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Abstract
Evolution can be contingent on history, but we do not yet have a clear understanding of the processes and dynamics 
that govern contingency. Here, we performed the second phase of a two-phase evolution experiment to investigate 
features of contingency. The first phase of the experiment was based on Escherichia coli clones that had evolved at the 
stressful temperature of 42.2 °C. The Phase 1 lines generally evolved through two adaptive pathways: mutations of 
rpoB, which encodes the beta subunit of RNA polymerase, or through rho, a transcriptional terminator. We hypothe-
sized that epistatic interactions within the two pathways constrained their future adaptative potential, thus affect-
ing patterns of historical contingency. Using ten different E. coli Founders representing both adaptive pathways, we 
performed a second phase of evolution at 19.0 °C to investigate how prior genetic divergence or adaptive pathway 
(rpoB vs. rho) affects evolutionary outcomes. We found that phenotype, as measured by relative fitness, was contin-
gent on founder genotypes and pathways. This finding extended to genotypes, because E. coli from different Phase 1 
histories evolved by adaptive mutations in distinct sets of genes. Our results suggest that evolution depends critically 
on genetic history, likely due to idiosyncratic epistatic interactions within and between evolutionary modules.
Key words: epistasis, experimental evolution, historical contingency, diminishing returns.
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Introduction
Gould (1989) famously argued that historical contingency 
is a defining feature of evolution. He asserted that natural 
selection is deterministic in the absence of historical con-
tingency, and hence it can, in theory, converge on an op-
timal solution to any challenge. In contrast, evolution 
may be contingent on the idiosyncratic nature of historical 
events, leading to unpredictable and perhaps unrepeatable 
evolutionary outcomes. Historical contingency can also re-
flect “causal dependance”, the notion that the outcome of 
evolution depends on the preceding state, as opposed to 
different outcomes resulting from the same state (Beatty 
and Carrera 2011).

It is obvious that evolution must be historically contin-
gent to some degree, but questions remain about the pat-
terns and mechanisms of contingency. Exploring the 
interplay of contingency and determinism, and the genetic 
effects that drive their dynamics, is crucial for understand-
ing the evolutionary process. Moreover, understanding 
this interplay is helpful for predicting outcomes to applied 
problems—for example, projecting which species will sur-
vive climate change, identifying evolutionary constraints 
on evolving resistance to chemotherapeutic agents, and 
forecasting pathogen variation, mutation, and epidemi-
ology (Bay et al. 2017; Vlachostergios and Faltas 2018; 
Leray et al. 2021).

Historical contingency has been studied in both natural 
populations and in the laboratory. In the field, experiments 

have inferred deterministic outcomes from convergent evo-
lutionary events (Losos 2011). For example, one experiment 
tested brown anole lizard populations that were subjected 
to living on narrow perches and found that all lizard popu-
lations evolved shorter limbs (Kolbe et al. 2012). Similarly, 
male guppies across different populations evolved shorter 
life histories in the absence of predators (Reznick and 
Bryga 1987). These pervasive convergent outcomes have 
been used to argue that natural selection is predictable 
and that historical contingency does not play a major role 
in evolution (Losos 2010; McGhee 2016). This interpretation 
is debated; however, because natural populations may con-
tain standing genetic variation that increases the probability 
of parallel responses (Blount et al. 2018).

In the laboratory, controlled experiments have investi-
gated contingency by evolving populations from a single 
ancestral genotype (Blount et al. 2018). For example, in 
the long-term evolution experiment (LTEE), 12 replicated 
Escherichia coli populations converged phenotypically, as 
evidenced by increased fitness, faster growth, and larger 
cells (Bennett and Lenski 1993; Wiser et al. 2013), suggest-
ing a lack of contingency based on mutations that arose 
during the experiment (Blount et al. 2018). However, 
Wiser et al. (2013) documented significant variation in 
the fitness trajectories among LTEE lines, suggesting evolu-
tionary trajectories are influenced by history despite the 
fact that overall phenotypic outcomes appear to converge. 
Additionally, one rare adaptation in the LTEE, aerobic 
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growth on citrate (Blount et al. 2008), was contingent on 
previously occurring, “potentiating” mutations, illustrating 
causal dependance. Here, antecedent genetic changes 
were essential for phenotypic innovation and were 
co-opted for future innovative leaps (Quandt et al. 
2015). Further work showed that aerobic citrate utilization 
evolved via a genetic trajectory that maintained the poten-
tial for evolving the phenotype (Leon et al. 2018), again 
highlighting the influence of history on evolution.

Another example from the LTEE is the evolution of anti-
biotic resistance, because both the level of resistance and 
the complement of resistance mutations varied as a func-
tion of the starting genetic background of the LTEE line 
(Card et al. 2021). These studies show that the evolution 
of phenotypes can be, but are not always, historically con-
tingent on the genetic background. Nonetheless, import-
ant questions remain (Blount et al. 2018). For example, 
what circumstances favor contingent versus deterministic 
evolutionary outcomes? How does prior genetic diver-
gence between populations affect the likelihood of parallel 
evolutionary responses? And to what extent does epistasis 
shape evolutionary outcomes?

One approach to study these questions is two-phase (or 
“historical difference”; Blount et al. 2018) evolution experi-
ments (fig. 1). In this experimental set-up, Phase 1 consists 
of initially identical populations that are evolved in the 
same environment, leading to potential genetic and 
phenotypic divergence among the populations. These po-
pulations are then subjected to a second phase (Phase 2) 
by allowing them to evolve in a new environment. The 
question is whether Phase 2 evolution differs across popu-
lations as a function of Phase 1 history. That is, is evolution 
in Phase 2 constrained by (or contingent upon) phenotyp-
ic and genotypic variation that was generated in Phase 1?

Thus far, the two-phase approach has uncovered 
nuanced insights into contingency. For example, Plucain 
et al. (2016) evolved 16 E. coli populations in four different 
chemical environments for 1,000 generations (Phase 1) be-
fore propagating them for another 1,000 generations in a 
single, new environment (Phase 2). The evidence for con-
tingency was mixed: they found some evidence for contin-
gency on phenotypic evolution, because both the growth 
rate and fitness of Phase 2 populations varied according to 
their Phase 1 history. However, they found no evidence for 
contingency at the molecular level; the mutations that ar-
ose during Phase 2 evolution did not vary as a function of 
the genetic backgrounds generated during Phase 1 
(Plucain et al. 2016). Another two-phase evolution experi-
ment used yeast and estimated that ∼50% of the variance 
in fitness across Phase 2 populations was attributable to 
Phase 1 history, mostly because Phase 1 populations 
with low fitness evolved more rapidly in Phase 2 
(Kryazhimskiy et al. 2014). However, like the E. coli study, 
this study also found no evidence to suggest that Phase 
2 genotypic changes were influenced by Phase 1 history.

Based on their two-phase experiment, Kryazhimskiy 
et al. (2014) proposed the “global epistasis hypothesis” a 
form of diminishing returns epistasis. Diminishing returns 

epistasis implies that adaptive mutations have larger se-
lective effects in relatively unfit genotypes (Griffing 1950; 
Jerison and Desai 2015). The global epistasis hypothesis 
further posits that a mutation’s effect depends solely on 
the fitness of the genetic background and not on the back-
ground genotype (Wei and Zhang 2019). In this frame-
work, evolutionary trajectories are predictable based on 
fitness information alone. In contrast, recent work has sug-
gested that epistasis may be idiosyncratic, in that the dir-
ection and/or magnitude of epistatic interactions depends 
on specific genotypes (Wei and Zhang 2019; Bakerlee et al. 
2022), potentially making evolutionary outcomes less pre-
dictable. Idiosyncratic epistasis may even be modular, be-
cause it is a property of interactions among genes that 
contribute to specific functions (Tenaillon et al. 2012) or 
that vary by environment (Wei and Zhang 2019).

To examine these ideas further, we perform a two-phase 
evolution experiment in E. coli that uses extreme tempera-
tures as the selective environments. We focus on extreme 
temperatures for four reasons. First, temperature is a funda-
mental environmental property that affects physiological 
traits and often defines species’ distributions; hence, it often 
requires a complex evolutionary response (Somero 1978; 
Cooper et al. 2001). Second, temperature adaptation often, 
but not always, leads to trade-offs at other temperatures 
(Rodríguez-Verdugo et al. 2014), suggesting that contin-
gency could be important in this system. Third, temperature 
is a topic with rich historical precedent in the experimental 
evolution literature. For example, Bennett and Lenski (1993)
evolved E. coli at 20 °C, near the lower edge of the tempera-
ture niche, after first adapting them to the upper end of the 
temperature niche (42.2 °C). They found no convincing evi-
dence of contingency at the phenotypic level, but their 
work was based on a relatively small number of samples 
(n = 12) and lacked genetic information.

The fourth reason that we focus on temperature is that 
we can take advantage of a previous large-scale experiment. 
Tenaillon et al. (2012) evolved 115 lines from a single E. coli 
founder strain (REL1206) at 42.2 °C. After 2,000 generations 
of evolution, they evaluated a single clone from each popu-
lation for fitness gains and sequence changes. The sequence 
changes revealed that adaptation often occurred through 
two distinct adaptive pathways defined by mutations in ei-
ther the RNA polymerase subunit beta (rpoB) gene or the 
transcriptional terminator (rho) gene. Mutations in both 
of these genes occurred statistically less often than expected 
by chance, suggesting negative epistatic interactions. 
Intriguingly, the two pathways were each positively asso-
ciated with additional distinct sets of mutations. For ex-
ample, rpoB clones tended to have mutations in rod, ILV, 
and RSS genes, but mutations in these genes were rare in 
the rho lines. The complex landscape of both negative 
(e.g., rpoB vs. rho) and positive (e.g., rpoB with rod and 
ILV) associations suggests that evolutionary changes are par-
tially dependent on the genetic background and that the 
two pathways may represent discrete evolutionary modules.

Here, we hypothesize that these associations constrain 
future adaptation and thus affect patterns of historical 
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contingency. To test this hypothesis, we utilize evolved 
clones from Tenaillon et al. (2012) to represent Phase 1 of 
a two-phase experiment. After choosing a set of clones re-
presenting rpoB and rho genotypes, we evolve them at 
the lower extreme of E. coli’s temperature niche (19.0 °C) 
and then measure phenotypic and genotypic differences 
among evolved populations. In doing so, we address three 
sets of questions: First, do the rpoB and rho lines differ in their 
response to selection at 19.0 °C, as measured by their fitness 
response? We are particularly interested in testing one of the 
predictions of the global epistasis model, which is that popu-
lations with lower fitness should exhibit larger fitness gains. 
Second, is there evidence to suggest that the evolution of 
rpoB and rho lines differ in their genotypic patterns of 
change? That is, do the mutations that appeared during 
Phase 1 evolution shape the set of adaptive mutations 
that accumulate in Phase 2? Finally, what do our results im-
ply about the evolutionary process, particularly whether 
epistasis is global or more idiosyncratic and modular?

Results
Selecting Phase 2 Founders Representing two 
Adaptive Pathways
Phase 1 consisted of 114 lines evolved at 42.2 °C (Tenaillon 
et al. 2012). After 2,000 generations of evolution, single 
clones from these lines experienced fitness gains of 

∼42%, on average, relative to the single founding ancestor, 
which we call the Phase 1 Ancestor (fig. 1). To perform our 
Phase 2 experiment, we selected five rpoB clones and 
five rho clones as the founding genotypes for evolution 
at 19.0 °C. We refer to these ten clones as the Phase 2 
Founders (fig. 1) and label each by its founding line and 
by its rho or rpoB genotype (e.g., rho_A43T) (table 1). It 
is important to recognize, however, that the Phase 2 
Founders had mutations in additional genes (i.e., not just 
rpoB and rho) relative to the REL1206 Phase 1 Ancestor 
(Tenaillon et al. 2012; supplementary table S1, 
Supplementary Material online). For example, six of the 
Phase 2 Founders had a mutation in the cls gene, and 
four had a mutation in ybaL, although mutations in nei-
ther gene were strictly associated with either of the two 
adaptive pathways.

The Phase 2 Founders were selected based on five 
criteria. First, we performed a 9-day extinction test at 
19.0 °C and only chose clones that survived (see 
Materials and Methods section). Second, we chose a set 
of clones that reflected, as much as possible, the range of 
fitness values at both 19.0 °C and 42.2 °C for Phase 1 
evolved clones (based on fitness values previously reported 
in Rodríguez-Verdugo et al. 2014; table 1; supplementary 
fig. S1, Supplementary Material online). Third, to avoid 
initial biases in finesses between the two adaptive 
pathways, we selected rpoB and rho lines with similar aver-
age relative fitness (wr) values at 19.0 °C, at 0.954 for rpoB 

FIG. 1. A schematic of the two-phase evolution experiment. The first phase of evolution was described in Tenaillon et al. (2012). The second phase 
used a subset of evolved clones from Phase 1 and represented three pathways: clones with rpoB mutations (five genotypes), clones with rho 
mutations (five genotypes), and the Phase 1 Ancestor.
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and 0.990 for rho (t-test, P = 0.095). We note, however, 
that the wr variance was higher among the rpoB founders 
(Var(wr) = 0.0033) compared with the rho founders 
(Var(wr) = 0.00075). Fourth, we selected clones with a sin-
gle mutation in either rpoB or rho but not in both genes. 
Finally, we chose a sample of distinct rpoB and rho muta-
tions, because Phase 1 mutations occurred across different 
codons and caused different amino acid replacements 
(table 1).

Once chosen, Phase 2 Founders were propagated at 
19.0 °C for 1,000 generations, with six replicate populations 
per founder, under conditions identical to the Phase 1 ex-
periment except for temperature (19.0 °C vs. 42.2 °C). We 
also evolved 12 replicates of the Phase 1 Ancestor as a con-
trol (fig. 1), making a total of 72 (=6 × 10 + 12) populations 
in the Phase 2 experiment. Among the 72 populations, 7 
went extinct, including 1 of the 12 descended from the 
Phase 1 Ancestor, 4 of 6 populations descended from 
Phase 2 Founder Line 3 (rpoB I966S), and 2 populations des-
cended from Phase 2 Founder Line 142 (rpoB I572L) (table 
1). The following analyses were therefore performed on the 
set of 65 surviving populations.

Relative Fitness at 19.0 °C Varies Significantly Among 
Pathways and Founder Genotypes
Previous two-phase experiments have shown that fitness 
can be affected by historical contingency (Kryazhimskiy 
et al. 2014; Plucain et al. 2016). To test for such contingen-
cies, we first measured wr of the Phase 2 populations 
against the Phase 1 Ancestor, based on three technical re-
plicates per population. From a total of ∼200 competition 
experiments, we estimated that the fitness of evolved po-
pulations increased by 3.6%, on average, at 19.0 °C (P <  
0.01, Wilcoxon test; fig. 2). On average, lines descended 
from rpoB backgrounds had 1.0% higher fitness than the 
Phase 1 Ancestor; the rho lines had higher fitness by 

6.4%; and the control lines increased by 3.4% (table 2). 
To test whether these differences were significant, we ap-
plied Analysis of Variance (ANOVA) that partitioned by 
pathway (rho vs. rpoB) and were nested by Phase 2 
Founder genotypes (table 2). The pathway effect was sig-
nificant (P < 0.003) and explained 10.0% of the wr variance, 
but the Phase 2 Founder genotype explained an even high-
er proportion of the variance (23.0%; P = 0.11). We also ap-
plied Analysis of Covariance (ANCOVA) using the fitness 
of Phase 2 Founders as covariates, and the difference be-
tween pathways remained significant (P = 0.029, 
ANCOVA). Finally, we note that wr values were not nor-
mally distributed (Shapiro–Wilk, P < 0.01), despite the 
large sample size and even after routine normality transfor-
mations, thus violating assumptions used in ANOVA and 
ANCOVA. However, we also repeated the analysis using 
nonparametric tests and obtained similar results 
(Kruskal–Wallis; effect of pathway: P = 0.0002, η² =  
0.0784; effect of Phase 2 Founder: P = 0.0002; η² = 0.153). 
Overall, these observations indicate that the fitness re-
sponse depended on the pathway but also on the Phase 
2 Founder genotypes within pathways.

Previous work has shown that the rate of change of 
Phase 2 populations can vary as a function of the fitness 
of Phase 2 Founders—that is, less fit Founders led to gen-
erally larger leaps in fitness during Phase 2 evolution (e.g., 
Kryazhimskiy et al. 2014). To assess this potential effect, we 
first measured the fitness of Phase 2 populations by com-
peting them against their respective Phase 2 Founders at 
19.0 °C, constituting another ∼160 wr competition assays 
(table 2). On average, the Phase 2 populations had wr =  
1.08, thus reflecting, on average, a significant 8% fitness ad-
vantage at the end of the experiment (P < 2.20 × 10−16, 
one-sample t-test) compared with their Founders. 
Populations descended from rpoB genotypes experienced 
a 9% fitness advantage on average (P = 1.41 × 10−15, one- 
sample t-test), those descended from rho founders had a 

Table 1. The List of Phase 2 Founder, their rho or rpoB Genotype and their Relative Fitness Values.

Phase 1 Evolved Linea Phase 1 Adaptive  
Pathway

Phase 1 Adaptive  
Pathway Genotypeb

Mean Relative  
Fitness at 19.0 °Cc

Mean Relative  
Fitness at 42.2 °Cd

Number of  
Replicates

2 rho T231A 0.970 1.484 6
66 rho V206A 1.004 1.430 6
82 rho I15N_1 0.952 1.498 6
87 rho I15N_2 1.015 1.703 6
134 rho A43T 1.008 1.380 6
3 rpoB I966S 0.895 1.257 6
34 rpoB G556S 0.962 1.510 6
94 rpoB E84G 1.031 1.767 6
137 rpoB I966N 0.982 1.349 6
142 rpoB I527L 0.899 1.609 6
REL1206e Phase 1 ancestor NA NA NA 12

NOTE.—NA = not applicable. 
aLine numbers designated in Tenaillon et al. (2012). 
bThe high-temperature associated mutation in rho and rpoB, where the number denotes amino acid residue, and the change is denoted by the single letter amino acid code. 
Lines 82 and 87 had the same mutation (I15N), but on different genetic backgrounds. They are denoted I15N_1 and I15N_2 for clarity. 
cRelative fitness value data at 19.0 °C generated for this study. 
dRelative fitness value data for 42.2 °C from Rodríguez-Verdugo et al. (2014). 
eREL1206 was used as a Founder in Phase 2 evolution to have control populations.
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7% fitness advantage (P = 1.32 × 10−10, one-sample t-test), 
and the difference was not significant (P = 0.063, unpaired 
t-test; fig. 3A). Eight of the 10 sets of Phase 2 populations 
had significant fitness advantages relative to their 
Founders (table 2 and fig. 3B), and the effect of the 

Phase 2 Founder genotype on fitness was again significant 
(η² = 0.23, P = 1.49 × 10−6, Kruskal–Wallis test).

We then plotted wr for all Phase 2 Founders against the 
difference in wr between the Phase 2 Founder and each of 
its evolved populations (fig. 3C). (These wr values were all 
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FIG. 2. Relative fitness (wr) of the Phase 2 evolved populations at 19.0 °C based on competition assays to REL1207 (an Ara+ variant of the Phase 1 
Ancestor; see Materials and methods section). On the x-axis, Control represents the Phase 1 Ancestor competed against itself and shows that the 
Phase 1 Ancestor (REL1206) and the REL1207 variant have similar fitnesses, as expected. The boxplot for Phase 1 Ancestor reports wr for the 
control populations evolved from REL1206, and the remaining boxplots show wr values for different Phase 2 founders. The dots in each boxplot 
show each wr measurement across replicated populations, with each population measured at least three times. The horizontal line within the 
boxplot is the median wr value, with the box representing the upper and lower quartile and whiskers are calculated using the interquartile range.

Table 2. Relative Fitness Measurements for Phase 2 Evolved Populations Compared with the Phase 1 Ancestor and Phase 2 Founders.

Phase 1  
evolved linea

Phase 1 adaptive  
codon background

Phase 1 Ancestor Competitor Phase 2 Founder Competitor Phase 2 Founder Competitor

Average wr  

(19.0 °C)
P-valueb  

(19.0 °C)
Average wr  

(19.0 °C)
P-valueb  

(19.0 °C)
Average wr  

(42.2 °C)
P-valueb  

(42.2 °C)

2 rho T231A 1.02 0.73 1.12 <0.01 0.91 <0.01
66 rho V206A 1.09 <0.01 1.06 <0.01 0.80 <0.01
82 rho I15N_1 1.00 0.99 1.04 <0.01 0.93 0.02
87 rho I15N_2 1.11 <0.01 1.13 <0.01 0.98 0.08
134 rho A43T 1.07 0.01 1.01 0.6 0.96 <0.01
3 rpoB I966S 1.08 0.04 1.15 <0.01 1.04 0.44
34 rpoB G556S 1.00 0.95 1.08 <0.01 0.52 <0.01
94 rpoB E84G 1.02 0.63 1.08 <0.01 1.00 0.59
137 rpoB 1966N 1.01 0.83 1.14 <0.01 0.92 0.02
142 rpoB I572L 0.96 0.11 1.06 0.13 0.9 0.02
REL1206 Phase 1 ancestor 1.04 0.04 NA NA NA NA

aLine numbers designated in Tenaillon et al. (2012) and also listed in table 1. 
bItalic P-values indicate a statistically significant difference from 1.0, indicating a significant change in relative fitness compared with the competitor. t-test or Wilcoxon test 
dependent on Shapiro–Wilk test.
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measured relative to the Phase 1 Ancestor.) If less fit 
Founders lead to generally larger fitness gains, we expected 
a negative slope. The combined set of rpoB and rho popu-
lations followed this prediction because lower-fitness 
founders had slightly bigger shifts in fitness during Phase 
2 evolution (slope = −0.87, P = 0.19, fig. 3C). Individually, 
the trend was especially evident among the rpoB popula-
tions (rpoB slope = −1.32, P = 0.014; fig. 3C), but it did 
not hold for rho Founders and descendant populations. 
In fact, the slope based on rho populations was positive, al-
though not significantly so (rho slope = 1.01, P = 0.14; fig. 
3C), such that the rho and rpoB slopes were statistically dif-
ferent (P < 0.001). Although the cause(s) of these different 
patterns between pathways was not clear, it suggests, at a 
minimum, that the rate of fitness change during Phase 2 
evolution was not a simple function of the fitness of 
Phase 2 Founders.

High-Temperature Trade-offs are Contingent on the 
founders’ Adaptive History and Genotype
Previous research has demonstrated significant differences 
in trade-off dynamics between high-temperature adapted 
genotypes. For example, nearly half of the 42.2 °C adapted 

lines from Tenaillon et al. (2012) were less fit than the 
Phase 1 Ancestor at lower temperatures (37 °C and 
20 °C), slightly more than half exhibited no obvious trade- 
off, and a surprising few were actually fitter than the ances-
tor at low temperatures (Rodríguez-Verdugo et al. 2014). 
These trade-off dynamics imply the possibility of 
genotype-specific contingencies; we thus investigated 
trade-off dynamics at 42.2 °C for Phase 2 populations rela-
tive to their Phase 2 Founders. As expected, the Phase 2 
evolved populations generally had lower fitness (average 
wr = 0.89, P = 1.14 × 10−14, Wilcoxon test) than their 
Founders at 42.2 °C. Of the ten rho and rpoB Phase 2 
groups, seven of ten had significantly lower wr at 42.2 °C 
compared with their Phase 2 Founder (table 2).

We investigated whether these patterns mapped to ei-
ther pathways or starting genotypes; the difference in aver-
age wr between rho and rpoB populations was not 
statistically significant (P = 0.38, Wilcoxon test; fig. 3D). It 
was nonetheless notable that rho lines experienced a fit-
ness decline (relative to their Founder) of 8.5% whereas 
rpoB declined by 15% on average, suggesting some differ-
ence in trade-off dynamics between pathways. Moreover, 
the starting genotype had a significantly large effect on 
the values of wr at 42.2 °C (η² = 0.34, P = 1.36 × 10−9, 
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FIG. 3. (A) and (B) report wr of Phase 2 evolved populations competed against their Phase 2 Founder at 19.0 °C. (A) Summarizes by pathway 
whereas (B) provides the information by Phase 2 Founder genotype. (C ) The y-axis plots the change in wr from the Phase 2 Founder to its evolved 
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Kruskal–Wallis test; fig. 3E). For example, lines descended 
from the rpoB G556S and rho V206A Founders had ex-
tremely low fitness at 42.2 °C, at wr = 0.52 (P < 0.01, 
Wilcoxon test) and wr = 0.80 (P < 0.01, Wilcoxon test). 
The take-home point is that trade-offs differed as a conse-
quence of Phase 2 Founder genotypes.

Mutations that Arose During Phase 2 Evolution are 
Contingent on Genetic History
To examine contingency at the level of individual muta-
tions, we sequenced the DNA of all 65 Phase 2 and control 
populations. After filtering the sequencing data and calling 
genomic variants, we identified 1,387 point mutations and 
short indels (<50 bases in length) that arose during the 
Phase 2 experiment and had population frequencies 
>5% (supplementary fig. S2, Supplementary Material on-
line). Almost half (45%) of the 1,387 mutations were pre-
sent at a frequency of <10%, but 119 were “fixed” (as 
defined by a frequency >85% in a single evolved popula-
tion). Fixed mutations were present in 51 of the 65 se-
quenced populations, but there was no discernible 
pattern across the 14 lines that lacked fixed mutations 
by pathway (rho, rpoB, and control Founders). Overall, 
the largest proportion of mutations, 54.4% (742/1387), oc-
curred in intergenic regions (fig. 4A), and 95.8% of these 
were point mutations. Within genes, most (89.8% or 
371/413) point mutations were nonsynonymous.

We used the sequencing data to confirm that our popu-
lations were not cross-contaminated during the 1,000 gen-
eration experiment by first assessing whether mutations 
from the Phase 2 Founder were fixed in the evolved popu-
lations, as expected. It was true in every case. We then built 
phylogenies based on all of the sites in the Phase 2 popula-
tions that differed from the Phase 1 Ancestor. The data 
confirmed expected phylogenetic relationships based on 
the experimental design (supplementary fig. S3, 
Supplementary Material online) and thus yielded no evi-
dence of contamination.

Given a lack of obvious evidence for contamination, we 
first asked whether the patterns and numbers of muta-
tions differed significantly among pathways. In terms of 
mutations counts, we identified an average of 22 muta-
tions in populations descended from rpoB lines and an 
average of 20 mutations in populations descended from 
rho lines that were at a frequency of 5% or higher in the 
population, a difference that was not significantly different 
(P = 0.17, unpaired t-test). There was also no difference be-
tween pathways in the number of fixed mutations per 
population (P = 0.14, unpaired t-test). We also contrasted 
the proportions of mutational variant types (intergenic, 
frameshift, nonsynonymous, and synonymous mutations 
and large deletions >50 bps) between rho and rpoB path-
ways, again finding no difference for the complete set of 
mutations (P = 0.78, contingency test; fig. 4B) or for fixed 
mutations (P = 0.08, contingency test; fig. 4C). Thus, we 
detected no obvious difference in the number or pattern 
of mutations between rho and rpoB mutations.

We then investigated whether there was evidence of 
historical contingency at the level of specific mutations. 
Did rho and rpoB lines tend to accumulate mutations in 
different sets of genes? We first used a phylogenetic ap-
proach: focusing only on mutations that arose during 
Phase 2 evolution at a frequency of 5% or higher, we calcu-
lated a distance matrix and resulting Neighbor-Joining tree 
from the presence–absence of mutations among popula-
tions. We then tested for associations between phylogen-
etic clustering and the pathways of origin (i.e., rho, rpoB, or 
control lines evolved from the Phase 1 Ancestor) against 
the null hypothesis of no associations between pathway 
and phylogeny. We found significant association between 
the mutations that arose during Phase 2 and the adaptive 
history at the level of pathway (Analysis of 
Similarities: ANOSIM R = 0.139, P = 4 × 10−4; fig. 5A). We 
also tested the association between mutational patterns 
and variation across the Phase 2 Founder genotypes, in-
stead of pathways. Here again, the test was significant 
(ANOSIM R = 0.2398, P = 1 × 10−4). These results are con-
sistent with the idea that the identity of mutations differed 
among Phase 2 populations based in part on their Founder 
genotype.

Our second approach relied on Dice’s similarity coeffi-
cient (DSC) (Dice 1945). Following Card et al. (2021), we 
calculated DSC at the genic level between all pairs of 
evolved populations. We based DSC on two sets of muta-
tions: all Phase 2 mutations found at a frequency of 5% or 
higher (supplementary fig. S4, Supplementary Material on-
line) and Phase 2 fixed mutations found at a frequency of 
85% or higher (fig. 5B). For the former, the average DSC be-
tween populations was 0.38, indicating that the evolved 
populations shared 38% of their mutated genes on aver-
age. The mean DSC within a Phase 2 adaptive pathway 
was 0.39, which was similar to, but significantly different 
from, the mean DSC between pathways (DSC = 0.37; 
P = 4.87 × 10−14, Wilcoxon test). The same analyses based 
on fixed mutations had an average DSC 0.10 across all 
comparisons, an average DSC of 0.06 between populations 
from different pathways, and a mean DSC of 0.18 within 
the same pathway (fig. 5C). The average DSC within and 
between adaptive pathways again differed significantly 
(P < 2.2 × 10−16, Wilcoxon test), suggesting that fixed 
(and presumably adaptive) mutations differed among po-
pulations in part due to their Phase 2 Founder. We also de-
tected a significant, moderate effect of the adaptive history 
on DSC across comparison types (η² = 0.078, P < 2.2 × 10– 
16, Kruskal–Wallis test). Overall, we found that evolved 
populations from the same adaptive pathway had ac-
quired more similar mutations than populations from dif-
fering adaptive pathways (P < 0.01, randomization test). 
These results further indicate that the fixed mutations 
that arose in the Phase 2 experiment differed due, in 
part, to genetic history.

Finally, we sought to identify specific genes that differed 
in their propensity to house mutations in rho versus rpoB 
pathways. To do so, we counted the number of popula-
tions with and without a mutation in each gene or 
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intergenic region and performed these counts separately 
for rho and rpoB populations. Using a Fisher’s exact test 
(FET), we identified six genes or intergenic regions that 
were more frequently mutated in one adaptive pathway 
but not the other (P < 0.05, table 3). These tests were no 
longer significant (P > 0.05) after False Discovery Rate 
(FDR) correction for all but one gene region, likely reflect-
ing low statistical power due to sample size and many 
(163) FET tests.

Discussion
Evolution is an inherently historical process, but the mag-
nitude and effect of history on adaptation remains some-
what enigmatic. To yield insights into the dynamics of 
historical contingency, we have performed the second 
phase of a two-phase evolution experiment. Phase 1 
was based on a study that evolved 114 initially identical 
populations of E. coli to the stressful temperature of 

42.2 °C (Tenaillon et al. 2012). These populations evolved 
primarily by one of two distinct pathways involving mu-
tations in either the RNA polymerase beta subunit gene 
(rpoB) or the transcription termination factor rho. We 
chose five clones from each of the two pathways and 
evolved them for 1,000 generations in a second, low tem-
perature (19.0 °C) environment. At the end of the Phase 2 
experiment, we compared the phenotypes (relative fit-
ness, wr) and genotypes of evolved populations to both 
their immediate ancestors (Phase 2 Founders) and to 
the ancestor of the entire experiment (Phase 1 
Ancestor; fig. 1).

Based on these data, our first finding is that wr varied 
significantly among evolved populations both among 
pathways (rho or rpoB) and among Founder genotypes 
(fig. 2), explaining 10% and 23% of the wr variance. Thus, 
the fitness of Phase 2 populations was contingent upon 
their Founder fitnesses and genotypes. A more nuanced 
question is whether there was a predictable pattern to 
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FIG. 4. Mutations that arose during Phase 2 evolution across populations. (A) Number of mutations by type across all evolved populations. (B) 
and (C ) Types of mutations in Phase 2 evolved populations faceted by pathway (controls based on the Phase 1 Ancestor/REL1206, rho or rpoB). 
(B) All mutations at 5% frequency or higher and (C ) fixed mutations at 85% frequency. The x-axis shows mutation types, including mutations in 
pseudogenes and large deletions (deletions greater than 50 bp).
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the fitness response. It is reasonable to expect, based on di-
minishing returns epistasis, that wr among populations 
vary as a function of the fitness of the Phase 2 Founder, 

specifically that lower-fitness Founders give rise to popula-
tions with more dramatic fitness gains. We have found the 
expected general trend across rpoB Phase 2 populations 
(fig. 3C). Surprisingly, however, this relationship did not 
hold for the rho lines (fig. 3C). These contrasting results 
not only suggest differences among pathways (figs. 3A
and B) but raise important questions about what might 
drive these differences.

One must first consider the caveats and limitations of 
our experimental design. For example, practical considera-
tions limited the number of rho and rpoB Founders; per-
haps more or different rho samples would have yielded 
different results. Moreover, one of the rpoB Founders 
(rpoB I966S) had a much lower wr than the rest of the 
Phase 2 Founders, experienced the biggest shift in fitness 

A B

C

FIG. 5. Measures of association between the evolved populations, their historical backgrounds, and the mutations that arose during Phase 2 
evolution. (A) A neighbor-joining tree built from presence–absence patterns of mutations that arose in Phase 2 evolved populations. 
Populations descended from the Phase 1 Ancestor are depicted with a colored strip in gold, rho derived populations in blue, and rpoB derived 
populations in red. (B) Dice’s similarity coefficients calculated from fixed mutation data, separated by the type of pairwise comparison. Pairwise 
comparisons performed within and between pathways are indicated. (C ) Average DSC values within and between historical pathways. The aver-
age between-pathway values DSC is plotted along the edges, and the average within-DSC are depicted beneath each pathway.

Table 3. Genic or Intergenic Regions With Evidence of Biased Mutation 
Histories by Pathway.

Gene or Intergenic Region Adaptive  
Pathway

Fisher’s Exact  
Test P-value

Adjusted  
P-value (FDR)

nmpC/dsbG rpoB 8.20E−05 0.013
hepA rpoB 0.002 0.160
ECB_01992 rho 0.005 0.212
valY/lysV rpoB 0.005 0.212
rpoC rpoB 0.022 0.726
ybcW/ECB_01526 rho 0.028 0.766
rho rpoB 0.034 0.782
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during Phase 2 fitness, and may have driven the overall 
trend (fig. 3C). Unfortunately, we did not have a Phase 2 
rho founder for comparison, because the only potential 
Phase 2 rho founders with similarly low fitness did not sur-
vive the 9-day extinction test. Finally, we recognize that the 
timescale of 1,000 generations likely does not provide a 
complete view of the fitness landscape; perhaps popula-
tions will converge on the same fitness optima with further 
evolution.

The structure of epistasis may drive some of the differ-
ences seen among pathways. The ongoing debate about di-
minishing returns epistasis does not center on whether it 
exists, because diminishing returns have been found 
both by testing the effects of individual mutations 
(Moore et al. 2000; Kryazhimskiy et al. 2009; Perfeito 
et al. 2014) and by inferring patterns of evolutionary 
change for experimental evolution data (Chou et al. 
2011; Khan et al. 2011; Wang et al. 2018; Bakerlee et al. 
2022). Instead, it centers on whether the dynamics of di-
minishing returns can be predicted based on starting fit-
ness alone or whether diminishing returns is a product 
of more idiosyncratic epistatic interactions that depend, 
in part, on the genetic background. As an example of 
the latter, Card et al. (2019) measured the evolution of 
antibiotic resistance and found that less-fit genotypes do 
not always evolve bigger changes in fitness resistance. 
Like Card et al. (2019), our experiment has not been de-
signed to measure diminishing returns epistasis directly. 
Nonetheless, our results suggest that fitness evolution is 
more idiosyncratic than predicted by the global epistasis 
model, given differences in fitness responses between 
pathways and genotypes (figs. 2 and 3A–C). Several recent 
studies have similarly concluded that epistasis is often idio-
syncratic (Wei and Zhang 2019; Lyons et al. 2020; Bakerlee 
et al. 2022).

The next pertinent question is: What might drive these 
idiosyncrasies? We do not have a complete answer to this 
question, but we can offer some insights. Previous work 
has shown that the complete set of 114 high-temperature 
adapted lines differed substantially in their fitness trade- 
offs between 42.2 °C and 19.0 °C (Rodríguez-Verdugo 
et al. 2014, 2016). A few lines that evolved at 42.2 °C 
were more fit than their ancestor at 19.0 °C, whereas others 
were much less fit. Our work further illustrates that Phase 
2 populations vary in their trade-off dynamics (fig. 3D and 
E). Furthermore, studies of single mutants have shown that 
some of the rpoB mutations in this study confer fitness ad-
vantages at 42.2 °C, but in contrast, two rho mutations 
(rho A43T and rho T231A) likely require positively epistatic 
interactions to become adaptive (Tenaillon et al. 2012; 
González-González et al. 2017). We suspect that all of these 
patterns feed into idiosyncratic evolutionary responses. 
Given, for example, that some genotypes appear to be 
thermal specialists and others are generalists, one can en-
vision that founding populations with distinct generalist 
versus specialist mutations have substantially different 
numbers, directions, and types of potential epistatic inter-
actions across the genome.

Another variable to consider among the Phase 2 
Founders is their full genotypic background. As mentioned 
previously, Tenaillon et al. (2012) illustrated that rho and 
rpoB lines were positively and negatively associated with 
their own sets of particular mutations in other genes along 
the genome. It is possible that other mutations in the gen-
ome besides those in rho or rpoB drive the Phase 2 Founder 
effect. We believe this explanation is unlikely for the rpoB 
pathway because previous work based on single mutants 
has shown that most of the rpoB mutations in our Phase 
2 Founders cause large shifts in fitness and are responsible 
for most changes in gene expression observed during high- 
temperature adaptation (Rodríguez-Verdugo et al. 2016). 
The case is more nuanced for rho, however, because single 
rho mutations do not always drive large fitness effects or 
downstream shifts in gene expression (González- 
González et al. 2017), suggesting that additional mutations 
in rho background influence the contingent responses 
seen here.

A unique feature of our work is that the set of Phase 2 
Founders represent pathways that were defined by inter-
actions among distinct set of mutations and genes. 
Based on the concept of causal dependance (Beatty and 
Carrera 2011), we predicted that these pathways affect 
the evolutionary response by shaping the type and identity 
of future mutations. Although the two pathways do not 
vary in their number or types of mutations (fig. 4), there 
is ample evidence to support our prediction. For example, 
Phase 2 mutations cluster nonrandomly on a phylogeny 
(fig. 5A), suggesting that the set of successful mutations 
is not independent of the Phase 2 Founding genotype. 
Similarly, the complement of Phase 2 mutations is more 
similar within a pathway than between pathways (fig. 
3B). Finally, specific genic and intergenic regions vary in 
their enrichment for mutations depending on the genetic 
pathway of their Founders (table 3). [We included inter-
genic regions because they have been previously impli-
cated as drivers for bacterial adaptation (Khademi et al. 
2019).] These patterns hold to some extent for the entire 
complement of >1,000 mutations, but they are especially 
clear for the set of 119 fixed mutations (fig. 5 and table 3). 
Since fixed mutations are more likely to be adaptive, and 
also because the number of mutations is unlikely to be lim-
iting in this system, our results show that the identity of 
adaptive mutations depends on genetic background, likely 
due to idiosyncratic interactions.

Although our results are not compatible with the global 
epistasis model (Kryazhimskiy et al. 2014), they do appear 
to adhere to a modular model of evolution (Tenaillon et al. 
2012; Wei and Zhang 2019). Of course, two-phase evolu-
tion experiments have inherent biases, because the second 
phase is always founded by lines already defined by differ-
ences in evolutionary outcomes. In this case, we have in-
troduced an additional bias because we have chosen 
Founders from two distinct pathways. However, this 
should not inhibit our ability to distinguish between the 
global or modular models of epistasis in the second phase 
of evolution. Interestingly, Wei and Zhang (2019) have 
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documented that an emergent property of their modular 
model is the appearance of global diminishing returns epis-
tasis. That is, epistatic interactions within specific modules 
can combine to provide the signal of global diminishing re-
turns epistasis.

Our finding—that is, that mutations detected in Phase 
2 mutations are associated with Founder pathway—may 
provide insights about mechanisms of adaptation. We 
have identified seven genes and intergenic regions that 
are enriched for Phase 2 mutations in either rpoB or rho 
populations (table 3). Although only one of the genic re-
gions remained significant after FDR correction, these se-
ven regions constitute a likely set of candidates to drive 
some our observed genome-wide patterns (based on 
phylogenetic and similarity analyses) and may therefore 
yield mechanistic insights. Of the seven, five are more likely 
to accrue mutations within rpoB populations. In this con-
text, it is worth recalling that rpoB is a component of RNA 
polymerase, which drives gene expression; as a result, 
changes in the RNA polymerase have the potential for nu-
merous pleiotropic effects and potential epistatic interac-
tions. At least three of the five enriched regions in rpoB 
lineages are related to transcriptional function: rpoC, rho, 
and hepA (table 3). rpoC codes for the beta-prime subunit 
of RNA polymerase (Trinh et al. 2006; Conrad et al. 2010); 
the RHO protein terminates RNA polymerase activity; and 
hepA (which also known as rapA) encodes a transcription 
factor with ATPase activity that it is an RNA polymerase 
associated protein (Sukhodolets et al. 2001). Previous 
work has shown that modifying RNA polymerase is a 
key feature of adaptation to thermal stress but also 
that this is a blunt instrument that may cause more pheno-
typic changes (as measured by gene expression; Rodriguez- 
Verdugo et al. 2016) than may be necessary to achieve fit-
ness gains. If true, it is reasonable to speculate that adapta-
tion to 19.0 °C from 42.2 °C includes further tuning of RNA 
polymerase, as reflected by an enrichment of genes related 
to transcriptional activity like rpoC, rho, and hepA.

Three further features about the enriched regions stand 
out. First, two enriched regions within rpoB populations 
(valY and lysV; table 3) encode tRNA synthetases 
(Andersen et al. 1997; Ruan et al. 2011; Agrawal et al. 
2014), suggesting that one additional or alternative route 
to adaptation is through modifications of translational 
speed or dynamics. Second, the Phase 2 evolved popula-
tions that descended from rho backgrounds were enriched 
in one gene (ECB_01992) and one intergenic region (ybcW/ 
ECB_01526) (table 3). Both of these regions have unknown 
functions, and thus they yield no clues into the molecular 
mechanisms of 19.0 °C adaptation for rho populations. 
Finally, it is interesting to speculate about the fact that 
more enriched regions (5 vs. 2) were found in rpoB vs. 
rho lines. Previous work has shown that engineered muta-
tions of rho A43T and rho T231A lead to fewer modifica-
tions of gene expression than do rpoB mutations I572L, 
I572N, and I966S (González-González et al. 2017). These ob-
servations suggest that some of the rho mutations are “less- 
connected” than the rpoB mutations, which could again 

lead to substantially different dynamics of fitness and epis-
tasis between the two pathways.

To sum, our Phase 2 experiment has shown that the fit-
ness response of evolved populations varies by the path-
way and phenotype of their Founders, but Founder 
fitness is not strongly predictive of fitness gains. More im-
portantly, our work demonstrates that the suite of fixed 
and presumably adaptive mutations in Phase 2 differs ac-
cording to their Phase 1 history. Consistent with the con-
cept of causal dependance, our observations illustrate that 
history has shaped, defined, and perhaps even canalized 
the adaptive response of Phase 2 populations. Overall, 
these observations add to a growing literature suggesting 
that evolution is often contingent on genetic history.

Materials and Methods
Two-Phase Evolution Experiment Isolate Criteria and 
Selection
To study evolutionary contingency, we chose ten clones 
from Tenaillon et al. (2012) (table 1) to evolve at 19.0 °C, 
which is toward the lower limit of the temperature niche 
for the REL1206 ancestor (Rodríguez-Verdugo et al. 2014). 
It is worth noting that the REL1206 ancestor had been 
evolved for 2,000 generations at 37.0 °C in minimal media 
prior to the Phase 1 experiment and was therefore prea-
dapted to media and laboratory conditions (Lenski et al. 
1991).

Before clones were subjected to the Phase 2 evolution 
experiment, they were first assessed for survivability. To 
test survivability, isolates from frozen stock were placed 
into lysogeny broth (LB) and incubated at 37.0 °C for 1 
day to acclimate from frozen conditions (Bennett and 
Lenski 1993; Lenski and Travisano 1994; Rodríguez- 
Verdugo et al. 2014). The overnight culture was diluted 
1,000-fold in saline, and this dilution was transferred into 
fresh Davis Minimal (DM) Media supplemented with 
25 mg/l of glucose and grown for 1 day at 37.0 °C. 
Following incubation, 100 μl of the culture was transferred 
into 9.9 ml of fresh DM media and incubated at 19.0 °C 
and serially propagated for at least 9 days. Each day, we 
measured the cell density to determine if extinctions 
had occurred, by diluting 50 μl of overnight culture into 
9.9 ml of Isoton II Diluent (Beckman Coulter) and measur-
ing cell density in volumetric mode on a Multisizer 3 
Coulter Counter (Beckman Coulter). An isolate survived 
if its cell density measurements were maintained over 
the course of the test whereas allowing for fluctuations 
of ±1 × 106 cells.

Evolution Experiment at 19.0 °C
To prepare the isolates for the Phase 2 experiment, the 
Phase 2 Founders and the Phase 1 Ancestor (REL1206) 
were grown from frozen stock in 10 ml of LB at 37.0 °C 
with 120 revolutions per minute (RPM). After 24 h of incu-
bation, the overnight cultures were diluted 10,000-fold 
and plated onto TA plates and incubated at 37.0 °C. On 

11

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/40/5/m
sad108/7151523 by guest on 30 N

ovem
ber 2024

https://doi.org/10.1093/molbev/msad108


Batarseh et al. · https://doi.org/10.1093/molbev/msad108 MBE

the next day, single colonies were picked from the plates 
and inoculated into 10 ml of fresh LB and incubated at 
37.0 °C with 120 RPM. The next day, we transferred 
100 µl of the bacterial culture into 9.9 ml of fresh DM25 
media, which was incubated at 37.0 °C at 120 RPM for 
24 h to acclimate to experimental conditions, following 
common practice (Bennett and Lenski 1993; Lenski and 
Travisano 1994; Rodríguez-Verdugo et al. 2014). After incu-
bation, we began the Phase 2 evolution experiment by 
transferring 100 µl of culture into 9.9 ml of fresh DM25 
and incubated the tubes at 19.0 °C with 120 RPM and in-
cubated for 24 h.

Each day, the cultures were transferred daily into fresh 
media via a 100-fold dilution. At regular intervals (at gen-
eration 100 and roughly every 200 generations after that), 
we mixed 800 μl of each line with 800 μl of 80% glycerol to 
prepare the whole population frozen stocks. We began the 
experiment in January 2020 but had to pause it after ap-
proximately 297 bacterial generations due to the corona-
virus disease 2019 pandemic. To restart the experiment, 
we revived the bacterial populations by transferring 
100 μl of thawed glycerol stock into 9.9 ml of fresh 
DM25 media and continued the experiment until the bac-
teria had grown for a total of 1,000 generations or 152 days. 
We note that this restart caused bacterial cultures to ex-
perience two carbon sources for 1 day: glycerol and glu-
cose. The use of glycerol may have altered generation 
time on that day, but we do not expect it had a lasting ef-
fect, for two reasons. First, the frozen bacterial stocks were 
prepared at a final concentration of 40% glycerol that was 
then diluted 100-fold into fresh DM25 liquid media, such 
that glycerol constituted a very small proportion of the 
volume for that day. Second, although the presence of gly-
cerol could affect metabolic function, the selection pres-
sure (temperature) was unaltered.

Measuring Relative Fitness
We performed competition experiments to measure the 
relative fitness of the Phase 2 evolved lines. We competed 
the Phase 2 evolved lines against the Phase 1 Ancestor at 
42.2 °C and their respective Phase 2 Founders at both 
19.0 °C and 42.2 °C. To perform the competitions, we 
mixed the cells in a single glass culture tube and plated 
the mixture to count the colonies before and after 24 h 
of competition. We used the neutral Ara+ marker to differ-
entiate between the two lines when plating on 
tetrazolium-arabinose (TA) plates. To generate Ara+ mu-
tants from the Phase 2 Founders for competitions, we fol-
lowed previously published methods (Lenski et al. 1991). 
To validate neutrality, we competed the Ara+ mutants 
against the original Ara- stock using the methods de-
scribed below. Control competition experiments were per-
formed by competing the Phase 1 Ancestor, E. coli strain B 
REL1206, against its Ara+ mutant, REL1207 (Wiser and 
Lenski 2015).

To perform competition assays, bacteria from frozen 
glycerol stocks were revived with a loop into 10 ml of LB 

and incubated at 37 °C with 120 RPM for 24 h. After incu-
bation, the overnight cultures were vortexed and 100 µl of 
each were diluted in 9.9 ml of 0.0875% saline solution. 
From each dilution tube, 100 µl was transferred to 9.9 ml 
DM25 to incubate at 37.0 °C with 120 RPM for 24 h. 
Following incubation and in order for the bacteria to accli-
mate to the experimental temperature, we transferred 
100 µl of the overnight cultures into 9.9 ml of DM25 and 
incubated the tubes at the experimental temperature 
(19.0 °C or 42.2 °C) with 120 RPM for 24 h (Bennett and 
Lenski 1993). The next day, we mixed the Ara− and Ara+ 

competitor strains into sterile DM25 media. For competi-
tions at 19.0 °C, we mixed the bacteria 1:1. For competi-
tions at 42.2 °C, we mixed the bacteria 1:1 or we 
adjusted the ratio to 1:3 if the original ratio resulted in 
too few colonies (<20) on the plate for either competitor. 
The mixture was incubated at the experimental tempera-
ture of 120 rpm for 24 h. After allowing the cells to com-
pete, we quantified the cell density of each competitor 
by plating the overnight culture onto TA plates and count-
ing the number of colonies. All competitions were per-
formed in at least triplicate, resulting in roughly 600 
competitions.

Using the methods described in Lenski et al. (1991) and 
Tenaillon et al. (2012), we calculated the relative fitness, wr. 
The fitness of a Phase 2 evolved line relative to its competi-
tor was estimated by:

wr = [log2(NE
f /NE

i )]/[log2(NA
f /NA

i )] 

where E refers to the evolved line and A refers to the an-
cestral clone, where NE

i and NA
i represent the initial cell 

densities of the two competitors, and NE
f and NA

f represent 
the final cell densities after 1 day of competition.

DNA Library Preparation and DNA Sequencing
To sequence the evolved populations, we revived popula-
tions from ∼10 μl of frozen glycerol stock in 10 ml of DM 
media supplemented with 1000 mg/l of glucose. The cul-
ture tubes were incubated at 19.0 °C with 120 RPM. We ex-
tracted from 65 bacterial populations using the Promega 
Wizard Genomic DNA Purification kit. DNA concentra-
tions were measured with Qubit dsDNA HS Assay kits. 
We prepared our DNA sequencing libraries with the 
Illumina Nextera DNA Flex Library Preparation kit. The li-
braries were multiplexed and sequenced using the Illumina 
NovaSeq on an S4 flow cell to generate 100 bp paired-end 
reads at UC Irvine’s Genomics High-Throughput Facility 
(https://ghtf.biochem.uci.edu). Sequencing read quality 
was assessed with FastQC v. 0.11.9 (http://www. 
bioinformatics.babraham.ac.uk/projects/fastqc), trimmed 
with fastp v. 0.23.2 (Chen et al. 2018), and visualized 
with MultiQC v. 1.9 (Ewels et al. 2016). Each population 
had 25,000,000 sequencing reads on average (min =  
8,600,000 reads, max = 35,000,000 reads), resulting in a 
minimum of >150× coverage per population.
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Variant Detection
We detected mutations and their respective frequencies in 
each evolved Phase 2 population using breseq v. 0.35.5 
(Deatherage and Barrick 2014). We performed the breseq 
analysis in polymorphism mode with two different refer-
ence genomes. First, we performed breseq analysis using 
E. coli strain B REL606 as the reference genome. This 
E. coli strain differs from the Phase 1 Ancestor, REL1206, 
in seven positions (topA, spoT K662I, glmU/atpC, pykF, 
yeiB, fimA, and the rbs operon) that were excluded from 
our analysis (Barrick et al. 2009; Tenaillon et al. 2012). 
We performed a first round of variant detection using bre-
seq in polymorphism mode on all of evolved populations 
relative to E. coli strain B REL606.

Following this first step of the analysis, we generated a 
new, mutated reference sequence to represent each 
Phase 2 Founder using the gdtools APPLY command in 
breseq using the sequencing data available in Tenaillon 
et al. (2012). We then ran the breseq analysis again with 
respect to the Phase 2 Founder using the mutated refer-
ences to verify mutation predictions, as described in 
Deatherage and Barrick (2014). Using gdtools available 
through breseq, we compiled the mutation information 
into readable tables and as an alignment file in PHYLIP for-
mat. A phylogeny was constructed using IQ-tree and the 
PHYLIP alignment as input (Nguyen et al. 2015).

Statistical Analyses
All statistical analyses were performed in R v 4.0.2 (R Core 
Team 2019). For relative fitness results and statistical ana-
lysis, we first assessed the normality of the data using the 
Shapiro–Wilk test and the variance with Levene’s test 
available through R. To perform ANOVA, ANCOVA, and 
Kruskal–Wallis analyses, the R package rstatix v 0.7.0 was 
used (Kassambara 2023). Model II regression analyses 
were also carried out in R using the package lmodel2 v 
1.7–3 (Legendre 2018). To statistically test for associations 
between the mutation patterns observed in Phase 2 and 
their initial adaptive pathway, we first built a distance ma-
trix from the presence and absence matrix of Phase 2 mu-
tations in R. Using the vegan package v 2.5–7 in R, we 
directly tested for associations between the distance ma-
trix of Phase 2 mutations and the adaptive pathway or mu-
tated codon with ANOSIM (Oksanen et al. 2020). We also 
built a Neighbor-Joining (NJ) tree based on the presence– 
absence matrix of accessory genes. To do so, we first calcu-
lated the Euclidean distances from the presence–absence 
matrix of the accessory genes using the dist function in 
R. We then built the NJ tree from the Euclidean distances 
using the ape package in R (Paradis and Schliep 2019). We 
calculated DSC for each pair of Phase 2 evolved popula-
tions using the vegan package. Dice’s coefficient of similar-
ity was calculated using the same distance matrix used to 
build the NJ tree described above, as well as on a distance 
matrix containing only the fixed mutations. In order to 
statistically analyze Dice’s coefficient of similarity across 

our groups, we employed a randomization test following 
previously established methods (Card et al. 2021; Debray 
et al. 2022). First, we calculated the average of the coeffi-
cients for all comparisons within an adaptive pathway 
and for all comparisons between pathways. The difference 
between these values was calculated and compared 
against simulated means. We generated simulated means 
to serve as a null hypothesis by randomly shuffling the 
similarity data with 5,000 iterations. We then calculated 
significance by measuring the proportion of permutations 
in the expected distribution with a specificity statistic va-
lue greater than or equal to the observed value (Card et al. 
2021). To identify genes or intergenic regions that were 
more frequently mutated in populations descended from 
one adaptive history but not the other, we built a 2 × 2 
FET for each mutated gene or intergenic region in R, for 
a total of 163 contingency tests.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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