












IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 7

TABLE IV
HARDWARE EFFICIENCY CONSIDERING THE EMBEDDED PLATFORM, CPU, GPU, AND ASIC DESIGN

Performance (i) Performance
in an Embedded
Platform (ARM)

(ii) CPU Workload
Performance

(Intel i5)

(iii) GPU Power Load
Performance

(NVIDIA Quadro 6000)

(iv) Encoding Module
ASIC Design

(45 nm)

D HV Generation Runtime Memory Average Max. Average Max. Energy Area×Delay

8192
n-gram

Pseudo-R. 1,068.3sec 18.3KB 10.6%(idle+9%) 15.2%(idle+13.2%) 0.354mW 0.402mW 16.88nJ 721.12×10
−9

Sobol 687.4sec 17.8KB 9.4%(idle+7.4%) 12.1%(idle+10.9%) 0.036mW 0.256mW 2.69pJ 59.20×10
−12

8192
Rec.-bas.

Pseudo-R. 3,148.6sec 7.6KB 16.4%(idle+11%) 17.6%(idle+14%) 0.412mW 0.524mW 27.36nJ 1256.17×10
−9

Sobol 1,948.5sec 5.2KB 14.4%(idle+10%) 15.7%(idle+12.3%) 0.051mW 0.334mW 4.04pJ 102.56×10
−12

for accumulation, followed by a thresholding operation by
comparison with K/2 (K is the total number of the contributing
n-gram hypervectors to the accumulator.) We proceed with
the former approach in our simulations by using algebraic
accumulation and sign-based thresholding. After iterating
over the incoming data to generate the text hypervectors, the
classification is performed in the search module by perform-
ing a similarity check between the text hypervector and the
language hypervector.

2) Record-based HDC Framework: In the second frame-
work, both level and position hypervectors are needed for
pixel values and pixel positions, respectively. Fig. 10 illustrates
the overall architecture of the HDC image classifier. We
employ two random sources for comparison purposes: the
LFSR method (pseudo-random), and the optimized Sobol
sequences (quasi-random) using our proposed approach. Dif-
ferent from the prior art, better orthogonality is targeted during
the intricate design of symbolic position hypervectors. Any
random sequence, either pseudo- or quasi-random, is tested
independently. Fig. 10 shows the overall hardware architecture,
generating P and L, XORing, accumulating result by D-type
flip-flops, and binarization by sign. The hardware flow for each
step aligns with Fig. 2. The training and testing methodologies
are also illustrated in Fig. 10.

IV. TESTS AND RESULTS

This section details the performance evaluations of the
proposed methodology. Fig. 11 shows the overall flow of
the optimization steps and the HDC training and inference
processes. Fig. 11(a) summarizes the optimization steps for
identifying the best-orthogonal supplier Sobol sequences. Ad-
ditionally, Fig. 11(b) presents a summary of operations and
hardware for both training and inference, for image (record-
based) and language-based (n-gram) applications. Notably, the
cost of inference matches that of a single training attempt. The
distinction lies in how each sample contributes independently
to the class hypervectors during training, with binarization
occurring only once all class samples are processed. Fig. 11(c)
showcases the tools used and performance metrics considered.

A. Hardware Performance

We first evaluate the hardware efficiency of the proposed
encoder module (all designs are in D=8192). We use four
hardware workspaces: (i) ARM-based embedded platform (a
resource-limited device with 700 MHz, 32-bit, single-core),
(ii) Central processing unit (CPU - Intel(R) Core(TM) i5-
10600K @4.10GHz), (iii) Graphics processing unit (GPU -
NVIDIA Quadro RTX 6000), and (iv) and an ASIC design
with 45 nm technology.

The first workspace considers two complete HDC systems
with a pseudo-random-based approach and a Sobol-based
approach. The overall system was implemented in C language
and deployed into the ARM processor. The random method
dynamically creates data with a built-in C language-based
rand function. On the other hand, the Sobol sequences are
pre-generated, stored in, and read from memory. Table IV
presents the performance (i.e., run-time and memory usage)

results. For the n-gram approach, the presented results are
based on the single-time hypervector assignments for each
letter; however, the training phase requires iteration for the
random method that severely worsens during training. Record-
based encoding for both P and L generations follow similar
procedures. As the total symbol (pixel) count for the medical
MNIST (medMNIST) [42] case study (28×28) is higher than
the language case, relatively more runtime load is expected.
However, compared to a 21-class language processing applica-
tion, 8-class medMNIST (BloodMNIST) image classification
requires relatively less model memory, as seen from the ARM-
based memory occupation.

Table IV also shows the CPU-based workload performances
of the encoding part of an HDC system. We iteratively (107

times) create an alphabet with letter hypervectors for language
processing and also create the position and level hypervectors
for image classification. We compare the workload brought
by the random-based and Sobol-based approaches in the
CPU. The iterations guarantee fairness in terms of possible
background tasks and processes. We also put an idle time
by waiting for stabilization before initiating each run. Ta-
ble IV shows the average and maximum of all iterations.
CPU workload during idle time and total increments on the
hypervector operations (idle + workload by vector generation
%) are recorded. The Sobol-based approach exhibits less load
compared to the pseudo-random case in both letter-processing
and image-processing problems. As images operate, both
average and maximum loads brought in record-based encoding
are higher than the n-gram case. We also report the GPU
power consumption for the hypervector operations. As it can
be seen, the Sobol-based approach provides nearly 10 times
lower power consumption in both case studies.

Last but not least, we implement an ASIC hypervector en-
coding module to evaluate the energy and area-delay product.
This design targets training-on-edge applications for future
HDC frameworks, necessitating a comprehensive encoding
module. For both n-gram- and record-based encoding archi-
tectures, corresponding to Fig. 2(a) and (b) (hardware in ➀,
➁, ➂, ➃, ➄), we devised a design for the pseudo-random case
comprising LFSR and Sobol sequences with recurrence prop-
erty. Table IV reports energy consumption and area×delay.
The Sobol approach yields significant outcomes in terms
of energy consumption and area-delay product, promising
advancements for next-generation of training-on-edge comput-
ing systems like HDC. Our proposed framework, leveraging
deterministic Sobol sequences, frees us from dependence on
random source generators such as LFSRs in training. It also
reduces the optimization into a single step due to high-quality
deterministic behavior. This framework enables us to maintain
identical hardware steps for both training and inference (➀ -
with memory read-, ➁, ➂, ➃, and ➄). In the conventional
approach for the pseudo-random case, hypervectors are gener-
ated during training, and based on orthogonality performance,
the hypervectors are saved for inference. While this remains an
option for Sobol-based designs, thanks to their deterministic
nature, it does not necessarily have ªclass counts × D size-
bit memory.º Instead, we save optimal Sobol sequences with
16-bit precision and can retain comparator-based dynamic
hypervector generation even in inference, albeit with a trade-



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 8

TABLE V
CLASSIFICATION RATES FOR DIFFERENT ENCODING METHODS

D
Encoding
Methods

Min.
Acc.

Max.
Acc.

Std.
Dev.

Avg.
Acc.

1
6

Random Vector 13.19% 18.14% 0.0108 15.07%
LFSR w/ Random Seed 12.45% 18.20% 0.0119 15.17%

Sobol LD Sequence - 17.80%
Sobol IDXs (T=0.66): 2, 3, 8, 11, 13, 14, 16, 18, 27, 28, 29, 34,
35, 40, 42, 44, 46, 47, 50, 52, 53, 54, 55, 60, 61, 62, 63, 66

3
2

Random Vector 20.47% 25.70% 0.0121 22.71%
LFSR w/ Random Seed 18.69% 25.70% 0.0121 22.47%

Sobol LD Sequence - 26.52%
Sobol IDXs (T=0.30): 2, 4, 7, 8, 12, 20, 25, 27, 30, 29, 36, 40,
42, 39, 43, 58, 51, 52, 64, 66, 74, 46, 79, 69, 72, 80, 65, 88

6
4

Random Vector 31.07% 39.52% 0.0151 35.43%
LFSR w/ Random Seed 31.78% 37.10% 0.0124 34.57%

Sobol LD Sequence - 46.22%
Sobol IDXs (T=0.70): 3, 6, 14, 16, 18, 19, 25, 26, 28, 30, 31, 35,
36, 41, 54, 49, 73, 61, 67, 64, 72, 90, 91, 86, 88, 96, 100, 101

1
2
8

Random Vector 48.63% 54.80% 0.0127 52.04%
LFSR w/ Random Seed 48.02% 54.02% 0.0112 51.16%

Sobol LD Sequence - 60.74%
Sobol IDXs (T=0.74): 2, 4, 5, 7, 14, 11, 13, 16, 23, 24, 26,
25, 32, 34, 36, 42, 39, 53, 50, 48, 61, 67, 70, 64, 66, 72, 78, 84

2
5
6

Random Vector 67.36% 71.70% 0.0103 69.24%
LFSR w/ Random Seed 66.80% 71.67% 0.0105 68.61%

Sobol LD Sequence - 79.03%
Sobol IDXs (T=0.70): 2, 3, 16, 10, 25, 28, 19, 38, 32, 60, 45,
49, 39, 53, 54, 68, 80, 82, 64, 90, 78, 95, 99, 112, 120, 108, 92, 118

5
1
2

Random Vector 82.32% 83.83% 0.0039 83.03%
LFSR w/ Random Seed 81.31% 83.18% 0.0045 82.22%

Sobol LD Sequence - 89.47%
Sobol IDXs (T=0.70): 2, 8, 9, 13, 16, 19, 21, 28, 29, 48, 32,
44, 38, 64, 50, 51, 54, 58, 61, 85, 73, 74, 97, 101, 112, 90, 117, 120

1
0
2
4

Random Vector 90.27% 91.51% 0.0025 91.15%
LFSR w/ Random Seed 90.01% 91.22% 0.0028 90.56%

Sobol LD Sequence - 93.78%
Sobol IDXs (T=0.70): 1, 4, 9, 14, 26, 22, 21, 31, 51, 30, 34, 36,
61, 71, 67, 73, 97, 99, 100, 96, 107, 125, 108, 110, 152, 120, 150, 140

2
0
4
8

Random Vector 94.73% 95.40% 0.0015 95.14%
LFSR w/ Random Seed 94.21% 95.04% 0.0017 94.71%

Sobol LD Sequence - 96.31%
Sobol IDXs (T=0.34): 6, 5, 9, 14, 22, 16, 47, 51, 55, 64, 58, 68, 78,
87, 105, 88, 97, 96, 100, 166, 129, 132, 145, 152, 153, 114, 179, 164

4
0
9
6

Random Vector 96.68% 97.09% 9.20e-04 96.88%
LFSR w/ Random Seed 96.44% 96.88% 0.0012 96.68%

Sobol LD Sequence - 97.05%
Sobol IDXs (T=0.34): 1, 4, 6, 16, 30, 21, 26, 48, 33, 55, 43, 78,
60, 62, 82, 96, 97, 87, 88, 91, 92, 126, 100, 105, 109, 115, 121, 127

8
1
9
2

Random Vector 97.47% 97.87% 8.78e-04 97.68%
LFSR w/ Random Seed 97.36% 97.73% 9.19e-04 97.55%
Multiple LFSRs - 97.31%

Sobol LD Sequence - 97.85%
Sobol IDXs (T=0.38): 2, 5, 12, 15, 23, 36, 48, 51, 53, 54, 63, 73, 66,
79, 97, 115, 88, 98, 104, 109, 159, 148, 147, 123, 126, 130, 188, 172

off in generation and memory cost, like in training. Table IV
reports the cost of training a single data sample in ASIC
design for the Sobol case. The reported results can also pertain
to dynamically generated vectors in inference. Alternatively,
we can read pre-generated binary vectors for P and L from
memory to reduce the generation costs in inference. In this
scenario, the area-delay product is found 18.32×10−12s×m2

and 44.16×10−12s ×m2 for the letter and image processing
applications, respectively. This binary vector reading approach
is the same for both pseudo-random and Sobol case for the
inference phase, while the Sobol-based design outperforms
the pseudo-random case in the training phase as reported in
Table IV.

B. Accuracy

For accuracy evaluation, we used two different datasets for
separate performance monitoring: the 21-class European lan-
guages dataset [43], the newspaper headlines [44] dataset, and
the medMNIST dataset [42]. Following the testing approach
of [6] and [41], first, the Europarl Parallel Corpus dataset [45]
was used for the inference step. The selected n-gram was
four for better accuracy, as reported in [6]. First, the training
dataset was pre-analyzed over a 1000-element validation set
with the MATLAB tool’s first 28 Sobol sequences. Hence,
K=28 (26 letters, one space, and one extra character). Fig. 12
presents the pre-analysis for T . The T values on the x-axis
range from 0 to 1 with 0.02 steps. The hypervector size D
varies from 16 to 8192. The preliminary analysis for each D

size helps us determine the approximate T range that gives the
maximum accuracy with the Sobol sequences. We observed
that, whether the first K Sobol sequences are used, or the K
Sobol sequences are randomly selected, the relative analysis of
the T values shows similar distributions, and the peak accuracy
is obtained around T=0.34 (±0.04) or T=0.7 (±0.04). The
selected T s are used in Algorithm 1 with the best uncorrelated
Sobol sequences obtained by Algorithms 2 and 3.

After determining the best T for each D, tests are performed
with different encoding methods (Sobol, LFSR, and random).
Table V presents the results. For the LFSR-based encoding,
we evaluated all maximal-period LFSRs corresponding to each
D [40]. For the random encoding, we run 1000 trials, each
generating a different set of random numbers. We report the
minimum, maximum, and average accuracy for the LFSR
and random encoding. As it can be seen, the Sobol-based
encoding achieves superior performance in all cases. The case
with D=8192 delivers the best accuracy (97.85%), close to
the baseline accuracy from a conventional machine learning
approach [6]. The second-best outcomes are obtained with the
hypervectors produced with the MATLAB random function,
and then the hardware-friendly LFSR-based encoding provides
the lowest accuracy. Table V reports the best Sobol IDXs
selected with the proposed algorithms.

To show the superiority of the proposed encoding with
another dataset, we also tested the classification problem of
newspaper headlines on three topics (entertainment, politics,
and parenting) obtained from the HuffPost newspaper head-
lines released in Kaggle [44]. This is a relatively more complex
problem with shorter headlines compared to paragraphs. For
training, 3400 headlines were utilized for each class, while
1000 different headlines were used for inference. Fig. 13
shows the pre-analysis of T for this dataset for D=4096 and
8192. As can be seen, a similar distribution is obtained by
finding the best accuracy around T=0.34 (±0.04). For n-
gram=5 and D=8192, the random function-based approach
showed an accuracy of 69.81% (average of 1000 trials), while
the proposed Sobol-based method achieved an accuracy of
70.97%.

A key observation considering the results presented in Ta-
ble V and Figs. 12 and 13 is that utilizing Sobol sequences can
achieve shorter hypervectors but with similar accuracy as their
conventional pseudo-random counterparts. Consequently, iso-
accuracy results can be produced with Sobol sequences with
shorter delays, thereby achieving a more favorable area-delay
product. These findings underscore the significance of the
optimized Sobol-based architecture. The design is enhanced
through optimization algorithms that leverage meticulously
chosen, best orthogonal Sobol random sources. It should be
emphasized that HDC systems generally adhere to a single-
pass learning strategy, presenting results based on scanning
the dataset only once without a backward pass. On the other
hand, to establish edge-compatible training, the raw dataset
has been presented without the use of any additional feature
extraction or multiple iterations based on learning rate or
error optimization. Conventional neural network systems with
complex matrix multiplications pose bottlenecks for edge
devices during error optimization with many partial derivative
calculations, learning rate-based fine-tuning, and batch pro-
cessing in multi-stochastic data processing. In contrast, HDC
systems offer a lightweight solution for the same accuracy
level. A neural network-based system established for similar
accuracy is more costly and less efficient in hardware. The pro-
posed vector generation technique opens a new perspective for
hardware-friendly learning. It is lightweight, highly accurate,
and requires only one round of hypervector generation. In prior
HDC systems, selecting the best vectors involved multiple
iterations with a random source to achieve good orthogonality
[46]. In contrast, LD Sobol sequences inherently provide the
needed orthogonality; with our optimization approach, higher
quality is guaranteed for hypervector generation.

Following the n-gram-based HDC approach, we conducted
experiments utilizing record-based encoding. In this set of







IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, XXXXXXX 202X 11

TABLE VI
METHODOLOGY CONTRAST: PROPOSED VS. RELATED WORKS

Features Proposed Methodology Literature

Sequence Generation

Quasi-random Sobol
sequences with offline

optimization for selecting
the best sequence

indexes for orthogonality

Pseudo-random
sequences with

relatively limited
orthogonality

properties

Training Algorithm

Sobol sequences with
offline optimization for

selecting the best sequence
indexes for orthogonality

Pseudo-random
sequences requiring

multiple online
runs of the learning

algorithm for
optimal performance

Adaptability
Pre-determined and valid for
all future usage; no need for
online training adjustments

Requirement
for dynamic

adaptation for
optimal application

performance

Distribution Patterns

Interesting, repeated pattern
in the distribution of a

sequence; easy inference
of future distributions

from early indexes

No estimable
distribution, thus
no assistance in
inferring further

sequence distributions
from early indexes

Orthogonality
for Training

Achieves satisfactory
orthogonality for

training learning systems
through memory-saving

Requires additional
circuitry for

improved accuracy
due to multiple
iterations and

dynamic nature

Accuracy and
Learning Dynamics

Offers better accuracy
and learning dynamics,

including early epoch learning

Relatively lower
accuracy and slower
learning dynamics

Random Source
for LD Sequence
Index Selection

Utilizes stochastic computing-
based random source for LD

sequence index selection

Sequential usage
of LD sequences

(like in SC science)

for improved HDC system design by utilizing predefined
deterministic sequences. Minimizing reruns during training
can significantly alleviate the overall system load.

This study further creates new research avenues for applying
HDC to larger learning tasks. One case is semantic analysis
of linguistic data, like the headline dataset in this work.
Addressing the challenges in raw symbol processing for HDC-
based semantic classification, our proposed improvements hold
promise for achieving high accuracy for tasks like large-scale
language processing for semantics purposes. Our approach
eliminates the need for application-specific online training
optimizations, preserving on-the-go processing efficiency with
a simple reading of pre-determined values from memory.
While this study recommends quasi-randomness for higher
accuracy, pseudo-random sequences (such as those generated
using LFSRs) can also be explored to enhance the performance
of prior work. Previous comparisons between Sobol- and
LFSR-based encoding methods in the SC literature proved
Sobol’s superiority [16]. However, optimizing LFSRs for on-
the-go hypervector generation may offer an intriguing al-
ternative, albeit with potential accuracy trade-offs. Another
future research direction of this work is to study scalability.
The increase in the number of symbols to encode (e.g., in
larger-scale image processing using more pixels) highlights
the importance of vector orthogonality optimizations. Our
proposed approach can find the best orthogonal symbol vectors
for any space and K (symbol counts) size. In future work, we
look into other types of quasi-random sequences, such as Van
der Corput, Niederreiter, Halton, etc., the sequences already
well acclaimed in SC [48], to increase the workspace for large-
scale HDC applications with many symbols.

In addition to these impacts, this study bridges two emerging
computing paradigms: HDC and Stochastic Computing (SC).
Both HDC and SC enjoy holographic data representations.
Improving the orthogonality for HDC and optimizing quasi-
random sources can contribute to the accuracy of SC encoding.
While SC traditionally employs two-input logic gates for
arithmetic operations, exploring symbol-based representations
can present novel opportunities for advancing this field.

Overall, this work provides a new path for HDC researchers
to leverage quasi-randomness for ideal orthogonality in HDC
systems. Exploring the encoding steps like binding and
bundling for SC and hardware optimizations for better pseudo-
random generators also present promising future directions.
Large-scale HDC systems, especially for challenging language
processing tasks, can significantly benefit from the proposed

methodology by achieving higher accuracy and reducing vec-
tor size. In summary, Table VI outlines the key features of this
work compared to the prevailing trends in the literature.

VI. CONCLUSION

In this work, we introduced a novel, lightweight approach
featuring an innovative encoding technique for generating
high-quality hypervectors for hyperdimensional computing
(HDC) systems. Inspired by recent strides in low-discrepancy
encoding methods proposed for stochastic computing (SC)
systems, we employed quasi-random Sobol sequences, coupled
with an optimization framework, to produce orthogonal hyper-
vectors with varied distributions and ratios of +1s and -1s. Our
methodology exploits an optimization algorithm to identify
the optimal set of Sobol sequences, minimizing correlations
crucial for vector symbolic data processing. To substantiate
the effectiveness of the proposed technique, we conducted a
comprehensive performance evaluation, comparing the method
with two conventional approaches for hypervector generation
based on LFSRs and algorithmic random functions. We eval-
uated the proposed approach for letter and image processing
HDC systems, scrutinizing accuracy and integrating hardware
designs across four distinct processing environments: ARM
embedded device, CPU, GPU, and custom ASIC design. Our
novel encoding technique demonstrated superior classification
accuracy across varied datasets. It also showed higher hard-
ware efficiency, considering factors such as energy efficiency
and area-delay product.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation (NSF) Grants 2339701 and 2019511, and generous
gifts from Cisco and NVIDIA.

APPENDIX

FORMAL DEFINITION OF SOBOL SEQUENCES

The MATLAB built-in Sobol sequence generator [38] can
be used to efficiently generate Sobol arrays. The procedure
for generating Sobol numbers is as follows: According to Joe
and Kuo [39], any jth component of the points in a Sobol
sequence is generated by first defining a primitive polynomial
xsj +a1,jx

sj−1+...+asj−1,jx+1 of a degree of sj in the field
Z2. Any ‘a’ satisfies a ∈ {0, 1}. By considering bit-by-bit XOR
operator, ⊕, the ‘a’ coefficients are utilized for a sequence
{m1,j ,m2,j , ...} by a relation given as mk,j = 2a1,jmk−1,j⊕
22a2,jmk−2,j ⊕ ...⊕ 2sj−1asj−1,jmk−sj+1,j ⊕ 2sjmk−sj ,j ⊕
mk−sj ,j . The m values can be arbitrarily chosen provided

that 1 ≤ k ≤ sj , and mj,k ∈ {2n+ 1 : n ∈ Z
+
0 } and mj,k <

2k. With a denote of direction numbers, {v1,j , v2,j , ...}, where

any vj,k =
mk,j

2k
, jth component of the ith point in a Sobol

sequence is presented: xi,j = b1v1,j ⊕ b2v2,j ⊕ ..., where any
b is the right-most bits (i.e., least-significant ones) of the i
sub-index in binary form.

REFERENCES

[1] S. Aygun, M. S. Moghadam, M. H. Najafi, and M. Imani, ªLearning
from hypervectors: A survey on hypervector encoding,º arXiv preprint
arXiv:2308.00685, 2023.

[2] P. Kanerva, ªHyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,º
Cognitive Computation, vol. 1, no. 2, pp. 139±159, 2009.

[3] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and
T. Rosing, ªA framework for collaborative learning in secure high-
dimensional space,º in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), 2019, pp. 435±446.

[4] A. HernÂandez-Cano, C. Zhuo, X. Yin, and M. Imani, ªReal-time
and robust hyperdimensional classification,º in Proceedings of the 2021
on Great Lakes Symposium on VLSI, ser. GLSVLSI ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 397±402.
[Online]. Available: https://doi.org/10.1145/3453688.3461749

[5] A. Mitrokhin, P. Sutor, C. FermÈuller, and Y. Aloimonos, ªLearning sen-
sorimotor control with neuromorphic sensors: Toward hyperdimensional
active perception,º Science Robotics, vol. 4, no. 30, p. eaaw6736, 2019.




	Introduction
	Background
	Hyperdimensional Computing (HDC)
	Stochastic Computing (SC)
	From Pseudo-randomness to LD: Sobol Sequences

	Proposed Methodology
	From Bit-Streams to Hypervectors
	On the Decision of the Best-Performing Sobol Sequences
	The Overall Architecture
	n-gram-based HDC Framework
	Record-based HDC Framework


	Tests and Results
	Hardware Performance
	Accuracy
	Iso-Accuracy (IA) Hardware Cost Analysis

	Potential Impact and Future Works
	Conclusion
	Appendix: Formal Definition of Sobol Sequences
	References
	Biographies
	Sercan Aygun
	M. Hassan Najafi


