™ = 1[(1 + st)™ — 1] + 1,
that is,
0 if 3 <1, (i, j) # (0,0),
1 ifi=35=0,
6ZC,QJ(A XK B) = Sﬁm,n,i-i—l(A) +sgn,m,i+l(B) e .
i m ! ifj=1+1,
+( i+1) - (i+1) - (i+1)
R S e
Si,m,n,j (A) + Si,n,m,j(B) Zf.] Z i+ 2.

Remark 3.6. The identity (3.2) extends [Gel22, Theorem 1.1] to the graded case.
It can be checked that the two results agree upon substituting s =1 in (3.2).

We now turn to the graded Betti numbers of the connected sum. AG K-algebras
with socle degree two have been classified by [Sal79]. Explicitly, if A = R/a has
h-vector (1,n,1) then, up to isomorphism, one has

a=(ziz; | 1<i#j<n)+ (2 —23,... 27 —22).
The graded minimal free resolution of A as an R-module has the form
0— R(—n—2) = R(—n)P1 = ... 5 R(-2)"» 5 R— A —0,

and a straightforward computation gives us

Bi = Bn—1-i :i<i—71—11) + (n—z)<n _7;+1>

for 1 < i < n—1. Thus, it is harmless to consider AG K-algebras whose socle
degree is at least three.

Theorem 3.7. Assume that A and B are AG K-algebras such that reg(A) =
reg(B) = e > 3. For any integer i > 1, there is an isomorphism of graded K -vector
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14 NASRIN ALTAFI ET AL

spaces

[Tor{ (A#k B)]; =

0 if j <i and (i,5) # (0,0),
K if (4,7) = (0,0),

[Tor (A)]i1 @ [Tor? (B)]i+1

®[Tor?(Q/x Ny)lin ifj=i+1,

[Tor®(A)]; @ [Tor?(B)]; ifi+2<j<i+e—2,

[Tor?(A)); @ [Tor?(B));
®[Tor ,, _(Q/XNY)lmin—iv1 ifj=i+e—1,
K if (i,7) = (m+n,e+m+n),
0 ifj>e+1iand
(4,7) # (m+mn,e+m+n);

equivalently,

Pg#KB(t7 s) = Pg(tv s) + Pg(t, s) + PQQ/xﬁy(t7 s)

+ sm+n+etm+nPQ

-1 -1
Q/xﬁy(t 87)-

Proof. Consider the exact sequence (2.8) of graded Q-modules
0— K(—e) > Axg B— A#xB — 0.

Its long exact Tor sequence gives exact sequences

[Tor? (K))j—e — [Tor? (A xx B)]; —
[Torg (A#x B))j — [Tor, (K))j-e.
Since Torf2 (K) is concentrated in degree i we conclude that
[Tor? (A#x B)]; = [Tor? (A x B)];

if j ¢ {e+i—1,e+i}. Combined with Theorem 3.2, this determines [Tor?(A#KB)]j
ifj<e+i—2.

Using the fact that reg(A# x B) = reg A = reg B = e which can be deduced from
(2.9), we know that [TorZQ(A#KB)]j =0if j > e+i+ 1. It remains to determine
[Tor?(A# B)); if j € {e+i—1,e+i}. To this end we utilize the fact that A# x B
is Gorenstein. Thus, its graded minimal free resolution is symmetric. In particular,
since dim () = m + n, one has

[Toer(A#KB)b = [Toern+n—i(A#KB)]e+m+n—j-

Similarly, for A and B we have Toer(A) = [Torgb i
= [Tor? i (B)letmin—j-

Combined with Theorem 3.2 and using e > 3, which implies that the degrees
e +1i—1,e+ ¢ are not self-dual under the isomorphisms given above, the claim
regarding Tor modules follows.

(A)letm4n—j and Torg2 (B);
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The Poincaré series formula follows from the above considerations and the iden-

tities
m—+n
Z ﬂm+"—ivm+"—i+1(Q/X n y)tlsz+671
=0
m+n
=Y B (Q/x Nyt gminTitet
Jj=0
m+n - |
= ¢mtngminte Z Biir1(Q/xNy)tdsI71
j=0
= tm+nsm+n+ePQQ/xﬁy (ﬁ—l7 5_1).

O

Using again Lemma 3.1 and Proposition 3.4, we can convert Theorem 3.7 into
explicit formulas depending only on the Betti numbers of A as an R-module and of
B as an S-module.

Corollary 3.8. Consider the setup of Theorem 3.7. For integers a,b,c and a
module M over a ring P denote

min(a,b)—1

P _ ¢ P
Sape,d(M) = Z ([i ), +[)Bmin(a,b)—ﬁ,d—e—[a—b]Jr(M)'

£=0

With the above notation we have:

B2 (A#KB)
0 if § <14, (4,7) # (0,0),
1 if (4,5) = (0,0),
Sfm,n,i—i—l (A) + S%S:n,m,i-ﬁ-l(B)
m+n m n e

+( i+1) - (i+1) - (i+1) ifj=1i+1,

R S p. . .
Si,m,n,j(A)—i_Si,n,m,j(B) ZfZ—I—Q SJ <i+e-— 27

Szl'—,zm,n,iJrl (A) + S;'S:n,m,iJrl(B)
) = (o) — () Hi<mAnj=ite—1,

m+n—i—1 m—i—1 n—i—1
1 if (i,4) = (m+n,e+m+n),
0 if j > e+ and
(4,4) # (m+n,e+m—+n).
3.2. Arbitrarily many summands. For ¢ = 1,...,r, consider standard graded
polynomial rings R; = Klx;1,...,%;n,;] with irrelevant maximal ideals x; =

(Tigs-- s Tim;). Also, let Q = Ry Qg -+ ®x R,. In the following, we abuse
notation to write x; to also denote the extensions of these ideals to ideals of Q.
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16 NASRIN ALTAFI ET AL

Lemma 3.9. Consz'der ideals Iy,...,I. of a commutative ring P and the map
@: P/Mj=1 1 LN @)_, P/1j, where ¢ maps the image of p € P in P/(\;_, I
onto the image of (p,...,p) € P" in @2:1 P/I;. The annihilator of coker ¢ as a
P-module is (,_; (I; + (i L i)

Proof. First, we prove the inclusion Ann(coker @) € (;_; (I; + (i I;). Consider
a € Ann(coker ¢) and let m be the image of (1,0,...,0) € P" in @;:1 P/I;, so
that am € im . Then there exists p € ﬂj# I; such that @ — p € I, which shows
that a € I + ﬂj# I;. Repeating the argument with 2 <4 < r proves the desired

inclusion.
For the reverse inclusion, observe that every a € I; + ﬂj 21 1; annihilates the
image of (1,0,...,0) € P" in coker ¢, and similarly for 2 <14 <. ([

Lemma 3.9 will be applied to the following family of ideals.
Lemma 3.10. Define the ideals I; of Q by
Li=xi+ 4%+ + X
so that Q/I; = R;. Then one has

Z X Nx; = ﬂ[

1<i#j<r

Proof. We proceed by induction on r > 2, the base case follows immediately from
the definitions.
Assume the statement holds for r — 1, i.e.

r—1
E X; Nx; = m Ij,
1<i#j<r—1 Jj=1

where I~j =X+ - +X;+ - +x,-1. Then we have

r r—1 r—1 r—1
ﬂ ﬂ NL=G+x)nL=|(L+x |0l
j=1 j=1 j=1 j=1
= Z x;Nx;+x, | N1, = Z x; Nx; + Z X; N X,
1<i#j<r—1 1<i#j<r—1 1<i<r—1
because x; Nx; C I, whenever 1 <¢# j <r—1. O

Combining Lemma 3.9 with Lemma 3.10, we obtain:

Corollary 3.11. There is an exact sequence of graded Q-modules

(3.3) 0-Q/| Y. xinx; —>@R — K~

1<i#j<r

Proof. Consider the ideal Ii,..., I, of @Q as defined in Lemma 3.10. Observe that
Q/1; = Rjand (j_, I Zl<l;ﬁ]<’r‘ x;Nx;. Thus, the map in Lemma 3.9 becomes

p:Q/ (Zlgi;&jgr X ﬂxj) - @j:1 R;.
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The definition of the ideals I; implies that for each 4, I; +(;; I; is the max-
imal ideal m generated by all the variables of Q. Hence, Lemma 3.9 shows that
Ann(coker ¢) = m.

Notice that im¢ is a cyclic @Q-module whose minimal generator can also be
taken as a minimal generator of @;zl R;. It follows that coker ¢ is minimally
generated by r — 1 elements of degree zero. Since Ann(coker ¢) = m, we conclude
that coker p = K"~!, which completes the argument. O

We compute the Betti numbers for the leftmost term in the short exact sequence
(3.3).
Lemma 3.12. The ideal Zi# x; Nx; has a 2-linear minimal free resolution, and
fort > 1 we have that

TortQ(Q/ in nx;)
i#] 141
r r—1
=~ coker EBTortQJrl(Q/Ij) — TortQJrl(K)
j=1

j=1

t+1 t+1

Thus with N =nq + -+ + n,.,

N " /N —ny
Bl | @/ xinx; | =(r—1) -3 ~
— t+1 t+1
i#j k=1
Proof. Since reg(Q/I;) = 0 for each 1 < j < r and reg(K) = 0, the short exact
sequence (3.3) implies, by means of the formula

T
veg | Q/S %%, | < max{ reg( @D Q/1), reg (K™ 1) +1p =1,
i#j j=1
that 3, 25 XiNX; has a 2-linear minimal free resolution. Moreover, for every t > 0,
it induces the following long exact sequence.

Torgrl Q/inﬁxj — @Torgrl(Q/Ij)

i#j j=1

t+1 t+1

r—1
— @Torg_l([() — | Tor¥ Q/inﬁxj
j=1

t+1 i t+1

-
- |PTor?(@/1))

=1 t+1
Since reg(_;,; @/x: Nx;) = 1 and reg(Q/I;) = 0, the left-most and right-most
modules in the above long exact sequence are zero. Since the Q-modules Q/I;
and K are minimally resolved by Koszul complexes, the dimensions of the second
and third terms of the sequence are given by sums of the appropriate binomial

coefficients. Therefore, taking the difference of these dimensions yields the desired
formula for the Betti numbers. (]
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18 NASRIN ALTAFI ET AL

For every ¢ = 1,...,r we consider a standard graded ring A; = R;/a; with
a; C (x;)2. We abuse notation to write a; to also denote the extensions of these
ideals to ideals of Q.

Theorem 3.13. For every t > 1, we have that
[TOI'?(Al XK - XK Ar)]s =

0 if s <t,

T
@[TortQ(Ai)]tH @ |Tor® | Q/ in Nx; ifs=1t+1,
i=1 i#j 1
PlTor? (A:)]. ifs>t+2.
i=1

Proof. Consider the short exact sequence of graded @-modules (2.7)
0—>A1 XK"'XKAT—)Al@"'EBAT—)KT_lﬁo.

For every t > 0, it induces the following long exact sequence.

Tor®  (K™™1) — Tor?d (A; xx -~ xx A,)
— Tor®(A; @ -+~ @ A,) — Tor? (K™ 1).

We have that [Tor®(K™=1)], # 0 if and only if 0 < t = s < ny +- - - + n,.. Thus, for
every s >t + 2, we get

[Tor? (A1 i -+ xx Ap)]s = @D[Tor? (4:))s.
i=1
Restricting to degree s =t + 1, we get the exact sequence:

T

PITor (A1 = [Tordy (K™
i=1

— [Tor? (A1 X -+ Xk Ap)ls1 — EPI[Torf (A))]i+1 — 0.
=1

For every 1 < i < r, we have A; = Q/(I;,0;), and since we assume that each a; is
generated in degrees at least two, we also have

T T

@[TOTtQ+1(Ai)]t+1 = @[Tor?+1(Q/Ii)]t+1-

i=1 i=1
This implies that

T

[Tor? (Ay xx -+ xx A1 = @D[Tor? (Ai)]es

i=1
r r—1
@ coker (@[Tor?+1(Q/Ii)]t+1 — @[Torgrl(K)]tH) .
i=1 i=1
Using Lemma 3.12, we get the desired formula. (|
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From the previous result, we can compute the graded Betti numbers of the
fiber product A; Xg -+ X A, in terms of the graded Betti numbers of the A; as
@-modules. A straightforward computation allows us to translate into a formula
depending only on the Betti numbers of the A; as R;-modules.

Corollary 3.14. With N =nqy + --- + n,, we have

T

PR, (t5) =) (PRt s) = 1)(1 4 st)V
=1

1+st)N — Nst—1

+(r—1)( + st) ; 5

B i (14 st)N=ni — (N —n;)st — 1
t

+ 1.

Proof. The generating series is derived from Theorem 3.13, the numerical formula
in Lemma 3.12, and an analogue of Proposition 3.4. O

Recall that it is harmless to assume that an AG K-algebra has socle degree at
least three because AG algebras with smaller socle degrees are well understood (see
the description above in Theorem 3.7).

Theorem 3.15. Assume that Ay, ..., A, are AG K-algebras with reg(A¢) = e >3
for all1 < ¢ < r. Then, for any integer t > 0, the graded Betti numbers of the
connected sum Ai1#x -+ #x A, over the polynomial ring Q with dim(Q) = N are

given by
[Tor{ (Avdrc -+ #xc Ar)]s =
0 if s <t and (t,s) # (0,0),
K if (t,s) = (0,0),
D, [Tor? (A1
[Tort (Q/ Zi;&j X; N Xj)]tJrl ift=s+1,
D, [Tor? (4;)]s ft+2<s<t+e—2,
@: [Tort (Ai)ls
o[Torf_,(Q/ doig XiNXj)|INoep1 ifs=t+e—1,
K if (t,s) = (N,e+ N),
0 ifs>e+t and
(t,S) 7é (N,€+N).

Proof. We denote C = A1#k - #xgA, and D = Ay Xg -+ Xx A, and consider
the exact sequence of graded Q-modules (2.12)

0= K '(-e)—=D—C—0.
Its long exact Tor sequence gives exact sequences
[Tor (K™ 1)]s—c — [Torg (D)]s = [Torf (O)]s — [Tori y (K"")],—c.
Since Tor? (K) is concentrated in degree t we conclude that

[Tori(C)]s = [Torg (D))
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20 NASRIN ALTAFI ET AL

if s ¢ {e+t—1,e+t}. Combined with Theorem 3.13, this determines [Tor®(C)],
ifs<e+4t-—2.

Using that reg(C) = reg A; = e, we know [Tor®(C)], = 0if s > e+t + 1. It
remains to determine [Tor®(C)], if s € {e+t—1,e+i}. To this end, we utilize the
fact that C is Gorenstein. Thus, its graded minimal free resolution is symmetric.
In particular, one has

[Tor@(C)], = [Tor ()]s n—s

and similarly, we have Tor? (4;), = [Tor%ft(A)]eJrN,S for each A;.

Combined with Theorem 3.13 and using e > 3, which implies that the degrees
e+ 11— 1,e+ ¢ are not self-dual under the isomorphisms given above, the claim
regarding the Tor modules follows. (I

Corollary 3.16. With the notation of Theorem 3.15, we have

T

PRoyson (t5)=> (PRi(ts) = (1 +st)N " 41
=1
1+st)N — Nst—1
+(r— 1)( + st) ; i
B i (14 st)N=" — (N —n;)st — 1
‘ t
=1
N+e;N+1 —1,—1\N N
+(r—1Ds TN A +sTET) __t_l]
S

K
_ gNteyN+1 Z [(1 T N-—n; 1

i=1

Proof. As a first step, we show

r
Q _ Q Q
PAI#K"'#KAr (t’ S) - Z PAi (t’ S) + PQ/ iy XX (t’ S)
i=1
N+e,N pQ 11y
+ s tPQ/Z,;#xmxj(t ,8TH) — 2.

This formula follows from Theorem 3.15 and the identities

N
D BN—uN-uir | Q)Y xinx; | thstte!

u=0 i#j
N
_ Zﬁv,lﬂrl Q/sz ij tN—USN—1)+6—1
v=0 i£j

N

= tNgN+te Z Bowt1 | Q/ Z x; Nx; |t 071

v=0 i#j
= tNgNtep?

-1 -1
Q/ Zi¢] xXiMX; (t y S )

Substituting the formulas of Corollary 3.14 and Lemma 3.12 into the formula above
yields the claim. O
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TABLE 3. Betti tables of R/I and R/J in Example 4.1

01 2 3
total |1 3 3 1 01 2 3
0: 1 . total |1 3 3 1
1: 3 2 0: 1
2: 2 3 . 1: 3 2
3: 1

4. CONNECTED SUM AS A DOUBLING

4.1. Motivating examples. We discuss examples of monomial complete inter-
sections. Using the so-called doubling method, Celikbas, Laxmi and Weyman
solved a particular case of Questions 1.1 and 1.2. Indeed, in [CLW19, Corollary
6.3], they determine a minimal free resolution of the connected sum of K-algebras
A; = K[z;]/(z%) by using the doubling construction. The goal of this section is to
generalize their result to AG K-algebras with the same socle degree. We start with
a toy example.

Example 4.1. The Betti table of the connected sum
o K, K, Kl
(@) 77 () 7 ()
is described on the left in Table 3.
It should be understood as follows. The connected sum C' has the presentation

Klz,y, 2]
(zy,x2,y2, 0% + 3,25 + 28)

#K #K

Let Q = K[xz,y,2], I = (vy, vz, yz, 23 + 33,23 + 23) and J = (wy, z2,yz). Then the
Betti table of @/J is given on the right in Table 3. It follows from this that wg, s
has two generators and there is an exact sequence

0= wq/i(=3)—=Q/J—=C—0,

which maps the generators of wg /s to the elements 22 +y% and 22+ 2% in Q/J. The
resolution of C' is obtained as a mapping cone from the previous exact sequence.

Each of the summands in C' is obtained by doubling a polynomial ring. Indeed,
the short exact sequence

K|[x]

0 = Wi (—3) = K[z] — @) =0
sending the generator of wy(y) = K(z](—1) to z*, shows that K[z]/(z*) is a dou-
bling of K|z]. Similarly, the remaining summands are doublings of K[y] and K|z],
respectively. Furthermore, the ring @/J from above can be identified with the fiber
product of the rings being doubled

Q/J = K[z] xx K[y] xx Klz].

Example 4.2 is the first generalization of the [CLW19, Corollary 6.3] to every
monomial complete intersection.
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Example 4.2. We focus on the connected sum A = A1#g - - #r A, of complete
intersection algebras

Api= Kz, ) /(252
fori=1,...,r, satisfying
g it
(4.1) de —n; = Zdi/’j — ny whenever 1 < 4,7 <r.
— =

Let R, = K[z;1,..-,%in;], @ = R1 ®k --- ®k R, and let ¢ be the quantity
defined in (4.1). The connected sum of the K-algebras A; admits the presentation
A = Q/I where

I=(2ijThj, 1< <h<r1<ji <ng 1< jn < np)

d@lv
+ (:I;i,l,;l . 1)
din—l di,nifl dl,l—l d11n1—1 .
+ <xi,1 Tyt F @ Tyt (250 ST).

It can be verified that A is a doubling of A = Q /J, where J is an ideal defining r co-
ordinate points in A%} x - - - x A with multiplicity; more precisely, J = (,_; . /i,
where

di,
J; = ($j,hu xi,lil

More importantly, setting A; = Ri/(x;jl; ; — 1), we see that each ring

A; is a doubling of A; via the sequence
0= wg (—c) = A = A; =0

sending the generator of wgi(—c) = /L(—dlm) to xfnr:, and that A = A; xx
- x i A,. The Betti numbers of A can thus be obtained via Corollary 3.14.

We shall explain this observation as part of a general phenomenon in the following
result.

Theorem 4.3. Let Ay,..., A, be graded AG K-algebras with reg(A;) = d for all
1 < 4,5 < r. Suppose that for each 1 < i < r, A; is a doubling of some 1-
dimensional Cohen- Macaulay algebra A;, then the connected sum Ai1#x - H#x A,
is a doubling of Ay X Xx Ay

Proof. We proceed by induction on r. We first prove the base case where r = 2.
Set A; = R/a1 and A2 = S/ay and let Q = Ry ®k Ry. By [AAM12, Lemma
1.5] the ring Ay xx Ay is Cohen Macaulay of dimension one. By Lemma 2.19, our
assumptions imply that for each i we have exact sequences

(4.2) 0= wyg (—d) = A; — A; = 0.
Considering these in degree zero we conclude that
(4.3) [wg,]-a =0.

Combining the exact sequences (4.2) for i € {1,2} with the sequence in (2.3),
we obtain the following commutative diagram of Q-modules with exact rows and
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middle column.
0 0

! !

(Wi, ®wi,)(=d) — (Wi, Dwg,)(—d)

l l

(4.4) 0 — A xxgAdy s Ay @ Ay £y K —0
| | |-
0 — Al X As —_— A @ A — K — 0
| |
0 0

The vertical map Ay x i Ay — Ay x ¢ Ag in (4.4) is uniquely determined by viewing
Ay X As as a pullback in the category of K-algebras and utilizing the universal
property of this categorical construction. Moreover, by the snake lemma, the kernel
of this map is the module (w; ®wj,)(—d).

Applying the functor Hom(—, @) to the diagram (4.4) yields a new commutative
diagram (4.5). The middle row in (4.5) comes from the top of (4.4), and the top row
of (4.5) contains the non-vanishing Ext modules for the @-modules in the middle
row of (4.4). According to Remark 2.2, the map marked v satisfies v(1) = (74,,74,)
after identifying w4, @ wa, = A1 @ As.

0 0

l l

0 ¢— K +— Wiy i, — widwz +— 0

b l

(4.5) (Ay @ Ay)(d) — (A @ Ay)(d)

! b

0 WA X i Az ¢ wa, Dwyg, — K +— 0

l !

0 0
The snake lemma applied to (4.5) yields a connecting isomorphism 6: K — K.
Let s € wy . 4, be such that (s) = 6(1). Then x(n(s)) = v(1) can be identified
with (74,,74,) € A1 @ Ag, that is, n(s) is equivalent to (74,,74,) modulo the image
of Wi, D Wi,
We want to compare the image of
nl=dl: w4, 504, (=d) = AL ® A

and the kernel of the map p from Diagram (4.4). The image of n[—d] is trivial in
degree zero by Equation (4.3). Since K is concentrated in degree zero, the map pu
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24 NASRIN ALTAFI ET AL

has zero image in every degree other than zero. It follows that the image of n[—d]

is contained in ker y = im o = A; x g Ay. Hence 5[—d] induces an injective graded
@-module homomorphism

o: (UAIXKAQ(—CZ) — Al XK 142.

Its existence proves that w; , 3, (—d) can be identified with an ideal of Ay x g As.

The following diagram combines the left column of Diagram (4.4) and the top
row of (4.5). By previous considerations indicating that d(s) = n(s) is equivalent
to (74, 74,) modulo the image of w; Gwy, , the diagram commutes provided that
&(s) is mapped by 7 to (74,,74,) € A1 Xk Az. With this choice, the cokernel of 7
is A1#x As by Definition 2.10.

0 0

l l

(Wi, @wi )(=d) — (wz, Bwg,)(=d)

! !

0 — Wi 4,(-d) — Aixgdy — C —0
Js |

00— K(—d) — Al XK A2 — AI#KA2 — 0
0 0

Setting C' be the cokernel of §, the snake lemma yields an isomorphism C' =
A #xAs. This shows that A;# i As is a doubling of Ay Xk /12, as desired for
the base case of induction.

Now, we assume that the AG K-algebra A #k - - #xAr-_1 is a doubling of
Ay Xx -+ X A,_1. The base case applied to AG K-algebras A1#x - #rxAr_1
and A, implies by way of Remarks 2.8 and 2.15 that A1#g - - - #x A, is a doubling
of A] xx - - xx A, completing the proof. [l

Theorem 4.3 generalizes [CLW19, Theorem 5.5], which considered the case of
AG algebras Ay,..., A, of embedding dimension one, establishing an analogous
doubling result.

ACKNOWLEDGMENTS

The project got started at the meeting “Workshop on Lefschetz Properties in
Algebra, Geometry, Topology and Combinatorics”, held at the Fields Institute in
Toronto, Canada, May 15-19, 2023. The authors would like to thank the Fields
Institute and the organizers for the invitation and financial support. Additionally,
we thank Graham Denham for asking a question which motivated our work, and
Mats Boij for useful discussions.

Licensed to Univ of Nebraska-Lincoln. Prepared on Sat Nov 30 09:32:19 EST 2024 for download from IP 129.93.169.156.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BETTI NUMBERS FOR CONNECTED SUMS OF GRADED AGA’S 25

REFERENCES

[AAM12] H. Ananthnarayan, Luchezar L. Avramov, and W. Frank Moore, Connected sums
of Gorenstein local rings, J. Reine Angew. Math. 667 (2012), 149-176, DOI
10.1515/crelle.2011.132. MR2929675

[BH93] Winfried Bruns and Jiirgen Herzog, Cohen-Macaulay rings, Cambridge Studies in
Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993.
MR1251956

[CGS23] E. Celikbas, H. Geller, and T. Se., Classifying Betti numbers of fiber products,
arXiv:2307.05715, 2023.

[CLW19] Ela Celikbas, Jai Laxmi, and Jerzy Weyman, Embeddings of canonical modules and

resolutions of connected sums, J. Pure Appl. Algebra 223 (2019), no. 1, 175-187,
DOI 10.1016/j.jpaa.2018.03.006. MR3833456

[CNO09] Alberto Corso and Uwe Nagel, Monomial and toric ideals associated to Ferrers
graphs, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1371-1395, DOI 10.1090,/S0002-
9947-08-04636-9. MR2457403

[Gel22] Hugh Geller, Minimal free resolutions of fiber products, Proc. Amer. Math. Soc.
150 (2022), no. 10, 4159-4172, DOI 10.1090/proc/15963. MR4470165
[IK99] Anthony Iarrobino and Vassil Kanev, Power sums, Gorenstein algebras, and de-

terminantal loci, Lecture Notes in Mathematics, vol. 1721, Springer-Verlag, Berlin,
1999. Appendix C by Iarrobino and Steven L. Kleiman, DOI 10.1007/BFb0093426.
MR1735271

[IMS22] Anthony Iarrobino, Chris McDaniel, and Alexandra Seceleanu, Connected sums of
graded Artinian Gorenstein algebras and Lefschetz properties, J. Pure Appl. Al-
gebra 226 (2022), no. 1, Paper No. 106787, 52, DOI 10.1016/j.jpaa.2021.106787.
MR4262073

[KKRT21] G. Kapustka, M. Kapustka, K. Ranestad, H. Schenck, M. Stillman, and B. Yuan.,
Quaternary quartic forms and Gorenstein rings, arXiv:2111.05817, 2021.

[KMMR01] Jan O. Kleppe, Juan C. Migliore, Rosa Mir6-Roig, Uwe Nagel, and Chris Peterson,
Gorenstein liaison, complete intersection liaison invariants and unobstructedness,
Mem. Amer. Math. Soc. 154 (2001), no. 732, viii+116, DOI 10.1090/memo/0732.
MR1848976

[Mac94] F. S. Macaulay, The algebraic theory of modular systems, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1994. Revised reprint of the 1916
original; With an introduction by Paul Roberts. MR1281612

[Mas91] William S. Massey, A basic course in algebraic topology, Graduate Texts in Math-
ematics, vol. 127, Springer-Verlag, New York, 1991. MR1095046
[Sal79] Judith D. Sally, Stretched Gorenstein rings, J. London Math. Soc. (2) 20 (1979),

no. 1, 19-26, DOI 10.1112/jlms/s2-20.1.19. MR545198

Licensed to Univ of Nebraska-Lincoln. Prepared on Sat Nov 30 09:32:19 EST 2024 for download from IP 129.93.169.156.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



26 NASRIN ALTAFI ET AL

DEPARTMENT OF MATHEMATICS, KTH ROYAL INSTITUTE OF TECHNOLOGY, S-100 44 STOCK-
HOLM, SWEDEN; AND DEPARTMENT OF MATHEMATICS, QUEEN’S UNIVERSITY, 505 JEFFERY HALL,
UNIVERSITY AVENUE, QUEEN’S UNIVERSITY, KINGSTON, ONTARIO K7L 3N6, CANADA

Email address: nar3@queensu.ca

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI “RENATO CAcciopPOLI”, COMPLESSO UNIVER-
SITARIO MONTE SANT’ANGELO, UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II, ViA CINTHIA
80126 NapoLI, ITALY

Email address: digennar@unina.it

DEPARTMENT OF MATHEMATICS AND STATISTICS, CLEVELAND STATE UNIVERSITY, 2121 EUCLID
AVENUE, RT 1515 CLEVELAND, OHIO 44115-2215
Email address: f.galetto@csuohio.edu

DEPARTMENT OF MATHEMATICS AND STATISTICS, AUBURN UNIVERSITY, 221 PARKER HALL,
AUBURN, ALABAMA 36849
Email address: sean.grate@auburn.edu

FACULTAT DE MATEMATIQUES I INFORMATICA, UNIVERSITAT DE BARCELONA, GRAN VIA DES
LES CORTS CATALANES 585, 08007 BARCELONA, SPAIN
Email address: miro@ub.edu, ORCID 0000-0003-1375-6547

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KENTUCKY, 715 PATTERSON OFFICE TOWER,
LEXINGTON, KENTUCKY 40506-0027
Email address: uwe.nagel@uky.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEBRASKA-LINCOLN, 203 AvERY HALL, LIN-
COLN, NEBRASKA 68588
Email address: aseceleanu@unl.edu

DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY, HIRATSUKA, KANAGAWA 259-1292, JAPAN
Email address: watanabe.junzo@tokai-u. jp

Licensed to Univ of Nebraska-Lincoln. Prepared on Sat Nov 30 09:32:19 EST 2024 for download from IP 129.93.169.156.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



	Betti numbers for connected sums of graded Gorenstein Artinian algebras
	1. Introduction
	2. Background
	2.1. Oriented AG algebras
	2.2. Macaulay dual generators
	2.3. Fiber product
	2.4. Connected sum
	2.5. Doubling

	3. Graded Betti numbers of the Connected Sum
	3.1. Two summands
	3.2. Arbitrarily many summands

	4. Connected Sum as a Doubling
	4.1. Motivating examples

	Acknowledgments
	References


