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Abstract 

The hybrid quantum mechanics/molecular mechanics (QM/MM) approach, which 
combines the accuracy of quantum mechanical (QM) methods with the efficiency 
of molecular mechanics (MM) methods, is widely used in the study of complex 
systems. However, past QM/MM implementations often neglect or face challenges 
in addressing nuclear quantum effects, despite their crucial role in many key 
chemical and biological processes. Recently, our group developed the constrained 
nuclear-electronic orbital (CNEO) theory, a cost-efficient approach that accurately 
addresses nuclear quantum effects, especially quantum nuclear delocalization 
effects. In this work, we integrate CNEO with the QM/MM approach through the 
electrostatic embedding scheme and apply the resulting CNEO QM/MM to two 
hydrogen-bonded complexes. We find that both solvation effects and nuclear 
quantum effects significantly impact hydrogen bond structures and dynamics. 
Notably, in the glutamic acid - glutamate complex, which mimics a common low 
barrier hydrogen bond in biological systems, CNEO QM/MM accurately predicts 
nearly equal proton sharing between the two residues. With an accurate 
description of both quantum nuclear delocalization effects and environmental 
effects, CNEO QM/MM is a promising new approach for simulating complex 
chemical and biological systems. 
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1  Introduction 
Hybrid quantum mechanics/molecular mechanics (QM/MM) is a powerful 

tool in computational chemistry.1–4 It enables the investigation of intricate chemical 

properties and processes within complex systems and has been widely used in the 

study of biological problems, including enzymatic processes4–6 and drug design.7–

9 Additionally, it has been used in various other fields such as heterogeneous 

catalysis10,11 and nanochemistry.12,13  

QM/MM is unique in its multiscale nature, where higher-level accurate QM 

methods are applied to regions of primary interest while lower-level cost-effective 

MM methods are used for the surrounding environment, thereby minimizing the 

total computational expense. Although QM/MM is less accurate than pure QM 

methods and presents challenges such as the proper partitioning of QM and MM 

regions,14,15 managing QM/MM boundary treatments,16–20 and addressing 

overpolarization issues of QM electron densities near the MM region,21–24 it 

remains a preferred method for studying complex systems due to its balanced 

accuracy and computational efficiency. 

Despite the remarkable achievements of QM/MM in practical 

applications,12,25–28 the majority of current approaches still treat nuclei in the key 

QM region classically, resulting in the neglect of nuclear quantum effects. This 

neglect is particularly problematic in systems where hydrogen, the lightest element, 

plays a significant role, as seen in many enzymatic reactions involving proton 

transfer, hydrogen atom transfer, and/or hydride transfer processes.29–33 

To address this challenge, several theories have been developed to 

conduct QM/MM calculations with nuclear quantum effects included. One such 

successful approach is path-integral-based methods, which represent quantum 

systems using ensembles of replicas connected by harmonic springs.34–40 Path-

integral-based QM/MM methods have been successfully applied to study proton 

transfer,41 hydride transfer,42 and RNA cleavage reactions.43 Although a major 

limitation of path-integral based methods is the high computational cost, especially 

if ab initio potential energy surfaces for the QM part are to be used, recent 
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developments have been able to accelerate the calculations and reduce their 

computational costs.44–48 

Another promising approach is the nuclear-electronic orbital (NEO) method, 

which employs multicomponent wave functions to simultaneously describe the 

quantum behavior of both nuclei and electrons.49–57 When integrated with QM/MM, 

NEO has provided insights into the impact of nuclear quantum effects on molecular 

geometries in condensed phases.58–60 Although static NEO calculations are limited 

by the assumption of instantaneous quantum nuclear response to the motion of 

classical nuclei,58,61,62 the recently-developed real-time NEO QM/MM can address 

this limitation and incorporate nonadiabaticity between nuclei and electrons, thus 

offering insights into short-time vibronic dynamics.59,63,64 

Additionally, semi-classical trajectory methods have been integrated with 

QM/MM calculations with nuclear quantum effects incorporated.65 They have been 

utilized to simulate the vibrational spectra of small biological molecules in 

condense phases.65 

Recently, our group developed the constrained nuclear-electronic orbital 

(CNEO)66,67 theory to incorporate nuclear quantum effects, particularly quantum 

nuclear delocalization effects, into classical molecular simulations through a 

quantum-corrected effective potential energy surface.68,69 CNEO shows great 

potential to be a widely-used method for its simple physical picture, high 

computational efficiency, and accuracy for describing quantum nuclear 

delocalization effects.70–76 Due to its similarity to conventional electronic structure 

methods, with the addition of a more physically accurate quantum delocalized 

nuclear picture, CNEO is naturally capable of being integrated with the QM/MM 

framework. 

In this work, we develop such an integration using the QM/MM electrostatic 

embedding scheme. By studying two bimolecular complex systems, one of which 

is of strong biological relavance, we show that CNEO QM/MM outperforms 

conventional QM/MM in describing hydrogen bonds and hydrogen-bond dynamics 
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in the condensed phase, aligning well with experimental evidence. 

2  Methods 
2.1  Conventional Electrostatic QM/MM Embedding Scheme  

In QM/MM calculations, a key aspect is the effective description of the 

interactions between the QM and MM regions. Two major embedding schemes 

are commonly used: mechanical embedding and electrostatic embedding.1–4,77 In 

general, the electrostatic embedding scheme offers greater accuracy and is more 

widely used in computations.1,2,78,79 In this scheme, the QM system is influenced 

by the electrostatic potential provided by the MM environment, and the MM portion 

interacts with the charge obtained from the quantum mechanical calculations of 

the QM system. Additionally, building upon the electrostatic scheme, polarization 

of the MM system may be considered through polarized embedding using 

polarizable force fields.1,80,81 

In the conventional QM/MM electrostatic embedding scheme, the total 

energy of the whole system can be decomposed into three parts 

 system QM MM QM-MM=E E E E+ + , (1) 

where QME  and MME  are the energies of the QM and MM regions, respectively, 

and QM-MME  represents the QM-MM interaction energy. When QM and MM atoms 

interact only through non-bonded interactions, QM-MME  mainly includes two terms: 

the electrostatic interactions electrostatic
QM-MME   and the van der Waals interactions 

vdW
QM-MME . However, when there are covalent bonds connecting QM and MM atoms, 

special considerations on the boundary are needed.4,17,16,82,18,83,21,84,85 In this 

development, we will focus our discussion on cases where there are no such 

covalent bonds. 

The van der Waals term vdW
QM-MME  is easier to deal with. It describes both the 

short-range repulsion and dispersion interactions between QM and MM atoms, and 
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it is often modelled with the Lennard-Jones (L-J) potential 
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Here ε and σ are pairwise L-J parameters, R  is the position of nuclei, QMN  is 

the number of classical nuclei in the QM region, and MMN  is the number of atoms 

in the MM region. 

The electrostatic interaction electrostatic
QM-MME describes the Coulombic interactions 

between the QM system and MM charges. Specifically, it usually includes the 

Coulombic interactions of electron density and classical nuclear point charges in 

the QM region with MM charges, denoted by electrostatic
e MME −   and electrostatic

nuc MME −  , 

respectively: 

  
QM

electrostatic electrostatic electrostatic ext e ext
QM-MM e MM nuc MM MM MM= ( ) ( ) ( )

N

A A
A

E E E d V V Zρ− −+ = − + ∑∫ r r r R . (3) 

Here e ( )ρ r  is the electron density, AZ  is the nuclear charge of the A-th nucleus, 

and ext
MM ( )V r  is the external potential produced by MM charges. Usually, the MM 

charges are represented by point charges and the MM potential can be expressed 

as  

 
MM

ext
MM ( ) =

| |

N
M

M M

qV
−∑r

r R
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in which Mq  is the effective charge of the M-th MM atom. Note that instead of point 

charges, Gaussian charges can also be used, which have been shown to be able 

to avoid overpolarization of the QM electron density.17,21,84,22 

Because the QM/MM electrostatic interaction energy depends on the 

electron density, the solution to the electron density must come from the variational 
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optimization of electrostatic
QM QM-MME E+  . In practical calculations, if Kohn-Sham density 

functional theory (DFT) is used, the Kohn-Sham equation will incorporate the MM 

electrostatic potential ext
MM ( )V r   in addition to the external potential generated by 

classical nuclei in the QM region: 

 
e c
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1 ( ')' ( ) ( ) ( ) = ( )
2 | ' | | |
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i i i
A N

Zd V Vρ ψ ε ψ
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 (5) 

Upon convergence of self-consistent field (SCF) calculations for  
electrostatic

QM QM-MME E+  , the total energy systemE   can be calculated by adding the MM 

energy, as well as the van der Waals term vdW
QM-MME . Afterwards, the forces on QM 

and MM atoms can be calculated through analytic gradient expressions of the total 

energy with respect to QM and MM coordinates. 

2.2  Past Development of CNEO-DFT 
In the past few years, our group developed the CNEO framework to 

incorporate nuclear quantum effects, especially quantum nuclear delocalization 

effects, into quantum chemical calculations and molecular dynamics (MD) 

simulations.66,67,70–73 This is achieved within the multicomponent quantum 

chemistry framework by imposing positional constraints on quantum nuclei  

 n n| | =II I Iψ ψr R , (6) 

where n
Iψ   is the nuclear orbital of the I-th quantum nucleus, and Ir   and IR  , 

respectively, are its associated quantum position operator and classical position 

specified by the molecular geometry. In this way, CNEO treats nuclei quantum 

mechanically but also retains the intuitive classical molecular picture. 

With the introduction of constraints on the expectation value of quantum 

nuclear position operators, the multicomponent electronic Kohn-Sham equation 

remains the same as conventional NEO theory 
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where n
Iρ  denotes the density of the I-th quantum nucleus, and IZ  denotes its 

charge. cN   and qN   are the total numbers of classical and quantum nuclei, 

respectively. The terms in the bracket represent in order the electronic kinetic 

energy term, Hartree potential, external potential due to classical nuclei, external 

potential due to quantum nuclei, and exchange-correlation potential for electrons. 

In contrast, the nuclear Kohn-Sham equation is modified with an extra term 

( I ⋅f r ) associated with the constraint on the expectation position66 
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Here the first four terms corresponds to those in Equation (7) but are now for nuclei. 
n

c, ( )IV r  is the correlation potential for the I-th quantum nucleus. Note that there is 

no nuclear exchange within CNEO because of the distinguishible nucleus 

assumption and nuclear self-Coulomb is explicitly excluded.66 The Lagrange 

multiplier If  needs to be solved iteratively together with electronic and nuclear 

orbitals, subject to the geometric constraints on quantum nuclear expectation 

positions via Equation (6). The converged orbitals can be subsequently used to 

evaluate the multicomponent energies as a function of both classical and quantum 

nuclear positions, leading to quantum-corrected effective potential energy surfaces.  

Analytic gradients67 and Hessians70 with respect to both classical and 

quantum nuclear positions have also been developed. 

2.3  Development of CNEO-DFT QM/MM 
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For the current CNEO-DFT QM/MM development, because some or all 

nuclei in the QM region are now described quantum mechanically, additional terms 

in the QM-MM interaction energy QM-MME  will arise due to the interactions between 

the quantum nuclei and the MM environment. Specifically, these terms include 

both the electrostatic interactions and the van der Waals interactions between 

quantum nuclei and MM atoms. 

For the simpler van der Waals interactions, the additional quantum nuclei-

MM (q-MM) term can be calculated with 

 
12 6q MM
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q MM =

| | | |

N N
IM IM

IM
I M I M I M

E σ σε−

    
 −   − −     

∑∑ R R R R
. (9) 

Then the total QM-MM van der Waals interaction energy becomes 

 vdW vdW vdW
QM-MM c MM q MM=E E E− −+ . (10) 

where we now use c-MM to denote the interactions between the classical nuclei 

in the QM region and MM atoms. 

For electrostatic interactions, the additional term can be calculated with 

 
q

eletrostatic ext n
q MM MM= ( ) ( )

N

I I
I

E Z d V ρ− ∑ ∫ r r r , (11) 

and the total electrostatic QM-MM interaction energy becomes  

 electrostatic electrostatic electrostatic electrostatic
QM-MM e MM q MM c MM=E E E E− − −+ + . (12) 

Similar to the conventional QM/MM approach, the variational energy 

minimization of electrostatic
QM QM-MME E+  with respect to QM densities leads to Kohn-Sham 

equations for quantum particles in the QM region. The resulting electronic and 

nuclear Kohn-Sham equations are highly similar to those in CNEO-DFT, except 

that the MM potential now enters both the electronic equation (Equation 7) and the 

nuclear equation (Equation 8) as an additional external potential term. 
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In CNEO-DFT QM/MM, analytic gradients with respect to the displacement 

of classical nuclei in the QM region, the displacement of the expectation positions 

of quantum nuclei in the QM region, and the displacement of MM atom positions 

can be derived in a similar way to what has been done for conventional DFT 

QM/MM. These details are provided in the Supporting Information. 

2.4  Computational Details 
We implemented the CNEO-DFT QM/MM in our locally-modified version of 

PySCF86–88, which is available through our group GitHub page.89 Molecular 

dynamics simulations were carried out with GROMACS.90–92 In all the following 

calculations, the aug-cc-pVDZ electronic basis set93 was used for both CNEO-DFT 

and conventional DFT. For the glutamic acid-glutamate complex, density fitting 

with the aug-cc-pVDZ-RI auxilary basis set was used for electronic integrals.94,95 

With CNEO-DFT, all hydrogen atoms in the QM region were treated as quantum 

nuclei with the PB4D protonic basis set.96 The B3LYP97–99 electronic exchange-

correlation functional was used and no electron-proton correlation (epc) functional 

was used. Note that our preliminary tests found that the currently developed epc 

functionals100–103 tend to make negligible difference to molecular geometries and 

vibrational frequencies in the CNEO framework. Therefore, we chose to present 

results without epc functionals here and leave the detailed investigation of epc 

effects for future work. For MM-related calculations, we utilized a modified OPLS 

all-atom force field for the hydrogen-bonded complexes104–106 and a modified 

TIP3P water.107 The polar hydrogens (hydrogen in N-H and O-H) of the hydrogen-

bonded molecules were assigned Lennard-Jones coefficients from Ref. 108. 

Additional computational details can be found in the Secion 1 of Supporting 

Information. Regarding computational cost, we observed that incorporating 

nuclear quantum effects in CNEO-DFT QM/MM results in only a minor increase in 

computational cost (typically 10% to 20% longer wall time) compared to 

conventional DFT-based QM/MM. This comparison is summarized in Section 2 of 

the Supporting Information. 

3  Results and Discussion 
We first considered a phenol-water complex (Figure 1), which is a hydrogen 
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bonded system that has been studied in the past during the development NEO-

DFT QM/MM.58 In this system, the hydrogen bond to be investigated is the one 

between the hydrogen atom in the phenol hydroxyl group and the oxygen atom in 

the water. Therefore, the QM region constitutes the phenol molecule and the 

hydrogen-bonded water molecule.  

3.1  Phenol-water complex 
Following the procedure in Ref. 58, we investigated four key geometric 

properties for the optimized geometries of the complex in both gas phase and in a 

water droplet: the OH bond length of the phenol hydroxyl group (O-H), the 

hydrogen bond distance (O∙∙∙H), the distance between the two oxygen atoms 

(O∙∙∙O), and the ∠OHO bond angle. The results from methods based on pure MM, 

DFT, and CNEO-DFT are presented in Table 1. 

 

 

Figure 1. Phenol-water complex in the (a) gas phase and (b) aqueous phase 

For all three methods, the hydroxyl O-H bond length is consistently very 

close to 1 Å. Additionally, switching from gas phase to aqueous phase has little 

impact on the distance. These results indicate that all three methods can describe 

the equilibrium bond length well. In contrast, the hydrogen bond O∙∙∙H distance 
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varies dramatically with the underlying method. Specifically, pure MM predicts the 

largest distance with 1.93 Å in the gas phase and 1.91 Å in the aqueous phase, 

whereas CNEO predicts the smallest distance with 1.82 Å in the gas phase and 

1.59 Å in the aqueous phase. Interestingly, switching from the gas phase to the 

aqueous phase barely changes the pure MM results (∆ = -0.02 Å) but it leads to a 

large distance decrease for both DFT QM/MM (∆ = -0.15 Å) and CNEO-DFT 

QM/MM (∆ = -0.23 Å). As to the O∙∙∙O distance, because the ∠OHO bond angle 

is almost linear and thus the O∙∙∙O distance is roughly the sum of O-H and O∙∙∙H 

distances, the behavior of the O∙∙∙O distance is similar to that of the O∙∙∙H distance.  

 

 

Table 1 Geometric Properties of Phenol-Water Complex 

Environment Method 
Distance (Å) ∠OHO 

(degree) O–H O∙∙∙H O∙∙∙O 

Geometry 
Optimization 
(Gas phase) 

MM 

DFT 

CNEO-DFT 

0.96 

0.97 

1.01 

1.93 

1.88 

1.82 

2.88 

2.85 

2.82 

177 

173 

172 

Geometry 
Optimization 

(Aqueous 
phase) 

Full MM 

DFT QM/MM 

CNEO-DFT 
QM/MM 

0.96 

0.99 

1.03 

1.91 

1.73 

1.59 

2.85 

2.71 

2.61 

166 

169 

171 

Molecular 
Dynamics 
(Aqueous 

phase) 

Full MM 

DFT QM/MM 

CNEO-DFT 
QM/MM 

0.95 ± 0.04 

0.98 ± 0.02 

1.03 ± 0.03 

3.33± 0.59 

1.87 ± 0.20 

1.67 ± 0.15 

3.92 ± 0.56 

2.81 ± 0.18 

2.70 ± 0.15 

124±17 

161±9 

166±7 

The long hydrogen bond distance by pure MM and its insensitivity to 

environmental change is a manifestation of its failure in describing hydrogen bonds. 

This is because using only Coulombic and van der Waals interaction terms in pure 
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MM tends to inadequately capture the intricate nature of hydrogen bonds.109,110 In 

contrast, both DFT QM/MM and CNEO-DFT QM/MM can qualitatively describe the 

significant environmental effect, although CNEO-DFT QM/MM predicts shorter 

O∙∙∙H and O∙∙∙O distances than DFT QM/MM by 0.14 Å and 0.10 Å, respectively. 

Additionally, in CNEO-DFT QM/MM, the hydrogen atom is located closer to the 

center of the two oxygen atoms. These results are qualitatively consistent with 

previous computational studies that also found neutral hydrogen bond complexes 

contract when solvated by water.111  

One notable point is that for this type of static QM/MM geometry 

optimization, theoretically, CNEO QM/MM and NEO QM/MM should yield the same 

equilibrium geometry results. This can be confirmed by comparing with the data in 

Ref. 58, which shows that our CNEO QM/MM results match well the optimized 

geometric parameters obtained from NEO QM/MM, with negligible differences 

attributed to different basis sets and MM water environment. This consistency in 

results is a strong indicator that both developments have correctly implemented 

their respective theories.  

Next we performed MD simulations on the phenol-water complex system 

starting from optimized geometries obtained from the respective methods. Within 

the NVT ensemble at 270 K, all MD simulations are performed for 10 ps, with the 

first 2 ps used for equilibration and the remaining 8 ps for data collection. The 

geometric properties as well as their standard deviation during the later 8 ps MD 

simulations are also shown in Table 1. Note that we only performed the simulation 

in the aqueous phase because in the gas phase, the phenol-water easily 

dissociates at the picosecond time scale. 

Compared to the geometry optimization results, MD simulations barely 

change the hydroxyl O-H bond distance on the phenol group and the bond distance 

standard deviations remain small. This is because the simulation temperature is 

low compared to the bond strength and thus show negligible thermal fluctuation 

effects. In contrast, the hydrogen bonded O∙∙∙H distance becomes larger with MD 

simulations as a result of the significant thermal fluctuation, which also makes its 
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standard deviation significantly larger than that of the O-H bond distance. Note that 

with pure MM, the average O∙∙∙H distance increased by about 1.4 Å and the 

average ∠OHO reduces to about 125 degrees. This large change is due to the 

inadequately weak hydrogen bond being broken and re-formed many times during 

the 8 ps sampling time. Please note that all NVT simulations for this complex were 

conducted at a relatively low temperature of 270 K. We anticipate that at room 

temperature, hydrogen bonds would break and form more frequently, potentially 

altering the water molecule to which phenol is hydrogen-bonded. In contrast, the 

hyrogen bond predicted by both DFT QM/MM and CNEO-DFT QM/MM remains 

unbroken and is much less affected by thermal fluctuation. Specifically, for the 

O∙∙∙H distance, a increase of 0.14 Å and 0.08 Å is observed for DFT QM/MM and 

CNEO-DFT QM/MM, respectively, and for the bond angle, DFT QM/MM observes 

a change of about 8 degrees, which is slightly larger than the 5-degree change 

observed by CNEO-DFT QM/MM. Compared to conventional DFT results, the 

reduced susceptibility to thermal fluctuations in CNEO-DFT suggests a stronger 

hydrogen bond, attributed to its quantum treatment of hydrogen nuclei. Given the 

great performance of CNEO-DFT in describing hydrogen-bonded systems from 

the past studies,70,72,73,76 this stronger hydrogen bond is likely to be physically 

correct, although the absence of experimental data on the position of the hydrogen 

atom makes it challenging to reach a definitive conclusion. 

We note that for MD simulations, CNEO-DFT QM/MM and NEO-DFT 

QM/MM will be significantly different. CNEO-DFT QM/MM does not assume the 

instantaneous response of the quantum nuclei to the motion of classical nuclei.66,70 

Therefore, it carries a more physically correct picture and can accurately describe 

the O-H and O∙∙∙H vibrational pictures.71–73 Nonetheless, the recently developed 

real-time NEO QM/MM dynamics work can mitigate the problem of NEO-DFT 

QM/MM with the desired capability of describing electron-nuclear nonadiabaticity, 

although the computational cost will be much higher.59 

3.2  Glutamic acid-glutamate Complex 
To further demonstrate the power of CNEO-DFT QM/MM and its potential 
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in biological studies, we next investigated a glutamic acid-glutamate complex 

(Figure 2) in both gas phase and aqueous phase. This complex is a typical low-

barrier hydrogen bond system112–115 in which two glutamate anions share a proton, 

and it is known to play a vital role in some biological systyems.114,116–118 For 

example, in human transketolase, this complex (between E366’ and E160) is 

believed to participate in a proton wire, which is the structural origin of the 

enzyme’s cooperativity,114 and in bacteriorhodopsin, a proton pump that uses 

photon energy to establish transcellular proton gradient, this complex (between 

E194 and E204) is directly involved in the key pump process by releasing the 

shared proton to the extracellular environment.116–118 

Due to the high significance in biological systems, the location of the shared 

proton in this complex and its real-time dynamics is of particular interest. For 

human transketolase, high-resolution X-ray crystallography concludes that the 

proton is almost equally shared by the two carboxylic oxygens of E366’ and E160 

residues, and the O∙∙∙O distance is 2.55 Å,114 which is much shorter than that of a 

normal hydrogen bond (2.7~3.1 Å). Note that these high-resolution X-ray 

crystallography studies can obtain hydrogen positions, which are different from the 

conventional impression that hydrogen positions cannot be obtained by X-ray 

crystallography. For bacteriorhodopsin, although the location of the proton is not 

exactly known, the determined O∙∙∙O distance is 2.48 Å,116 which is even shorter 

and may imply a more equally shared proton. 

To mimic the real biological environment, we should ideally embed the two 

amino acids in relatively rigid protein backbones. However, for this proof-of-

concept study, we simplified the problem by applying distance constraints to two 

pairs of carbon atoms according to the experimental X-ray structure of human 

transketolase.119 Specifically, the distance between the two α-carbons is 

constrained to 7.84 Å and the distance between the two carboxylic carbons is 

constrained to 9.01 Å. (Figure 2) These constraints serve a role similar to the 

protein backbones, which preserve the intercarboxylic hydrogen bond and prevent 

strong conformational changes that would be unnatural in a protein environment. 
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Additionally, we acknowledge that in a real biological setting, the system would not 

be fully immersed in an aqueous environment, which is another difference between 

our current treatment and actual biological conditions.  

 

Figure 2 Structure of the glutamic acid-glutamate complex and the applied distance 

constraints between two α-carbons and two carboxylic carbons to mimic the real 

structure in the enzyme environment. 

As with the phenol-water complex, we first optimized the geometries of the 

glutamic acid-glutamate complex in both gas phase and aqueous phase. As shown 

in Table 2, classical MM again yields the longest O∙∙∙O distances (around 2.65 Å) 

and the largest difference between O-H and O∙∙∙H distances (around 0.7 Å), thus 

incorrectly predicting the proton to be owned by one residue. With DFT, the O∙∙∙O 

distance is predicted to be significantly shorter (2.46-2.49 Å) and the length 

difference between O∙∙∙H and O-H becomes smaller, which is 0.29 Å in the gas 

phase and 0.40 Å in solution. For CNEO-DFT, the O∙∙∙O distance is similarly short, 

and the O∙∙∙H and O-H distance difference further reduces to about 0.12 Å in both 

phases, which aligns well with the experimental result that the H is equally shared 
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by the two residues,114 although as acknowledged above, there are some 

differences between the current setup and real biological conditions.  

There is a major difference between the current glutamic acid-glutamate 

complex and the previous phenol-water complex: for the phenol-water complex, 

the hydrogen bond distance and the O∙∙∙O distance shorten in aqueous phase, 

whereas for the glutamic acid-glutamate complex, these distances barely change 

with CNEO-DFT or even becomes slightly longer with DFT. This phenomenon has 

been observed in the past and it was attributed to the differences between neutral 

complexes and negatively charged complexes.111 Heuristically speaking, the 

attractive interactions between the solvent and solute compress the solute and 

thereby shorten the hydrogen bonds, as observed in neutral complexes. However, 

in charged complexes, the dipole-ion interactions are much stronger than the 

dipole-dipole interactions present in neutral complexes. Consequently, the 

hydrogen bonds in charged complexes are already much shorter in the gas phase, 

and placing the charged complex in a polar solvent makes little difference to the 

hydrogen bond length. However, more rigorously, the bond length changes reflect 

an interplay between electronic effects, nuclear quantum effects, and solvation 

effects. The collective impact of these effects leads CNEO-DFT QM/MM to predict 

that the hydrogen bond barely changes upon solvation for the glutamic acid-

glutamate complex, whereas DFT QM/MM predicts slightly elongated O∙∙∙H and 

O∙∙∙O differences (by ~0.05 Å).  

Table 2 Geometric Properties of Glutamic acid-Glutamate Complex 

Environment Method 
Distance (Å) ∠OHO 

(degree) O–H O∙∙∙H O∙∙∙O 

Geometry 
Optimization 
(Gas phase) 

MM 

DFT 

CNEO-DFT 

0.97 

1.09 

1.17 

1.69 

1.38 

1.30 

2.65 

2.46 

2.46 

170 

171 

170 

Geometry 
Optimization 

Full MM 0.97 1.68 2.64 170 
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(Aqueous 
phase) 

DFT QM/MM 

CNEO-DFT 
QM/MM 

1.05 

1.17 

1.45 

1.29 

2.49 

2.45 

170 

170 

Molecular 
Dynamics 

(Gas phase) 

MM 

DFT 

CNEO-DFT 

0.97 ± 0.03 

1.11 ± 0.06 

1.16 ± 0.05 

1.83 ± 0.21 

1.38 ± 0.11 

1.34 ± 0.09 

2.74 ± 0.19 

2.47 ± 0.07 

2.48 ± 0.07 

152±27 

168±6 

168±5 

Molecular 
Dynamics 
(Aqueous 

phase) 

Full MM 

DFT QM/MM 

CNEO-DFT 
QM/MM 

0.96 ± 0.02 

1.05 ± 0.04 

1.13 ± 0.06 

1.83 ± 0.17 

1.49 ± 0.13 

1.38 ± 0.12 

2.75 ± 0.16 

2.53 ± 0.09 

2.50 ± 0.08 

153±26 

168±7 

170±5 

Next, molecular dynamics simulations were carried out with each method 

from the corresponding optimized geometries, and the geometric properties are 

also reported in Table 2. With pure MM, the hydrogen bond becomes considerably 

longer (~0.15 Å) and inadequately weaker, again indicating the failure of the force 

field in describing hydrogen bonds. In contrast, the hydrogen bonds treated by both 

DFT QM/MM and CNEO-DFT QM/MM are stronger with the increase of the 

hydrogen bond length always within 0.1 Å.  

Since the bond lengths statistics within the NVT ensemble do not provide 

dynamical information in this low-barrier hydrogen bonded system, in order to 

investigate the important proton transfer dynamics, we performed 4 ps NVE 

simulations with each method and plotted the O1-H and O2-H (O1 and O2 are the 

two carboxylic oxygens sharing the proton) distances as a function of time. The 

results are shown in Figure 3.  
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Figure 3 Distances between the shared proton and its two adjacent oxygen atoms during 

NVE simulations of glutamic acid-glutamate complex in the gas and aqueous phases by 

classical molecular dynamics, DFT-based molecular dynamics, and CNEO-DFT-based 

molecular dynamics. 

Due to the inability to describe bond formation and bond dissociation, proton 

transfer never occurs in classical MM. The bonded OH always vibrates around its 

local minimum with a small length variance whereas the hydrogen bonded O∙∙∙H 

distance can fluctuate significantly. This fluctuation becomes smaller in the 

aqueous phase owing to confinement from environmental molecules. In contrast, 

proton transfer can be observed with both DFT and CNEO-DFT ab initio molecular 

dynamics with the relative O1-H and O2-H distances swapped frequently during the 

gas phase simulation. It is noticeable that proton transfer is more frequent in 

CNEO-DFT than in DFT. Interestingly, in the aqueous phase, proton transfer is 

now nearly prohibited in DFT QM/MM simulations but can still occasionally take 

place with CNEO-DFT QM/MM. Although a possible reason for this difference 

between DFT and CNEO-DFT is the slightly smaller O∙∙∙O distance that facilitates 

hydrogen sharing and hydrogen transfer by CNEO-DFT, the major reason is that 

the incorporation of quantum nuclear delocalization effects in the CNEO effective 
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surface can lower the proton-transfer barrier72,73,75 and accelerate the proton 

transfer dynamics. The slower or prohibited proton transfers in aqueous phase 

compared to the gas phase may be explained by considering solvent fluctuations 

and their influence on the proton potential. In the gas phase, the absence of solvent 

leads to a relatively symmetric double well with similar depths on both sides. In 

contrast, in the aqueous phase, solvent fluctuations tend to create tilted double 

wells, and consequently, the proton is more likely to remain on one side of the well 

until significant changes in the solvent configuration cause the double well to tilt 

toward the other side, thereby facilitating proton transfer.120 

With this dynamic information, we can now reinvestigate the bond length 

distributions in the prior NVT simulations and better interpret the proton location in 

the glutamic acid-glutamate complex. Because of the occurrence of proton transfer 

that weakens the identification of hydrogen bond donor and acceptor, we 

combined the bond length data of O-H and O∙∙∙H and plotted them in an overall 

distribution in Figure 4. In DFT simulations, because there is little to no proton 

transfer, the hydrogen bond tends to be asymmetric with the proton being more 

possessed by one oxygen, leading to two overlapping peaks in gas phase and 

more distinctly separated peaks in the aqueous phase. In contrast, with CNEO-

DFT simulations, the overall distribution becomes a single peak in both gas phase 

and aqueous phase due to the much more frequent proton tranfer. The peak 

positions are both at around 1.2 Å, and the average OH distances are 1.24 Å and 

1.25 Å for gas phase and aqueous phase, respectively. This prediction is in great 

agreement with the experiment X-ray results on human transketolase,119 in which 

the proton is shown to be equally shared by the two glutamate residue with the OH 

distance being 1.28 Å.  
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Figure 4 Distance distributions between the shared proton and adjacent oxygen atoms of 

the glutamic acid-glutamate complex in the gas (dotted line) and aqueous (solid line) 

phases from DFT-based (blue) and CNEO-DFT-based (green) NVT simulations. 

We further investigated the correlation between the OH distances and the 

O∙∙∙O distance by plotting their joint probability in Figure 5. The lower branch in 

each panel represents the bonded O-H distance while the higher branch 

represents the hydrogen bonded O∙∙∙H distance. It can be observed that the 

smaller the O∙∙∙O distance, the more likely that the two branches merge together, 

facilitating the protron transfer. This observation is consistent with the conventional 

understanding of proton transfer processes. However, in general, DFT and DFT 

QM/MM give larger O∙∙∙O distances and more distinguishable O-H and O∙∙∙H 

distributions, whereas CNEO-DFT and CNEO-DFT QM/MM yield smaller O∙∙∙O 

distances and more overlapped O-H and O∙∙∙H branches that allow more proton 

transfers.  
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Figure 5 Correlation between oxygen-proton (OH) and oxygen-oxygen (OO) distances in 

the glutamic acid-glutamate complex in the gas phase and aqueous phases from DFT-

based and CNEO-DFT-based NVT simulations. 

4  Conclusions 
In conclusion, we integrated CNEO with the QM/MM electrostatic 

embedding scheme and achieved the accurate and efficient incoporation of 

nuclear quantum effects, particularly quantum delocalization effects, in the QM 

region of QM/MM simulations. We applied the resulting CNEO QM/MM theory to 

the calculation of a phenol-water complex and a glutamic acid-glutamate complex 

in both gas phase and aqueous phase. We investigated the impact of nuclear 

quantum effects on both optimized geometries and molecular dynamics. For the 

neutral phenol-water complex, solvation reduces the hydrogen bond distance and 
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the incorporation of nuclear quantum effects through CNEO-DFT leads to a shorter 

hydrogen bond than that of DFT simulations. In contrast, for the negatively charged 

glutamic acid-glutamate complex, solvation leads to a slight increase for the 

hydrogen bond distance as predicted by DFT and DFT QM/MM but a negligible 

change as predicted by CNEO-DFT and CNEO-DFT QM/MM. Through dynamics 

simulations, we observed much more frequent proton transfer in CNEO-DFT 

QM/MM simulations than in DFT QM/MM simulations for the glutamic acid-

glutamate complex in both gas phase and aqueous phase due to the incorporation 

of quantum nuclear delocalization effects. Additionally, the location of the shared 

proton predicted by CNEO QM/MM is in great agreement with the experimental 

observations. All of these results demonstrate the significant impact of the 

solvation environment and quantum nuclear delocalization effects, both of which 

are key features of the CNEO QM/MM approach. As an accurate and efficient 

method, CNEO QM/MM holds great promise for future investigation of hydrogen-

related processes in complex chemical and biological environments. 
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