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Abstract

Evolution can be contingent on history, but we do not yet have a clear understanding of the processes and dynamics
that govern contingency. Here, we performed the second phase of a two-phase evolution experiment to investigate
features of contingency. The first phase of the experiment was based on Escherichia coli clones that had evolved at the
stressful temperature of 42.2 °C. The Phase 1 lines generally evolved through two adaptive pathways: mutations of
rpoB, which encodes the beta subunit of RNA polymerase, or through rho, a transcriptional terminator. We hypothe-
sized that epistatic interactions within the two pathways constrained their future adaptative potential, thus affect-
ing patterns of historical contingency. Using ten different E. coli Founders representing both adaptive pathways, we
performed a second phase of evolution at 19.0 °C to investigate how prior genetic divergence or adaptive pathway
(rpoB vs. rho) affects evolutionary outcomes. We found that phenotype, as measured by relative fitness, was contin-
gent on founder genotypes and pathways. This finding extended to genotypes, because E. coli from different Phase 1
histories evolved by adaptive mutations in distinct sets of genes. Our results suggest that evolution depends critically
on genetic history, likely due to idiosyncratic epistatic interactions within and between evolutionary modules.
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Introduction

Gould (1989) famously argued that historical contingency
is a defining feature of evolution. He asserted that natural
selection is deterministic in the absence of historical con-
tingency, and hence it can, in theory, converge on an op-
timal solution to any challenge. In contrast, evolution
may be contingent on the idiosyncratic nature of historical
events, leading to unpredictable and perhaps unrepeatable
evolutionary outcomes. Historical contingency can also re-
flect “causal dependance”, the notion that the outcome of
evolution depends on the preceding state, as opposed to
different outcomes resulting from the same state (Beatty
and Carrera 2011).

It is obvious that evolution must be historically contin-
gent to some degree, but questions remain about the pat-
terns and mechanisms of contingency. Exploring the
interplay of contingency and determinism, and the genetic
effects that drive their dynamics, is crucial for understand-
ing the evolutionary process. Moreover, understanding
this interplay is helpful for predicting outcomes to applied
problems—for example, projecting which species will sur-
vive climate change, identifying evolutionary constraints
on evolving resistance to chemotherapeutic agents, and
forecasting pathogen variation, mutation, and epidemi-
ology (Bay et al. 2017; Vlachostergios and Faltas 2018;
Leray et al. 2021).

Historical contingency has been studied in both natural
populations and in the laboratory. In the field, experiments

have inferred deterministic outcomes from convergent evo-
lutionary events (Losos 2011). For example, one experiment
tested brown anole lizard populations that were subjected
to living on narrow perches and found that all lizard popu-
lations evolved shorter limbs (Kolbe et al. 2012). Similarly,
male guppies across different populations evolved shorter
life histories in the absence of predators (Reznick and
Bryga 1987). These pervasive convergent outcomes have
been used to argue that natural selection is predictable
and that historical contingency does not play a major role
in evolution (Losos 2010; McGhee 2016). This interpretation
is debated; however, because natural populations may con-
tain standing genetic variation that increases the probability
of parallel responses (Blount et al. 2018).

In the laboratory, controlled experiments have investi-
gated contingency by evolving populations from a single
ancestral genotype (Blount et al. 2018). For example, in
the long-term evolution experiment (LTEE), 12 replicated
Escherichia coli populations converged phenotypically, as
evidenced by increased fitness, faster growth, and larger
cells (Bennett and Lenski 1993; Wiser et al. 2013), suggest-
ing a lack of contingency based on mutations that arose
during the experiment (Blount et al. 2018). However,
Wiser et al. (2013) documented significant variation in
the fitness trajectories among LTEE lines, suggesting evolu-
tionary trajectories are influenced by history despite the
fact that overall phenotypic outcomes appear to converge.
Additionally, one rare adaptation in the LTEE, aerobic
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growth on citrate (Blount et al. 2008), was contingent on
previously occurring, “potentiating” mutations, illustrating
causal dependance. Here, antecedent genetic changes
were essential for phenotypic innovation and were
co-opted for future innovative leaps (Quandt et al.
2015). Further work showed that aerobic citrate utilization
evolved via a genetic trajectory that maintained the poten-
tial for evolving the phenotype (Leon et al. 2018), again
highlighting the influence of history on evolution.

Another example from the LTEE is the evolution of anti-
biotic resistance, because both the level of resistance and
the complement of resistance mutations varied as a func-
tion of the starting genetic background of the LTEE line
(Card et al. 2021). These studies show that the evolution
of phenotypes can be, but are not always, historically con-
tingent on the genetic background. Nonetheless, import-
ant questions remain (Blount et al. 2018). For example,
what circumstances favor contingent versus deterministic
evolutionary outcomes? How does prior genetic diver-
gence between populations affect the likelihood of parallel
evolutionary responses? And to what extent does epistasis
shape evolutionary outcomes?

One approach to study these questions is two-phase (or
“historical difference”; Blount et al. 2018) evolution experi-
ments (fig. 1). In this experimental set-up, Phase 1 consists
of initially identical populations that are evolved in the
same environment, leading to potential genetic and
phenotypic divergence among the populations. These po-
pulations are then subjected to a second phase (Phase 2)
by allowing them to evolve in a new environment. The
question is whether Phase 2 evolution differs across popu-
lations as a function of Phase 1 history. That is, is evolution
in Phase 2 constrained by (or contingent upon) phenotyp-
ic and genotypic variation that was generated in Phase 17

Thus far, the two-phase approach has uncovered
nuanced insights into contingency. For example, Plucain
et al. (2016) evolved 16 E. coli populations in four different
chemical environments for 1,000 generations (Phase 1) be-
fore propagating them for another 1,000 generations in a
single, new environment (Phase 2). The evidence for con-
tingency was mixed: they found some evidence for contin-
gency on phenotypic evolution, because both the growth
rate and fitness of Phase 2 populations varied according to
their Phase 1 history. However, they found no evidence for
contingency at the molecular level; the mutations that ar-
ose during Phase 2 evolution did not vary as a function of
the genetic backgrounds generated during Phase 1
(Plucain et al. 2016). Another two-phase evolution experi-
ment used yeast and estimated that ~50% of the variance
in fitness across Phase 2 populations was attributable to
Phase 1 history, mostly because Phase 1 populations
with low fitness evolved more rapidly in Phase 2
(Kryazhimskiy et al. 2014). However, like the E. coli study,
this study also found no evidence to suggest that Phase
2 genotypic changes were influenced by Phase 1 history.

Based on their two-phase experiment, Kryazhimskiy
et al. (2014) proposed the “global epistasis hypothesis” a
form of diminishing returns epistasis. Diminishing returns
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epistasis implies that adaptive mutations have larger se-
lective effects in relatively unfit genotypes (Griffing 1950;
Jerison and Desai 2015). The global epistasis hypothesis
further posits that a mutation’s effect depends solely on
the fitness of the genetic background and not on the back-
ground genotype (Wei and Zhang 2019). In this frame-
work, evolutionary trajectories are predictable based on
fitness information alone. In contrast, recent work has sug-
gested that epistasis may be idiosyncratic, in that the dir-
ection and/or magnitude of epistatic interactions depends
on specific genotypes (Wei and Zhang 2019; Bakerlee et al.
2022), potentially making evolutionary outcomes less pre-
dictable. Idiosyncratic epistasis may even be modular, be-
cause it is a property of interactions among genes that
contribute to specific functions (Tenaillon et al. 2012) or
that vary by environment (Wei and Zhang 2019).

To examine these ideas further, we perform a two-phase
evolution experiment in E. coli that uses extreme tempera-
tures as the selective environments. We focus on extreme
temperatures for four reasons. First, temperature is a funda-
mental environmental property that affects physiological
traits and often defines species’ distributions; hence, it often
requires a complex evolutionary response (Somero 1978;
Cooper et al. 2001). Second, temperature adaptation often,
but not always, leads to trade-offs at other temperatures
(Rodriguez-Verdugo et al. 2014), suggesting that contin-
gency could be important in this system. Third, temperature
is a topic with rich historical precedent in the experimental
evolution literature. For example, Bennett and Lenski (1993)
evolved E. coli at 20 °C, near the lower edge of the tempera-
ture niche, after first adapting them to the upper end of the
temperature niche (42.2 °C). They found no convincing evi-
dence of contingency at the phenotypic level, but their
work was based on a relatively small number of samples
(n=12) and lacked genetic information.

The fourth reason that we focus on temperature is that
we can take advantage of a previous large-scale experiment.
Tenaillon et al. (2012) evolved 115 lines from a single E. coli
founder strain (REL1206) at 42.2 °C. After 2,000 generations
of evolution, they evaluated a single clone from each popu-
lation for fitness gains and sequence changes. The sequence
changes revealed that adaptation often occurred through
two distinct adaptive pathways defined by mutations in ei-
ther the RNA polymerase subunit beta (rpoB) gene or the
transcriptional terminator (rho) gene. Mutations in both
of these genes occurred statistically less often than expected
by chance, suggesting negative epistatic interactions.
Intriguingly, the two pathways were each positively asso-
ciated with additional distinct sets of mutations. For ex-
ample, rpoB clones tended to have mutations in rod, ILV,
and RSS genes, but mutations in these genes were rare in
the rho lines. The complex landscape of both negative
(e.g, rpoB vs. rho) and positive (e.g, rpoB with rod and
ILV) associations suggests that evolutionary changes are par-
tially dependent on the genetic background and that the
two pathways may represent discrete evolutionary modules.

Here, we hypothesize that these associations constrain
future adaptation and thus affect patterns of historical
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contingency. To test this hypothesis, we utilize evolved
clones from Tenaillon et al. (2012) to represent Phase 1 of
a two-phase experiment. After choosing a set of clones re-
presenting rpoB and rho genotypes, we evolve them at
the lower extreme of E. coli’s temperature niche (19.0 °C)
and then measure phenotypic and genotypic differences
among evolved populations. In doing so, we address three
sets of questions: First, do the rpoB and rho lines differ in their
response to selection at 19.0 °C, as measured by their fitness
response? We are particularly interested in testing one of the
predictions of the global epistasis model, which is that popu-
lations with lower fitness should exhibit larger fitness gains.
Second, is there evidence to suggest that the evolution of
rpoB and rho lines differ in their genotypic patterns of
change? That is, do the mutations that appeared during
Phase 1 evolution shape the set of adaptive mutations
that accumulate in Phase 2? Finally, what do our results im-
ply about the evolutionary process, particularly whether
epistasis is global or more idiosyncratic and modular?

Results

Selecting Phase 2 Founders Representing two
Adaptive Pathways

Phase 1 consisted of 114 lines evolved at 42.2 °C (Tenaillon
et al. 2012). After 2,000 generations of evolution, single
clones from these lines experienced fitness gains of

Tenaillon et al., 2012
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~42%, on average, relative to the single founding ancestor,
which we call the Phase 1 Ancestor (fig. 1). To perform our
Phase 2 experiment, we selected five rpoB clones and
five rho clones as the founding genotypes for evolution
at 19.0 °C. We refer to these ten clones as the Phase 2
Founders (fig. 1) and label each by its founding line and
by its rho or rpoB genotype (e.g., rho_A43T) (table 1). It
is important to recognize, however, that the Phase 2
Founders had mutations in additional genes (i.e,, not just
rpoB and rho) relative to the REL1206 Phase 1 Ancestor
(Tenaillon et al. 2012; supplementary table S1,
Supplementary Material online). For example, six of the
Phase 2 Founders had a mutation in the cls gene, and
four had a mutation in ybal, although mutations in nei-
ther gene were strictly associated with either of the two
adaptive pathways.

The Phase 2 Founders were selected based on five
criteria. First, we performed a 9-day extinction test at
19.0 °C and only chose clones that survived (see
Materials and Methods section). Second, we chose a set
of clones that reflected, as much as possible, the range of
fitness values at both 19.0 °C and 42.2 °C for Phase 1
evolved clones (based on fitness values previously reported
in Rodriguez-Verdugo et al. 2014; table 1; supplementary
fig. S1, Supplementary Material online). Third, to avoid
initial biases in finesses between the two adaptive
pathways, we selected rpoB and rho lines with similar aver-
age relative fitness (w,) values at 19.0 °C, at 0.954 for rpoB

This paper
Phase 2: 19.0°C

v

000000000

5 genotypes

°.

1 genotype
(12 replicates)

5 genotypes \
(6 replicates each)

v

v

v

72 rep. total

Phase 1 Founder: REL1206

O rpoB genotype

O rho genotype

Fic. 1. A schematic of the two-phase evolution experiment. The first phase of evolution was described in Tenaillon et al. (2012). The second phase
used a subset of evolved clones from Phase 1 and represented three pathways: clones with rpoB mutations (five genotypes), clones with rho

mutations (five genotypes), and the Phase 1 Ancestor.
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Table 1. The List of Phase 2 Founder, their rho or rpoB Genotype and their Relative Fitness Values.

Phase 1 Evolved Line® Phase 1 Adaptive Phase 1 Adaptive Mean Relative Mean Relative Number of
Pathway Pathway Genotypeb Fitness at 19.0 °C* Fitness at 42.2 °C? Replicates

2 rho T231A 0.970 1.484 6

66 rho V206A 1.004 1.430 6

82 rho 115N_1 0.952 1.498 6

87 rho 115N_2 1.015 1.703 6

134 rho A43T 1.008 1.380 6

3 rpoB 1966S 0.895 1.257 6

34 rpoB G556S 0.962 1.510 6

94 rpoB E84G 1.031 1.767 6

137 rpoB 1966N 0.982 1.349 6

142 rpoB 1527L 0.899 1.609 6

REL1206° Phase 1 ancestor NA NA NA 12

NoTe.—NA = not applicable.
“Line numbers designated in Tenaillon et al. (2012).

®The high-temperature associated mutation in rho and rpoB, where the number denotes amino acid residue, and the change is denoted by the single letter amino acid code.
Lines 82 and 87 had the same mutation (115N), but on different genetic backgrounds. They are denoted 115N_1 and 115N_2 for clarity.

“Relative fitness value data at 19.0 °C generated for this study.
dRelative fitness value data for 42.2 °C from Rodriguez-Verdugo et al. (2014).

°REL1206 was used as a Founder in Phase 2 evolution to have control populations.

and 0.990 for rho (t-test, P =0.095). We note, however,
that the w, variance was higher among the rpoB founders
(Var(w,) =0.0033) compared with the rho founders
(Var(w,) = 0.00075). Fourth, we selected clones with a sin-
gle mutation in either rpoB or rho but not in both genes.
Finally, we chose a sample of distinct rpoB and rho muta-
tions, because Phase 1 mutations occurred across different
codons and caused different amino acid replacements
(table 1).

Once chosen, Phase 2 Founders were propagated at
19.0 °C for 1,000 generations, with six replicate populations
per founder, under conditions identical to the Phase 1 ex-
periment except for temperature (19.0 °C vs. 42.2 °C). We
also evolved 12 replicates of the Phase 1 Ancestor as a con-
trol (fig. 1), making a total of 72 (=6 X 10 + 12) populations
in the Phase 2 experiment. Among the 72 populations, 7
went extinct, including 1 of the 12 descended from the
Phase 1 Ancestor, 4 of 6 populations descended from
Phase 2 Founder Line 3 (rpoB 1966S), and 2 populations des-
cended from Phase 2 Founder Line 142 (rpoB 1572L) (table
1). The following analyses were therefore performed on the
set of 65 surviving populations.

Relative Fitness at 19.0 °C Varies Significantly Among
Pathways and Founder Genotypes

Previous two-phase experiments have shown that fitness
can be affected by historical contingency (Kryazhimskiy
et al. 2014; Plucain et al. 2016). To test for such contingen-
cies, we first measured w, of the Phase 2 populations
against the Phase 1 Ancestor, based on three technical re-
plicates per population. From a total of ~200 competition
experiments, we estimated that the fitness of evolved po-
pulations increased by 3.6%, on average, at 19.0 °C (P <
0.01, Wilcoxon test; fig. 2). On average, lines descended
from rpoB backgrounds had 1.0% higher fitness than the
Phase 1 Ancestor; the rho lines had higher fitness by

4

6.4%; and the control lines increased by 3.4% (table 2).
To test whether these differences were significant, we ap-
plied Analysis of Variance (ANOVA) that partitioned by
pathway (rho vs. rpoB) and were nested by Phase 2
Founder genotypes (table 2). The pathway effect was sig-
nificant (P < 0.003) and explained 10.0% of the w, variance,
but the Phase 2 Founder genotype explained an even high-
er proportion of the variance (23.0%; P = 0.11). We also ap-
plied Analysis of Covariance (ANCOVA) using the fitness
of Phase 2 Founders as covariates, and the difference be-
tween pathways remained significant (P =0.029,
ANCOVA). Finally, we note that w, values were not nor-
mally distributed (Shapiro-Wilk, P <0.01), despite the
large sample size and even after routine normality transfor-
mations, thus violating assumptions used in ANOVA and
ANCOVA. However, we also repeated the analysis using
nonparametric tests and obtained similar results
(Kruskal-Wallis; effect of pathway: P=0.0002, n’=
0.0784; effect of Phase 2 Founder: P = 0.0002; n* = 0.153).
Overall, these observations indicate that the fitness re-
sponse depended on the pathway but also on the Phase
2 Founder genotypes within pathways.

Previous work has shown that the rate of change of
Phase 2 populations can vary as a function of the fitness
of Phase 2 Founders—that is, less fit Founders led to gen-
erally larger leaps in fitness during Phase 2 evolution (e.g.,
Kryazhimskiy et al. 2014). To assess this potential effect, we
first measured the fitness of Phase 2 populations by com-
peting them against their respective Phase 2 Founders at
19.0 °C, constituting another ~160 w, competition assays
(table 2). On average, the Phase 2 populations had w, =
1.08, thus reflecting, on average, a significant 8% fitness ad-
vantage at the end of the experiment (P <2.20 X 107'¢,
one-sample t-test) compared with their Founders.
Populations descended from rpoB genotypes experienced
a 9% fitness advantage on average (P = 1.41X 10~ ">, one-
sample t-test), those descended from rho founders had a
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Fic. 2. Relative fitness (w,) of the Phase 2 evolved populations at 19.0 °C based on competition assays to REL1207 (an Ara” variant of the Phase 1
Ancestor; see Materials and methods section). On the x-axis, Control represents the Phase 1 Ancestor competed against itself and shows that the
Phase 1 Ancestor (REL1206) and the REL1207 variant have similar fitnesses, as expected. The boxplot for Phase 1 Ancestor reports w, for the
control populations evolved from REL1206, and the remaining boxplots show w, values for different Phase 2 founders. The dots in each boxplot
show each w, measurement across replicated populations, with each population measured at least three times. The horizontal line within the
boxplot is the median w, value, with the box representing the upper and lower quartile and whiskers are calculated using the interquartile range.

Table 2. Relative Fitness Measurements for Phase 2 Evolved Populations Compared with the Phase 1 Ancestor and Phase 2 Founders.

Phase 1 Phase 1 adaptive Phase 1 Ancestor Competitor Phase 2 Founder Competitor Phase 2 Founder Competitor
evolved line® codon background

Average w, P-value® Average w, P-value® Average w, P-value®

(19.0 °C) (19.0 °C) (19.0 °C) (19.0 °C) (42.2°C) (42.2°C)

2 rho T231A 1.02 0.73 1.12 <0.01 0.91 <0.01
66 rho V206A 1.09 <0.01 1.06 <0.01 0.80 <0.01
82 rho 115N_1 1.00 0.99 1.04 <0.01 0.93 0.02
87 rho 115N_2 1.11 <0.01 1.13 <0.01 0.98 0.08
134 rho A43T 1.07 0.01 1.01 0.6 0.96 <0.01
3 rpoB 1966S 1.08 0.04 1.15 <0.01 1.04 0.44
34 rpoB G556S 1.00 0.95 1.08 <0.01 0.52 <0.01
94 rpoB E84G 1.02 0.63 1.08 <0.01 1.00 0.59
137 rpoB 1966N 1.01 0.83 1.14 <0.01 0.92 0.02
142 rpoB 1572L 0.96 0.11 1.06 0.13 0.9 0.02
REL1206 Phase 1 ancestor 1.04 0.04 NA NA NA NA

“Line numbers designated in Tenaillon et al. (2012) and also listed in table 1.
®ltalic P-values indicate a statistically significant difference from 1.0, indicating a significant change in relative fitness compared with the competitor. t-test or Wilcoxon test
dependent on Shapiro-Wilk test.

7% fitness advantage (P = 1.32 X 10~ '%, one-sample t-test), Phase 2 Founder genotype on fitness was again significant
and the difference was not significant (P = 0.063, unpaired (M?=0.23, P = 1.49 X 10~%, Kruskal-Wallis test).

t-test; fig. 3A). Eight of the 10 sets of Phase 2 populations We then plotted w, for all Phase 2 Founders against the
had significant fitness advantages relative to their difference in w, between the Phase 2 Founder and each of
Founders (table 2 and fig. 3B), and the effect of the its evolved populations (fig. 3C). (These w, values were all

5

202 J8qWanoN 0g UO 1enB Aq €26 151 2/801PESW/S/0p/210IE/aqW/W00"dNO"dILUSPEOE/:SA]IY WO} POPEO|UMO(


https://doi.org/10.1093/molbev/msad108

Batarseh et al. - https://doi.org/10.1093/molbev/msad108

MBE

A . D125
[ ]
&) &)
5 & 1001 -
242 Cozf. g
© [ ] © 0.75
%) ° %))
1% 1%
Q . Q
£ ~ £
i S iT 0.501 .
PR S A o 2
5 o 2 0.251
o =] o
2
0.8 s k] 0.00 ° .
. : S : :
o) D [ 0 Q
& = &
¢ & o ¢ &
B Phase 2 Founder Pathway g E Phase 2 Founder Pathway
° = ° 1.251 s
&) L] 2 &)
S [ ] o
S g 01 & 1.00 gy % -
- 192 i LE < $
= < . LR
2 ¢ o R @ 0751 o
2 |l 5 g ‘e
i e 5-02 i 0.501 e
o 101 -"--7-- —T o
= ° =
3 $ T 0.251
i . &
0.8 == 0.92 0.96 1.00 0001 ____® o
AT A g G J0 IR SR Initial Fitness of Phase 2 Founders at 19.0°C AR A S NI Ve
DA AN O GNPV (O DA SN O I NGAVCS O
R ORI ARG (Relative to REL1207) TRERHEE R ES
CEL LY CELELLY ELE
< <

Phase 2 Founder Genotype

Phase 2

-

ounder Genotype
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The black, dashed line represents the overall trendline; the bold trendlines consider only rpoB (negative slope) and rho (positive
slope) populations, respectively. (D) and (E) report w, of Phase 2 evolved populations competed against their Phase 2 Founder at 42.2 °C, pro-
viding insights into trade-offs. (D) Summarizes by pathway whereas (E) provides the information by Founder genotype.

measured relative to the Phase 1 Ancestor.) If less fit
Founders lead to generally larger fitness gains, we expected
a negative slope. The combined set of rpoB and rho popu-
lations followed this prediction because lower-fitness
founders had slightly bigger shifts in fitness during Phase
2 evolution (slope = —0.87, P =0.19, fig. 3C). Individually,
the trend was especially evident among the rpoB popula-
tions (rpoB slope = —1.32, P=0.014; fig. 3C), but it did
not hold for rho Founders and descendant populations.
In fact, the slope based on rho populations was positive, al-
though not significantly so (rho slope = 1.01, P = 0.14; fig.
3C), such that the rho and rpoB slopes were statistically dif-
ferent (P < 0.001). Although the cause(s) of these different
patterns between pathways was not clear, it suggests, at a
minimum, that the rate of fitness change during Phase 2
evolution was not a simple function of the fitness of
Phase 2 Founders.

High-Temperature Trade-offs are Contingent on the
founders’ Adaptive History and Genotype

Previous research has demonstrated significant differences
in trade-off dynamics between high-temperature adapted
genotypes. For example, nearly half of the 42.2 °C adapted
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lines from Tenaillon et al. (2012) were less fit than the
Phase 1 Ancestor at lower temperatures (37 °C and
20 °C), slightly more than half exhibited no obvious trade-
off, and a surprising few were actually fitter than the ances-
tor at low temperatures (Rodriguez-Verdugo et al. 2014).
These trade-off dynamics imply the possibility of
genotype-specific contingencies; we thus investigated
trade-off dynamics at 42.2 °C for Phase 2 populations rela-
tive to their Phase 2 Founders. As expected, the Phase 2
evolved populations generally had lower fitness (average
w,=0.89, P=114x10"" Wilcoxon test) than their
Founders at 42.2 °C. Of the ten rho and rpoB Phase 2
groups, seven of ten had significantly lower w, at 42.2 °C
compared with their Phase 2 Founder (table 2).

We investigated whether these patterns mapped to ei-
ther pathways or starting genotypes; the difference in aver-
age w, between rho and rpoB populations was not
statistically significant (P = 0.38, Wilcoxon test; fig. 3D). It
was nonetheless notable that rho lines experienced a fit-
ness decline (relative to their Founder) of 8.5% whereas
rpoB declined by 15% on average, suggesting some differ-
ence in trade-off dynamics between pathways. Moreover,
the starting genotype had a significantly large effect on
the values of w, at 42.2 °C (1’=0.34, P=136x10"",
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Kruskal-Wallis test; fig. 3E). For example, lines descended
from the rpoB G556S and rho V206A Founders had ex-
tremely low fitness at 422 °C, at w,=0.52 (P<0.01,
Wilcoxon test) and w,=0.80 (P < 0.01, Wilcoxon test).
The take-home point is that trade-offs differed as a conse-
quence of Phase 2 Founder genotypes.

Mutations that Arose During Phase 2 Evolution are
Contingent on Genetic History

To examine contingency at the level of individual muta-
tions, we sequenced the DNA of all 65 Phase 2 and control
populations. After filtering the sequencing data and calling
genomic variants, we identified 1,387 point mutations and
short indels (<50 bases in length) that arose during the
Phase 2 experiment and had population frequencies
>5% (supplementary fig. S2, Supplementary Material on-
line). Almost half (45%) of the 1,387 mutations were pre-
sent at a frequency of <10%, but 119 were “fixed” (as
defined by a frequency >85% in a single evolved popula-
tion). Fixed mutations were present in 51 of the 65 se-
quenced populations, but there was no discernible
pattern across the 14 lines that lacked fixed mutations
by pathway (rho, rpoB, and control Founders). Overall,
the largest proportion of mutations, 54.4% (742/1387), oc-
curred in intergenic regions (fig. 4A), and 95.8% of these
were point mutations. Within genes, most (89.8% or
371/413) point mutations were nonsynonymous.

We used the sequencing data to confirm that our popu-
lations were not cross-contaminated during the 1,000 gen-
eration experiment by first assessing whether mutations
from the Phase 2 Founder were fixed in the evolved popu-
lations, as expected. It was true in every case. We then built
phylogenies based on all of the sites in the Phase 2 popula-
tions that differed from the Phase 1 Ancestor. The data
confirmed expected phylogenetic relationships based on
the experimental design (supplementary fig. S3,
Supplementary Material online) and thus yielded no evi-
dence of contamination.

Given a lack of obvious evidence for contamination, we
first asked whether the patterns and numbers of muta-
tions differed significantly among pathways. In terms of
mutations counts, we identified an average of 22 muta-
tions in populations descended from rpoB lines and an
average of 20 mutations in populations descended from
rho lines that were at a frequency of 5% or higher in the
population, a difference that was not significantly different
(P =0.17, unpaired t-test). There was also no difference be-
tween pathways in the number of fixed mutations per
population (P = 0.14, unpaired t-test). We also contrasted
the proportions of mutational variant types (intergenic,
frameshift, nonsynonymous, and synonymous mutations
and large deletions >50 bps) between rho and rpoB path-
ways, again finding no difference for the complete set of
mutations (P = 0.78, contingency test; fig. 4B) or for fixed
mutations (P = 0.08, contingency test; fig. 4C). Thus, we
detected no obvious difference in the number or pattern
of mutations between rho and rpoB mutations.

We then investigated whether there was evidence of
historical contingency at the level of specific mutations.
Did rho and rpoB lines tend to accumulate mutations in
different sets of genes? We first used a phylogenetic ap-
proach: focusing only on mutations that arose during
Phase 2 evolution at a frequency of 5% or higher, we calcu-
lated a distance matrix and resulting Neighbor-Joining tree
from the presence—absence of mutations among popula-
tions. We then tested for associations between phylogen-
etic clustering and the pathways of origin (i.e., rho, rpoB, or
control lines evolved from the Phase 1 Ancestor) against
the null hypothesis of no associations between pathway
and phylogeny. We found significant association between
the mutations that arose during Phase 2 and the adaptive
history at the level of pathway (Analysis of
Similarities: ANOSIM R =0.139, P =4 x 10™% fig. 5A). We
also tested the association between mutational patterns
and variation across the Phase 2 Founder genotypes, in-
stead of pathways. Here again, the test was significant
(ANOSIM R = 02398, P = 1 X 10~%). These results are con-
sistent with the idea that the identity of mutations differed
among Phase 2 populations based in part on their Founder
genotype.

Our second approach relied on Dice’s similarity coeffi-
cient (DSC) (Dice 1945). Following Card et al. (2021), we
calculated DSC at the genic level between all pairs of
evolved populations. We based DSC on two sets of muta-
tions: all Phase 2 mutations found at a frequency of 5% or
higher (supplementary fig. S4, Supplementary Material on-
line) and Phase 2 fixed mutations found at a frequency of
85% or higher (fig. 5B). For the former, the average DSC be-
tween populations was 0.38, indicating that the evolved
populations shared 38% of their mutated genes on aver-
age. The mean DSC within a Phase 2 adaptive pathway
was 0.39, which was similar to, but significantly different
from, the mean DSC between pathways (DSC=0.37;
P =4.87 X 10~ ", Wilcoxon test). The same analyses based
on fixed mutations had an average DSC 0.10 across all
comparisons, an average DSC of 0.06 between populations
from different pathways, and a mean DSC of 0.18 within
the same pathway (fig. 5C). The average DSC within and
between adaptive pathways again differed significantly
(P<22x107"%, Wilcoxon test), suggesting that fixed
(and presumably adaptive) mutations differed among po-
pulations in part due to their Phase 2 Founder. We also de-
tected a significant, moderate effect of the adaptive history
on DSC across comparison types (1> = 0.078, P < 2.2 X 10-
16, Kruskal-Wallis test). Overall, we found that evolved
populations from the same adaptive pathway had ac-
quired more similar mutations than populations from dif-
fering adaptive pathways (P < 0.01, randomization test).
These results further indicate that the fixed mutations
that arose in the Phase 2 experiment differed due, in
part, to genetic history.

Finally, we sought to identify specific genes that differed
in their propensity to house mutations in rho versus rpoB
pathways. To do so, we counted the number of popula-
tions with and without a mutation in each gene or
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Fic. 4. Mutations that arose during Phase 2 evolution across populations. (A) Number of mutations by type across all evolved populations. (B)
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(B) All mutations at 5% frequency or higher and (C) fixed mutations at 85% frequency. The x-axis shows mutation types, including mutations in

pseudogenes and large deletions (deletions greater than 50 bp).

intergenic region and performed these counts separately
for rho and rpoB populations. Using a Fisher’s exact test
(FET), we identified six genes or intergenic regions that
were more frequently mutated in one adaptive pathway
but not the other (P < 0.05, table 3). These tests were no
longer significant (P> 0.05) after False Discovery Rate
(FDR) correction for all but one gene region, likely reflect-
ing low statistical power due to sample size and many
(163) FET tests.

Discussion

Evolution is an inherently historical process, but the mag-
nitude and effect of history on adaptation remains some-
what enigmatic. To yield insights into the dynamics of
historical contingency, we have performed the second
phase of a two-phase evolution experiment. Phase 1
was based on a study that evolved 114 initially identical
populations of E. coli to the stressful temperature of

8

42.2 °C (Tenaillon et al. 2012). These populations evolved
primarily by one of two distinct pathways involving mu-
tations in either the RNA polymerase beta subunit gene
(rpoB) or the transcription termination factor rho. We
chose five clones from each of the two pathways and
evolved them for 1,000 generations in a second, low tem-
perature (19.0 °C) environment. At the end of the Phase 2
experiment, we compared the phenotypes (relative fit-
ness, w,) and genotypes of evolved populations to both
their immediate ancestors (Phase 2 Founders) and to
the ancestor of the entire experiment (Phase 1
Ancestor; fig. 1).

Based on these data, our first finding is that w, varied
significantly among evolved populations both among
pathways (rho or rpoB) and among Founder genotypes
(fig. 2), explaining 10% and 23% of the w, variance. Thus,
the fitness of Phase 2 populations was contingent upon
their Founder fitnesses and genotypes. A more nuanced
question is whether there was a predictable pattern to

202 J8qWanoN 0g UO 1enB Aq €26 151 2/801PESW/S/0p/210IE/aqW/W00"dNO"dILUSPEOE/:SA]IY WO} POPEO|UMO(


https://doi.org/10.1093/molbev/msad108

Genotypic Contingency During Escherichia coli Adaptation - https://doi.org/10.1093/molbev/msad108

MBE

Pop 64I
Pop 32 E
A _IEPOB 3% B 1.00

:Po 27
Pog 1

0.751

0.501

0.251

e
o
o
w
[
]
Dice’s Similarity Coefficient

0.00+

D Within . Between

A

}
r
}

o)
o
S
o0
o)
Ph. 1 AncestoH

Popu

-

rho|
vs. rpoB

Q
Q
S

Q
<

vs. rho
vs. rpoB

Ph. 1 Ancestor]
Ph. 1 Ancestor]|

lation Comparisons by Historical Background

Ph.1 Ancestor

rho

0.0760

rpoB

Fic. 5. Measures of association between the evolved populations, their historical backgrounds, and the mutations that arose during Phase 2
evolution. (A) A neighbor-joining tree built from presence—absence patterns of mutations that arose in Phase 2 evolved populations.
Populations descended from the Phase 1 Ancestor are depicted with a colored strip in gold, rho derived populations in blue, and rpoB derived
populations in red. (B) Dice’s similarity coefficients calculated from fixed mutation data, separated by the type of pairwise comparison. Pairwise
comparisons performed within and between pathways are indicated. (C) Average DSC values within and between historical pathways. The aver-
age between-pathway values DSC is plotted along the edges, and the average within-DSC are depicted beneath each pathway.

Table 3. Genic or Intergenic Regions With Evidence of Biased Mutation
Histories by Pathway.

Gene or Intergenic Region Adaptive Fisher’s Exact Adjusted
Pathway Test P-value P-value (FDR)
nmpC/dsbG rpoB 8.20E—05 0.013
hepA rpoB 0.002 0.160
ECB_01992 rho 0.005 0.212
valY/lysV rpoB 0.005 0.212
rpoC rpoB 0.022 0.726
ybcW/ECB_01526 rho 0.028 0.766
rho rpoB 0.034 0.782

the fitness response. It is reasonable to expect, based on di-
minishing returns epistasis, that w, among populations
vary as a function of the fitness of the Phase 2 Founder,

specifically that lower-fitness Founders give rise to popula-
tions with more dramatic fitness gains. We have found the
expected general trend across rpoB Phase 2 populations
(fig. 3C). Surprisingly, however, this relationship did not
hold for the rho lines (fig. 3C). These contrasting results
not only suggest differences among pathways (figs. 3A
and B) but raise important questions about what might
drive these differences.

One must first consider the caveats and limitations of
our experimental design. For example, practical considera-
tions limited the number of rho and rpoB Founders; per-
haps more or different rho samples would have yielded
different results. Moreover, one of the rpoB Founders
(rpoB 1966S) had a much lower w, than the rest of the
Phase 2 Founders, experienced the biggest shift in fitness
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during Phase 2 fitness, and may have driven the overall
trend (fig. 3C). Unfortunately, we did not have a Phase 2
rho founder for comparison, because the only potential
Phase 2 rho founders with similarly low fitness did not sur-
vive the 9-day extinction test. Finally, we recognize that the
timescale of 1,000 generations likely does not provide a
complete view of the fitness landscape; perhaps popula-
tions will converge on the same fitness optima with further
evolution.

The structure of epistasis may drive some of the differ-
ences seen among pathways. The ongoing debate about di-
minishing returns epistasis does not center on whether it
exists, because diminishing returns have been found
both by testing the effects of individual mutations
(Moore et al. 2000; Kryazhimskiy et al. 2009; Perfeito
et al. 2014) and by inferring patterns of evolutionary
change for experimental evolution data (Chou et al.
2011; Khan et al. 2011; Wang et al. 2018; Bakerlee et al.
2022). Instead, it centers on whether the dynamics of di-
minishing returns can be predicted based on starting fit-
ness alone or whether diminishing returns is a product
of more idiosyncratic epistatic interactions that depend,
in part, on the genetic background. As an example of
the latter, Card et al. (2019) measured the evolution of
antibiotic resistance and found that less-fit genotypes do
not always evolve bigger changes in fitness resistance.
Like Card et al. (2019), our experiment has not been de-
signed to measure diminishing returns epistasis directly.
Nonetheless, our results suggest that fitness evolution is
more idiosyncratic than predicted by the global epistasis
model, given differences in fitness responses between
pathways and genotypes (figs. 2 and 3A-C). Several recent
studies have similarly concluded that epistasis is often idio-
syncratic (Wei and Zhang 2019; Lyons et al. 2020; Bakerlee
et al. 2022).

The next pertinent question is: What might drive these
idiosyncrasies? We do not have a complete answer to this
question, but we can offer some insights. Previous work
has shown that the complete set of 114 high-temperature
adapted lines differed substantially in their fitness trade-
offs between 422 °C and 19.0 °C (Rodriguez-Verdugo
et al. 2014, 2016). A few lines that evolved at 42.2 °C
were more fit than their ancestor at 19.0 °C, whereas others
were much less fit. Our work further illustrates that Phase
2 populations vary in their trade-off dynamics (fig. 3D and
E). Furthermore, studies of single mutants have shown that
some of the rpoB mutations in this study confer fitness ad-
vantages at 42.2 °C, but in contrast, two rho mutations
(rho A43T and rho T231A) likely require positively epistatic
interactions to become adaptive (Tenaillon et al. 2012;
Gonzalez-Gonzalez et al. 2017). We suspect that all of these
patterns feed into idiosyncratic evolutionary responses.
Given, for example, that some genotypes appear to be
thermal specialists and others are generalists, one can en-
vision that founding populations with distinct generalist
versus specialist mutations have substantially different
numbers, directions, and types of potential epistatic inter-
actions across the genome.
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Another variable to consider among the Phase 2
Founders is their full genotypic background. As mentioned
previously, Tenaillon et al. (2012) illustrated that rho and
rpoB lines were positively and negatively associated with
their own sets of particular mutations in other genes along
the genome. It is possible that other mutations in the gen-
ome besides those in rho or rpoB drive the Phase 2 Founder
effect. We believe this explanation is unlikely for the rpoB
pathway because previous work based on single mutants
has shown that most of the rpoB mutations in our Phase
2 Founders cause large shifts in fitness and are responsible
for most changes in gene expression observed during high-
temperature adaptation (Rodriguez-Verdugo et al. 2016).
The case is more nuanced for rho, however, because single
rho mutations do not always drive large fitness effects or
downstream shifts in gene expression (Gonzalez-
Gonzalez et al. 2017), suggesting that additional mutations
in rho background influence the contingent responses
seen here.

A unique feature of our work is that the set of Phase 2
Founders represent pathways that were defined by inter-
actions among distinct set of mutations and genes.
Based on the concept of causal dependance (Beatty and
Carrera 2011), we predicted that these pathways affect
the evolutionary response by shaping the type and identity
of future mutations. Although the two pathways do not
vary in their number or types of mutations (fig. 4), there
is ample evidence to support our prediction. For example,
Phase 2 mutations cluster nonrandomly on a phylogeny
(fig. 5A), suggesting that the set of successful mutations
is not independent of the Phase 2 Founding genotype.
Similarly, the complement of Phase 2 mutations is more
similar within a pathway than between pathways (fig.
3B). Finally, specific genic and intergenic regions vary in
their enrichment for mutations depending on the genetic
pathway of their Founders (table 3). [We included inter-
genic regions because they have been previously impli-
cated as drivers for bacterial adaptation (Khademi et al.
2019).] These patterns hold to some extent for the entire
complement of >1,000 mutations, but they are especially
clear for the set of 119 fixed mutations (fig. 5 and table 3).
Since fixed mutations are more likely to be adaptive, and
also because the number of mutations is unlikely to be lim-
iting in this system, our results show that the identity of
adaptive mutations depends on genetic background, likely
due to idiosyncratic interactions.

Although our results are not compatible with the global
epistasis model (Kryazhimskiy et al. 2014), they do appear
to adhere to a modular model of evolution (Tenaillon et al.
2012; Wei and Zhang 2019). Of course, two-phase evolu-
tion experiments have inherent biases, because the second
phase is always founded by lines already defined by differ-
ences in evolutionary outcomes. In this case, we have in-
troduced an additional bias because we have chosen
Founders from two distinct pathways. However, this
should not inhibit our ability to distinguish between the
global or modular models of epistasis in the second phase
of evolution. Interestingly, Wei and Zhang (2019) have
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documented that an emergent property of their modular
model is the appearance of global diminishing returns epis-
tasis. That is, epistatic interactions within specific modules
can combine to provide the signal of global diminishing re-
turns epistasis.

Our finding—that is, that mutations detected in Phase
2 mutations are associated with Founder pathway—may
provide insights about mechanisms of adaptation. We
have identified seven genes and intergenic regions that
are enriched for Phase 2 mutations in either rpoB or rho
populations (table 3). Although only one of the genic re-
gions remained significant after FDR correction, these se-
ven regions constitute a likely set of candidates to drive
some our observed genome-wide patterns (based on
phylogenetic and similarity analyses) and may therefore
yield mechanistic insights. Of the seven, five are more likely
to accrue mutations within rpoB populations. In this con-
text, it is worth recalling that rpoB is a component of RNA
polymerase, which drives gene expression; as a result,
changes in the RNA polymerase have the potential for nu-
merous pleiotropic effects and potential epistatic interac-
tions. At least three of the five enriched regions in rpoB
lineages are related to transcriptional function: rpoC, rho,
and hepA (table 3). rpoC codes for the beta-prime subunit
of RNA polymerase (Trinh et al. 2006; Conrad et al. 2010);
the RHO protein terminates RNA polymerase activity; and
hepA (which also known as rapA) encodes a transcription
factor with ATPase activity that it is an RNA polymerase
associated protein (Sukhodolets et al. 2001). Previous
work has shown that modifying RNA polymerase is a
key feature of adaptation to thermal stress but also
that this is a blunt instrument that may cause more pheno-
typic changes (as measured by gene expression; Rodriguez-
Verdugo et al. 2016) than may be necessary to achieve fit-
ness gains. If true, it is reasonable to speculate that adapta-
tion to 19.0 °C from 42.2 °C includes further tuning of RNA
polymerase, as reflected by an enrichment of genes related
to transcriptional activity like rpoC, rho, and hepA.

Three further features about the enriched regions stand
out. First, two enriched regions within rpoB populations
(valY and lysV; table 3) encode tRNA synthetases
(Andersen et al. 1997; Ruan et al. 2011; Agrawal et al.
2014), suggesting that one additional or alternative route
to adaptation is through modifications of translational
speed or dynamics. Second, the Phase 2 evolved popula-
tions that descended from rho backgrounds were enriched
in one gene (ECB_01992) and one intergenic region (ybcW/
ECB_01526) (table 3). Both of these regions have unknown
functions, and thus they yield no clues into the molecular
mechanisms of 19.0 °C adaptation for rho populations.
Finally, it is interesting to speculate about the fact that
more enriched regions (5 vs. 2) were found in rpoB vs.
rho lines. Previous work has shown that engineered muta-
tions of rho A43T and rho T231A lead to fewer modifica-
tions of gene expression than do rpoB mutations 1572L,
1572N, and 1966S (Gonzalez-Gonzalez et al. 2017). These ob-
servations suggest that some of the rho mutations are “less-
connected” than the rpoB mutations, which could again

lead to substantially different dynamics of fitness and epis-
tasis between the two pathways.

To sum, our Phase 2 experiment has shown that the fit-
ness response of evolved populations varies by the path-
way and phenotype of their Founders, but Founder
fitness is not strongly predictive of fitness gains. More im-
portantly, our work demonstrates that the suite of fixed
and presumably adaptive mutations in Phase 2 differs ac-
cording to their Phase 1 history. Consistent with the con-
cept of causal dependance, our observations illustrate that
history has shaped, defined, and perhaps even canalized
the adaptive response of Phase 2 populations. Overall,
these observations add to a growing literature suggesting
that evolution is often contingent on genetic history.

Materials and Methods

Two-Phase Evolution Experiment Isolate Criteria and
Selection

To study evolutionary contingency, we chose ten clones
from Tenaillon et al. (2012) (table 1) to evolve at 19.0 °C,
which is toward the lower limit of the temperature niche
for the REL1206 ancestor (Rodriguez-Verdugo et al. 2014).
It is worth noting that the REL1206 ancestor had been
evolved for 2,000 generations at 37.0 °C in minimal media
prior to the Phase 1 experiment and was therefore prea-
dapted to media and laboratory conditions (Lenski et al.
1991).

Before clones were subjected to the Phase 2 evolution
experiment, they were first assessed for survivability. To
test survivability, isolates from frozen stock were placed
into lysogeny broth (LB) and incubated at 37.0 °C for 1
day to acclimate from frozen conditions (Bennett and
Lenski 1993; Lenski and Travisano 1994; Rodriguez-
Verdugo et al. 2014). The overnight culture was diluted
1,000-fold in saline, and this dilution was transferred into
fresh Davis Minimal (DM) Media supplemented with
25 mg/l of glucose and grown for 1 day at 37.0 °C.
Following incubation, 100 pl of the culture was transferred
into 9.9 ml of fresh DM media and incubated at 19.0 °C
and serially propagated for at least 9 days. Each day, we
measured the cell density to determine if extinctions
had occurred, by diluting 50 pl of overnight culture into
9.9 ml of Isoton Il Diluent (Beckman Coulter) and measur-
ing cell density in volumetric mode on a Multisizer 3
Coulter Counter (Beckman Coulter). An isolate survived
if its cell density measurements were maintained over
the course of the test whereas allowing for fluctuations
of +1x 10° cells.

Evolution Experiment at 19.0 °C

To prepare the isolates for the Phase 2 experiment, the
Phase 2 Founders and the Phase 1 Ancestor (REL1206)
were grown from frozen stock in 10 ml of LB at 37.0 °C
with 120 revolutions per minute (RPM). After 24 h of incu-
bation, the overnight cultures were diluted 10,000-fold
and plated onto TA plates and incubated at 37.0 °C. On
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the next day, single colonies were picked from the plates
and inoculated into 10 ml of fresh LB and incubated at
37.0 °C with 120 RPM. The next day, we transferred
100 pl of the bacterial culture into 9.9 ml of fresh DM25
media, which was incubated at 37.0 °C at 120 RPM for
24 h to acclimate to experimental conditions, following
common practice (Bennett and Lenski 1993; Lenski and
Travisano 1994; Rodriguez-Verdugo et al. 2014). After incu-
bation, we began the Phase 2 evolution experiment by
transferring 100 pl of culture into 9.9 ml of fresh DM25
and incubated the tubes at 19.0 °C with 120 RPM and in-
cubated for 24 h.

Each day, the cultures were transferred daily into fresh
media via a 100-fold dilution. At regular intervals (at gen-
eration 100 and roughly every 200 generations after that),
we mixed 800 pl of each line with 800 il of 80% glycerol to
prepare the whole population frozen stocks. We began the
experiment in January 2020 but had to pause it after ap-
proximately 297 bacterial generations due to the corona-
virus disease 2019 pandemic. To restart the experiment,
we revived the bacterial populations by transferring
100 pl of thawed glycerol stock into 9.9 ml of fresh
DM25 media and continued the experiment until the bac-
teria had grown for a total of 1,000 generations or 152 days.
We note that this restart caused bacterial cultures to ex-
perience two carbon sources for 1 day: glycerol and glu-
cose. The use of glycerol may have altered generation
time on that day, but we do not expect it had a lasting ef-
fect, for two reasons. First, the frozen bacterial stocks were
prepared at a final concentration of 40% glycerol that was
then diluted 100-fold into fresh DM25 liquid media, such
that glycerol constituted a very small proportion of the
volume for that day. Second, although the presence of gly-
cerol could affect metabolic function, the selection pres-
sure (temperature) was unaltered.

Measuring Relative Fitness
We performed competition experiments to measure the
relative fitness of the Phase 2 evolved lines. We competed
the Phase 2 evolved lines against the Phase 1 Ancestor at
42.2 °C and their respective Phase 2 Founders at both
19.0 °C and 42.2 °C. To perform the competitions, we
mixed the cells in a single glass culture tube and plated
the mixture to count the colonies before and after 24 h
of competition. We used the neutral Ara*” marker to differ-
entiate between the two lines when plating on
tetrazolium-arabinose (TA) plates. To generate Ara” mu-
tants from the Phase 2 Founders for competitions, we fol-
lowed previously published methods (Lenski et al. 1991).
To validate neutrality, we competed the Ara® mutants
against the original Ara- stock using the methods de-
scribed below. Control competition experiments were per-
formed by competing the Phase 1 Ancestor, E. coli strain B
REL1206, against its Ara® mutant, REL1207 (Wiser and
Lenski 2015).

To perform competition assays, bacteria from frozen
glycerol stocks were revived with a loop into 10 ml of LB
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and incubated at 37 °C with 120 RPM for 24 h. After incu-
bation, the overnight cultures were vortexed and 100 pl of
each were diluted in 9.9 ml of 0.0875% saline solution.
From each dilution tube, 100 pl was transferred to 9.9 ml
DM25 to incubate at 37.0 °C with 120 RPM for 24 h.
Following incubation and in order for the bacteria to accli-
mate to the experimental temperature, we transferred
100 pl of the overnight cultures into 9.9 ml of DM25 and
incubated the tubes at the experimental temperature
(19.0 °C or 42.2 °C) with 120 RPM for 24 h (Bennett and
Lenski 1993). The next day, we mixed the Ara™ and Ara™
competitor strains into sterile DM25 media. For competi-
tions at 19.0 °C, we mixed the bacteria 1:1. For competi-
tions at 422 °C, we mixed the bacteria 1:1 or we
adjusted the ratio to 1:3 if the original ratio resulted in
too few colonies (<20) on the plate for either competitor.
The mixture was incubated at the experimental tempera-
ture of 120 rpm for 24 h. After allowing the cells to com-
pete, we quantified the cell density of each competitor
by plating the overnight culture onto TA plates and count-
ing the number of colonies. All competitions were per-
formed in at least triplicate, resulting in roughly 600
competitions.

Using the methods described in Lenski et al. (1991) and
Tenaillon et al. (2012), we calculated the relative fitness, w,.
The fitness of a Phase 2 evolved line relative to its competi-
tor was estimated by:

w, = [log,(Nf /NE)]/[log,(Nf/NM)]

where E refers to the evolved line and A refers to the an-
cestral clone, where NF and N#* represent the initial cell
densities of the two competitors, and Nf and Nf* represent
the final cell densities after 1 day of competition.

DNA Library Preparation and DNA Sequencing

To sequence the evolved populations, we revived popula-
tions from ~10 pl of frozen glycerol stock in 10 ml of DM
media supplemented with 1000 mg/I of glucose. The cul-
ture tubes were incubated at 19.0 °C with 120 RPM. We ex-
tracted from 65 bacterial populations using the Promega
Wizard Genomic DNA Purification kit. DNA concentra-
tions were measured with Qubit dsDNA HS Assay kits.
We prepared our DNA sequencing libraries with the
[llumina Nextera DNA Flex Library Preparation kit. The li-
braries were multiplexed and sequenced using the lllumina
NovaSeq on an S4 flow cell to generate 100 bp paired-end
reads at UC Irvine’s Genomics High-Throughput Facility
(https://ghtf.biochem.uci.edu). Sequencing read quality
was assessed with FastQC v. 0.11.9 (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc), trimmed
with fastp v. 0.23.2 (Chen et al. 2018), and visualized
with MultiQC v. 1.9 (Ewels et al. 2016). Each population
had 25,000,000 sequencing reads on average (min=
8,600,000 reads, max = 35,000,000 reads), resulting in a
minimum of >150X coverage per population.
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Variant Detection

We detected mutations and their respective frequencies in
each evolved Phase 2 population using breseq v. 0.35.5
(Deatherage and Barrick 2014). We performed the breseq
analysis in polymorphism mode with two different refer-
ence genomes. First, we performed breseq analysis using
E. coli strain B REL606 as the reference genome. This
E. coli strain differs from the Phase 1 Ancestor, REL1206,
in seven positions (topA, spoT K662l, gimU/atpC, pykF,
yeiB, fimA, and the rbs operon) that were excluded from
our analysis (Barrick et al. 2009; Tenaillon et al. 2012).
We performed a first round of variant detection using bre-
seq in polymorphism mode on all of evolved populations
relative to E. coli strain B REL606.

Following this first step of the analysis, we generated a
new, mutated reference sequence to represent each
Phase 2 Founder using the gdtools APPLY command in
breseq using the sequencing data available in Tenaillon
et al. (2012). We then ran the breseq analysis again with
respect to the Phase 2 Founder using the mutated refer-
ences to verify mutation predictions, as described in
Deatherage and Barrick (2014). Using gdtools available
through breseq, we compiled the mutation information
into readable tables and as an alignment file in PHYLIP for-
mat. A phylogeny was constructed using IQ-tree and the
PHYLIP alignment as input (Nguyen et al. 2015).

Statistical Analyses

All statistical analyses were performed in R v 4.0.2 (R Core
Team 2019). For relative fitness results and statistical ana-
lysis, we first assessed the normality of the data using the
Shapiro-Wilk test and the variance with Levene’s test
available through R. To perform ANOVA, ANCOVA, and
Kruskal-Wallis analyses, the R package rstatix v 0.7.0 was
used (Kassambara 2023). Model Il regression analyses
were also carried out in R using the package Imodel2 v
1.7-3 (Legendre 2018). To statistically test for associations
between the mutation patterns observed in Phase 2 and
their initial adaptive pathway, we first built a distance ma-
trix from the presence and absence matrix of Phase 2 mu-
tations in R. Using the vegan package v 2.5-7 in R, we
directly tested for associations between the distance ma-
trix of Phase 2 mutations and the adaptive pathway or mu-
tated codon with ANOSIM (Oksanen et al. 2020). We also
built a Neighbor-Joining (NJ) tree based on the presence-
absence matrix of accessory genes. To do so, we first calcu-
lated the Euclidean distances from the presence—absence
matrix of the accessory genes using the dist function in
R. We then built the NJ tree from the Euclidean distances
using the ape package in R (Paradis and Schliep 2019). We
calculated DSC for each pair of Phase 2 evolved popula-
tions using the vegan package. Dice’s coefficient of similar-
ity was calculated using the same distance matrix used to
build the NJ tree described above, as well as on a distance
matrix containing only the fixed mutations. In order to
statistically analyze Dice’s coefficient of similarity across

our groups, we employed a randomization test following
previously established methods (Card et al. 2021; Debray
et al. 2022). First, we calculated the average of the coeffi-
cients for all comparisons within an adaptive pathway
and for all comparisons between pathways. The difference
between these values was calculated and compared
against simulated means. We generated simulated means
to serve as a null hypothesis by randomly shuffling the
similarity data with 5,000 iterations. We then calculated
significance by measuring the proportion of permutations
in the expected distribution with a specificity statistic va-
lue greater than or equal to the observed value (Card et al.
2021). To identify genes or intergenic regions that were
more frequently mutated in populations descended from
one adaptive history but not the other, we built a 2 x2
FET for each mutated gene or intergenic region in R, for
a total of 163 contingency tests.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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