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A B S T R A C T

Elastomeric rollers are important components in applications such as printing and roll-to-roll man-
ufacturing. To gain insight into roller mechanics and provide a basis for further investigations into
dynamic rolling problems where rolling instabilities and rolling friction arise, we employ a specially-
designed apparatus to obtain displacement and strain fields via digital image correlation (DIC) under
applied loads. We test loading scenarios leading to impending slip of an elastomeric roller, mounted on
a steel hub, and in contact with a glass (rigid) substrate. We first examine strain fields under normal
loading and compare them with the closest analytical predictions. We also analyze the strain fields
under normal and tangential loading for which limited analytical predictions exist. For each loading
scenario, we discuss the displacement and strain fields of the roller sidewall and contact interface.
We implement a conceptual string model to demonstrate how stick and slip zones develop within
the contact area as well as how memory effects arise during cyclic loading. This memory effect is
then verified experimentally using the DIC strain fields. Additionally, we demonstrate a means for
identifying the stick zone area between the roller and substrate using the experimentally-obtained
displacement fields. We believe the apparatus, and the ability to obtain experimental displacement
and strain fields, will prove valuable in understanding roller mechanics and associated instabilities.

1. Introduction

Rolling contact of tires or rollers against a rigid surface
is common in numerous applications from aviation to roll-
to-roll manufacturing. Under certain conditions instabilities,
such as Schallamach waves [1–3], may be generated leading
to roller degradation and misalignment. As a first step in
fully understanding these conditions, in this paper we ex-
perimentally measure quasistatic fields under normal and
tangential loading up to the point of impending slip.

The analysis of frictional contact goes back to the classi-
cal papers by Cattaneo [4] and Mindlin [5]. For two dimen-
sional frictional contact problems involving tangential load-
ing, Ciavarella [6, 7] assembled a procedure for generating
pressure distribution and tractions in partial slip frictional
contact problems of various geometries, including cylinders.
While extensive literature into frictional contact problems
exist, few analytical solutions of rolling contact problems [8]
exist for relating applied loads to frictional forces, material
displacements, and internal stresses [9, 10]. Furthermore,
such solutions are valid for a limited number of geometries,
loading cases, and constitutive behaviors [10, 11]. Popov
presented an analytical solution to the normal loading case
for frictionless contact of a deformable 2D roller attached
to a rigid semicircular hub in contact with a flat rigid
surface [9]. While this solution provides valuable insight into
contact behavior, it is limited due to the absence of friction,
and is only valid for strains along the contact interface.
This method is also limited to cases where the thickness
of the elastic layer is very small compared to the contact
radius of the roller and the indentation depth is much smaller
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than the thickness of the elastomer layer. There is also the
Hertzian contact solution of elastomeric rollers, but that
solution lacks many geometric features that are significant
in the development of the strain fields within a roller, mainly
the rigid hub and contact with a rigid surface. Analytical
expressions for the tangential strains in the contact patch are
extremely limited, and to the best of the authors’ knowledge,
can only be found in half-plane and spherical contact prob-
lems [9, 12, 13].

In the absence of analytical contact solutions, finite
element models have been used to extract fields for a given
geometry, boundary conditions and material properties. Us-
ing such models, full deformation fields have been simulated
to characterize contact between rolling elements [14–18].
A challenge arises for tangential loading since mechanical
contact behavior and associated models (e.g., friction and
elastic slip criteria) are material-dependent and still under
development, and thus can greatly affect the reliability of
predicted response quantities.

A complement to numerical simulations are experimentally-
obtained strain fields using digital image correlation (DIC)
[19]. For contact problems, DIC has been used to obtain
displacement fields and to characterize tire vibrational re-
sponse [20], measure traction [21], analyze stick-slip behav-
ior [22], measure tangential stiffness [23, 24], and extract
two-dimensional strain fields of the sidewall of a diamet-
rically loaded cylinder [25]. However, a thorough DIC-
based investigation of the effects of normal and tangential
loading on the strain fields of an elastic rolling element in
contact with a rigid surface has not yet been carried out.
These fields become particularly important as one embarks
on understanding instabilities under rolling contact during
extreme path-tracking [26] and tire bursting [27].
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Frictional contact problems, including frictional rolling,
are found to generate a memory effect which can pro-
duce residual displacements and strains, which is of interest
herein. This memory effect is noted by Jäger when analyzing
two elastic half-planes in quasi-static contact under normal
and tangential loading [28]. This memory effect, as well
as stick and slip zone development, is further explained
by Barber while analyzing quasi-static frictional contact
problems of elastic half-planes under cyclic loading [29].
As for the case of elastomeric rollers in contact with a
rigid substrate, they may undergo tangential displacements
even under purely normal loading [30]. Previous research
demonstrates that such systems posses a form of memory
[31] that resides in the values of tangential displacements
and strains within the stick zones [29, 32]. When the tangen-
tial load is first increased and then reduced, friction forces
in the slip regions do not disappear and instead reverse,
resulting in residual slip displacement and stress [31, 33].
The residual displacements and stresses become the initial
conditions for material entering the contact region and thus
introduce a memory effect. When friction is present during
cyclic Hertzian contact between an elastic cylinder and a
rigid plane, this memory effect eventually converges to a
steady state after 3-5 cycles [34]. After repeated loading and
unloading, the contact region forms slip zones near edges of
the contact area which cycle back and forth between stick
and slip. It is important to reveal these memory effects and
thus account for residual displacement and strain.

String models enable tractable approximations and pre-
dictions of stress, stick and slip zones, and memory effects
by simplifying the tire-hub and tire-contact interactions. The
first string model for tire-hub interaction, presented in 1941
by Schlippe [36], uses a stretched string carcass representa-
tion. More specifically, the tire is simplified to a stretched
spring connected to the hub by visco-elastic springs. Many
variations to this model have since appeared, including
frequency-domain models used to study tire harmonics [37].
String models of the tire contact interaction are of particular
interest herein. The brush model is a well-known example
used to predict tire-contact forces [38–40]. The tire or roller
is first broken into discrete, independent sections which
appear as bristles brushing the ground during rolling. During
dynamic rolling, the contact area is decomposed into a
leading stick region and trailing slip region. The size of the
stick zone is determined by comparing the applied tangential
force to the static friction capable of being supported by
each bristle [41]. While appropriate for dynamic rolling, this
decomposition is inaccurate for rollers under impending slip,
where at a minimum two slip zones and a stick zone arise.

In this work we employ 2D DIC to measure displacement
and strain fields along two planes of a constrained roller
which is free to rotate but not translate. One plane is that
of the contact area between the roller and rigid substrate
and the other is the side wall of the elastomeric roller
encased around the steel hub. We perform two loading cases:
(1) purely normal loading relative to an unloaded roller
and (2) tangential loading relative to the normally-loaded

roller leading to the onset of gross slip. A string model is
implemented to clearly describe how a strain memory effect
arises in the contact area during cyclic loading. This memory
effect is then demonstrated using experimental strain fields
obtained during tangential loading and unloading. The same
string model is also implemented to conceptually explain
the development of stick and slip zones that develop in the
contact region of the roller under static tangential loading.
Lastly, we experimentally verify theoretical predictions of
a decrease in stick zone area during increased tangential
loading.

2. Experimental Protocol

To study roller deformation up to the onset of gross
slip, we first impose normal loading followed by a torque-
inducing tangential load. We apply both loading scenarios
to an elastomeric roller in contact with a rigid glass sub-
strate. Throughout loading we measure displacement and
strain fields from the roller contact patch and sidewall using
DIC. The experimental apparatus employed for loading and
imaging of the roller is documented in detail in Ref. [35].
Figures 1 (a) - (c) present top and side views of the test setup
with a roller in place. The elastomeric roller encases a rigid
steel hub resting inside an aluminum housing. The steel hub
is free to rotate, but not translate, about one plane and can
be lifted or lowered by a lever. The lever setup is adjusted
to ensure the normal contact occurs along the entire width
of the roller. The glass substrate is attached to the top of the
testing structure by linear rails to allow for smooth uniaxial
translation. While generally the substrate can translate on the
linear rails inducing rotation of the roller, for this work, we
fix the substrate in order to explore impending slip. While
we refer to the wheel as a roller throughout this work, we
emphasize that this work analyzes quasistatic loading to the
onset of gross slip and this is not a rolling contact scenario.
It is important to note this distinction here since rolling
develops quite different contact mechanics compared to a
quasistatic loading scenario.

Two loads can be applied to the roller during testing. We
apply a normal load by filling the empty vessel in Figs. 1
(a) and (c) with water. The vessel attaches to a lever which
subsequently applies an upward normal load to the hub of
the roller, thereby pressing it upwards against the rigid glass
substrate. The second load is tangential to the roller hub. As
displayed in Figs. 1 (b) and (c), a string wraps around each
end of the roller hub and is tied to a rigid, threaded, steel rod.
A single cord then runs from this threaded rod to a pulley and
down to a second empty vessel. By filling this second vessel
with water, the strings tension and act as a tangential force
to the hub of the roller, ultimately initiating a torque on the
roller. Figure 1 (d) presents a simplified model of the roller,
applied loads, and viewing angles. We fill both water vessels
at a constant rate of 18.5 mL/s, or equivalently, 0.18 N/s.
The first water vessel applies a maximum normal load of 9.8
N (Nmax). The second vessel applies a maximum tangential
load of 8.8 N (Tmax).
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Figure 1: Experimental setup and loading scenarios. Additional details about the experimental setup can be found in Ref. [35].
(a) Top view of the roller imaged through a transparent glass (approximated as rigid) substrate. A high speed camera captures
images along the side view of the roller as the load is applied. (b) Tangential load is applied to the roller hub by filling an empty
vessel hanging off the table with water. (c) Normal load is applied by filling an empty vessel with water lifting a lever which in
turn presses the roller against the rigid substrate. (d) Simplified schematic of loading scenarios and imaging views. The roller is
pinned in place meaning it is free to rotate but not able to translate. (e) Normal loading diagram. (f) Tangential loading diagram.

The elastic roller placed around the steel hub has an
outer diameter of 30 mm, an inner diameter of 20 mm,
and a thickness of 10 mm in the axial direction. It is fabri-
cated from Sylgard 184 PDMS and black paint. The PDMS
preparation and curing protocol can be found in detail in
Ref. [35]. After fabrication, the roller has an expected elastic
modulus of 1.85 MPa and Poisson’s ratio of 0.495 [35]. The
sidewall and roller circumference are coated with a random
speckle pattern to enable strain mapping. The speckles have
an average diameter of 0.1 mm using gold, white, and green
paint. Lastly, the roller is heat treated at 75 ċC for an hour to
cure the speckles to the roller surface.

As presented in Fig. 1 (d), we image both the roller
contact patch as well as the roller sidewall. A Samsung
Galaxy S21 Ultra phone camera images the contact patch
from above through the clear glass substrate at a rate of 60
frames per second (FPS). A Chronos 14-1.1-34M high speed
camera images the roller sidewall. The high speed camera
is capable of achieving between 20 and 1069 FPS. For this
work, since we only measure quasi-static strain fields, we
image at a rate of 60 FPS to align with the phone camera.
Image acquisition is timed with water flow to begin imaging
when we initiate loading. The images are analyzed using the

open-source in-house software Ncorr. Ncorr extracts the in-
plane displacements from the unique speckling pattern on
the roller surfaces and uses the displacement fields to obtain
2D strain fields [19].

Figures 1 (e) and (f) present free body diagrams of the
two loading cases. We note here that the x, y, z coordinates
throughout the paper are oriented such that they align cir-
cumferentially along contact area, normally to the contact
area, and axially respectively. First, we investigate the result-
ing displacement and strain fields of the elastomeric roller
under a purely normal load as depicted in Fig. 1 (e). The
reference image for this test corresponds to the roller not
yet in contact with the glass substrate (zero normal load ap-
plied). For this loading case the normal load (NH ) increases
from 0 to Nmax. The hub experiences the applied normal
force, NH , causing the elastomeric roller to subsequently
experience a reaction force against the glass substrate, NR.
We are not concerned with the induced friction forces from
pure normal loading. In the second loading scenario we
analyze the roller under a normal load as well as a tangential
load that imposes a counterclockwise torque. The roller first
undergoes a normal load equal to Nmax. The roller under
this maximum normal load is the reference for the second
loading scenario. A tangential load (TH ) is then applied to
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Figure 2: (a) Top view x-component of displacement (u) resulting from a normal load. The contact area is noted as a red dashed
outline. (b) Simplified depiction for explaining the u displacement field. The blue region represents the stick zone and the red
regions represents the deformed roller material on either side of the stick zone. (c) Top view z-component of displacement (w)
resulting from a normal load. The positive and negatives slopes ()w∕)x) are marked with "+" and "-" signs respectively. (d)
Simplified depiction for explaining the w displacement field. (e) Sidewall normalized x-component of displacement (u). (f) Sidewall
normalized y-component of displacement (v).

the hub of the roller and increases from 0 to Tmax. In this
case, the roller experiences both applied and reactive normal
loads as well as the applied tangential force, TH , and friction
forces in the contact area (FS ). In both loading scenarios,
when we analyze the images in Ncorr, we use a subset radius
of 29 pixels (0.87 mm in top view and 0.29 mm in side
view), a subset spacing of 2 pixels (0.06 mm in top view and
0.02 mm in side view), and a strain radius of 15 pixels (0.45
mm in top view and 0.15 mm in side view). The resulting
strain fields are re-sized using the the imresize function in
MATLAB such that the strain points correlate 1:1 with the
pixels of the original image. All displacement and strain
fields presented herein are an average of five different trials
to aid in identifying any fluctuations between the different
runs. The averaged strain fields are then normalized with
respect to the average contact strain "n of the roller which
is calculated using the applied force, elastic modulus of the
roller, and the contact area. The normalization procedure is
detailed in Appendix A.

3. Normal Loading

Figure 2 (a) displays the top view x-component of dis-
placement (u) resulting from the applied normal load. This
displacement field is normalized with respect to the point
of maximum magnitude of displacement. In this work we
consider the full contact region under normal loading to be
a stick zone with no slip zones which is supported in previous
studies to date [9–11]. This is expected since the elastic roller
is largely incompressible with a much smaller small shear
modulus than the rigid substrate resulting in a Dunders’
bimaterial constant of essentially zero (� = 0) [42, 43]. A
bimaterial constant of zero represents the two materials as
elastically similar [44] resulting in a fully stuck contact area.
The contact width under maximum normal load, Nmax, is
found to be 4.2 mm. As this normal load is applied, material
points displace away from the contact area. Figure 2 (b)

presents a depiction for this deformation during loading. The
blue section in Fig. 2 (b) represents the stick zone and in this
case contact area. As we increase the applied normal load, a
larger arc length of the tire is pressed into contact with the
rigid substrate increasing the contact area. This increase in
contact area results in a displacement of material away from
the stick zone along the x-axis (and z-axis) due to the Poisson
effect. The resulting roller displacement is represented in
red in Fig. 2 (b). Similarly, Fig. 2 (c) presents the resulting
normalized z-component of displacement (w) and Fig. 2 (d)
provides a simplified model for this deformation. As contact
area increases, regions of the roller on the edge of the stick
zone press out along the z-axis due to the Poisson effect.
For both Figs. 2 (a) and (c) there is no displacement in the
middle of the tire due to symmetry of loading and geometry.
However, differing from Fig. 2 (a), the displacement is
localized to regions adjacent to the stick zone area and does
not disperse through the rest of the roller. Figures 2 (e) and
(f) present the sidewall displacement fields. These fields are
consistent with classical Hertz theory as the y-component of
deformation (v) is elliptical around the contact area and both
u and v are symmetric about the axis of compression. These
results are also consistent with Ref. [45] which analyzes
Hertzian contact between a cylindrical disk and a rigid
surface. The experimentally obtained u displacement also
agrees with Hertz theory due to the sidewall being split into
two regions of positive and negative displacement.

Figure 3 presents the top and side view strain fields.
Figures 3 (a) - (c) document the contact area strains produced
using the displacement fields in Figs. 2 (a) and (c). Similarly,
Figs. 3 (d) - (f) display the sidewall strains calculated using
Figs. 2 (e) and (f).

Note that the top view strain fields in Figs. 3 (a) - (c) have
been corrected to account for the geometric flattening effect
of the roller against the substrate. This effect is discussed
further in Appendix B and is found to be small such that
the maximum change in strain is less than 13%. Figure 3 (a)
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Figure 3: Strain fields of the roller under the applied normal load of N

max
with respect to an undeformed roller and normalized

with respect to "n. Each strain field is an average of five trials. (a),(b),(c) - strain fields of the roller-substrate interface. (d),(e),(f)
- strain fields of the roller sidewall.

displays the interface "xx field. The deformation is purely
tensile as the roller deforms due to the y-direction normal
load. Roller material displaces away from the center of the
contact interface due to the Poisson effect. Strain "xx is
close to zero near the vertical center-line of the contact
interface, while "xx grows in magnitude as distance from
the center-line increases. The strain reaches a maximum in
two symmetric arcs of high strain outside of the contact
patch where the roller surface is not constrained by frictional
contact with the substrate.

Figure 3 (b) presents the "xz strain field which forms an
antisymmetric pattern of alternating positive and negative
zones of high strain. This strain pattern is more easily
understood by returning to Fig. 2 (a) and (c) and applying
the equation for shear strain,

"xz =
1

2
(
)w

)x
+

)u

)z
+

)u

)x

)u

)z
+

)w

)x

)w

)z
). (1)

From Fig. 2 (a) we discern )u∕)z = 0 and so only w affects
the shear strain. Also, since the nonlinear terms are quadratic
and strains are small, these terms are negligible reducing the
shear strain to

"xz H
1

2
(
)w

)x
). (2)

The regions of positive and negative )w∕)x are marked with
positive and negative symbols in Fig. 2 (c) and match the
shear strain regions in Fig. 3 (b). We note that a study of a soft
cylindrical disk without an inner hub under normal loading
in contact with a rigid substrate produced a very similar
pattern of alternating positive and negative shear strain at
the contact interface [25].

The "zz strain field in Fig. 3 (c) shows purely tensile
strain similar to the "xx field in Fig. 3 (a). The strain at the
center of the contact patch away from the edges of the roller
is close to zero. Strain grows axially and circumferentially
away from the center of the contact patch under normal

loading due to the Poisson effect. Two zones with the highest
magnitude strain form at the sidewall edges of the roller
where no additional roller material constrains w. The non-
constrained regions seen at the corners of the analyzed zone
feature near-zero strain, as expected.

The "xx strain field of the roller sidewall shown in
Fig. 3 (d) features a single high-strain zone directly below
the contact interface. This strain field shows purely tensile
normal strain. The roller section shown is compressed from
both sides by the substrate and the hub, and roller material
displaces away from the center-line of the contact inter-
face while being constrained by the contact. The highest-
magnitude strain is reached at the center of the roller. Strain
far away from the center of the contact patch is nearly zero.

Figure 3 (e) displays the "xy strain field. Two anti-
symmetric zones of high strain form on either side of the
contact center-line where shear strain is zero. The shearing
is induced by the Poisson effect where the roller material
deforms away in the x-direction due to the compression
of the roller by the substrate and roller hub. The shearing
induced by the roller-hub contact appears to dominate the
strain field as indicated by the large positive shear strain zone
to the left and the large negative shear strain zone to the right
of the contact center-line.

The "yy strain field in Fig. 3 (f) is purely compressive.
The highest magnitude strain is directly below the center
line of the roller-substrate interface. The magnitude of strain
as well as the general shape of the high-strain zone do not
change significantly along the y-direction. Strain decreases
symmetrically about the y-axis center line below the contact
point and reaches near-zero values away from the contact
interface.

The sidewall strain fields in Figs. 3 (d) and (f) are
symmetric about the axis of compression (y-axis) for "xx and
"yy, while the shear strain in Fig. 3 (e) is anti-symmetric.
These results are consistent with Ref. [45] and Hertzian
contact between a cylinder and plane. These strain fields are
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Figure 4: (a) Top view x-component of displacement resulting from a tangential load. The contact area is noted as a red dashed
outline. (b) Simplified depiction of the u displacement field. The double arrows represent the resultant torque, the blue material
represents the contact area, and the red regions represent the deformed roller material on either side of the contact area. (c)
Top view z-component of displacement resulting from a tangential load. The positive and negative slopes ()w∕)x) are marked
with "+" and "-" signs respectively. (d) Simplified depiction for explaining the w displacement field. Material along the trailing
edge thins while material along the leading edge accumulates. (e) Normalized sidewall u displacement resulting from a resultant
torque. (f) Normalized sidewall v displacement induced by a resultant torque.

also very similar to the fields generated by the analytical
thin layer approximate solution provided by Ref. [9], and
the Hertzian contact solution provided by Ref. [10], both of
which are presented in Appendix A. The experimental strain
fields deviate from the analytical model near the roller-plane
and roller-hub interfaces. In the thin layer approximation
this is likely due to the presence of friction that are lacking
in the analytical model while the Hertzian solution does
not take into account the rigid hub. The experimental strain
fields are consistent and repeatable between trials, which is
demonstrated in the standard deviation fields in Appendix C.
Note the locations of largest deviation appear mainly on
the borders of the contact zone. This may be due to small
fluctuations in establishing contact between trials. The strain
fields also remain self similar with an increasing normal load
(observed but not documented here).

4. Tangential Loading Under Constant

Normal Load

Figure 4 (a) displays the top view of the experimentally
obtained u displacement resulting from a tangential load
inducing a torque. All displacements are measured relative
to the reference configuration corresponding to Nmax. It is
expected from previous literature and proven later on in this
work that the tangential load introduces regions of microslip
in the contact area of the roller and substrate separating the
contact area into stick and slip zones. The roller material
outside of the contact area stretches in response to the
applied load attempting to rotate counterclockwise. Figure
4 (b) depicts this resulting displacement field. As before,
the blue section represents the contact area while the red
sections represent the deformed roller material as a result
of the induced torque. Figure 4 (c) documents the w dis-
placement and is visualized using the depiction in Fig. 4 (d).
Figure 4 (d) also marks the leading and trailing edges of the

contact area which, when viewing the sidewall images, are
the right and left edges, respectively. As the roller material
is stretched in the trailing edge, it thins and as material is
compressed against the leading edge of the contact area,
material accumulates with increasing tangential load. This
accumulation of material results in an outward displacement
along the z-axis due to the Poisson effect. Similar to Fig. 2
(c), the z-component of displacement resulting from the
torque is localized on the edges of the contact area. The
contact area experiences minimal displacement since the
majority of the area remains a stick zone.

Figures 4 (e) and (f) display the normalized sidewall
v and u displacements, respectively. As expected, the ma-
terial near the edges of the region of interest experiences
deformation consistent with a roller rotating counterclock-
wise. Interestingly, two regions develop in the middle of
the tire thickness that experience opposite y-components of
displacement than the material around them. This is linked
to the z-component of displacement described in Figs. 4 (c)
and (d) with material accumulation along the leading edge
and material thinning in the trailing edge. As material accu-
mulates along the leading edge of the contact region its v dis-
placement is constrained by the substrate so it presses some
material downwards. Similarly, as the material thins along
the trailing edge, it pulls some material beneath it upwards
due to the Poisson effect. The x-component of displacement
is also consistent with that expected. The material in contact
with the glass substrate sticks and experiences minimal
displacement due to the friction along the contact. However,
due to the elastic nature of the roller, the material attached
to the hub and the material around it experience negative
x-components of displacement as the roller attempts to roll
counterclockwise.

Figure 5 presents the strain fields resulting from induced
torque. Figures 5 (a) - (c) document the top view strain
fields produced using the displacement fields in Figs. 4 (a)
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Figure 5: Normalized strain fields of the roller under the applied tangential hub load of T
max

with respect to the roller under a
N

max
normal load. Each field is an average of 5 trials. (a),(b),(c) - strain fields of the roller-substrate interface. (d),(e),(f) - strain

fields of the roller sidewall.

and (c), while Figs. 5 (d) - (f) document the sidewall strain
fields created using Figs. 4 (e) and (f). Similar to the strain
fields resulting from normal loading, these strain fields are
consistent and repeatable between trials, as displayed in the
standard deviation fields in Appendix C, while also remain-
ing self-similar with increasing resulting torque. Increasing
the applied tangential load only increases the magnitude of
the strain fields and decreases the stick zone. Unlike the
strain fields resulting from normal loading, the geometric
flattening effect of the roller against the substrate does not
need to be taken into account for these top view strain fields.
I.e., since the tangential loading strain fields are all measured
relative to a reference configuration under normal load Nmax,
we expect negligible changes in the vertical displacement of
the roller’s hub and thus predict no further flattening.

In the "xx strain field in Fig. 5 (a), two distinct strain
zones of opposite signs develop from the left and right
sides of the contact interface. As the roller deforms under
counterclockwise torque, the leading section, where material
deforms toward the contact interface, is compressed, and the
back section, where material deforms away from the contact
interface, is stretched in the x-direction. Strain in the middle
of the contact interface between the two zones is close to
zero.

Figure 5 (b) features the interface "xz strain field. Similar
to Fig. 3 (b), the shear strain field is best understood using
Eq. (2). The regions of increasing and decreasing )w∕)x

are marked with positive and negative symbols in Fig. 4 (c)
which align with the experimentally obtained shear strain
fields. Differing from the normal load shear strain in Fig. 3
(b), the edges of the contact region experience positive shear
strain on one side of the roller sidewall and negative on the
other sidewall.

Figure 5 (c) shows the "zz strain field at the interface.
There are two distinct zones of strain on the leading and
trailing edges of the roller. The front edge experiences tensile
strain while the back edge experiences compressive strain

�����

�����

Figure 6: The string model domain representing the roller
material in contact with the substrate. The horizontal trac-
tions, F0, acting on the ends of the string are induced by the
counterclockwise torque.

in the z-direction. As the material along the leading edge is
compressed in the x-direction, it expands in the z-direction
and vice-versa in the trailing edge. The "zz strain field
resembles the "xx strain field in Fig. 5 (a) with opposite
signs. The "zz strain zones converge to almost touching
near the sidewall edges of the roller compared to the "xx
strain zones as there is no material there to resist z-direction
deformation.

Figure 5 (d) shows the development of four distinct strain
zones in the roller which form antisymmetric "xx strain
fields. The four zones are situated at the leading and trailing
edges of the roller-substrate interface and two more exist
near the roller-hub interface. The material near the trailing
edge is stretched as it is pulled away from the substrate, and
the material in front of the contact area is compressed as it
is pressed against the substrate. At the roller-hub interface,
the opposite effect occurs and the material below the lead-
ing edge experiences tension while the material below the
trailing edge experiences compression along the x-axis.

The "xy strain field in Fig. 5 (e) features purely negative
shear strain throughout the roller sidewall. A small zone
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Figure 7: String model for contact region of an elastomer roller under counterclockwise torque illustrating memory upon load
reversal. The string is assumed to experience an applied normal load of n per unit length (not depicted), resulting in a friction
force per unit length �n under sliding conditions. (a) Small torque condition with associated horizontal loads F0. A center stick
zone emerges sandwiched between two slip zones, each of length l0. (b) Large torque condition resulting in increased slip zone
length l1. (c) Return to small torque condition and depiction of partially reversed friction forces. � represents the fraction of slip
zone length experiencing friction forces directed to the right. (d) Depiction of � during loading and unloading.

with the smallest magnitude shear strain develops directly
below the roller-substrate interface. Two slightly negative
zones form below the leading and trailing edges of the roller
midway through the tire thickness. Unlike for the normal
strain fields, no significant strain zones develop at the roller-
hub interface.

Figure 5 (f) presents the sidewall "yy strain field. This
field is a near-perfect mirror image of the "xx strain field in
Fig. 5 (d). This is consistent with the mirroring interface "xx
and "zz strain fields from Figs. 5 (a) and (c). The general
shape of the strain field features and their magnitudes are
similar, but the signs are opposite. The two zones developed
at the roller-hub interface dominate the strain field similar
to that observed in Fig. 5 (d). Smaller zones of tensile and
compressive strain in the leading and trailing edges, respec-
tively, develop at the roller-substrate interface. As the roller
deforms due to the counterclockwise tangential load, the
material at the roller-hub interface experiences compression
below the leading edge and tension below the trailing edge.

5. Memory Effect

We next present analysis of a memory effect observed
for impending slip, which we describe using a conceptual
string model. We first emphasize that this string model is a
conceptual model for explaining the development of stick
and slip zones within the contact area as well as demon-
strating how memory effects arise under cyclic loading. The
values we calculate using this model are examples and do
not capture with complete accuracy the state of contact in
the experimental fields. The model captures deformation

and frictional contact mechanics using a one-dimensional
representation of a portion of the roller spanning the contact
region, as depicted in Figure 6. Applied tractions, F0, are
induced by the counterclockwise torque and act on the ends
of the string. Figure 7 (a) presents the string in isolation,
including friction forces arising in the contact region. The
string experiences an applied normal load of magnitude n

per unit length (not pictured) resulting from the applied
normal load Nmax used in the experiment. We envision the
interface between the string and substrate to be characterised
by a coefficient of friction, �, such that any fully developed
friction has magnitude f = �n per unit length. Being
conceptual, we do not relate the model parameters (e.g., n,
f , and �) to the actual loading and roller parameters (e.g.,
N , T , and various geometrical parameters).

The elasticity of the string causes strain to develop in
response to quasistatic loading F0, resulting in slip at either
end of the string as depicted in Fig. 7 (a). In these slip zones
exist fully-developed friction forces opposing the deforma-
tion. Note that it is necessary for strain to develop only at the
ends of the elastic string (i.e., the extremities of the contact
region) rather than in the interior, as we substantiate using
a consistency argument. If strain were to first develop from
the center (or, similarly, anywhere else in the interior) of the
string, these strains would result in rigid body motion of the
string away from the center, which in turn would lead to fully
developed friction forces along the entire upper surface of
the string, the resultant of which would exceed the applied
traction forces. Thus only strains originating at the ends is
consistent with the model’s kinematic assumptions and the
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Figure 8: (a) Applied tangential loading path and illustrated "xx strain field in the contact region at each load. The illustrated
strain fields represent strain fields normalized with their respective maximum and utilize colored boxes to represent strain where
the colors follow the legend in subfigure (b). The strain colors are chosen to correlate with the strain field in Fig. 5 (d). The
colored star in each subfigure represents the illustrated strain field resulting from the tangential loading represented by the
matching colored circle on the tangential loading path. (b) Differences between illustrated strain fields. (c) Difference between
experimentally measured strain fields. The strain fields correlate with those in (b) and are also normalized. (d) Comparison
between the experimental strain along the contact edge for each loading case. X = 0 relates to the trailing edge of the contact
region.

force balance requirement. Away from the slip zones, in
the stick zone, the string experiences no friction forces. As
depicted in Fig. 7 (b), if the applied end tractions increase
quasistatically from F0 to F1, the length of the slip zones
increase accordingly to maintain equilibrium, and thus the
stick zone shrinks.

Interestingly, if the load is next reduced back to F0, a
memory effect sets in as depicted in Fig. 7 (c). The string
model does not return to the friction state in Fig. 7 (a) due to
friction at the ends of the string reversing direction to oppose
the string relaxation. However, the sum of the original and
reversed friction forces along l1 must equate to F0 in order
to maintain equilibrium. We calculate the fraction of friction
that is preserved using a force balance applied to both Figs. 7
(a) and (c),

F0 = fl0 = �(fl1) − (1 − �)(fl1), (3)

where � denotes the fraction of the slip zone in Fig. 7 (c)
that experiences the preserved friction direction, l0 denotes
the slip zone length in Fig. 7 (a), and l1 denotes the slip zone
length in Fig. 7 (b). Rearranging Eq. (3) for � yields,

� =
l0 + l1

2l1
=

F0 + F1

2F1

, (4)

where we have used l0 and l1 proportional to F0 and F1,
respectively. Figure 7 (d) presents a trend from this memory
effect illustrating the dependence of � on the loading history.
During unloading, a percentage of l1 is retained with a
friction force direction originating from loading. When the

horizontal traction is reduced to zero, half of the originally-
generated friction forces persist (i.e., � = 0.5). Due to this
memory effect, the strain fields experimentally measured
can be expected to be hysteretic and dependent on loading
history.

We verify the existence of this memory behavior exper-
imentally by tracking the strain fields on the roller sidewall
during increasing, and then decreasing, tangential load. Fig-
ure 8 (a) presents the loading and unloading map (left sub-
figure) as well as string model-informed predictions of "xx
at each load (three right subfigures). The colors used in the
illustrated predictions are based on those from the loading
state in Fig. 5 (d) where the trailing region experiences ten-
sion (yellow) and the leading edge experiences compression
(blue), resulting in positive and negative "xx, respectively.
The illustrations represent strain fields normalized with their
respective maximum to directly compare between 0.5Tmax
and Tmax fields. Note that the three illustrated strain predic-
tions correlate to the string model states in Figs. 7 (a) - (c)
and will be verified using Figs. 8 (c) and (d).

In the experiment, we first increase the tangential load
from zero to 0.5Tmax. Based on the prediction in Fig. 7
(a), we expect slip zones to form on either ends of the
contact region. As we then increase the tangential load to
Tmax, the tension and compression regions are expected to
grow accordingly (as in Fig. 7 (b)). After we then decrease
the tangential load to 0.5Tmax, due to the memory effect,
we do not expect the roller to return to its original strain
state. Instead, the roller is expected to experience only a
reduction of tension and compression in the outermost strain
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Figure 9: Tracking stick zone area with increasing tangential load. (a) The x-axis displacement field in the contact region. The
stick zone is the rectangular zero displacement region defined as the area w × L. (b) The displacements along the red dashed line
in (a) for three increasing tangential loads. The stick zone width (w) is measured as the distance the x-displacement is essentially
zero. (c) The calculated stick zone area for increasing tangential loading between 0.2T

max
and T

max
.

regions (as predicted by Fig. 7 (c)). This progression is also
illustrated using expected strains in the three subfigures to
the right of the loading path in Figure 8 (a).

To highlight the differences between any two illustrated
strain fields, we subtract the two fields predicted by the string
model. Figure 8 (b) documents the differences between
illustrated "xx strain fields where the colored stars represent
the strain fields at each loading case in Fig. 8 (a). Coun-
terintuitively, we see the largest difference between the two
0.5Tmax (loaded and unloaded) strain fields. The illustrated
differences consist of alternating tension and compression
regions on either edge of the contact region where the inner
strain regions are larger in magnitude. This difference is
due to the lengthening of the slip zones under an increased
tangential load, followed by reduction in strain at the contact
region ends during unloading. Conversely, the strain field
difference displayed in the bottom figure between the Tmax
load and unloaded 0.5Tmax load exhibits the least difference.
This is due to the inner strain regions negating each other,
leaving only outer strain regions of reduced magnitude. The
resulting difference results in only one region of reduced
tension and one region of reduced compression in the left
and right edges of the contact region, respectively.

Figure 8 (c) documents the difference in experimentally-
measured strain fields correlating to the illustrated strain
fields in 8 (b), where each experimental strain field is nor-
malized with respect to its maximum magnitude prior to
taking the difference. The top figure displays the alternating
tension and compression regions on both ends of the contact
edge, consistent with the illustrated strain field. While the
bottom experimental difference strain field does not display
as strong agreement with the illustrations, it does support
the conclusion that only small strains remain. The strain
field differences throughout the loading history, and the
failure of the strain field to return to its original sate after
unloading, strongly support the existence of the proposed
memory effect.

We next plot the experimental strain across the contact
edge for each loading case. Figure 8 (d) presents the ex-
perimental strain in the roller just below the contact patch
for each loading case, where X = 0 refers to the trailing
edge of the contact region. Each strain curve is normalized
with respect to its absolute maximum magnitude to directly
compare between both 0.5Tmax and Tmax loads. As expected,
the loaded 0.5Tmax strain curve closely resembles the strain
produced from the string model in Fig. 7 (a). The strain
has a zero strain (stick) region in the middle while two
non-zero strain (slip) regions develop on either ends of the
contact edge. The Tmax strain curve also agrees with the
strain produced from the string model in Fig. 7 (b). The
center of the contact region continues to experience a zero
strain region, of smaller extent, followed by a rapid increase
in strain magnitude in the slip zones as the edges of contact
are reached. These slip zones are larger than those observed
for the loaded 0.5Tmax curve, as expected from the model.
Also as expected, we see the unloaded 0.5Tmax curve more
closely resembling the loaded Tmax curve. The unloaded
0.5Tmax curve experiences a zero strain region in the center
of the contact edge similar to the other curves, but also
experiences large slip regions at either end of the contact
edge, differentiating it from the loaded 0.5Tmax curve.

6. Stick Zone

Lastly, we introduce a method using DIC to measure
the stick zone area of the roller under increasing tangential
loading. We expect from previous theoretical works as well
as from the conceptual string model in Fig. 7 (b) that as the
horizontal tractions increase, the slip zones grow and the
stick zone shrinks. We verify this behavior experimentally
using the x-axis displacement fields from Fig. 4 (a) measured
at increasing tangential loads. The rectangular zero displace-
ment section in Fig. 9 (a) is the stick zone for the roller under
a tangential load of Tmax. To obtain the stick zone width (w),
we plot a single curve of the x-axis displacements along the
red dashed line. Figure 9 (b) presents this curve for three
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tangential loads 0.2Tmax, 0.6Tmax, and Tmax. The stick zone
width is measured as the distance along the curve where
the x-displacement is essentially zero (below 0.004 mm).
Since the stick zone is rectangular, the contact width can be
multiplied by the roller width (L) to obtain the rectangular
stick zone area. It is readily apparent from Fig. 9 (b) that
as the tangential load increases, the stick zone width, and
thus area, decreases. We repeat this process for tangential
loads between 0.2Tmax and Tmax in increments of 0.05Tmax
and plot the resulting stick zone areas in Fig. 9 (c). The
stick zone area continues to decrease as the tangential load
increases until the gross slip occurs slightly beyond Tmax.
These experimental results support the predictions of the
string model in Sec. 5 and are made possible by the full field
of displacements measured by DIC.

7. Concluding Remarks

We have utilized DIC to measure the strain fields across
an elastic roller’s sidewall and contact area during both
normal and tangential loading. The friction effects that are
usually ignored in analytical models are readily apparent
in the obtained strain fields near the roller-substrate and
roller-hub interfaces. We have also demonstrated using a
conceptual string model how stick and slip zones develop
in the contact area during frictional pre-sliding problems.
The same conceptual model was used to illustrate how a
memory effect arises in the contact area resulting in residual
deformation and strain during cyclic loading. Using the
experimental displacement and strain fields, we measured
the stick zone area and verified the existence of a memory
effect within the contact area.

The presented strain fields assist in understanding the
distribution of deformation throughout the roller and may
assist with understanding roller contact instabilities and
improve future roller designs. This work is also the first step
towards implementing DIC in a dynamic rolling scenario
where rolling instabilities, such as Schallamach waves may
arise. Schallamach waves have been documented in belt
drives by Wu et al. [2, 3], and due to the similarity with
the system studied herein, are expected to arise in rolling
of elastomer elements on rigid substrates. DIC imaging can
be expected to provide valuable insight into the evolution of
these instabilities and assist in understanding the mechanics
involved in their generation during dyanamic rolling prob-
lems.
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Appendix A Experimental Strain

Normalization and Comparison

to Theory

In this work, we normalize the amplitude of the experi-
mental strain fields by dividing them by the average y-axis

RigidElastic

Rigid

Figure 10: Roller-surface contact model for strain normaliza-
tion. The roller variables are defined as follows: R represents
the hub radius, d represents roller indentation depth, l0
represents the roller thickness, and a represents the contact
half width.

strain in the contact area of the roller and surface, "n. The
equations we present in this section are found in Ref. [9] by
Popov. Figure 10 provides the contact model and variable
definitions used in the following equations. To find "n we
first calculate the total normal load in the contact area of the
roller and substrate, which is found using

F =
4

3
21∕2

ẼLR1∕2d3∕2

l0
, (5)

where Ẽ is the effective elastic modulus and L is the roller
width. Figure 10 (a) defines R as the hub radius, d as
the indentation depth, and l0 as the roller thickness. The
effective elastic modulus Ẽ is calculated by

Ẽ =
E(1 − v)

(1 + v)(1 − 2v)
. (6)

Next we calculate the contact area as a rectangle with area
aL where a is the contact half width. The contact half width
is often referred to as the radius of contact for spherical
contact. We calculate a using

a =
√

2Rd. (7)

From the contact force (F ) and area (A), we calculate the
stress to be F∕A. This stress is converted to "n by multiply-
ing it by the elastic modulus of the roller (E) leading to a
normalization constant,

"n =
FE

A
. (8)

Figure 11 presents a comparison between the experimen-
tally obtained strain fields (a - c) and the theoretical strain
fields produced using both the thin layer approximation (d,
e) and Hertzian cylindrical contact (f - h). The thin layer
approximation is obtained from Ref. [9] pages 15 and 16
where Popov provides the equation for the y-axis strain of a
thin elastic sheet on a rigid, cylindrical base in contact with
a rigid plane relative to the cylinder. Reference [9] neglects
frictional and adhesive effects while also assuming that the
layer is ’thin’ such that the elastic layer is significantly
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Figure 11: (a - c) Experimental strain fields for "yy, "xy, and "xx respectively. (d) and (e) Theoretical strain fields for "yy and "xx,
respectively, using the thin layer approximation. (f - h) Theoretical strain fields for "yy, "xy, and "xx respectively using a Hertzian
cylindrical contact model.

thinner than the length of the contact half width (l0 ≪ a)
and the penetration depth much smaller than the elastic layer
thickness (d ≪ l0). The penetration depth is indeed much
smaller than the layer thickness (d = 0.256 mm ≪ l0 = 5
mm) but we acknowledge that the thickness of the elastic
layer is not smaller than the contact half width (l0 = 5
mm è a = 2.1 mm). However, we include the comparison
here because it is one of the only analytical models that is
applicable for comparison. The experimental strain fields we
collect agree with this thin layer theoretical model while also
demonstrating variation in strain inside the elastomer layer.

Since the experimental strain fields are relative to the
undeformed substrate instead of the roller, we invert the sign
of the theoretical strain field leading to

"yy = −
d − x2∕2R

l0
. (9)

Fig. 11 (d) presents the calculated theoretical "yy projected
on the experimental roller. This theoretical strain field
strongly agrees with the experimentally obtained "yy we
present in Fig. 11 (a). Disparities between the two fields
appear to be located at the contact region of the substrate
and elastomer roller as well as between the elastomer roller
and metal hub. This is likely due to the short contact half
width as well as the frictional effect the theoretical model
neglects.

We convert the theoretical "yy strain field to "xx by
multiplying by the Poisson’s ratio. Figure 11 (e) documents
this theoretical "xx field. While the magnitude of the theo-
retical "xx field differs slightly from the experimental field
in Fig. 11 (c), they strongly agree in orientation. Similar to
the "yy fields, the discrepancies are located at the interface

between the substrate and elastomer as well as elastomer and
hub likely due to the short contact half width as well as the
effect of friction.

The theoretical Hertzian contact model in Figs. 11 (f)
- (h) is obtained from Ref. [10] where Johnson models the
contact between two elastic cylinders using line loading of
elastic half spaces. The Hertz theory assumes purely elastic
bodies and neglects the contributions of the rigid cylindrical
hub. It also maps the deformation within the elastic half
space resulting from compression of a cylinder and not the
deformation within the elastic cylinder itself. The equations
for the resulting stresses in the half-space are obtained from
Eq. 4.49 on pages 103 and 104 of Ref. [10] and are

�x = −
p0

a
[m(1 +

y2 + n2

m2 + n2
) − 2y], (10)

�y = −
p0

a
m(1 −

y2 + n2

m2 + n2
), (11)

and

�xy = −
p0

a
n(
m2 − y2

m2 + n2
) (12)

where m and n are defined as

m2 =
1

2
[((a2−x2+y2)2+4x2y2)1∕2+(a2−x2+y2)] (13)

and

n2 =
1

2
[((a2−x2+y2)2+4x2y2)1∕2−(a2−x2+y2)]. (14)
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Figure 12: Adjusting DIC displacement and strain fields to account for roller flattening along the substrate. (a) As the roller comes
into contact with the substrate, points along the roller will displace along the x-axis due to arc flattening. (b) The analytically
calculated x-displacement due to flattening is subtracted from the experimentally obtained displacement. This process is done
along the entire surface but is plotted along the red dashed line in Fig. 9 (a). (c) The strain fields are calculated using the updated
displacements which only causes a small reduction in strain when compared to ignoring the flattening effect.

The signs of m and n are the same as the signs of y and x

respectively. p0 is the maximum pressure calculated from

p0 = (
PE

�R
)1∕2 (15)

where P is the load calculated using

P =
�2E

4R
. (16)

Note in this case R is the radius of the roller (l0+R) and not
the radius of the hub as presented in Fig. 10.

The resulting normal and shear stress fields are converted
to strain fields by dividing them by the elastic modulus and
shear modulus respectively. The resulting "yy and "xy fields
in Figs. 11 (f) and (g) are very similar to the experimental
fields in Figs. 11 (a) and (b). It is apparent that the rigid hub
has significant effect on the strain fields that these Hertzian
fields are missing but they still are fair initial approxima-
tions. The "xx field in Figs. 11 (h) is surprisingly inaccurate
compared to the experimental field in Figs. 11 (c) with the
resulting strain being negative and located at the contact
point instead of positive at the midpoint of the elastomer
layer. The location of maximum strain is again due to lacking
the effects of the rigid hub. The sign of the "xx strain is likely
since this is for the indented half space and not the indenting
roller.

Appendix B Correcting For Roller

Flattening

The top view strain fields resulting from purely normal
loading (Figs. 3 (a) - (c)) are adjusted to take into account the
geometric flattening effect of the roller as it is compressed
against the substrate. As shown in Fig. 12 (a), points imaged
prior to compression displace along the x-axis when the
elastomeric roller flattens, even if the roller circumference
is considered inextensible. Thus, imaging from the top in

conjunction with DIC analysis would predict non-zero strain
"xx. We correct these top view displacement fields to remove
this flattening effect.

We know from optical measurements (not pictured) that
a normal load of Nmax results in a contact width of 4.2 mm.
We analytically calculate the x-displacement of points along
the roller circumference that result from compressing the
roller enough to produce the measured contact width. Due
to symmetry about the contact point, we only investigate
one quarter of circumference as shown by Fig. 12 (a). The
arclength from the origin to position xj is equivalent to the
x-location of the point after flattening and is found using the
equation

x2
j
= +

xj

0

√
1 + (f 2(x))2dx, (17)

where f (x) is the y-location of points along the roller cir-
cumference

f (x) =
√
r2 − x2 − r, (18)

and r is the radius of the roller (15 mm in this work).
Equations 17 and 18 are combined and simplified to obtain
the equation

x2
j
= r sin−1

(
xj

r

)
. (19)

Points within the contact region (x2
j
d 2.1 mm) will relocate

according to Eq. 19 while points outside the contact area will
displace equally. The displacement at each point satisfies,

�xj =

⎧⎪⎨⎪⎩

r sin−1
(
xj

r

)
− xj xj d r sin

(
2.1

r

)

2.1 − r sin
(
2.1

r

)
xj > r sin

(
2.1

r

)
,

(20)

where r sin
(
2.1

r

)
is the xj location corresponding to x2

j
=

2.1 mm. Note that after flattening, all points xj e r sin
(
2.1

r

)
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move rigidly with the displacement of the point associated
with x2

j
= 2.1 mm, as depicted in Fig. 12 (a).

Once we know the x-displacement due to flattening, we
subtract it from the x-displacement field calculated using
Ncorr. Figure 12 (c) displays the original and corrected dis-
placement curves plotted along the red dashed line in Fig. 9
(a). As shown, the adjustment is very small. The adjusted
x-displacement field along with the original y-displacement
field are re-submitted to Ncorr which calculates the adjusted
strain fields. As shown in Fig. 12 (d), the adjustment in
strain fields is very small such that the maximum change in
strain is less than 13% and the strain field does not change
qualitatively. This difference in strain due to flattening is also
comparable to the strain uncertainty. The peak strain in this
loading scenario must overcome a noise floor before forming
repeatable patterns. For this loading scenario the uncertainty
is found to be approximately 0.005 for normally loaded "xx.

Appendix C Standard Deviation in multiple

tests of the experimentally

measured strain fields

Since the elastomeric roller is loaded and unloaded elas-
tically, we expect to produce the same strain fields repeat-
edly. To demonstrate the consistency of the strain fields
documented in Figs. 3 and 5, we present Figs. 13 and 14
which display the standard deviation fields of the five loading
cases averaged to obtain the normal and tangentially loaded
strain fields, respectively. The standard deviations between
trials remain extremely small with a maximum of 0.0113
for normal loading and 0.0143 for tangential loading. There
appears to be an edge effect due to the maximum standard de-
viations generally appear near the roller’s outer edges. These
larger standard deviations may be due to small geometrical
inconsistencies in the roller edges around the circumference
of the roller. One such example is a slightly raised lip on
the roller outer edges which was slightly inconsistent along
the circumference of the roller. While there are locations
of higher standard deviations, the mean standard deviations
across the strain fields remain below 30% of the mean strain
except for the "xz and fields which have slightly larger mean
standard deviation of approximately 55% of the mean strain.
Overall the standard deviations fields support a repeatable
strain field even though some areas near the contact edges
experience some variation between trials.
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