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Sobol Sequence Optimization for
Hardware-Efficient Vector Symbolic Architectures

Sercan Aygun

Abstract—Hyperdimensional computing (HDC) is an emerging
com]iuting paradigm with significant promise for efficient and ro-
bust learning. In HDC, objects are encoded with hi%h-dimensional
vector symbolic sequences called hypervectors. The quality of
hypervectors, defined by their distribution and independence,
directly impacts the performance of HDC systems. Despite a
large body of work on the processing parts of HDC ﬁystems, little
to no attention has been paid to data encoding and the quality
of hypervectors. Most prior studies have generated hypervectors
using inherent random functions, such as MATLAB’s or Python’s
random function. This work introduces an optimization tech-
nique for generating hypervectors by emplo(iling quasi-random
sequences. These sequences have recently demonstrated their
effectiveness in achieving accurate and low-discrepancy data
encoding in stochastic computing systems. The study outlines the
optimization steps for utilizing Sobol sequences to produce hiﬁh-
quality hygervectors in HDC systems. An optimization algorithm
is proposed to select the most suitable Sobol sequences via indexes
for %enerating minimally correlated hypervectors, particularly in
applications related to symbol-oriented architectures. The perfor-
mance of the proposed technique is evaluated in comparison to
two traditional approaches of generatin h)g)ervectors based on
linear-feedback shift registers and MATLAB random functions.
The evaluation is conducted for three applications: (i) language,
(ii) headline, and (iii) medical image classification. Qur exper-
imental results demonstrate accuracy improvements of up to
10.79%, depending on the vector size. Additionally, the proposed
encoding hardware exhibits reduced energy consumption and a
superior area-delay product.

Index Terms—h)éperdimensional computing, language process-
ing, optimization, Sobol sequences, stochastic computing.

I. INTRODUCTION

YPERDIMENSIONAL computing (HDC) [1]-[3] is a

trending paradigm that mimics important brain function-
alities toward high-efficiency and noise-tolerant computation.
The paradigm has shown significant promise for efficient and
robust learning [4]. HDC can transform data into knowledge
at a very low cost and with better or comparable accuracy
to state-of-the-art methods for diverse learning and cognitive
applications [5], [6]. The fundamental units of computation in
HDC are high-dimensional vectors or “hypervectors” (consist-
ing of +1s and —1s, or logic-1s and logic-0s) constructed from
raw signals using an encoding procedure (Fig. 1(a)). During
training, HDC superimposes together the encodings of signal
values to create a composite representation of a phenomenon
of interest known as a “class hypervector” (Fig. 1(b)). In
inference, the nearest neighbor search identifies an appropriate
class for the encoded query hypervector (Fig. 1(c)). Hypervec-
tors have dimensionality, D, often in the orders of thousands
of dimensions. A hypervector has a distributed, holographic
representation in which no dimension is more important than
others. The hypervectors in an HDC system are generated
to have almost zero similarity. Previous works targeted near-
orthogonal hypervectors by generating random hypervectors
with approximately the same number of 41s and —1s [7]-[10].
But the inherent randomness in these conventionally generated
hypervectors can lead to poor performance, particularly with
smaller Ds. Low classification accuracy is likely in cases with
poor distribution and undesired similarity between hypervec-
tors.
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Fig. 1. Classification with hyperdimensional computing.

Bit-stream computing, also known as stochastic computing
(SC), has been the subject of a large body of recent research
efforts due to attractive advantages such as very-low imple-
mentation cost and high tolerance to noise [11]. SC operates
on random sequences of binary bits, called bit-stream. Similar
to hypervectors in HDC, stochastic bit-streams are holographic
with no bit significance. Complex arithmetic operations are
simplified to basic logic operations in SC. For instance,
multiplication can be performed using a single AND gate [12].
However, the accuracy of SC operations is severely affected by
the random fluctuations in the bit-streams. Some operations,
such as multiplication, similarity or correlation between bit-
streams further degrades the quality of results. Often very long
bit-streams need to be processed for accurate results. Recently,
low-discrepancy (LD) bit-streams were suggested to improve
the quality of SC operations while reducing the length of bit-
streams [13]-[15]. Logic-1s and logic-Os are uniformly spaced
in these bit-streams. Hence, the streams do not suffer from
random fluctuations. The correlation issue is further addressed
with these bit-streams by using different LD distributions. LD
bit-streams have been recently used to perform completely
accurate computations with SC logic [16]. The LD bit-streams
are generated by using quasi-random numbers such as Sobol
sequences.

This work takes advantage of LD sequences to improve
the data encoding of HDC systems. To the best of our
knowledge, this study is the first work to optimize Sobol
sequences to enhance the orthogonality of hypervectors in
HDC systems. Unlike the previous studies that use pseudo-
random sequences for random vector generation, this work
provides quasi-randomness and guarantees independence be-
tween hypervectors by using optimized LD Sobol sequences
[17]. The primary distinction between pseudo-randomness
and quasi-randomness lies in the deterministic, uniform, and
fast converging distribution of numbers in LD sequences.
Quasi-random sequences are designed to fill the space more
uniformly without clustering, a common issue in pseudo-
random sequences. This uniform distribution is particularly
beneficial in high-dimensional spaces where pseudo-random
sequences tend to leave large gaps. Moreover, quasi-random
sequences can achieve faster convergence rates compared to
pseudo-random sequences. Pseudo-randomness yields nearly
random results and may produce different outcomes with each
iteration, whereas recurring LD sequences exhibit determin-
istic behavior. In contrast to pseudo-random sequences that
can only provide near-orthogonal hypervectors, quasi-random
sequences can achieve ideal orthogonality and, thus, high ac-
curacy in HDC systems. We first inspect the Sobol sequences
obtained from the MATLAB tool. The hypervector representa-
tion in HDC is similar to the bit-stream representation in SC;
hence, we utilize stochastic cross-correlation (SCC) [18], a
metric used for determining the similarity of stochastic bit-
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streams, in evaluating hypervectors. We produce a matrix of
hypervectors from Sobol sequences. The SCC' metric is then
used to measure the correlation of each hypervector pair,
yielding a distance matrix. Any cell in the distance matrix
shows the absolute deviation from the SCC=0, indicating
independent hypervectors. We propose an algorithm to select
the best independent Sobol-based hypervectors. We utilize
the selected hypervectors for vector encoding in an HDC
system case study. We apply our proposed scheme to language,
headline, and medical image classification problems [6], [19],
[20]. We further evaluate the hardware efficiency of the new
encoding module for HDC systems. In summary, the main
contributions are as follows:

« For the first time, we utilize optimized LD Sobol se-
quences in data encoding of HDC and unveil their po-
tential performance.

« We propose an algorithm for selecting independent hy-
pervectors by utilizing SCC' metric.

« We find the top-performing Sobol sequences for generat-
ing independent hypervectors.

e« We compare the performance of Sobol-based hypervec-
tors with two traditional approaches of encoding hyper-
vectors using 1) linear-feedback shift registers (LFSRs)
and 2) the MATLAB random functions.

o Our experimental results show an accuracy improvement
of up to 10.79% for text classification.

¢ Our new encoder module exhibits significant savings in
energy consumption and area-delay product.

The rest of the paper is organized as follows: Section II
presents some basic concepts of HDC and SC. Section III de-
scribes the proposed methodology and presents the optimiza-
tion of the best independent sequence selection. Experimental
results are presented in Section IV for the language, newspaper
headline, and medical image classification problems. Potential
impact and the future work of this study are discussed in
Section V. Finally, Section VI concludes the paper.

II. BACKGROUND

A. Hyperdimensional Computing (HDC)

HDC is a brain-inspired computational model based on the
observation that the human brain operates on high-dimensional
representations of data. Reasoning in this robust model of
computation is done by measuring the similarity of hyper-
vectors [21]. Hypervectors are D-dimensional sequences with
+1 and —1 values (corresponding to logic-1 and logic-0 in
hardware, respectively). Prior works on HDC target near-
orthogonal hypervectors with random distribution and approxi-
mately the same number of +1 and —1. So, the threshold value
(T) is set to 0.5 [6]. In HDC applications, using hypervectors
with long lengths (in the range of 10,000 lengths or more) is
common to reduce the similarity between the encoded vectors
and improve the quality of results.

The basic operations in HDC are multiplication (: logical
XOR), addition (2: bitwise population count), and permutation
(IT: shifting). These operations are invertible and have linear
time complexity. HDC systems first encode data with a proper
technique according to the classification or cognitive tasks.
Spatial, temporal, and histogram-based encoding techniques
are used in the literature [22]. Encoders are divided into
(i) record-based and (ii) n-gram-based approaches [23], [24].
The record-based approaches assign level hypervectors (L,
e.g., pixel intensity values in image processing application)
and position hypervectors (P, e.g., randomly generated vectors
for pixel positions). Feature positions on data are encoded via
Ps that are orthogonal to each other. On the contrary, level
hypervectors are expected to have correlations between neigh-
bors. The final hypervector is denoted as H = XY | (L, ® P;),
where N is the feature size. In image processing case, the
pixels are considered as features, and the result of XORing
each position and level hypervector (P x L) is accumulated
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Fig. 2. Architecture and workflow overview of m-gram-based and record-
based encoding for language processing and image classification. The steps
involved in (a) n-gram-based and (b) record-based encoding methodologies.

to have a final D-sized vector that represents the overall im-
age. The accumulation is performed considering the position-
wise bits of different P x L vectors. The second category
utilizes n-gram-based statistics like those in natural language
processing systems. These encoders use rotationally permuted
hypervectors, which are orthogonal to each other. The final
hypervector is H = Ly ®nLy &7V 1Ly, where 7" denotes
the n-times rotationally permuted L. All samples in the
training dataset are evaluated for H, and each contributes (via
accumulation) to the corresponding class hypervector, which
is the trained model of the overall system. For instance, in the
text processing case, each incoming n sub-group of characters
yields a single vector after shift-rotate-XOR, which is then
accumulated for each one-character-shift n-gram vector. The
accumulation is performed considering the position-wise bits
of each n-gram vector. During the inference, the test data is
encoded (h), and the similarity check is performed between
each test query and the class hypervector [25]. In our encoding
scheme with Sobol sequences, we utilize both n-gram- and
record-based approaches.

Fig. 2 provides an overview of the architecture and work-
flow involved in n-gram-based (Fig. 2(a)) and record-based
(Fig. 2(b)) encoding for language processing and image clas-
sification problems. These models are integral to our study,
as we consider both flows and hardware modules involved.
Fig. 2(a) illustrates threshold-based hypervector generation
and an example of n=3-gram-based encoding. We use +1
to denote logic-1 and -1 to denote logic-0. After generating
random numbers in step @ and comparing them with the
threshold (T) per symbol, the hardware block in step @
applies simple shifts and rotates to ensure orthogonality in
the resulting vector obtained from the hardware XOR gate in
step ®. Each n-gram hypervector from XOR blocks contributes
to the corresponding class hypervector via the accumulator in
step @, depicted with a Johnson counter here. Finally, after all
class members finish contributing to the signed accumulations,
step ® conducts simple binarization by a trivial subtraction (or
comparison) from a threshold.

Fig. 2(b) depicts two generators for converting symbolic
positions and numerical pixels into hypervectors. The remain-
ing hardware blocks are similar to Fig. 2(a): XOR between P
and L in step ®, accumulations in step @, and binarization in
step ®. The primary distinction between the two approaches
lies in memory occupation; symbol-only-based representation
occupies relatively less memory due to the absence of one
group of hypervectors: numerical-related level hypervectors
(L). Both approaches need multiple random number genera-
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TABLE 1
COMPARISON OF SC AND HDC
SC HDC
Atomic Bit-stream [26] Hypervector [27]
Building Block (size of N) (size of D)
Data Unipolar or Bipolar Bit-streams [26]

Unary Bit-streams [28]
Low-Discrepancy Bit-streams [16]

Representation Random Hypervectors [6]

Cosine Similarity [6], [29]
Dot Product [30]
Hamming Distance [23]
Overlap Coefficient [23]

Orthogonal Hypervectors [20]

Metric Stochastic Cross-Correlation [18]

Target
Representation

Uncorrelated Bit-streams [18]
Correlated Bit-streams [28]

LD: Sobol Pseudo-random
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Fig. 3. Comparing the distribution of quasi-random Sobol and pseudo-random
sequences.

tors. In this study, we utilize pre-ready sequences, eliminating
the need for multiple random scalar trials, a departure from
prior approaches.

B. Stochastic Computing (SC)

SC is a re-emerging paradigm that uses the power of
processing random bit-streams to reduce the complexity of
arithmetic operations to the level of individual logic gates [26],
[31]. Let X € Zg be a scalar value to be represented
with a stochastic bit-stream. A bit-stream X of size N
has Px = % probability for the occurrence of 1s. Unlike
conventional binary radix, stochastic bit-streams are free of
bit significance. The ratio of the number of Is to the length
of bit-stream determines the bit-stream value. For instance,

X1 = 10101010 represents Px1 = % and X2 = 10111101

represents Pxg = g. Applying bit-wise AND operation to these
bit-streams produces an output bit-stream Y = 10101000 with
probability Py = % that is equal to Px1 X Pxo. For correct
functionality and accurate result, the two operand bit-streams
need to be independent or uncorrelated. Accurate conversion
of scalar values to stochastic bit-streams while guaranteeing
independence between them has been a long-time challenge in
SC [18]. The state-of-the-art work has addressed this challenge
by encoding data to LD bit-streams [14], [31]. The input
data is compared with quasi-random numbers such as Sobol
numbers from a Sobol sequence (please see Section II-C
and Appendix). The comparison output generates an LD bit-
stream representing the input value. A 1 is generated if
scalar > random number. A 0 is produced otherwise. For
an N-bit long bit-stream, the input data is compared with N
Sobol numbers. Table I provides a comparison between the
SC and HDC computational models.

C. From Pseudo-randomness to LD: Sobol Sequences

Similar to SC, HDC systems require an accurate represen-
tation of uncorrelated vectors for high accuracy and random
sources for hypervector generation. Randomness can be quan-
tified by the occurrence of the numbers in the random se-
quence. Analyzing the distribution of the numbers, particularly
among multiple random sources, gives interesting information
regarding their orthogonality. The correlation between two
random sources can be quantified by using metrics such as
Hamming distance, dot product, or cosine similarity.

Pseudo-random sources rely on mathematical algorithms
to produce sequences of numbers. Given the same initial
condition (seed), the algorithm generates the same sequence of
numbers. Well-known examples of pseudo-random algorithms
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Fig. 4. Illustration of the first two Sobol sequences generated using
MATLAB’s sobolset function. The recurrence property and progressive
precision are evident from the repeating and rotating patterns in binary vectors.
Each vector contains subgroups with internal repetition or rotation.

are the Linear Congruential Generator, Mersenne Twister,
and XOR-shift [32]. Quasi-randomness, on the other hand,
holds a property of patterns that, while not genuinely random,
possess certain characteristics of randomness. Quasi-random
sequences distribute points more uniformly in space, exhibit-
ing a more even distribution compared to pseudo-random
sequences. Recurrence is another property of these sequences.
A notable example of such sequences are Sobol or Halton
sequences [33], [34]. Fig. 3 compares the distribution of quasi-
random Sobol sequences and pseudo-random sequences. The
z-y axes represent two different sequences.

This work employs Sobol sequences as the quasi-random
source for HDC. Sobol sequences can be pre-generated using
built-in algorithms in MATLAB tool [35] or Python pack-
ages [36]. These sequences exhibit LD properties, achieved
through some basic computations on some “direction num-
bers” (v1,v2,...). Fig. 4 presents the first two Sobol sequences
from the MATLAB tool. To show the recurrence property,

we categorize consecutive groups of v/D=22 numbers. When
generating hypervectors, a threshold value (default 0.5) is
compared with the sequence numbers. If the threshold value
is greater or less than the sequence number, a 1 or 0 value
is recorded, respectively. Fig. 4 shows examples of generating
binary hypervectors for threshold values 1/4 and 3/4. With
ideal orthogonality, a dot-product operation on the two hyper-
vectors gives a result similar to the product of the threshold
values. The example in Fig. 4 is an ideal case as the output
vector represents 3/16, which is equal to 1/4 x 3/4. We use a
similar approach to show ideal orthogonality of quasi-random
sequences over pseudo-random sequences. Table II reports
the mean absolute error (MAE) results over 10,000 randomly
sampled input pairs. As it can be seen, Sobol-based vector
generation enables accurate multiplications with zero error.
Conversely, when using LFSR-based pseudo-random sources,
the MAE between the obtained and the expected product
is non-zero, which exhibits inferior performance of pseudo-
random sequences in generating orthogonal hypervectors.

The comparison between quasi- and pseudo-random sources
can be extended to the distribution of Hamming distances
between hypervectors. Fig. 5 illustrates the distribution of
Hamming distances between pairs of hypervectors generated
using Sobol sequences (Fig. 5(a)) and pseudo-random sources
(binomial in Fig. 5(b) and LFSR in Fig. 5(c)). The distribution
plots depict histograms of 10,000 samples for generating hy-
pervectors, with distance values represented on the z-axis and
corresponding probabilities on the y-axis. Schmuck et al. [8]
elucidate the use of Hamming distance as a metric for as-
sessing orthogonality, where a score (d) ranging between 0
and 1 signifies the degree of orthogonality: d=0.5 indicates
nearly orthogonal, d=0 correlated, and d=1 anti-correlated
hypervectors.

In our experiment, we represent random scalar pairs as hy-
pervectors. We generate 10, 000 pairs of random scalar values
in the range of [0,1] (test samples) and convert them into
hypervectors using both Sobol and pseudo-random sequences.
We compare them based on the Hamming distance. For the
Sobol case, we use the first two Sobol sequences from the
MATLAB tool. For the second case, a binomial distribution,
and for the third case, LFSRs serve as the random sources
for generating D-dimension hypervectors. Upon comparing
the three plots for D=128, we can see that values around
0.5 are more predominant in the Sobol-generated hypervectors
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TABLE II
MAE OF SOBOL-BASED VS. LFSR-BASED PAIRS OF HYPERVECTORS FOR DOT-PRODUCT OPERATION

Pseudo-random (LFSR) MAE - D Vector Size
(D=16) | (D=32) | (D=64) | (D=128) [ (D=256) | (D=512) | (D=1,024) | (D=2,048) | (D=4,096) | (D=8,192) | (D=16,384) | (D=32,768)
0.0638 0.0308 0.0225 0.0142 0.0074 0.0035 0.0019 0.0012 5.95e-04 4.68e-04 2.11e-05 1.77e-05
Quasi-random (Sobol) MAE - D Vector Size
(D 16) (D 32) (D 6d) | (D=128) [ (D=256) | (D=512) | (D=1,024) | (D=2,048) | (D=4,096) | (D=8,192) | (D=16,384) | (D=32,768)
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
QUASI-RANDOM PSEUDO-RANDOM PSEUDO-RANDOM sc ( Randomw i
0.1 (Sobol) 0.08 (Binomial) 0.1 (LFSR) |
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Fig. 5. Histogram of randomly sampled scalars’ 1-to-all hypervector Ham-
ming distances (d) with hypervector generation sources of (a) Sobol, (b)
Binomial random MATLAB function, and (c) LFSR. D=128.

TABLE III
TOTAL POINTS (%) IN 1-VARIANCE DISTANCE FROM d=0.5 MEAN POINT

Hypervector Pseudo-random Pseudo-random

P Sobol LD |~ "(\jATLAB) (LFSR)

D=128 69.41% 69.25% 69.17%

D=256 69.70% 69.67% 69.41%

D=512 70.82% 70.56% 70.60%
D=1,024 70.13% 70.11% 70.10%
D=2,048 70.66% 70.57% 70.60%
D=4,096 71.55% 71.25% 71.53%
D=8,192 71.89% 71.30% 71.65%
D=16,384 72.32% 72.16% 72.30%
D=32,768 73.57% 73.31% 73.50%

compared to those generated pseudo-randomly. We measured
the percentage of values lying within one standard deviation of
the mean (d=0.5), which serves as the orthogonality target. For
the Sobol-based hypervectors, this percentage was 69.41%;
for the binomial pseudo-random case, it was 69.25%, and
for the LFSR, it was 69.17%. These results indicate a higher
concentration of values around the target orthogonality point
for the Sobol sequences. Table III provides the percentages of
values lying within one standard deviation for varying D-sizes,
further corroborating the effectiveness of Sobol sequences,
especially for larger D values. The LD sequences consistently
outperform pseudo-random ones in achieving orthogonality.

III. PROPOSED METHODOLOGY

A. From Bit-Streams to Hypervectors

SC and HDC both exploit a redundant holographic data
representation. The holographic term refers to a mode of rep-
resentation where information is distributed equally across all
components. This ensures maximum robustness and efficient
utilization of redundancy [2]. While conventional binary radix
assigns weight to each bit depending on its significance, SC
and HDC systems utilize unweighted sequences of binary
bits [27], [37]. In both computational model, the encoding
includes a comparison with a random value, R. A scalar
value in SC and a threshold value in HDC are the actors
of this comparison. Figs. 6(a) and (b) show examples of the
traditional approaches for encoding data in SC and HDC. In
Fig. 6(a), the scalar value X is encoded to a bit-stream of size
N = 8 representing the probability Px. The random source in
Figs. 6(a) and (b) is a number generator that generates random
numbers in the [0, 1] interval. Random vector generation for
HDC is shown in Fig. 6(b). Here, the threshold value (7') is
0.5. Fig. 6(c) shows how data is encoded to an LD bit-stream
by exploiting a Sobol sequence.

The produced N-dimensional Sobol arrays with recurrence
relation are used as an ideal random source to generate
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L = 0,12, 1/4, 3/4, 1/8, 5/8, 3/8, 7/8.,.
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Fig. 6. (a) Conventional pseudo-random source-based stochastic bit-stream
generation, (b) traditional hypervector generation using a pseudo-random
source, (¢) LD bit-stream generation using a Sobol sequence, and (d) utilizing
Sobol sequences for generating hypervectors.
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Fig. 7. Correlation measurement of two sample hypervectors: (a) near-zero
correlation, (b) highly correlated.

accurate LD bit-streams. Sobol sequences have also been
successful in providing the needed independence between
stochastic bit-streams. Generating different LD bit-streams by
using different Sobol sequences is sufficient to guarantee inde-
pendence between bit-streams [16]. Motivated by the success
of using quasi-random numbers in SC, this work employs
Sobol sequences for generating hypervectors of HDC systems.
Fig. 6(d) presents the idea. We use Sobol sequences as the
random source to generate uncorrelated hypervectors with
desired ratio of +1 and —1. Conventionally, HDC systems sets
the threshold value (T') to 0.5 to generate hypervectors with
50% +1 and 50% —1. Unlike prior HDC systems, this work
explores a range of values for 7" to achieve the best accuracy
with Sobol-based hypervectors. The challenging optimization
problem is to determine the best set of Sobol sequences for
any 7" value. The merit metric for this optimization is SCC'
as given in equation (1):

ad—bc .
min(a a+c a a+c ’ Zf ad > be
SCC = Dx ( +badtb)c (a+b) x (a+c) olse

(a+b) % (a+c)— D xmaz(a—d,0)

The a, b, ¢, and d variables in the SC'C' equation [18] are
the cumulative sum of overlaps between two hypervectors:
a=|{Hz;= ’Hw =+, b= {He; = +1, Hy, = —1},
SCC'is a value in the -1, +1] interval. A zero or near-zero
SCC means uncorrelated hypervectors. SCC=+1 indicates a
positive correlation (totally similar), while SCC=—1 shows
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Fig. 8. The illustration of (a) Algorithm 1, (b) Algorithm 2, and (c) Algorithm 3.

Algorithm 1 Sobol-based Hypervectors Generation

Algorithm 3 Minimum of Minima

Require: Soboli111xp, T : threshold, D : Hypervectors size
Ensure: Hypervectors
1: fori=1:1:1111 do

2: for j=1:1:D do

3: if T < Sobol(i, j) then

4 Hypervectors(i,j) = —1
5: else

6: Hypervectors(i,j) = +1
7: end if

8:  end for

9: end for

10: return Hypervectors

Algorithm 2 SCC of Hypervectors Cartesian Product

Require: Hyg)ervectors,
Ensure: VAL, IDX, Distance
fori=1:1:1111 do
for j=1:1:1111 do
Distance(i,j)
|scc(Hypervectors(i,:), Hypervectors(j,:))|
end for
end for
[VAL, IDX] < sortMin(sumColumns(Distance))
return VAL, IDX, Distance

AN AR s

a negative correlation (no overlap). Fig. 7 exemplifies two
pairs of hypervectors and their corresponding SC'C' values. All
hypervectors here have a probability 3/8 of observing +1. The
SCC value is calculated by finding the a, b, ¢, and d values.
The example in Fig. 7(a) includes two hypervectors with near-
zero SCC, while the hypervectors in Fig. 7(b) are identical
and so have SCC=1.

B. On the Decision of the Best-Performing Sobol Sequences

Selection of the top-K best uncorrelated (orthogonal) se-
quences over m is a challenging problem and requires opti-
mization. The complete heuristic solution space of this op-
timization has P(m, K) = (m’f—}{), different candidates (via
permutation). In HDC, this problem turns out to be selecting
the best orthogonal hypervectors in the pseudo- or quasi-
random workspace. Algorithm 1 initiates the procedure for
generating Sobol-based hypervectors considering the quasi-
random space. We use the MATLAB tool and its built-in Sobol
sequence generator [38], which implements Joe and Kuo’s
method [39] as discussed in the Appendix. The maximum
number of Sobol sequences that MATLAB can produce is
1111. In Algorithm 1, D is the hypervector size. Thereby,

Require: /DX, Distance, K

Ensure: SobolUncorrelated

cfori=1:1: K do
minOFmin < sortMin(Distance(IDX (i),:))
Concatenatedy x p < CONCAT(minOFmin)

end for

SobolUncorrelated < MODE(Concatenatedx xp.IDX, K)

return SobolUncorrelated

AR AN

the Sobol matrix has a size of 1111 x D. All Sobol numbers
are compared with the 7' value, and the results (—1 or +1)
are recorded in a Hypervectors matrix of 1111 x D size.

Algorithm 1 returns the Hypervectors matrix. Algorithm 2
uses this matrix to generate an SCC-based Distance ma-
trix of Cartesian products. Each pair of Hax and Hy in
Hypervectors is compared using the SCC' metric, yielding
the Distance matrix size of 1111 x 1111 that holds the
absolute values of SCC.

Lines 1 to 6 of Algorithm 2 build the Distance matrix by
calculating the SCC' values. Any i*" row and j** column in-
tersection holds the correlation coefficient between the i** and
4" hypervectors in the Hypervectors matrix. The Distance
matrix is a symmetric, square matrix holding SCC = 1s in
the diagonal elements (SCC(Hxz, Hx) = 1.) After producing
the Distance matrix, the algorithm performs column-wise
operations to select the minimum distances at each column
(similarly, row-wise operations are possible due to symme-
try). Line 7 of Algorithm 2 first calculates the summation
of each Distance matrix column, and then sorts the results
of summations. The summation is a vector with 1 x 1111
elements. Minimum sorting is applied to find the values and
indexes of Sobol elements with minimum SCC. Figs. 8(a)
and (b) depict Algorithms 1 and 2, respectively. As it can be
seen, after obtaining the Hypervectors matrix by comparing
Sobol numbers with T, SCC measures the correlation of
the Cartesian-based hypervector pairs. The Distance matrix
is symmetric, and each color represents the absolute value
of an SCC. Fig. 8(b) shows how column-wise summation
is performed in Algorithm 2, yielding symbolic gray-tone
representation. After sorting, the values (V ALs) and indexes
(IDXs) are recorded. The top-K minimum values of these
elements are called the minima of the Distance matrix, and
the corresponding I D X's are used for the minimum of minima
in Algorithm 3, as depicted in Fig. 8(c).

Algorithm 3 returns a SobolUncorrelated vector, which
holds the K best uncorrelated Sobol indexes. The inputs of
the algorithm are I D X s and the Distance matrix from Algo-
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Fig. 10. The overall architecture of the HDC image classifier.

rithm 2, beside K, the number of to-be-selected Sobol indexes.
The top- K minimum distances and their indexes (I D X's) from
Algorithm 2 are used here. In Fig. 8(c), the selected 1D Xs
of the Distance matrix are pointed with black-colored rows.
Each row is further processed for the minimum SCC's. The
for loop in Algorithm 3 processes the K rows by sorting
and CONCATaneting them, producing a new Distance’ matrix
with a size of K x D. Finally, the Distance’ matrix is checked
with the MODE function to return the most repetitive /D Xs
of the top- K minimum-valued columns. Column-wise frequent
index check allows us to see how repetitive Sobol elements are
in the minima of SCC distances. Fig. 8(c) depicts Algorithm 3
for K=3; the top-K=3 minimum of minima are selected for
the SobolUncorrelated vector. If any repetitive 1D X occurs,
K is increased for the next available Sobol element to keep
the column list unique in SobolUncorrelated; x k.

C. The Overall Architecture

In this section, we present the overall HDC architecture.
Without loss of generality, we apply the proposed technique
to a word-processing HDC system for language classification
and an HDC system for image classification.

1) n-gram-based HDC Framework: In the first framework,
a hypervector is needed for each alphabet letter. Our ap-
proach uses Sobol-based hypervectors. Nonetheless, we also
implement the system with the MATLAB random function
and an LFSR-based random number generator for comparison
purposes. Sobol sequences are generated in a standard manner.
Nevertheless, the selection of the best Sobol sequences is
based on our optimization algorithms, which aim to achieve
high orthogonality. The overall architecture is shown in Fig. 9.
For each letter in the alphabet, hypervector generation is per-
formed with our Sobol-based technique, LFSR, and the MAT-
LAB built-in random function rand (), producing Hsobol,
Hrrsr, and H random. respectively. The n-gram approach
[23], is applied to the incoming data, i.e., n consecutive letters.

\]_Similarity Measurek~
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Fig. 11. (a) Overall flow of the proposed optimization steps for top-performing
Sobol sequences. (b) Hardware details of the HDC architecture for the training
and inference phases. (c) Tools utilized in the experiments.

For the LFSR-based approach, random numbers are generated
using the maximal-period LFSRs described in [40] for each
length D. The initial seed value of the LFSRs is randomly
selected. Similar to Rahimi et al’s HDC architecture in [6]
and [41], the calculation of an n-gram hypervector is done by
rotating the letter hypervectors, as shown in Fig. 9. We keep
a copy of the hypervectors generated by the three approaches
for this process. Then, the n-gram hypervector is accumulated.

During text hypervector generation, the accumulation op-
eration (Acc) is an algebraic summation of +1s and —1s
in hypervectors. The thresholding is applied via the sign
function. In hardware, the population count of logic-1Is is used
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TABLE IV
HARDWARE EFFICIENCY CONSIDERING THE EMBEDDED PLATFORM, CPU, GPU, AND ASIC DESIGN

Performance (i) Performance (ii) CPU Workload (iii) GPU Power Load (iv) Encoding Module
in an Embedded Performance Performance ASIC Design
Platform (ARM) (Intel i5) (NVIDIA Quadro 6000) (45 nm)
D HV Generation Runtime Memory Average Max. Average Max. Energy AreaxDelay
8192 Pseudo-R. 1,068.3sec 18.3KB 10.6%(idle+9%) 15.2%(idle+13.2%) | 0.354mW | 0.402mW | 16.88nJ 721.12x107°
n-gram Sobol 687.4sec 17.8KB | 9.4%(idle+7.4%) | 12.1%(idle+10.9%) | 0.036mW | 0.256mW | 2.69pJ 59.20x 1012
8192 Pseudo-R. 3,148.6sec | 7.6KB | 164%(idle+11%) | 17.6%(idle+14%) | 0.412mW | 0.524mW | 27.36nJ | 1256.17x10~°
Rec.-bas. Sobol 1,948.5sec | 52KB | 14.4%(idle+10%) | 15.7%(idle+12.3%) | 0.051mW | 0.334mW | 4.04pJ | 102.56x10~!2

for accumulation, followed by a thresholding operation by
comparison with K/2 (K is the total number of the contributing
n-gram hypervectors to the accumulator.) We proceed with
the former approach in our simulations by using algebraic
accumulation and sign-based thresholding. After iterating
over the incoming data to generate the text hypervectors, the
classification is performed in the search module by perform-
ing a similarity check between the text hypervector and the
language hypervector.

2) Record-based HDC Framework: In the second frame-
work, both level and position hypervectors are needed for
pixel values and pixel positions, respectively. Fig. 10 illustrates
the overall architecture of the HDC image classifier. We
employ two random sources for comparison purposes: the
LFSR method (pseudo-random), and the optimized Sobol
sequences (quasi-random) using our proposed approach. Dif-
ferent from the prior art, better orthogonality is targeted during
the intricate design of symbolic position hypervectors. Any
random sequence, either pseudo- or quasi-random, is tested
independently. Fig. 10 shows the overall hardware architecture,
generating P and L, XORing, accumulating result by D-type
flip-flops, and binarization by sign. The hardware flow for each
step aligns with Fig. 2. The training and testing methodologies
are also illustrated in Fig. 10.

IV. TESTS AND RESULTS

This section details the performance evaluations of the
proposed methodology. Fig. 11 shows the overall flow of
the optimization steps and the HDC training and inference
processes. Fig. 11(a) summarizes the optimization steps for
identifying the best-orthogonal supplier Sobol sequences. Ad-
ditionally, Fig. 11(b) presents a summary of operations and
hardware for both training and inference, for image (record-
based) and language-based (n-gram) applications. Notably, the
cost of inference matches that of a single training attempt. The
distinction lies in how each sample contributes independently
to the class hypervectors during training, with binarization
occurring only once all class samples are processed. Fig. 11(c)
showecases the tools used and performance metrics considered.

A. Hardware Performance

We first evaluate the hardware efficiency of the proposed
encoder module (all designs are in D=8192). We use four
hardware workspaces: (i) ARM-based embedded platform (a
resource-limited device with 700 MHz, 32-bit, single-core),
(ii) Central processing unit (CPU - Intel(R) Core(TM) i5-
10600K @4.10GHz), (iii) Graphics processing unit (GPU -
NVIDIA Quadro RTX 6000), and (iv) and an ASIC design
with 45 nm technology.

The first workspace considers two complete HDC systems
with a pseudo-random-based approach and a Sobol-based
approach. The overall system was implemented in C language
and deployed into the ARM processor. The random method
dynamically creates data with a built-in C language-based
rand function. On the other hand, the Sobol sequences are
pre-generated, stored in, and read from memory. Table IV
presents the performance (i.e., run-time and memory usage)

results. For the n-gram approach, the presented results are
based on the single-time hypervector assignments for each
letter; however, the training phase requires iteration for the
random method that severely worsens during training. Record-
based encoding for both P and L generations follow similar
procedures. As the total symbol (pixel) count for the medical
MNIST (medMNIST) [42] case study (28x28) is higher than
the language case, relatively more runtime load is expected.
However, compared to a 21-class language processing applica-
tion, 8-class medMNIST (BloodMNIST) image classification
requires relatively less model memory, as seen from the ARM-
based memory occupation.

Table IV also shows the CPU-based workload performances
of the encoding part of an HDC system. We iteratively (107
times) create an alphabet with letter hypervectors for language
processing and also create the position and level hypervectors
for image classification. We compare the workload brought
by the random-based and Sobol-based approaches in the
CPU. The iterations guarantee fairness in terms of possible
background tasks and processes. We also put an idle time
by waiting for stabilization before initiating each run. Ta-
ble IV shows the average and maximum of all iterations.
CPU workload during idle time and total increments on the
hypervector operations (idle + workload by vector generation
%y) are recorded. The Sobol-based approach exhibits less load
compared to the pseudo-random case in both letter-processing
and image-processing problems. As images operate, both
average and maximum loads brought in record-based encoding
are higher than the n-gram case. We also report the GPU
power consumption for the hypervector operations. As it can
be seen, the Sobol-based approach provides nearly 10 times
lower power consumption in both case studies.

Last but not least, we implement an ASIC hypervector en-
coding module to evaluate the energy and area-delay product.
This design targets training-on-edge applications for future
HDC frameworks, necessitating a comprehensive encoding
module. For both n-gram- and record-based encoding archi-
tectures, corresponding to Fig. 2(a) and (b) (hardware in @,
@, ®, @, ®), we devised a design for the pseudo-random case
comprising LFSR and Sobol sequences with recurrence prop-
erty. Table IV reports energy consumption and areaxdelay.
The Sobol approach yields significant outcomes in terms
of energy consumption and area-delay product, promising
advancements for next-generation of training-on-edge comput-
ing systems like HDC. Our proposed framework, leveraging
deterministic Sobol sequences, frees us from dependence on
random source generators such as LFSRs in training. It also
reduces the optimization into a single step due to high-quality
deterministic behavior. This framework enables us to maintain
identical hardware steps for both training and inference (® -
with memory read-, @, ®, @, and ®). In the conventional
approach for the pseudo-random case, hypervectors are gener-
ated during training, and based on orthogonality performance,
the hypervectors are saved for inference. While this remains an
option for Sobol-based designs, thanks to their deterministic
nature, it does not necessarily have “class counts x D size-
bit memory.” Instead, we save optimal Sobol sequences with
16-bit precision and can retain comparator-based dynamic
hypervector generation even in inference, albeit with a trade-
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TABLE V

CLASSIFICATION RATES FOR DIFFERENT ENCODING METHODS

Encoding Min. Max. Std. Avg.
D | Methods Acc. Acc. Dev. Acc.
Random Vector 13.19% 18.14% 0.0108 15.07%
LFSR w/ Random Seed | 12.45% I8 20% 0.0IT9 15.17%
h= Sobol LD Sequence 17.80%
Sobol IDXs (1=0.66): 2, 3, 8, 11, 13, 14, 16 18, 27, 28, 29, 34,
35, 40, 42, 44, 46, 47, 50, 52, 53, 54, 55, 60, 61, 62, 63, 66
Random Vector [ 2047% [ 570% [ 0.0121 [ 22.71%
LFSR w/ Random Seed | 18.:69% | 25.70% | 0.0I2T [ 22.47%
S Sobol LD Sequence 26.52%
Sobol IDXs (1=0.30): 2, 4, 7, 8, 12, 20, 25 27, 30, 29, 36, 40,
42,39, 43, 58, 51, 52, 64, 66, 74, 46, 79, 69, 72, 80, 65, 88
Random Vector [ 31.07% [ 39.52% | 0.0151 [ 35.43%
LFSR w/ Random Seed | 31.78% | 37.10% | 0.0124 [ 3457%
3 Sobol LD Sequence 46.22%
Sobol IDXs (1'=0.70): 3, 6, 14, 16, 18, 19 25, 26, 28, 30, 31, 35,
36, 41, 54, 49, 73, 61, 67, 64, 72, 90, 91, 86, 88, 96, 100, 101
Random Vector [ 48.:63% | 54.80% [ 0.0127 1 52.04%
oo | LFSR'w/ Random Seed | 48.02% | 54.02% | 0.0I12 | 51.16%
I Sobol LD Sequence 60.74%
Sobol IDXs (1=0.74): 2, 4, 5, 7, 14, 11, 13 16, 23, 24, 26,
25, 32, 34, 36, 42, 39, 53, 50, 48, 61, 67, 70, 64, 66, 72, 78, 84
Random Vector [ 6736% [ 71.70% | 0.0103 [ 69.24%
o | LFSR'w/ Random Seed [ 66.80% [ 71.67% [ 0.0I05 | 68.6I%
e Sobol LD Sequence 79.03%
Sobol IDXs (1'=0.70): 2, 3, 16, 10, 25, 28 19, 38, 32, 60, 45,
49,39, 53, 54, 68, 80, 82. 64, 90, 78, 95,99, 112, 120, 108, 92, 118
Random Vector [ 8232% [ 83.83% | 0.0039 [ 83.03%
« | LFSR'w/ Random Seed | 81.3T% | 83.18% [ 0.0045 | 82.22%
A Sobol LD Sequence 89.47%
Sobol IDXs (1T'=0.70): 2, 8, 9, 13, 16, 19, 21 28, 29, 48, 32,
44,38, 64, 50, 51, 54, 58. 61, 85, 73, 74, 97, 101, 112, 90, 117, 120
Random Vector [ 90.27% [ 91.5T1% [ 0.0025 [ 9I.15%
< | LFSR w/ Random Seed | 90.01% | 91.22% | 0.0028 | 90.56%
g Sobol LD Sequence 93.78%
— | Sobol IDXs (1T'=0.70): 1, 4, 9, 14, 26, 22, 21 31, 51, 30, 34, 36,
61, 71, 67, 73, 97, 99, 100, 96, 107, 125, 108, 110, 152, 120, 150, 140
Random Vector [ 9473% ] 9540% ] 0.0015 [ 95.14%
oo | LFSR w/ Random Seed [ 94.21% | 95.04% | 0.0017 | 94.7T%
= Sobol LD Sequence 96.31%
| Sobol IDXs (1'=0.34): 6, 5, 9, 14, 22, 16, 47 51, 55, 64, 58, 68, 78,
87, 105, 88, 97, 96, 100, 166, 129, 132, 145, 152,'153, 114, 179, 164
Random Vector [ 96.68% [ 97.09% ] 9.20e-04 [ 96.88%
o | LFSR w/ Random Seed | 96.44% | 96.88% | 0.0012Z | 96.68%
2 Sobol LD Sequence 97.05%
= | Sobol IDXs (1=0.34): 1, 4, 6, 16, 30, 21, 26 48, 33, 55, 43, 78,
60, 62, 82, 96, 97, 87, 88. 91, 92, 126, 100, 105, 109, 115, 121, 127
Random Vector 97.47% [ 97.87% | 8.78e-04 97.65%
o | LFSR'w/ Random Seed | 97.36% | 97.73% | 9.19e-04 | 97.55%
2 [ Multiple LFSRs - 9731%
® Sobol LD Sequence 97.85%
Sobol IDXs (1'=0.38): 2, 5, 12, 15, 23, 36 48, 51, 53, 54, 63, 73, 66,
79, 97, 115, 88, 98. 104, 109, 159, 148, 147, 123, 126, 130, 188, 172

off in generation and memory cost, like in training. Table IV
reports the cost of training a single data sample in ASIC
design for the Sobol case. The reported results can also pertain
to dynamically generated vectors in inference. Alternatively,
we can read pre-generated binary vectors for P and L from
memory to reduce the generation costs in inference. In this
scenario, the area-delay ]ZJroduct is found 18.32x107 125 x m?
and 44.16x1072s x m? for the letter and image processing
applications, respectively. This binary vector reading approach
is the same for both pseudo-random and Sobol case for the
inference phase, while the Sobol-based design outperforms
the pseudo-random case in the training phase as reported in
Table IV.

B. Accuracy

For accuracy evaluation, we used two different datasets for
separate performance monitoring: the 21-class European lan-
guages dataset [43], the newspaper headlines [44] dataset, and
the medMNIST dataset [42]. Following the testing approach
of [6] and [41], first, the Europarl Parallel Corpus dataset [45]
was used for the inference step. The selected n-gram was
four for better accuracy, as reported in [6]. First, the training
dataset was pre-analyzed over a 1000-element validation set
with the MATLAB tool’s first 28 Sobol sequences. Hence,
K=28 (26 letters, one space, and one extra character). Fig. 12
presents the pre-analysis for 7'. The 7' values on the x-axis
range from O to 1 with 0.02 steps. The hypervector size D
varies from 16 to 8192. The preliminary analysis for each D

size helps us determine the approximate 7" range that gives the
maximum accuracy with the Sobol sequences. We observed
that, whether the first K Sobol sequences are used, or the K
Sobol sequences are randomly selected, the relative analysis of
the 7" values shows similar distributions, and the peak accuracy
is obtained around 7'=0.34 (£0.04) or T=0.7 (£0.04). The
selected T's are used in Algorithm 1 with the best uncorrelated
Sobol sequences obtained by Algorithms 2 and 3.

After determining the best T for each D, tests are performed
with different encoding methods (Sobol, LFSR, and random).
Table V presents the results. For the LFSR-based encoding,
we evaluated all maximal-period LFSRs corresponding to each
D [40]. For the random encoding, we run 1000 trials, each
generating a different set of random numbers. We report the
minimum, maximum, and average accuracy for the LFSR
and random encoding. As it can be seen, the Sobol-based
encoding achieves superior performance in all cases. The case
with D=8192 delivers the best accuracy (97.85%), close to
the baseline accuracy from a conventional machine learning
approach [6]. The second-best outcomes are obtained with the
hypervectors produced with the MATLAB random function,
and then the hardware-friendly LFSR-based encoding provides
the lowest accuracy. Table V reports the best Sobol IDXs
selected with the proposed algorithms.

To show the superiority of the proposed encoding with
another dataset, we also tested the classification problem of
newspaper headlines on three topics (entertainment, politics,
and parenting) obtained from the HuffPost newspaper head-
lines released in Kaggle [44]. This is a relatively more complex
problem with shorter headlines compared to paragraphs. For
training, 3400 headlines were utilized for each class, while
1000 different headlines were used for inference. Fig. 13
shows the pre-analysis of T for this dataset for D=4096 and
8192. As can be seen, a similar distribution is obtained by
finding the best accuracy around 7'=0.34 (40.04). For n-
gram=b and D=8192, the random function-based approach
showed an accuracy of 69.81% (average of 1000 trials), while
the proposed Sobol-based method achieved an accuracy of
70.97%.

A key observation considering the results presented in Ta-
ble V and Figs. 12 and 13 is that utilizing Sobol sequences can
achieve shorter hypervectors but with similar accuracy as their
conventional pseudo-random counterparts. Consequently, iso-
accuracy results can be produced with Sobol sequences with
shorter delays, thereby achieving a more favorable area-delay
product. These findings underscore the significance of the
optimized Sobol-based architecture. The design is enhanced
through optimization algorithms that leverage meticulously
chosen, best orthogonal Sobol random sources. It should be
emphasized that HDC systems generally adhere to a single-
pass learning strategy, presenting results based on scanning
the dataset only once without a backward pass. On the other
hand, to establish edge-compatible training, the raw dataset
has been presented without the use of any additional feature
extraction or multiple iterations based on learning rate or
error optimization. Conventional neural network systems with
complex matrix multiplications pose bottlenecks for edge
devices during error optimization with many partial derivative
calculations, learning rate-based fine-tuning, and batch pro-
cessing in multi-stochastic data processing. In contrast, HDC
systems offer a lightweight solution for the same accuracy
level. A neural network-based system established for similar
accuracy is more costly and less efficient in hardware. The pro-
posed vector generation technique opens a new perspective for
hardware-friendly learning. It is lightweight, highly accurate,
and requires only one round of hypervector generation. In prior
HDC systems, selecting the best vectors involved multiple
iterations with a random source to achieve good orthogonality
[46]. In contrast, LD Sobol sequences inherently provide the
needed orthogonality; with our optimization approach, higher
quality is guaranteed for hypervector generation.

Following the n-gram-based HDC approach, we conducted
experiments utilizing record-based encoding. In this set of
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Fig. 13. Preliminary analysis of 7" and tests for the headline dataset.

experiments, we also target measuring the learning rate-
based training epochs for validations. We focus on two dis-
tinct sub-datasets for an image processing application using
the medMNIST dataset: BloodMNIST and DermaMNIST.
Our initial investigation involved validating our framework
by employing optimized Sobol sequences for the record-
based encoding of image pixel positions. Throughout this
experiment, our primary objective was to monitor various
learning metrics, particularly during training, given our pro-
posal’s alignment with a lightweight training system that
mvolves less complexity and fewer iterations compared to
the pseudo-random approach. We assessed the performance
using a range of metrics based on confusion matrices, includ-
ing Sensitivity (%) Precision (qujr%), Specificity
(rmp (FP +TN ), Fl-measure (%) Balanced Accu-
racy (75 ensit.+Specif.y and the Fowlkes—Mallows index (FMI:
\/ (Precision x Sensitivity)), in addition to standard ac-

curacy (%, where T'P: True Positives, T'N:
True Negatives, F'P: False Positives, and F'N: False Neg-
atives). Both the pseudo-random (Wlth LFSR) and Sobol-
based approaches were evaluated in the experiments, and
the validation accuracy, along with corresponding plots, was
presented. The epoch-based learning is applied by adopting
the learning rate (77)-based model update for incremental
learning. The model undergoes validation accuracy evaluation
during each training sample’s process, considering the impact
of the final contributing training sample hypervector (h). If
validation improves based on the recent contribution to the
class hypervector (C'), then the training sample’s effect on
the learning model is incorporated, contributing to the class
hypervector via accumulation (step @ in Fig. 2). The formula

12. Preliminary analysis of T for different hypervector sizes (D) with the first 28 Sobol sequences of MATLAB (f: maximum accuracy point).

for updating the class hypervector in the event of validation
accuracy improvement is Chewy = Corg + (1 X h) (otherwise,
Chrew = Cola— (nx h) [47]). Our experiments achieved optimal
results around 7=0.1.

We separately tested two subsets of the medMNIST dataset:
BloodMNIST, containing 17,092 images with 8 classes, and
DermaMNIST, containing 10,015 images with 7 classes.
Fig. 14 depicts the performance of the record-based HDC
framework using pseudo-random and Sobol-based position
encodings. We conducted 10 independent runs for the pseudo-
random case (Fig. 14(a) for BloodMNIST and Fig. 14(c) for
DermaMNIST) and reported the best possible learning plot and
testing accuracy. The learning plots for epoch-based process-
ing revealed the rapid convergence of validation accuracy in
the Sobol case (Fig.s 14(b) and (d)). Moreover, the reported
confusion matrices highlighted the superior performance of
our proposed approach compared to conventional HDC learn-
ing methods. In the BloodMNIST dataset, while the accuracy
for the pseudo-random case reached up to 83.96%, the Sobol-
based approach exhibited improved performance, achieving an
accuracy of 87.51%. In DermaMNIST, pseudo-random- and
Sobol-based test accuracy is 67.66% and 70.34%, respectively;
the DermaMNIST dataset is relatively challenging. These
results highlight a notable trend: the Sobol-based approach
exhibits higher validation accuracy in the initial epochs. For
instance, by the tenth epoch, BloodMNIST achieves 90%
validation accuracy with the Sobol approach, compared to
around 80% with the pseudo-random approach. In essence, this
observation may inspire future investigations into the training
dynamics of HDC systems based on quasi-random sequences.

C. Iso-Accuracy (IA) Hardware Cost Analysis

Extending our examination of the hardware and accuracy
results, we provide a deeper analysis of hardware performance
for similar accuracy levels (“iso-accuracy”) between the con-
ventional random approach and the proposed optimization-
based method. We find the accuracy of the random approach
for the language classification task (recalling Table V) when
setting D to 256, 512, 1024, 2048, and 4096. Subsequently,
using optimized hypervectors based on the Sobol sequences
in our method, we adjust the values of D to achieve a
similar accuracy. For example, the random approach yields
a classification accuracy of 68.6% with D 256, while
our method achieves a similar accuracy with D 185.
This provides a significant hardware cost advantage with our
method. We assess various D sizes across different hardware
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Fig. 15. Iso-Accuracy (IA) hardware cost analysis for parametric D values, (a)
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environments (i.e., an embedded system, a CPU, a GPU, and
an ASIC design) to illustrate the trade-offs between accuracy
and hardware resources. We also break down the hardware cost
results into smaller components for the ASIC implementation.
Fig. 15 depicts the results. As it can be seen, our proposed
approach consistently exhibits better performance in terms of
latency, power, energy, and memory consumption compared
to the random approach. In particular, we report runtime and
memory usage for an embedded platform (Fig. 15(a) and
(b)), average CPU load (Fig. 15(c)), average GPU power
consumption (Fig. 15(d)), and energy and areaxdelay for the
ASIC design (Fig. 15(e) and (f)). We note that as the vector
size or D increases, both the accuracy and the hardware cost
increase. Finally, Fig. 15(f) illustrates a pie chart detailing
the specific area consumption of each sub-module within our
HDC system (for D 8192 and n=3-gram), highlighting
critical areas for potential optimization for further hardware

Embedded

latform runtime, (b) Embedded platform memory, (c) CPU average
ng the HD

sub-module area distribution given in a pie chart.

¢

cost reduction in future studies.

V. POTENTIAL IMPACT AND FUTURE WORKS

This study presents the first endeavor to optimize and
select the best Low Discrepancy (LD) sequences for encoding
hypervectors with maximum orthogonality for HDC systems.
We expect this initiative forges new paths for future research
on deterministic HDC systems, diverging from the reliance
on stochastic pseudo-random encoding that necessitates con-
tinuous, time-consuming optimizations during the learning
phase. Benchmarking HDC performance across different LD
sources holds promise for stimulating new research avenues
for improving the performance of HDC systems.

Recent literature has shown increasing interest in HDC
system design for online training. Addressing the limitations
associated with on-the-go selection of the best-performing
random sequences, this study proposes a novel methodology
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TABLE VI

METHODOLOGY CONTRAST: PROPOSED VS. RELATED WORKS

Features

Proposed Methodology

Literature

Sequence Generation

Quasi-random Sobol
sequences with offline
optimization for selecting
the best sequence
indexes for orthogonality

Pseudo-random
sequences with
relatively limited
orthogonality
properties

Training Algorithm

Sobol sequences with
offline optimization for
selecting tﬁe best sequence
indexes for orthogonality

Pseudo-random
sequences requiring
multiple online
runs of the learning
algorithm for
optimal performance

Adaptability

Pre-determined and valid for
all future usage; no need for
online training adjustments

Requirement
for dynamic
adaptation for
optimal application
performance

Distribution Patterns

Interesting, repeated pattern
in the distribution of a
sequence; easy inference
of future distributions
from early indexes

No estimable
distribution, thus
no assistance in
inferring further

sequence distributions
from early indexes

Orthogonality
for Training

Achieves satisfactory
orthogonality for
training learning systems
through memory-saving

Requires additional
circuitry for
improved accuracy
ue to multiple
iterations and
dynamic nature

Accuracy and
Learning Dynamics

Offers better accuracy
and learning dynamics,
including early epoch learning

Relatively lower
accuracy and slower
learning dynamics

Random Source
for LD Sequence
Index Selection

Utilizes stochastic computing-
based random source for LD
sequence index selection

Sequential usage
of LD sequences
(like in SC science)

for improved HDC system design by utilizing predefined
deterministic sequences. Minimizing reruns during training
can significantly alleviate the overall system load.

This study further creates new research avenues for applying
HDC to larger learning tasks. One case is semantic analysis
of linguistic data, like the headline dataset in this work.
Addressing the challenges in raw symbol processing for HDC-
based semantic classification, our proposed improvements hold
promise for achieving high accuracy for tasks like large-scale
language processing for semantics purposes. Our approach
eliminates the need for application-specific online training
optimizations, preserving on-the-go processing efficiency with
a simple reading of pre-determined values from memory.
While this study recommends quasi-randomness for higher
accuracy, pseudo-random sequences (such as those generated
using LFSRs) can also be explored to enhance the performance
of prior work. Previous comparisons between Sobol- and
LFSR-based encoding methods in the SC literature proved
Sobol’s superiority [16]. However, optimizing LFSRs for on-
the-go hypervector generation may offer an intriguing al-
ternative, albeit with potential accuracy trade-offs. Another
future research direction of this work is to study scalability.
The increase in the number of symbols to encode (e.g., in
larger-scale image processing using more pixels) highlights
the importance of vector orthogonality optimizations. Our
proposed approach can find the best orthogonal symbol vectors
for any space and K (symbol counts) size. In future work, we
look into other types of quasi-random sequences, such as Van
der Corput, Niederreiter, Halton, etc., the sequences already
well acclaimed in SC [48], to increase the workspace for large-
scale HDC applications with many symbols.

In addition to these impacts, this study bridges two emerging
computing paradigms: HDC and Stochastic Computing (SC).
Both HDC and SC enjoy holographic data representations.
Improving the orthogonality for HDC and optimizing quasi-
random sources can contribute to the accuracy of SC encoding.
While SC traditionally employs two-input logic gates for
arithmetic operations, exploring symbol-based representations
can present novel opportunities for advancing this field.

Overall, this work provides a new path for HDC researchers
to leverage quasi-randomness for ideal orthogonality in HDC
systems. Exploring the encoding steps like binding and
bundling for SC and hardware optimizations for better pseudo-
random generators also present promising future directions.
Large-scale HDC systems, especially for challenging language
processing tasks, can significantly benefit from the proposed

methodology by achieving higher accuracy and reducing vec-
tor size. In summary, Table VI outlines the key features of this
work compared to the prevailing trends in the literature.

VI. CONCLUSION

In this work, we introduced a novel, lightweight approach
featuring an innovative encoding technique for generating
high-quality hypervectors for hyperdimensional computing
(HDC) systems. Inspired by recent strides in low-discrepancy
encoding methods proposed for stochastic computing (SC)
systems, we employed quasi-random Sobol sequences, coupled
with an optimization framework, to produce orthogonal hyper-
vectors with varied distributions and ratios of +1s and -1s. Our
methodology exploits an optimization algorithm to identify
the optimal set of Sobol sequences, minimizing correlations
crucial for vector symbolic data processing. To substantiate
the effectiveness of the proposed technique, we conducted a
comprehensive performance evaluation, comparing the method
with two conventional approaches for hypervector generation
based on LFSRs and algorithmic random functions. We eval-
vated the proposed approach for letter and image processing
HDC systems, scrutinizing accuracy and integrating hardware
designs across four distinct processing environments: ARM
embedded device, CPU, GPU, and custom ASIC design. Our
novel encoding technique demonstrated superior classification
accuracy across varied datasets. It also showed higher hard-
ware efficiency, considering factors such as energy efficiency
and area-delay product.
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APPENDIX
FORMAL DEFINITION OF SOBOL SEQUENCES

The MATLAB built-in Sobol sequence generator [38] can
be used to efficiently generate Sobol arrays. The procedure
for generating Sobol numbers is as follows: According to Joe
and Kuo [39], any j*" component of the points in a Sobol
sequence is generated by first defining a primitive polynomial

2% +aq ]xsf Y4 +as,—1,;x+1 of a degree of s; in the field
Zs. Any “a’ satisfies a € {0, 1}. By considering bit-by-bit XOR
operator, @, the ‘a’ coefficients are utilized for a sequence
{mij,maj, ...} bya relallon given as my ; = 2a1, ;mi—1,;D
22@2]mk QJ@ LB 2% a’é'—ljmk—é +1,5 @ 2° Imy— SJJ@
Mp—s;,5- The m values can be arbztmrtly chosen provided
that 1 <k < sj, and mj € {2n+1:n € Z§} and m;x, <
2. With a denote of direction numbers, {v1 j,v2 ;, ...}, where
any vjj, = "L, j* component of the i'" point in a Sobol
sequence is presented: x; ; = bivi j ® bava ; @ ..., where any
b is the right-most bits (i.e., least-significant ones) of the i
sub-index in binary form.
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