10P Publishing

@ CrossMark

OPEN ACCESS

RECEIVED
2 May 2024

REVISED
8 October 2024

ACCEPTED FOR PUBLICATION
17 October 2024

PUBLISHED
29 October 2024

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOL.

Environ. Res. Lett. 19 (2024) 124002

ENVIRONMENTAL RESEARCH
LETTERS

LETTER

https://doi.org/10.1088/1748-9326/ad8808

Leveraging synthetic aperture radar (SAR) with the National Water
Model (NWM) to improve above-normal flow prediction in

ungauged basins

Shiqi Fang"* (@, J Michael Johnson’

and A Sankarasubramanian'

! Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, United States of

America
2 Lynker, Fort Collins, CO, United States of America
* Author to whom any correspondence should be addressed.

E-mail: sfang6@ncsu.edu

Keywords: synthetic aperture radar, predictions, ungauged, streamflow

Supplementary material for this article is available online

Abstract

Effective flood prediction supports developing proactive risk management strategies, but its
application in ungauged basins faces tremendous challenges due to limited/no streamflow record.
This study investigates the potential for integrating streamflow derived from synthetic aperture
radar (SAR) data and U.S. National Water Model (NWM) reanalysis estimates to develop improved
predictions of above-normal flow (ANF) over the coterminous US. Leveraging the SAR data from
the Global Flood Detection System to estimate the antecedent conditions using principal
component regression, we apply the spatial-temporal hierarchical model (STHM) using NWM
outputs for improving ANF prediction. Our evaluation shows promising results with the
integrated model, STHM-SAR, significantly improving NWE, especially in 60% of the sites in the
coastal region. Spatial and temporal validations underscore the model’s robustness, with SAR data
contributing to explained variance by 24% on average. This approach not only improves NWM
prediction, but also uniquely combines existing remote sensing data with national-scale
predictions, showcasing its potential to improve hydrological modeling, particularly in regions

with limited stream gauges.

1. Introduction

Developing accurate flood prediction models
provides critical information to ensure sustainable
flood risk management, early warning systems, and
lifesaving responses (Maidment 2009, Johnson et al
2016). In the United States, the NOAA Office of
Water Prediction provides streamflow forecasts for
the entire river network of the United States (National
Weather Service 2022, Salas et al 2023) through the
National Water Model (NWM). The NWM fore-
casts are used to generate flood inundation maps
(Johnson et al 2019) which are being used by River
Forecasting Centers to provide operational guid-
ance during flood events. However, the operational
skill can still benefit from improved above-normal
flows (ANF) (defined as exceeding the 67th percent-
ile flow) as the raw NWM outputs suffer from both
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marginal and conditional biases (Johnson et al 2023).
Developing postprocessing models have been shown
to enhance the NWM forecast skill, however, NSEs of
forecasts for ANF conditions near gauged locations
are only skilled in 50% of evaluated basins (Frame
et al 2021, Johnson et al 2023, Fang et al 2024). The
ability to predict ANFs is likely worse in ungauged
basins, particularly in regions with limited USGS
gauging stations, highlighting the need for improved
ANF prediction using NWM forecasts.

Recent advancements in remote sensing (RS) data
have emerged as a viable alternative to supplement
in situ observations and process-based models (Xu
et al 2021, Sogno et al 2022, Tayal et al 2024). Studies
show they can benefit real-time forecasting capabil-
ities, particularly in estimating the current stage and
discharge (Van Dijk ef al 2015). RS data have been an
important component of the Global Flood Monitor
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System (GFMS), which has been running in real-time
for the last few years with data products (includ-
ing rainfall, flood, and Tropical Cyclone) being dis-
played at the NASA tropical rainfall measuring mis-
sion (TRMM) website (http://trmm.gsfc.nasa.gov/).
The GFMS uses satellite-based estimates of precip-
itation to estimate runoff generation, routing, and
flood inundation attributes such as stage. However,
the challenge is effectively translating RS data into
accurate streamflow forecasts in ungauged basins as
it only provides antecedent conditions with limited
information on future flood potential.

Streamflow forecasts are typically developed
using process-based models (Wood et al 2011,
Archfield et al 2015, Clark et al 2015) and/or data-
driven models (Kratzert et al 2019). Traditionally
process-based models have been used to tackle the
‘grand challenge of hydrology’ of achieving con-
sistence hydrologic prediction everywhere on earth
(Wood et al 2011, Sperna Weiland et al 2012). And
while efforts have substantially improved these mod-
eling paradigms, successfully achieving accurate
hydrologic prediction everywhere remains a challenge
due to difficulties in estimating antecedent conditions
particularly in regions with limited stream gauges.
Process-based models can utilize remotely derived
variables like precipitation, soil moisture, and evapo-
transpiration (Vinukollu et al 2011, AghaKouchak
et al 2015). To this end, there are numerous stud-
ies focused on incorporating synthetic, in situ, or
RS-derived antecedent conditions into forecast-
ing systems (Mazrooei and Sankarasubrama 2019,
Mazrooei et al 2021). For example, Revilla-Romero
et al (2016) utilized the ensemble Kalman filter to
integrate low-resolution satellite-based flood extents
from the Global Flood Detection System (GFDS) into
a global forecasting system aimed at real-time flood
forecasting. The forecast developed using remotely
sensed data such as GFDS data ignores the potential
changes in the precipitation and temperature in the
upcoming days/weeks.

While streamflow can be derived from RS instru-
ments, e.g. MODIS (Tarpanelli et al 2019, Sahoo
et al 2022) or LANDSAT (Gleason et al 2014), these
sensors provide lower spatial resolution and can be
impeded by clouds and other obstacles—particularly
in periods of above-normal or high flows (Alquraish
and Khadr 2021). On the other hand, technologies
such as synthetic aperture radar (SAR) can provide
high-resolution images of water conditions, even
in adverse weather conditions (Tsokas et al 2022,
Yoon et al 2022). Streamflow estimation using SAR
data usually involves building empirical relationships
between ground-measured streamflow and the SAR
data to estimate above-normal/high flow signal (Yoon
et al 2022); a curve number approach by estimat-
ing runoff from rainfall amounts (Hong and Adler
2008, Beck et al 2009); or a histogram thresholding
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or clustering method to separate flooded from non-
flooded areas in SAR imagery (Martinis et al 2009).
Hostache et al (2018) employed a modified particle
filter with sequential importance sampling to integ-
rate probabilistic flood maps from SAR into a
hydrologic and hydraulic model, while Cooper et al
(2018) demonstrated that assimilating SAR backs-
catter could outperform transforming it into water
levels. While the mentioned studies have demon-
strated notable skill in predicting streamflow at a
basin scale, their applicability on a continental scale
(e.g. Coterminous US) has not been demonstrated
to date. Further, assimilating RS data into a process-
based hydrological models at continental scales typ-
ically requires heavy computational demand. Under
these situations, data-driven methods like spatiotem-
poral hierarchical model (STHM) (Fang ef al 2024)
or long short-term memory (Feng et al 2020, Frame
et al 2021), can provide a hybrid approach that
leverage RS products and physics-based model out-
puts to develop ABN predictions at continental scale.
Recently, Fang et al (2024) introduced a STHM model
that improved NWM streamflow predictions using
a set of catchments and hydroclimatic characterist-
ics and antecedent conditions estimated based on
three-day averaged streamflow observations available
within the Hydrologic Unit Code (HUC)-8. While
this study presented a post-processing model that
improved ANF prediction across the coterminous US
(CONUY) basins, but the approach had limited skill
in predicting ANF for coastal basins and in obtain-
ing antecedent streamflow conditions particularly in
regions with limited stream gauge stations (e.g. sev-
eral HUCS8s in Region 09 Souris-Red-Rainy basin or
Region 13 Rio Grande).

The aim of this study is to understand if the
process based NWM, a suite of hydroclimate and
basin characteristics, and SAR streamflow data can
be integrated to improve on previous STHM efforts
to provide improved ANF estimates. The paper is
structured as follows: section 2 outlines the materi-
als and data used, section 3 presents the results with
a thorough analysis of the model’s predictions, and
section 4 discusses the results, emphasizing research
gaps and suggesting potential solutions to overcome
challenges.

2. Materials and methods

2.1. NWM Predictions, Hydroclimate and land use
data

The NWM makes predictions across a modified
version of the National Hydrographic Dataset
(NHDPlusV2, McKay et al 2012, Blodgett et al 2023 ).
The NWM is a continental-scale distributed high-
resolution hydrologic model that produces stream-
flow predictions for 2.7 million stream reaches across
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the CONUS, based on a variety of data ranging
from radar-gauge observed precipitation to numer-
ical weather prediction (National Research Council
2006). The NWM relies on the Weather Research and
Forecasting hydrologic model architecture (Ghotbi
et al 2020) and provides streamflow predictions
extending up to 30 d in advance over the CONUS.
NWM provides these predictions at gauged loca-
tions but still consists of errors, which depend on
both hydrologic process representation and forcing
errors (Viterbo et al 2020). To compare forecasts to
observations, co-located common feature IDs and
USGS National Water Information System gauges
were extracted from the Routelink file associated
with NWM v2.1. Catchment characteristics were
accessed from Johnson et al (2023) and Fang et al
(2024)which summarized hydroclimatic, land use,
and anthropogenic characteristics (e.g, upstream
storage) to gage locations in the Gages II Network
(Falcone 2011). Furthermore, the GAGESII dataset
includes the 2009 hydro-climatic network categor-
ies, distinguishing between controlled and natural
basins. Lastly, the REACHCODE associated with the
NHDPlusV2 COMID enables the identification of
Hydrologic Unit Code (HUC) regions provided by
the Watershed Boundary Dataset. All the above-
mentioned data can be accessed at https://github.
com/LynkerIntel/nwm-evaluation-2023.

2.2. Water surface metrics from GFDS-SAR
The GFDS provides a flood monitoring system cre-
ated by the Joint Research Centre of the European
Commission in partnership with the Dartmouth
Flood Observatory at Colorado University
(www.gdacs.org/flooddetection/Download/
Technical_Note_GFDS_Data_Products_v1.pdf).
The system integrates satellite measurements from
sensors including the TRMM, Global Precipitation
Measurement  Mission, Advanced Microwave
Scanning Radiometer-Earth, and AMSR2. These
measurements are amalgamated to generate a vari-
ety of products displaying flood signals. GFDS water
surface metrics have been instrumental in numer-
ous studies (Van Dijk et al 2016, Yoon et al 2022).
Moreover, various real-time flood monitoring applic-
ations rely on the data streams provided by GFDS.
GFDS estimates water surface metrics using
brightness temperatures. If the physical temperat-
ure remains constant, changes in brightness can be
assumed to be caused by changes in water in the
pixel. Since the raw values are influenced by factors
such as physical temperature, permittivity, surface
roughness, vegetation, atmospheric moisture, and
other environmental variables (Kugler and De Groeve
2007, Van Dijk et al 2016), Ty measurement refers to the
measured brightness temperature during wet condi-
tions. An M/C value can be defined as the ratio of
measurement (Tb,measurement) /wet Signal (Tb,calibration)
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over calibration/dry observations, which is detected
by SAR as water surface signal for proxy streamflow:

S— M _ Tb,measurement (1)
C Tb,calibration

where, Ty, is passive microwave radiometers, bright-
ness temperature, subscript ‘measurement’ and ‘cal-
ibration’ M and C, respectively. These can be accessed
from GFDS website (www.gdacs.org/flooddetection/
DATA/SINGLE/SignalTitfs/). We use M/C ratio,
which provides a measure of how the brightness tem-
perature (representing surface water or wetness) in
a given area deviates from normal dry conditions,
which can then be used to infer streamflow or flood
conditions. Once the river stage is sensed based on
the M/C value, we use that to assess the antecedent
conditions of the river.

2.3. Principal component regression (PCR) of M/C
ratio

Since the M/C ratio provided by GFSD is spatially
explicit and correlated, we use principal component
analysis (PCA) to reduce the dimension to estimate
the conditions of a given river. PCA helps convert the
correlated time series available at multiple grid points
into orthogonal components, so that fewer compon-
ents can explain the observed variance across space.
For each gauged location, we retain two components
of brightness temperature (T') by performing PCA on
the 24 nearest GFDS grid cells and develop a regres-
sion with the observed depth of daily streamflow (dis-
charge divided by the drainage area). To perform
this, we pool all gauged stations within HUCS (See
figure 1 for detailed steps). Thus, each HUC8 will have
a unique regression that can convert the PCs of the
M/C ratio available for any given location to estimate
the depth of streamflow at ungauged locations.

By utilizing PCA to reduce the dimensionality of
the M/C ratio from GFDS data, we effectively capture
the essential features of antecedent streamflow condi-
tions for estimating streamflow in ungauged basins.
Using the retained two PCs, indexed as ‘¢, the import-
ant features of the antecedent conditions, M/C ratio,
have been retained by score matrix (T,) (Camps-
Valls and Bruzzone 2005), and then applied a mul-
tiple linear regression between T, and the observed
daily streamflow y, expressed as depth of runoff
(i.e. streamflow divided by the drainage area), at
gauged stations within the HUC-8:

y=T,C+e (2)

where, the coefficient of regression (C) is given by:

= (1iTy) Ty (3)
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Figure 1. Key steps for leveraging SAR data to predict antecedent (i.e. 3 d) streamflow conditions: step 1: identify all Gages-1II
basins (red dots), grouped within the same HUCS (colored in blue); step 2: sampling M/C data for the gauged locations and the
associated 24 neighboring cells; step 3: loadings from the PCA for 24 neighbors; step 4: predicted streamflow based on the
multivariate regression (equation (2)) between the first two scores and the observed 3 d streamflow at the selected stations.

2.4. STHM for ANF prediction using SAR data
(STHM-SAR)
The aim of the study is to use SAR-estimated ante-
cedent streamflow conditions to further advance post
processing techniques that can be applied to large
scale process-based models. Here, we start with the
STHM defined in Fang et al (2024) and replace the
3 d area-weighted gaged flows with the SAR-derived
streamflow for the previous 3 d. Thus the new SAR
informed STHM-SAR can be written as:
Qqu(r,iiby = Provo,ry + Bracrijium,

+ 827,40} Ailr,ii}

+ B0k PET (7 a0y

+ Byoor, -1 A0 + Brooz, - Imp i iy

+ Bloos, 7} i)} T E{u(rijik)} (4)

where, Q"M is the NWM daily flow; pis the spear-
man correlation indicating moisture and energy
being in-phase or out-phase; PET is the mean 10 day
potential evaporation as mentioned above; Al is the
aridity index; Imp is the percent impervious; and ¢ is
the residual.

2.5. Model evaluation

To evaluate the skill of our STHM-SAR model, we use
the Nash—Sutcliffe efficiency (NSE) (i.e. coefficient of
determination, R?) metric which is widely used to
measure the predictive skill of hydrological models
(McCuen et al 2006). The model performance cri-
teria recommended by Moriasi et al (2007) was used
for evaluating performance meaning predictions were

considered ‘acceptable’ if NSE scores are greater than
0.5 and ‘good’ if the NSE is above 0.67.

Since we are interested in assessing the perform-
ance of the model for estimating flows in ungauged
locations, we use both spatial and temporal valida-
tion procedures similar to that of Fang et al (2024).
For spatial validation, we used a k(20)-fold cross-
validation method (Browne 2000) treating 5% of loc-
ations as ungauged within each hierarchical group
and fit the remaining 95% of stations for the period
1993 and 2018. We evaluated the STHM-SAR per-
formance for the period 2009-2018 for the left-out
basins. This process of leaving out 5% of the basins
is repeated until all evaluated in a cross-validation
mode. The temporal validation is performed to eval-
uate the STHM-SAR performance over a period dif-
ferent from the calibration, whereas the spatial val-
idation is performed to evaluate the STHM-SAR for
application in ungauged basins. The temporal val-
idation is performed by calibrating the STHM-SAR
model using the data from 1993 to 2008 with the
remaining data from 2009 to 2018 being considered
for validation. Thus, all the reported model evalu-
ation, NSEs in figures 2—4, are for the period 2009-
2018 based on k(20-fold cross-validation.

3. Results

We first evaluated the ability of GFDS SAR-derived
streamflow (from equation (2) in predicting the
observed daily streamflow using spearman rank cor-
relation for all natural basins within the CONUS
(figure 2). We also calculated the NSE between
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Figure 2. Spearman Rank correlation between above average SAR-derived and observed streamflow (all conditions) for Gages-1I
basins during the validation period (2010-2018) and the corresponding histogram.

the 3 d average streamflow from the GFDS-SAR
and observed 3 d average streamflow (Y axis)
(figure 3). Figure 3(a) also compares the NSE from
the GFDS-SAR with the NSE (X-axis) between the
3 d average streamflow estimated based on the simple
depth of streamflow using the drainage area method
(i.e. without using the GFDS-SAR stage estimates)
with the observed streamflow. We then conducted
an analysis of model performance using SAR-derived
data (figure 4) and present an examination of contrib-
uting factors in the STHM-SAR compared to the base
STHM (Fang et al 2024).

3.1. Performance of SAR-derived streamflow in
estimating observed streamflow

The correlation between SAR-derived and observed
streamflow varies across the CONUS (figure 2).
Figure 2 shows improvement in estimating 3 d
streamflow using the SAR-derived streamflow when
compared with the 3 d streamflow estimated using
the drainage area method The correlation between
SAR-derived streamflow and observed above aver-
age streamflow is notably strong, as depicted in
figure 2. Across all Gages-II basins, the mean cor-
relation exceeded 0.53 for high flows during valida-
tion, underscoring the reliability of the SAR-derived
streamflow in estimating the antecedent conditions.
Spatially, the Northwest region exhibited the highest
correlation, while the lowest correlation was observed
around the 95th meridian (Seager and Ting 2017,
Johnson et al 2023). Notably, the Tennessee River

Basins demonstrated limited performance by using
SAR-derived high streamflow. One potential reason
could be due to steep terrain and heavily controlled
flows due to the reservoir cascade is perhaps limiting
the ability to predict ABN flows. Prior work from Van
Dijk et al (2016) suggested that the most successful in
natural basins (with R > 0.8) are concentrated in the
southeast of the USA. However, their focus was on the
entire daily streamflow time series whereas we focus
primarily in estimating high flows in figure 2.
Comparing the R* values between GFDS SAR-
derived streamflow and the 3 d average stream-
flow with the R? values obtained using the simple
drainage-area method (as performed in Fang et al
2024) shows that GFDS-SAR derived streamflow
consistently performs better than the drainage-area
method in explaining the variability observed 3 d
streamflow (see figure 3(a)). Moreover, figure 3(b)
shows that the improved performance of SAR derived
streamflow decreased as the number of gauges
increases in the same HUCO08. This underscores that
these performance enhancements are notably more
significant in basins with limited streamflow gauges,
which is 29% of basins, mostly coastal basins, that
have less than 2 gauges within a HUC8 (<150 km
along coastal line, Fang et al 2024). Previous stud-
ies (Frame et al 2021, Johnson et al 2023) also show
challenges in estimating streamflow for basins with
limited gauges particularly in the coastal areas and
Missouri basin. Thus, this improvement is critical
that can help in the better estimation of antecedent
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costal site within 150 km from the coastline (Fang et al 2024).

conditions particularly in coastal basins and regions
with limited streamflow gauges.

3.2. STHM-SAR improves above-normal
streamflow predictions

Next, we look more closely at how the STHM-SAR
enhances NWM predictions in ANF events obtained
based on k-20 cross validation (as illustrated in
figure 4). From figure 4(b), we infer 81.6% of the
sites exhibit improved skill compared to the NWM
alone. Most of these improved sites were concentrated

in HUC2 regions (01-06, 15-18 as shown in figure 2).
The most substantial enhancements were observed in
the northwest regions, where over 85% of the sites
exhibited NSE values greater then 0.67. In compar-
ison with the findings of the gage aggregated STHM
from (Fang et al 2024), the STHM-SAR demonstrated
notable improvements, particularly in coastal sites,
showcasing an average NSE improvement of 0.15.
This highlights the benefits of estimating antecedent
conditions using SAR data to better predict high-
flow events. The accuracy of streamflow forecasting
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provides the capability for continuous adjustments
and updates to the forecast as new and relevant data
becomes available (for example through the Next
Generation Water Resource Modeling Framework
(Odgen et al 2021, www.weather.gov/media/owp/oh/
docs/2021-OWP-NWM-NextGen-Framework.pdf).
This adaptability by developing improved estimates
of antecedent conditions is crucial for maintaining
the forecast’s precision and relevance.

3.3. STHM-SAR predictors’ contribution

The STHM-SAR model, incorporating all predictors
from Fang et al (2024) along with the 3 day aver-
age streamflow estimated from GFDS-SAR estimates,
resulted in improvements in 86% of sites from nat-
ural basins, and 76% of sites from coastal basins
(figure 4(c)). To better understand the impact of
individual predictors, each predictor was assessed
using the relative importance estimator proposed by
(Gromping 2007) (figure 5). The NWM streamflow
alone accounts for more ~43% of the variance in pre-
dicting ABF across the CONUS proving the value of
having an operational, process-based model to draw
on. Critically, this suggests that the NWM prediction
is doing well at capturing variation in flow regimes
but not magnitudes. SAR-derived flow contributes

significantly as well, explaining 27% of the corres-
ponding variance. The remaining predictors contrib-
ute between 5%-12% of the observed streamflow
variance, as depicted in figure 5.

From figure 5(a), it is evident that, apart from
the coefficients associated with SAR-flow and NWM,
the coefficients of other predictors were predomin-
antly negative. This indicates an inverse relationship
between these predictors and the observed stream-
flow. According to figure 5(b), the impact of indi-
vidual hydroclimatic predictors on regionalization
performance is relatively limited. In contrast, com-
binations of these predictors play a more substan-
tial role, especially during specific periods. Notably,
the combination of PET and aridity index together
explained over 10% of the streamflow variance. This
underscores the importance of considering specific
combinations of hydroclimatic information, RS data
and NWM predictions, as they can substantially
enhance the understanding and prediction of ABF
conditions across CONUS.

In figure 5(b), it is evident that NWM reanalysis
streamflow predominantly contributes to explain-
ing the observed streamflow variance particularly
accounting for 54% overall on average in warmer sea-
sons. Notably, SAR-flow provides better antecedent
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conditions, particularly when NWM experiences lim-
ited skill in predicting ABF in the summer and fall
months. This demonstrates the synergy between these
predictors, where SAR-flow fills in the gaps and
enhances predictive accuracy, ensuring a more reli-
able estimation. Particularly, during the months of
June and September, SAR-flow becomes especially
influential, explaining over 35% of the streamflow
variance.

4. Discussion

The proposed STHM-SAR framework used the same
model structure as STHM (Fang et al 2024), but
showing more local accuracy through improvements
in antecedent conditions by replacing the previous
drainage area based depth of streamflow with the
SAR-derived flow at the HUCO08 level. The results
of our study confirm the effectiveness of the pro-
posed framework in GAGES-II natural basins. The
spatial calibration of the modeled streamflow, illus-
trated in figure 4, indicates that the validated STHM-
SAR model can improve predictive accuracy. One of
the notable strengths of the suggested approach lies in
its simplicity; it does not require complex models or
data assimilation techniques or additional predictors
to enhance streamflow predictions and relies on open
data and products. It leverages the inherent dynamics
present in RS data to effectively improve antecedent
conditions as illustrated in figure 5. This approach not
only simplifies the post processing modeling process
but also demonstrates the potential of utilizing exist-
ing data creatively to address challenges in ABF pre-
diction, especially in regions lacking comprehensive
streamflow measurements (figure 3).

The modeled ABF conditions, as depicted in
figure 4 aligns closely with the magnitude of the
observed streamflow, surpassing the performance of
STHM flow from Fang et al (2024). This align-
ment underscores the utility of the proposed SAR-
derived flow in better representing all locations across
a diverse domain. This achievement is attributed to
the integration of the correlation between the M/C
ratio and observed flow from inundation informa-
tion and leveraged using the PCR method. By utiliz-
ing the stage and M/C ratio dependencies, the SAR-
derived flow not only captures the high streamflow
patterns more effectively but demonstrates its capab-
ility in bridging the gap in data-scarce regions.

Compared with STHM (Fang et al 2024), the sub-
stantial improvement in the STHM-SAR perform-
ance stems from the addition of SAR-derived data.
Satellite products provide valuable information about
ANF conditions that can complement or substitute
in-situ readings. The increasing availability of high-
resolution earth observation data, offered freely by
numerous space agencies, opens avenues for enhan-
cing ANF forecasting and reanalysis based on Earth

S Fang et al

Observation along with openly available physical
modeling-based streamflow predictions.

5. Conclusions

The study demonstrates the effectiveness of integrat-
ing SAR data with the NWM to enhance predictions
of ANF in ungauged basins. The spatial-temporal
Hierarchical model for ANF prediction using STHM-
SAR shows a significant improvement of 54% on
average compared to previous STHM results (Fang
et al 2024), particularly benefiting coastal regions.
The spatio-temporal evaluation for natural basins
results indicate promising performance, with SAR
data contributing substantially to explaining variance
by 27% on average.

The correlation analysis between SAR-derived
and observed streamflow highlights the accuracy of
SAR-derived streamflow as a proxy for ABF predic-
tion, especially during high-flow events. The STHM-
SAR model, incorporating SAR-derived streamflow,
outperforms the raw NWM predictions, with 81.6%
of sites showing improved skill. The spatial distribu-
tion of model-predicted high streamflow demon-
strates significant enhancements, particularly in
basins lacking gauged locations.

The analysis of predictors’ contribution in the
STHM-SAR model emphasizes the importance of
NWM reanalysis streamflow and SAR-derived flow,
which together explain a significant portion of
observed streamflow variance. The study underscores
the value of considering specific hydroclimatic factors
and leveraging RS data to enhance flood predic-
tion capabilities, especially in data-scarce regions
and ungauged basins. Overall, the findings of this
study highlight the potential of RS data integra-
tion with physical-based model streamflow predic-
tions and suggest avenues for further research and
improvements in flood prediction modeling, con-
tributing to more effective risk management and
response strategies.
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