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Prolonged hysteresis in the Kuramoto model with inertia and higher-order interactions
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The inclusion of inertia in the Kuramoto model has long been reported to change the nature of a phase
transition, providing a fertile ground to model the dynamical behaviors of interacting units. More recently,
higher-order interactions have been realized as essential for the functioning of real-world complex systems
ranging from the brain to disease spreading. Yet analytical insights to decipher the role of inertia with higher-
order interactions remain challenging. Here, we study the Kuramoto model with inertia on simplicial complexes,
merging two research domains. We develop an analytical framework in a mean-field setting using self-consistent
equations to describe the steady-state behavior, which reveals a prolonged hysteresis in the synchronization
profile. Inertia and triadic interaction strength exhibit isolated influence on system dynamics by predominantly
governing, respectively, the forward and backward transition points. This paper sets a paradigm to deepen our
understanding of real-world complex systems such as power grids modeled as the Kuramoto model with inertia.
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I. INTRODUCTION

The emergence of collective behavior in complex real-
world systems has been of long-standing research interest
[1]. It was initially in a landmark paper [2] that Kuramoto
modeled the phenomenon of synchronization using a system
of network-coupled oscillators in an analytically tractable set-
ting, illustrating that the system underwent a second-order
phase transition from an incoherent to a coherent state. Since
then, numerous works on various extensions of the Kuramoto
model have been done, revealing several phenomena [3-7].
Of particular interest to us is the Kuramoto model with
inertia (also known as the second-order Kuramoto model).
Inspired by the modeling of synchronized flashing in Pterop-
tix malaccae by Ermentrout [8], a second-order extension
of the Kuramoto model was proposed by Tanaka et al
[9,10]. They showed that the system experienced a first-
order phase transition upon introducing inertia rather than
the smooth second-order phase transition observed in the
Kuramoto model. They put forth a self-consistent method akin
to the one proposed by Kuramoto to study the steady-state
behavior of the coupled oscillator system. Since then, the
second-order Kuramoto model has been extensively explored
in diluted networks [11] and various real-world complex sys-
tems like Josephson junctions [12] and power grids [13-17].
In Ref. [18], Filatrella er al. explained how the second-order
Kuramoto model originates in power grids by simply account-
ing for power conservation at each node of the grid, rendering
it more than just a mathematical convenience.

However, all these results were obtained by focusing on
the interactions to be purely dyadic in nature. Recent research
highlights that such a reductionist view might not reveal the
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complete picture of the underlying mechanism of exotic phe-
nomena observed in some real-world complex systems where
the interactions between agents are inherently higher-order in
nature [19-22]. Using the Ott-Antonsen (OA) dimensional-
ity reduction method [23], Skardal and Arenas [24] showed
that incorporating higher-order interactions into the Kuramoto
model resulted in abrupt (de)synchronization transitions. It
was remarkable to observe that adding an inertia term to the
Kuramoto model or incorporating higher-order interactions
independently gave rise to a first-order phase transition in
the system. Here we are interested in understanding how the
interplay of inertia and higher-order interactions manifests
itself in the system and affects the synchronization profile.
This paper unifies these two disparate fields by providing
a generalized analytical framework to predict the steady-state
behavior of coupled oscillator systems with inertia interacting
via higher-order interactions. The first challenge lies in the
fact that using dimensionality reduction methods like the OA
does not carry over easily towards analyzing second-order Ku-
ramoto models [25] as the density function, which is usually
Fourier expanded in terms of the phase, now also depends on
the velocity of the oscillators. Hence, in this paper, we develop
analytics using the self-consistency methodology originally
proposed by Kuramoto and later extended to the second-order
Kuramoto model by Tanaka et al. [9]. We show that the effect
of inertia and higher-order interactions manifest indepen-
dently, resulting in a prolonged hysteresis-driven synchroniza-
tion transition within the system. The forward and backward
transition points are found to be predominantly dependent on
inertia and higher-order interaction, respectively, Fig. 1.

II. MODEL

We study the inertial effects in a globally coupled oscillator
network considering the simultaneous presence of dyadic and
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FIG. 1. Prolonged hysteresis. (a) Schematic depiction of emerging collective behavior in the Kuramoto model (KM). (&), (¢'), and (d")
plot the usual behavior of KM [2] in the sole impression of higher-order [24] or inertia [9], whereas (&) illustrates a simultaneous forward
and backward shift in the transition points upon introduction of m and K, in KM [Eq. (1)], revealing a prolonged hysteresis. The green arrow
indicates the direction of the shift in the transition points. (b) r; versus K; plot for K, = 1 and m = 1 (blue circles) and K, =7 and m = 3
(red squares). Filled circles and squares represent the simulation results for the forward, and hollow circles and squares represent the backward
processes. The dashed and continuous curves represent the forward and backward analytical predictions, respectively.

triadic interactions. Phases of N-coupled oscillators, each with
mass m, evolve based on the following coupled nonlinear
equations:

K N
" : : .
mb; = — 0; + w; + N jE:I sin(6; — 6;)

K N N
+ ]72 " sin(26; — 6 — ).
j=1 k=1

(D

In Eq. (1), 6; and 0; refer to the instantaneous phase and
angular velocity of the ith oscillator, respectively. w; is the
intrinsic frequency of the ith oscillator derived from a uni-
modal symmetric probability distribution g(w) with mean €2.
The coupling constants K; > 0 and K, are the dyadic and
triadic coupling strengths, respectively. The form of the higher
order coupling term directly falls from the phase reduction of
mean-field complex Ginzburg-Landau equation [26].

We decouple the differential equations in Eq. (1) and write
them in terms of mean-field quantities by introducing the
following general order parameter for p € {1, 2}:

1 N
l"pel'//” = ]V E esz,».
Jj=1

From the above definition, 7| measures the global phase co-
herence and can be interpreted as the centroid of phases of
oscillators on a unit circle in the complex plane and ; mea-
sures the average phase of the oscillators. r,, referred to as the
Daido order parameter [27], captures cluster synchronization.
As we are interested in the steady-state behavior of the system,
we omit the time dependence in the definition of the general
order parameter. In the incoherent state, the phases of the
oscillators are scattered uniformly on the unit circle and hence
r1 &~ r, & (. Meanwhile, in the coherent state, a single group

2)

of oscillators is formed locked to the mean phase ¥ rotating
uniformly at angular velocity €2, hence r; = r, & 1. Using
Eq. (2), Eq. (1) can be written in terms of mean-field quantities
as

mO, = — é,‘ -{—(,()i —I—K1r1 Sin(lﬂl — 9,)

+ Kyrirasin(yn — ¥y — 6;). 3)

Because of the rotational symmetry in the model, the mean
of the g(w) distribution can be set to zero by moving into
the rotating frame at the frequency 2. This can be facili-
tated by making the transformation 6; — 6; + Q¢ in Eq. (1).
Once in the rotating frame, ¥; and v, can be set to zero by
appropriately shifting the origin, i.e., 6;(0) — 6;(0) + v¥,(0).
Equation (3) now takes the following form:

mb; = —6; + w; — gsin(6)), )

where, for the ease of notation, g = r| (K| + K»12).

III. ANALYTICAL RESULTS

Note that for fixed parameter values K; and K5, Eq. (4) has
two variables r; and r,. Hence, to chalk out the steady-state
behavior of Eq. (4), we develop a system of self-consistent
equations and seek the values of (Ki, r, r,) which simulta-
neously satisfy them. We start by taking the thermodynamic
limit (N — 00); the coupled oscillator system in the steady
state is then described by a probability density p(6, w) where
for a given intrinsic frequency w, p(0, w)d6 represents the
fraction of oscillators with their phase between 6 and 6 4 d6.
The general order parameter in Eq. (2) takes the following
form in the continuum limit:

o0 T
rpe = / / e p(6, w)g(@)dwdd.
—0oQ -7
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FIG. 2. (a) a(= 1/,/qm) — B(= w/q) parameter space. Different dynamical regimes are present in the 6 vs 6 phase space of Eq. (5).
(b) Synchronization profile r; versus K; for m = 1 and different values of K, = 0 (orange squares), 3 (blue triangles), and 5 (red circles).
(c) Synchronization profile for a fixed value of K, = 2 and different values of m = 3 (orange squares), 1 (blue triangles), and O (red circles). In
both (b) and (c), the filled and hollow symbols indicate the simulation results for the forward and backward cases, respectively. The dashed and
continuous curves represent the analytically calculated values for the forward and backward processes, respectively. (d) Backward transition
points. The dashed curve represents the analytical predictions of K? for m = 0 and different K, (K} = 2+/2K, — K, as derived in Appendix A 1
for K, > 2). The scatter plots are K? vs K for different m = 0, 1, 5, 10 obtained via numerical simulation.

In the steady state, the oscillator population splits into two
groups, depending on their intrinsic frequency. One group of
oscillators is locked to the mean phase; meanwhile, the other
oscillators drift over the locked oscillators. Hence the overall
phase coherence (r,) can be split into contributions from the
locked (1) and drifting (r9) oscillators, i.e., r, = r, +rs.
Before calculating ri and r;’, we point out that systems whose
motion is governed by Eq. (4) are known to depict hysteresis
and have been well studied in Refs. [9,10,28]. For com-
pleteness, we briefly summarize the reason for the hysteretic
behavior here. Dropping subscript i and introducing a new

timescale 7 = \/%t, Eq. (4) is transformed to a second-order

differential equation with just two parameters as
6 = —ab + B —sin(), (5)

. —@ i i _poi
where o = T and B = T This equation has two fixed-point

solutions, a saddle point and a stable node for 8 < 1, obtained
by setting & = 0 and # = 0. At B = I, the system undergoes
a saddle-node bifurcation, annihilating the two fixed-point
solutions and admitting a unique stable limit cycle solution
for all B > 1 [29]. However, it so happens that as we de-
crease the value of B to be less than one, the limit cycle
persists for some small values of «. Hence, bistability exists
in the system, where a stable limit cycle and a stable node
coexist. A further decrease in B will disintegrate the limit
cycle via a homoclinic bifurcation. Figure 2(a) displays these
three dynamical regimes in the @ — 8 parameter space. For
small values of the damping term «, ensured by keeping finite

inertia, the homoclinic bifurcation curve is seen to be approx-
imated by a straight line in Fig. 2(a). Upon implementing
Melnikov’s method [28,30], the equation of the straight line
comes out to be g = %a. In conclusion, we see the presence
of three different dynamical regimes, namely, a limit-cycle
regime (8 > 1), a bistable regime which can be approximated
by (%a < B < 1), and a fixed point regime approximated by
(B < 2a)[28].

The bistable region is responsible for hysteresis in sys-
tems governed by equations like Eq. (5). Hence, following
Ref. [9], instead of studying the system in its full generality,
we break down the self-consistency analysis for our model
into forward (f) and backward (b) processes. In the forward
process, we start from a small K; value and, therefore, the
system is in an incoherent state (; ~ 0). This leads to high
o and B values, indicating that the oscillators are in the limit
cycle regime. As we adiabatically increase K, the oscillators
stay in the basin of attraction of the stable limit cycle even
after crossing 8 = 1(w = ¢) and fall into the locked cluster
only after § ~ % a(w =~ ﬁ\/% ), below which the limit cycle
vanishes. For the backward process, we start from a high
K; value, and hence the oscillators exist in the fixed point
regime, i.e., the oscillators are locked in a cluster and there-
fore the system is in a coherent state (0 < r; < 1). As we
adiabatically decrease K, the oscillators remain in the basin
of attraction of the stable node until 8 = 1, when the stable
node vanishes via a saddle-node bifurcation. Thus, in the
backward process, oscillators having |w| < g = w}, contribute
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to the locked oscillators, while in the forward process, only
those with |w| < %\/% = wy are in a locked state and all the

oscillators with @ > wy ;, drift around the locked cluster. We
point out that K, is concealed in ¢ and directly affects the
fraction of oscillators in a locked or drifting state.

The contribution of the locked oscillator (ré,) to overall
coherence for the forward/backward process can now be cal-
fp eipsin"(‘;”

culated as r; = Jg(w)dw. The imaginary part

—Wrb
of r; is zero as g(—w) = g(w). Hence, taking only the real
part and noting that 6, = sin"!(w,/q), we arrive at the
expression for rj) as follows:

Orb
r=q / cos(0) cos(ph)g(g sin(0))do. (6)
,@N)
The contribution to overall coherence from the drift-
ing oscillators can be accounted for by calculating r;f =
Sratoops I @7 04(6. 0)8(@)dod6. where py(6. w) is the
density of the drifting oscillator which satisfies 04(0, w)
1/16| [9]. The normalization condition for p,(0, w) gives
[T pa(0, w)d6 = [ pa(6, @)0dt = 1 (for a given w), where
T is the time period of the limit cycle solution. Hence, we end
up with the relation p; (0, ) = |_91|—T’ which when plugged into
the form of ¢ gives us

1 (7.
d __ _ ipo
ry, = /w|>wf_,, |:T/0 e dt:|g(w)da). @)

To calculate rg , we first need to obtain an approximate an-
alytic expression for the limit cycle solution of Eq. (5). We
follow the method specified in Ref. [31] for writing 6 as a
Fourier series in 6 by only considering the first harmonics
[0 (0) =Ap + Ajcos(@) + B; sin(f)]. On substituting this in

Eq. (5), we find the expression of the coefficients in terms of
1

a(= «/W) and (= ;) such that the first harmonic vanishes,
giving us

2
boy=P2 42 [Ecos(é)—asin(e)], ®)
o

a*+ B%| o

and 6(t, w) by integrating Eq. (8) with time [31]. As it turns
out that 6(f, —w) = —0(¢, ®), and g(—w) = g(w), the imagi-
nary part in Eq. (7) is zero. Thus,

r;’ :/| {cos(ph))g(w)dw. )
o|>w),

The expression for (cos(pf)) (for p € {1,2}) can now
be readily calculated as (cos(pf)) = %fOT cos(pf)dt =
JoT < gy [ 1dg to obtain

0
_ ,3 132 o?
s = " BT " a|
_ :82 _ 0[4
<COS(29)> = [m]

2B +ah) [ B B o’
@ o Vo2 Btat

We are now finally ready to write the self-consistent equa-
tions that let us describe the steady state of the coupled
oscillator system governed by Eq. (1). For the remainder of the
paper, we consider the intrinsic frequency to be derived from
Lorentz distribution, g(w) = %# centered around zero.
Noting that the integrands in Eqgs. (6) and (9) for p € {1, 2}
are even functions, we arrive at

()
rp = quo / cos(6) cos(ph)g(q sin(6))do

+ 2/ (cos(ph))g(w)dw. (10)

f.b

These two equations together describe the steady-state be-
havior of the system.

IV. NUMERICAL RESULTS

We numerically solve the set of self-consistent equations,
Eq. (10), to find the nontrivial branch of solutions for the order
parameter (both forward and backward processes). Figure 1(a)
provides a schematic representation of the synchronization
profiles of our result in comparison to previously explored
models [2,9,24]. Figure 1(b) presents analytical and simula-
tion results for the r; vs K; curves for (m, K>) = (1, 1) and
(m, Ky) = (3,7). As for the simulation protocol, we simu-
late Eq. (3) on a network of N = 10* nodes by splitting it
into a pair of first-order differential equations and integrating
them using the Runge-Kutta 4 algorithm (time step 0.1). For
a chosen value of m and K,, we start with random initial
conditions for 8(e [0, 27)) and 8(e [—1, 1]) and K; = 0. We
adiabatically increase K| in steps of AK; (= 0.1 unless spec-
ified otherwise) till K; = 12 is reached (forward), followed
by an adiabatic decrease till K; = 0 (backward). By adiabatic
increase/decrease, we imply that for every K| except the first
(K; = 0), the initial conditions are taken as the final state
obtained for the previous K; value. At all coupling strengths
K, the order parameter values are calculated after discarding
transients by averaging over the steady state.

Figure 1(b) displays good agreement between the simula-
tion and analytical results. For the forward process, as K| is
increased from zero, the system undergoes a first-order phase
transition from the incoherent to coherent state at a finite crit-
ical coupling value (Klf ). However, for the backward process,
the system undergoes abrupt desynchronization at a value
(KD), which is less than Klf . Hence, hysteresis is observed
where the system stays in two different states depending on
the initial configuration. The derived self-consistency equa-
tions can also be used with other extended-tailed distributions
like the Gaussian distribution. In the backward process, there
exists a discrepancy between analytical and numerical values
[Fig. 1(b)] as also reported in Ref. [9]. This happens because
the maximum value of K; chosen for the simulations is 12,
when the system starts from a partially coherent state, whereas
the analytical solutions are for when the system starts from
a fully coherent state. Hence, a better fit between analyti-
cal and numerical values for the backward process can be
obtained by increasing the maximum value of K; in the sim-
ulation protocol. We point out that when m and K, values are
both increased, Klf shifts to the right while Kf’ shifts to the
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left, revealing a prolonged hysteresis region as illustrated in
Fig. 1(b).

A natural question would then be to address the depen-
dency of the forward and backward transition points on m
and K;. To analytically obtain the expression for (Klf ), we
evaluate Eq. (10) in the limit r; — 0% (¢ — 0T). As we

take this limit, we see that 8/a(= m) tends to very high

value as compared to /(8% + a*)(= 1+ s Trom)- This allows
us to perform a Taylor series expansion 'of (cos(9)) for
€ =a?/(B*+a*) < 1 which gives (cos(d)) = Wia) +
O(e*) ~ m However, in the limit r; — 0%, r, — 0F
and the parameter ¢ — oo, implying that the limit of the
integrals for the forward and backward processes become the
same as there exists no bistability region in the parameter
space. Taking 60y, = 7, dividing both sides of Eq. (10) by
g and evaluating the limit [at which the two equations in
Eq. (10) decouple], we have

L T /oo Y
— == —-m _ )
Klf 28 0 1+ m2a2 8 %?

After evaluating the integral and rearranging the terms,
we end up with Klf =2(m+ 1). We see that the forward
transition point is independent of K, and purely depends on
m and, hence, matches the previously derived value of the
forward transition point in Refs. [7,33]. Figure 2(b) illustrates
the effect of varying K,(0.0, 3.0, 5.0) for the case of fixed
m(=1). As expected, K‘lf remains the same for all three

cases, validating our analytical result. At this Klf (=4), the
magnitude of the first-order jump for fixed m increases with
the value of K;. In Fig. 2(c), we study the effect of varying
mass (0.0, 1.0, 3.0) for the case of fixed K,(= 2.0). As inertia
increases, K lf shifts to higher values, as predicted analytically.

However, we note that the analytically calculated values of K lf
do not match exactly with numerical simulations owing to the
finite size effects. A detailed study has been done in Ref. [32].

A fairly good analytical approximation for K, as also
pointed out in Ref. [32], would be to obtain the minimum
value of K; along the nontrivial branch of the backward self-
consistent curve. The simulation results in Figs. 1(b), 2(b),
and 2(c) are seen to back up this observation for our model.
However, obtalnlng a clean analytical expression for the same
by calculatmg = = 0 is not possible because of the complex-
ity of the 1ntegrand of the drift oscillator contribution in r.
Alternatively, we resort to simulation results to decipher the
dependency of Kl” on m and K;. From Fig. 2(b), it can be seen
that for the backward process, the coherent branch persists
until increasingly smaller values of K;, with an increase in
the K, value, after which the system undergoes an abrupt
transition to the incoherent state. Hence, it is clear that an
increase in K leads to a decrease in K?. To study the effect of
mass on K, we fix K, and vary m as in Fig. 2(c). It is observed
that the backward branches for fixed K,(=2) and different m
values merge for high K; values and get separated for low K;
values. As there is an influence of m on the nature of the curve
for low K values, this indicates the possibility of dependency
of K/ on m.

It was shown in Ref. [32] that for the pure dyadic case
(K, =0), K]b decreases with an increase in m and plateaus
out for high m values. In Fig. 2(d), we address how this
changes with the introduction of finite K,. The K{’ obtained
via simulation (performed for N = 10° number of nodes) for
values of K, ranging from O to 10 and different values of m
(0,1,5,10) are plotted. We see that for small values of K, and
finite inertia, an increase in the values in m leads to a decrease
in Kf’. However, we point out that for higher values of K,
the effect of m on K becomes less pronounced and desyn-
chronization happens at the same value irrespective of mass.
An analytical prediction of K? becomes possible following
this observation by considering the m = 0 case. We derive
self-consistent equations for this case in Appendix A 1 and
obtain Klb as a function of K, (K{’ =2J2K, — K, for K, > 2)
by finding the minimum value of K in the self-consistency
curve. These analytically calculated K? values for the m = 0
case are represented by the dashed line in Fig. 2(d). It can be
clearly observed that for higher values of K,(=> 2), the ana-
lytical predictions of K{ match closely with the ones obtained
via simulation for different masses.

V. CONCLUSION AND DISCUSSION

In this paper, we have put forward a generalized analyti-
cal framework to study the steady-state behavior of coupled
oscillator systems with inertia interacting via higher-order
interactions. The analytical predictions, backed up by numer-
ical simulation, show a prolonged hysteretic first-order phase
transition to an (in)coherent state. We show that the forward
transition point increases linearly with m and is independent
of K,. Meanwhile, the backward transition point decreases
with K, and is independent of m for high K, values.

We also highlight here the analytical challenges emanating
from combining both the inertia and higher-order interaction
terms in the Kuramoto model. For the coupled Kuramoto
oscillator model, two widespread analytical techniques are the
self-consistency method and the OA approach to studying the
synchronization profile of the entire system. OA dimensional-
ity reduction method provides a very easy way to obtain the
time evolution form of ry, solving which yields a complete
description of bifurcations leading to synchronization. While
the OA approach was successfully extended for the Kuramoto
model with higher-order interactions, for the second-order
Kuramoto models, the density function containing phase term
also depends on velocity, posing restrictions on practicing the
OA method. Hence, the Kuramoto model with inertia has been
analytically solved using the self-consistency method. The
challenge in this method is first finding the limit of integration
in the self-consistent equation by finding an approximate fre-
quency bound for the oscillators, which are in the locked state
as a function of external parameters and the order parameter.
Further, the drifting oscillators also contribute to the overall
coherence, which needs to be accounted for, unlike in the
first-order Kuramoto model, where it is zero. Here, we have
employed the self-consistency method to predict the steady-
state behavior of the Kuramoto oscillators having both inertia
and higher-order terms.

We have presented the results for triadic interactions; how-
ever, extending our analysis to other powers of higher-order
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interactions is easy as long as the sinusoidal coupling function
contains 6; term only. For example, the detailed analysis of
quartic interactions is presented in Appendix A 2. Further,
developing the self-consistent method for other choices of
higher-order coupling functions, such as sin(6; + 6, — 26;)
[34,35] along with pairwise coupling proves to be complicated
because of the existence of higher order harmonics in the
mean-field equation; however, the self-consistency approach
can work for this form of the coupling in the absence of
pairwise coupling (pure triadic case), which we have ex-
plored in Appendix A 3. An immediate future direction of
our paper would be to extend our analysis to diluted simpli-
cial complexes, which can provide fundamental insights into
the dynamics of various real-world complex systems such as
power grids.
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APPENDIX A: DERIVATION FORm = 0

This Appendix elaborates on the self-consistency analysis
and the derivation for the forward and backward transition
points for m = 0. In this case, a change from a smooth
(second-order) transition to synchronization to an abrupt
(first-order) one, along with hysteresis, is observed with an
increase in the K, value. The occurrence of hysteresis can be
accounted for by the shift of the backward transition point to
lower K; values with an increase in K,. Note that the results
for the first-order Kuramoto model with higher-order interac-
tions were reported in Ref. [24] using the OA dimensionality
reduction method. Here, we derive the closed-form solution
for the bifurcation curve using the self-consistency method.

The dynamical equation for our model takes the following
form:

K N N
+ ]Tizzsin(zej 0 —6)). (A1)

Following the same procedure as in the main text, the mean-
field equation in the rotating frame is obtained as 6; = w; —
g sin(6;), where g = r{(K; + K>ry). All the oscillators with
intrinsic frequency |w;| < g go to the fixed point state, while
others are in a drift state. Unlike in the finite-inertia case,
here the limit of the integrals for forward and backward cases
become the same (0 = 6, = %), enabling us to study the
system in full generality. In the thermodynamic limit, the
locked oscillator contribution has the same form as derived
in the main text,

w/2
r;, = q/ cos(6) cos(pb)g(g sin(6))do, (A2)

- /2

which upon integrating for p € {1, 2} gives us
i vt +1-1
1= -
q

2
ry = ——[(¢* + 2)tan"'(q) — 2q]. (A3)
Tq
The contribution of drifting oscillators to the global order
parameter, however, has the following expression:

T
r;f =/ / e pa (6, w)g(w)dwd?,
lw|>q J—1

- C]
r = ———  g(w)dwd?.
/(o>q /77'[ 27T|CL) q Sln(9)|

The expression for the density of the drifting oscilla-
tors is derived by noting that p;(0, w) 1/|9| =c/|lw—
gsin(0)|, where ¢ is the normalization constant such that
J7. pa(®, @)dd = 1. The value of r{ is zero since py(6 +
T, —w) = py(0,w) and g(—w) = g(w). Meanwhile, in rg,
only the imaginary term is zero, since py(—6, —w) =
pq(0, ) and g(—w) = g(w), while the real part is not zero.
Since the integrand is even, we can evaluate the integral as
follows:

o0 b4 a)2 _ q2
= 2/ / cos(20)——=—d6
g — 27 (w — g sin(0))

o0
[ e
q
244 -2/P+1
¢ '

(A4)

}g(w)dw,

2 2 -1
=——5((¢g" +2)tan” (q) — 29) +
nq

Using the self-consistency condition (r, = rj) + rﬁ) and
Egs. (A3), in Eq. (A4) we arrive at a set of self-consistent
equations which when solved give us the analytical predic-
tions of the steady-state behavior,

VE+1-1

r=--—-—,
q

(AS5a)

2+ 4> —2Jq*+1
P2
where g = (K] 4+ rK;). Solving Eqgs. (A5) gives us the re-

lation r, = rlz, which when plugged back into Eq. (A5a) leads
to the closed form solution for the bifurcation curve:

; (A5b)

rp =

Kl = — rlsz. (A6)

1— rl2

We point out that this equation matches with the one ob-
tained by Ref. [24] using the OA method.

Figure 3 presents analytical and simulation results for mul-
tiple values of triadic coupling strength K,. As predicted by
our analysis, the forward synchronization transition happens
at K 1f = 2, while the backward transition point shifts to lower
values of K| as K, increases. From Fig. 3, we note that the
minima of the self-consistency curve fairly well approximates
the backward desynchronization point. To this end, setting
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0.81
0.61
g

0.41 K;=0
K,=3

0.21 K,=6
K»=9

0 , . ;
0 2 4 6

K

FIG. 3. Synchronization profile of Eq. (Al) for and K, =0
(cyan), 3 (green), 6 (red), and 9 (yellow). The circles represent
simulation results for the forward and backward cases, while the
continuous line represents the analytically predicted values.

‘2—5}‘ =0, we obtain r? = /1 — /K% for K, > 2. Plugging the

form of r? back into Eq. (A6) gives K = 2/2K; — K. This
is used in Fig. 2(d).

APPENDIX B: EXTENSION TO QUARTIC INTERACTIONS

This section explains how the self-consistency analysis
presented in the main text can be easily extended to include
quartic interactions. We add a quartic interaction term to

J

Or.b
r =2q / ' cos?(0)g(g sin(0))do + 2 /
0

9/3[,
r =2q / cos(0) cos(26)g(g sin(0))do
0
+2/'°° w*m* — 172w { @*m* + 1
oy LOPM? + 11| q Jqm

Figure 4 plots r; as a function of K| for different combinations
of K, and K3, and we see that the analytical predictions match
the numerical simulation results.

APPENDIX C: DERIVATION FOR THE sin(0; + 6, — 26;)
MODEL

In this section, we present the self-consistency analy-
sis for the Kuramoto model with inertia involving purely
triadic interactions via the sin(f; + 6; — 26;) coupling func-
tion. Research on the dynamics of Kuramoto oscilla-
tors coupled via the said sinusoidal function [éi =w;, +
2230 0 sin(9; 4 6, — 26,)] [35] has shown the pres-
ence of cluster formation and a continuum of abrupt
desynchronization transitions based on initial conditions. Cru-
cially, no synchronization transition has been reported for
this model. Surprisingly, our studies report that inertia has
no effect on the synchronization profile of this system. We
infer that considering purely triadic interactions removes the

[ee]

m ,m qm
o |—| |o?*— — ——— —
q g 1+ w*m?

@f b

NG qm
o 1
g 1+ w*m?

our model as proposed in Ref. [24]. In our study, we find
good agreement between the analytical predictions of our self-
consistency analysis and the simulation results. The detailed
analysis of the impact of quartic interactions on the dynamics
is out of the scope of this paper. The dynamical equation for
our model is given as follows:

&
. . 1 .
mb; = —6;, + w; + I jg_l sin(6; — 6;)

K2 N N
+ —ZZ sin(20; — 6; — 6;)

j=1 k=1

N
> sin(@; 46— 0, —6).  (BI)
1 I=1

%I5
Mz
Mz

1

~.
Il
~
Il

Upon using the definition of the generalized order param-
eter as defined in the main text, we can convert the above
equation into a mean-field form as

mb; = — 6; + w; + Ky ry sin(y — 6;)
Y1 — 6,) + Ksri sin(yry — 6)).

By moving to the rotating frame, we set v and v, as zero,
which glves m«9, = —9 + w; — g sin(6;), where ¢ = r|(K; +
Kory + K3r1) is the overall coupling constant. We proceed
exactly as in the main text to arrive at the self-consistency
equations defining the steady-state behavior of the model:

wﬁ}g(w)dw,
q

+ Kzr] r Sin(wZ —

(B2a)

(B2b)

[m
w —> — 11|g(a))da).
q
[

distinction between inertialess and finite-inertia cases. The
dynamical equations for this model are given as

. K2
mO,- = w; — 9,

Zsm(@ +6,—26). (CD
j=1 k=1

Using the definition of the generalized order parameter, we
write Eq. (C1) in the mean-field format as

— 0; 4+ Ky} sinQyr; — 26,). (C2)

m@i = W;

Upon simulating the dynamics of this equation, we observe
that analogous to the studies reported in Ref. [35], there exists
no forward synchronization in the system, rather a sequence of
desynchronization transitions is observed based on the asym-
metry in the initial conditions. Thus, we focus the analytical
derivation only on the desynchronization profiles.

Dropping the subscript i, by going to a suitable ro-
pating frame, we set ¥ =0, which gives us mf = w —
0 — Kzrf sin(26), where the probability distribution g(w) is
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(0K, ~1.K, =3

FIG. 4. Synchronization profiles for the Kuramoto model with inertia involving quartic interactions with m = 1 and different combinations
of K; and Kj values. The red circles and blue squares represent the simulation results for the forward and backward cases of Eq. (B1) for
N = 1000 nodes, respectively, whereas the dashed and continuous curves are the analytical predictions from (B2) for the forward and backward

cases.

unimodal and symmetric about the mean zero. To study the
steady-state behavior, we invoke a time transformation as

T = KZTrlzt, which gives
6 = B —afb —sin(26), (C3)
_ _ 1
where 8 = %or and o = T The parameter space of

Eq. (C3) is qualitatively similar to that of the model
considered in the main text. The quantitative differences
between the two are as follows: (i) For each § such that
|B] < 1, we now have two stable fixed points given by
0f = %sin’1 B, and 05 = %sin’1 B + m separated by two
saddles. (ii) The separatrix equation is given by 0(t) =
in~! tanh(+/2t), 6(t) = \/_CO YW Using this equation of
separatrix and implementing Melnikov’s method [30], the
equation for homoclinic bifurcation can be obtained as 8 =

2[05 Thus, as seen in Fig. 5:
(1) If |B| > 1, the system goes to a limit cycle.

2) If 18] < ‘[oz the system goes to a stable fixed point
state, where the choice of the fixed point depends upon the
initial conditions.

(3) Finally, if [(x < |B] < 1, we now have a tristable
state with the simultaneous presence of one stable limit cycle
and two stable fixed points.

In terms of w, K3, and ry, it means that for a particular
K> and corresponding steady-state value of ry, the oscillators
with |w| > Kzrf become drifting oscillators. The oscillators
2 [kt

b m

with |o| < contribute to the formation of two

diametrically opposite clusters of locked oscillators. Finally,

the oscillators with %ﬁ Kzr‘ 1 are in the tristable
region. However, as we will deal only with the system desyn-
chronization profile, the oscillators in the tristable region will
also go to their respective fixed points and contribute to cluster
formation.

The next step is to calculate the locked and drifting
oscillator contribution to the order parameter. First, let
us calculate the contribution from the locked oscillators.
To account for the two clusters of locked oscillators, we
introduce a variable n(w) € [0, 1]. The values of n(w) and
1 — n(w) are the probabilities that an oscillator with intrinsic
frequency w will go to the fixed points 0] = %sin’1 B and
05 = % sin~! B 4 7, respectively. For simplicity, we consider
only symmetric cases of the function 7(w), such that n(w) =
n(—w). The contribution of locked oscillators is then given

— fKorll[(l _ T](C{)))ele(w)JﬂT + n(a))ele(w)]g(a))d(,() AS

@t — _ i@ and sin(—x) =

<ol <

by r{

—sin(x), we have

Ky
r{ = / 2n(w) — 1)cosb(w)g(w)dw. (C4)

—Kzrlz

Next, let us consider the contribution of the drifting oscil-
lators to the order parameter. Let p;(6, w) be the density of
drifting oscillators which satisfies ffﬂ pq(0, w)d0 = 1. The
continuity equation for the conservation of the number of
oscillators gives py(0, w) = c/6(8, w). An expression for 0
can be obtained by following an analogous method as in the
main text by considering 6 = Ay + A; cos(20) + B sin(20).
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Q0.6 Tristable region ."}‘9‘9‘:‘;’
al
ol
0.3 e Fixed-point region
//
0.0 =
00 03 06 09 12
a

FIG. 5. The parameter space for Eq. (C3) representing the limit-
cycle, tristable, and fixed-point regimes, respectively. The line at
B = 1 represents the saddle-node bifurcation in the system. On the
boundary of the tristable and fixed-point regimes, the scatter plot in-

dicates the actual homoclinic bifurcation curve while the dotted line
is the approximation obtained using Melnikov’s method (8 = Zn—ﬁ(x).

By substituting this in Eq. (C3), the expression for  can be
obtained as

3
42& cos(260) — 'B— sin(26).
at +4p2 at +4p2
(C5)
Equation (C5) can be simplified by considering hy = 8/«
and % = 2hy + i, which gives 0= ho + hy cos(260 + hy).
By integrating over the normalization condition of p; (6, w),

Jh3 —h3/2m, which gives the following

9(w,0)=§+

equation for the density of drifting oscillators:

pa (6, w)

|1 [e?m Kyrim
C2n\ Kr? 1+ dmPe?

1

X 9

G i 00 (20(@) +an ! (55)
(Co)

0
rl = / [” 04 (8, @) + "Y1 py (0 + 7, )]
\a)\>K2r12 -

X glw)dfdw. (C7)

From Eq. (C6), we note that p (0 4+ 7, ) = py(0, w).
Thus, the contribution of drifting oscillators to order pa-
rameter r¢ = f\w\>Kzr12 [7 €@ py(0, w)g(w)dfdw can be
simplified as Eq. (C7).

As e 0@H) — @) we get r{ = 0. Therefore, from
Eq. (C4) and the self-consistency condition (r; = r{ + rf ), we
get

Kzrlz
r = f 2n(w) — 1) cos O (w)g(w)dw. (C8)

_x 2
Koy

We now compare the results obtained by simulating
Eq. (C2) with the analytical values predicted by Eq. (C8)

we get ¢= in Fig. 6. For simplicity, we consider n(w) to be a constant
1
L (@
-
1
L () 0 00000000000e L (o)
0.8 — ww@ oot [
i ¢ & B
0.6 — / 4 — S
R L ; i B B i hé
! 1 1 1
04— i i — — i i
- : i I !
“r .‘ N | C !
0 AAIAAKAlAAAAIAAI‘AAA&_&II | | AAAIAAAALAAAIAAAIAAAAAA | | AAlAAhAlAAA |AA1‘AAAAAJ I | 1
0 4 8 12 160 4 8 12 160 4 8 12 16
K2 KZ KZ

FIG. 6. The top panel displays the r; versus K, behavior for Eq. (C2) for (a) m = 0, (b) m = 1, and (c) m = 3, respectively. The violet,
yellow, and green curves represent the de-synchronization profiles for  equal to 1, 0.9, and 0.8, respectively. For each case, the continuous
curve represents the analytically obtained values. The bottom panel displays the simulation-obtained values for the Daido order parameter (r,)

for the corresponding cases (d) m = 0, (e) m = 1, and (f) m = 3.
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function with respect to . While simulating for a given value
of 1, we consider the initial phase of the oscillators as 0 with
probability 1 and 7 with probability (1 — n). With these initial
conditions, we start from K, = K,,,x = 16 and then adiabat-
ically decrease K, until Ky, = 0. At each K,, we integrate
Eq. (C2) using the RK4 algorithm and calculate the values of
r; and r, by averaging over all the iterations after removing
the transients.

We note that due to the vanishing of the drift term, the
form of the bifurcation curve Eq. (C8) is also the same for
the m = 0 case. Figure 6 also shows that the r; and r, graphs
are almost identical for the finite mass and the massless case,
with identical backward transition points. Hence, considering
purely triadic interactions eliminates the distinction between
the finite inertia and inertialess case. For n = 0.9 (yellow) and
n = 0.8 (green), we see that the r, values are higher than the
ry values, indicating that a two-cluster state is present in the
system, which is the expected outcome.

A more generalized approach to further this study would
be to incorporate pairwise interactions along with the triadic
ones to give a model like

K N
. . 1 .
m9,- =w; — 9,‘ + ﬁ E Sll’l(@j — 9,)

K N N
+ 2 Dy sin; + 6 —20),  (C9)

which in the mean-field format and rotating frame, with ¥ set
to zero, reads as mé} = w; — éi — Kyrysin(6;) — Kzr% sin(26;).
However, the simultaneous presence of the first and second-
order harmonics of the sinusoidal term makes it complicated
to analytically study the parameter space of Eq. (C9).
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