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ABSTRACT

Hyperdimensional Computing (HDC) is a brain-inspired computing

paradigm introduced to achieve energy e�ciencywith a lightweight

and single-pass training model. Hypervectors (HVs) at the heart of

the HDC systems play a fundamental role in elevating the accuracy

and obtaining the desired performance. Image-based HV encoding

requires two types of HVs: Position and Level HVs. State-of-the-art

approaches utilize pseudo-random methods for generating these

HVs, which might degrade system performance and cause higher

power consumption due to poor randomness in HV generation.

These conventional methods require iteratively calculating orthog-

onal Positional HVs for acceptable accuracy. This work proposes a

fast, ultra-lightweight, and high-quality HV generator incorporat-

ing low-discrepancy random sequences and the emerging unary

bit-stream processing. For the �rst time, we employ unary com-

puting (UC) to generate Level HVs, demonstrating that there is no

need for randomness in HDC systems. We generate Position HVs

using a single-source quasi-random sequence with a recurrence

property. Our proposed HV generation technique improves the

overall HDC accuracy by up to 6.4% for the medical MNIST dataset

while reducing the power consumption of HV generation by 98%.

CCS CONCEPTS

•Hardware→ Emerging technologies; •Mathematics of com-

puting; •Computer systems organization→ Real-time systems;

• Computing methodologies→ Cross-validation;

KEYWORDS

Hyperdimensional computing, low-discrepancy sequences, low-

power AI, random number generators, unary computing.

1 INTRODUCTION

Unary computing (UC) [23, 31, 32] has emerged as a compelling

computational paradigm, drawing inspiration fromhuman brain sig-

nals. The paradigm iswell-known for o�ering streamlined hardware

architectures. In contrast to traditional positional binary encoding,
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where signi�cance is attributed to bit positions, UC represents data

using cumulative counts distributed throughout a bit-stream with

logic 1, while the remaining positions hold logic 0. This uncon-

ventional presentation of data signi�cantly simpli�es arithmetic

operations while providing high robustness to error. Hyperdimen-

sional computing (HDC) is another brain-inspired computational

model representing scalars (and symbols) using long hypervectors

(HVs) reminiscent of bit-streams. For machine learning (ML) tasks

such as classi�cation, HDC encodes input data into long vectors

to capture class information and construct learning models [17].

The encoding process involves various steps, includingHV gener-

ation, shifting, multiplication, and addition of resultingHVs. Each

new data point contributes to theHV of the same class with no

error optimization. The process is single-pass, meaning each input

data is processed only once. While some state-of-the-art (SOTA)

approaches adopt single-pass learning [15], epoch-based processing

is also popular [7, 35].

In the existing literature, only a few studies explored unary bit-

stream processing in classi�er systems [4, 10, 22, 26]. This work

employs UC in designing HDC systems to achieve the lightest

possible classi�er network. Conventionally, HDC systems employ

correlation-aware bit �ipping for data encoding. In this approach,

similar numerical values are encoded with correlation, while dis-

tant values exhibit a larger margin of uncorrelation. Prior methods

introduce randomness in bit changes when transitioning HV bits

from one value to another. In this work, we advocate unary HVs,

free from randomness. Generating unaryHVs is straightforward

and cost-e�cient, o�ering a promising alternative to conventional

randomHVs. We further introduce a novel encoding approach uti-

lizing single-source quasi-randomness using low-discrepancy (LD)

sequences [16] to generate Position HVs. Unlike previous meth-

ods that employed a di�erent random sequence for each Positional

HV , our approach uses a simple logic design to produce various

HVs while ensuring the necessary orthogonality for the position

HVs [30]. The key contributions of this work are as follows:

w Introducing novel encoding methods for generating Position and

Level HVs.

x Presenting a cost-e�cient design for generating HVs by ex-

ploiting quasi-random sequences.

y Reevaluating feature extraction-free, straightforward data pro-

cessing for HDC by utilizing unary bit-stream processing.

z Assessing the Medical MNIST dataset for biomedical applica-

tions of HDC and analyzing various ML metrics derived from the

confusion matrix.
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2 BACKGROUND

HDC is a niche computing paradigm emerging as a promising tool

in electronic design systems for tiny ML applications, especially

for classi�cation tasks. HDC system blocks are built with several

levels of logic gates, such as XOR gates, counters, and shifters [1, 9].

Encoding, identi�ed as the �rst and most crucial step in HDC sys-

tems [5, 12], is nearly the only stage where input data undergoes

processing. Data processing typically occurs in a single pass in

most HDC models. The encoding process transforms input data

(e.g., scalars/symbols) into a distinct format (i.e., bit vectors), gener-

ating class information corresponding to each data label. An e�-

cient encoding stage plays a pivotal role in enhancing the overall

system performance, improving accuracy, and facilitating energy-

e�cient design [5, 9, 14]. In the �nal stage, a similarity calculation

is necessary to identify similar classes and label the sample [29].

In a high-level classi�cation, HDC systems can be divided into

two categories: d symbol-only systems and e numerical-value

systems [9, 11]. If the classi�cation problem contains only symbols,

such as language classi�cation or text processing [3], the symbols

are the only input values to process. For instance, in these cases,

letters or positions are the critical symbol-like inputs converted

to HVs. For inputs such as pixel values in image classi�cation

problems, the HDC system treats the data as numerical values.

Generally, the closer the numerical values, the more similar HVs

are in the HDC model.

This study focuses on a medical image processing system [33],

where pixels and their positions are important for the HDC model.

The encoding process begins by converting these data into suitable

HVs. The resulting HVs are binary, comprising logic 1s and

0s. Ensuring correlation among the generated vectors is crucial,

making the choice of the random source needed for generating

HVs pivotal. Particularly for HVs requiring orthogonality, the

level of randomness holds signi�cant importance. Since symbols

(here, pixel positions) lack numerical information, they must be

equally treated, with an equal probability for both logic 1 and

0within the vector. There should be no inherent similarity between

theHVs corresponding to di�erent symbols. Each symbol must

remain independent to ensure classi�ers estimate it unbiasedly.

Hence, for symbol-based problems, the midpoint of a probability

range (0 < ČĨ = 1

2
< 1) is chosen for eachHV .

The SOTAmethods commonly rely on pseudo-random sequences

for the encoding stage [2, 13, 27, 34]. However, employing quasi-

random sequences for HV generation could revolutionize the par-

adigm. In this study, we explore the use of quasi-random Van der

Corput (VDC) sequences, as the basis forHV generation. In general,

any VDC sequence in an arbitrary base B (VDC-B) could be ob-

tained by simply reversing the digits with respect to the radix point,

which is a value in the [0, 1] interval. For instance, the decimal

value 107 in base 5 is represented by (412)5. The corresponding

VDC-5 value is found by 2 × 5
−1 + 1 × 5

−2 + 4 × 5
−3

=
59

125
. Con-

sidering the high demand for low-cost generation of HVs, we

explore the special case of using powers-of-2 bases for the VDC

sequences (VDC-2Ĥ). This is as simple as designing a Ģĥĝ2 (Ā)-bit

counter, where Ā is the HV length. In this case, a simple hard-

wiring scheme can easily generate any VDC-2Ĥ sequence without

adding any extra hardware component [21, 28].

��

Figure 1: Similarity comparison of di�erent HV generation sources.

(a) Pseudo-Random, (b) VDC-2Ĥ , and (c) Proposed HV generator.

The �rst 10 HVs are selected for each method (Ā = 1024).

HVs must have an equal number of logic 1s and 0s. On the

other hand, the performance of HDC models is highly dependent

on the level of orthogonality between HVs; The more orthogonal

HVs, the better the HDC performance. The conventional (Baseline)

HV generation methods with pseudo-random sequences create

low-qualityHVs due to the poor “randomness” of these sequences.

Figure 1 demonstrates the inter-orthogonality between a sample

of tenHVs when utilizing di�erent HV generator sources. The

cosine similarity is used to measure the level of orthogonality [2].

For the pseudo-random method (Figure 1 (a)), the orthogonality is

poor due to existing intrinsic randomness in HV generation. On

the other hand, the one with VDC-2Ĥ sequences performs perfectly,

as there are no �uctuations in its orthogonality plot (Figure 1 (b)). As

the symbol HVs (or Positional HVs) require high orthogonality,

the VDC-2Ĥ sequences may not perform well when the number

of distinct symbols exceeds Ģĥĝ2 (Ā). To address this limitation,

we propose a novel technique to generate independent HVs by

utilizing only one sequence generator (VDC-2), one T �ip-�op (T-

FF), and one XOR gate. Figure 1 (c) depicts the inter-orthogonality

performance of the �rst ten HVs utilizing the proposed single-

random sourceHV generator.

3 PROPOSED METHOD

3.1 Design 1: Single-Source, Yet Su�ciently-Random

Generator for Position HVs

Our initial design proposal focuses on symbol-based HV genera-

tion and its corresponding encoding. Presently, the SOTA utilizes

any random source, in most cases “pseudo”-random [18, 19]. How-

ever, relying on such random sources poses several risks. Firstly,

there is the issue of randomness, which necessitates repetition.

While a training trial with a particular randomness may yield sat-

isfactory validation accuracy for a classi�cation problem, another

iteration could produce a better or worse result. Consequently, it

is necessary to iterate multiple times to achieve the best accuracy.

The number of needed iterations to guarantee high accuracy, par-

ticularly for the cases of using shorterHVs, can be very high.
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Figure 2: The overall design of proposed HV generators. (a) Position HV
generator including 1×VDC-2 random sequence generator + 1×comparator +
1×T-FF + 1×XOR gate. (b) Level HV generator design including 1×up-counter
+ 1×left-shifter + 1×comparator. The output HVs (Ĉ′s) are correlated to each
other in a unary format representation. (c) The conventional record-based
encoding in the HDC model.

Another concern with pseudo-randomness inHV generation

is the e�ciency of hardware design. The concern extends beyond

its relation to randomness and encompasses hardware design con-

siderations. While it may be acceptable to utilize pre-determined

random vectors for a limited dataset, thereby disregarding compu-

tational load, certain problems require dynamic vector generation.

For instance, in cases where the size of input images (e.g., pixel

positions) varies, additional position vectors are essential. Hence,

an ideal HDC system requires an HV generator with: strong or-

thogonality, lightweight hardware, and reduced iteration to ensure

e�cient generation of HVs. To satisfy these requirements, we

use a quasi-random sequence generator to produce the VDC-2 se-

quence. Our primary objective is to achieve optimal randomness

in a single iteration, entangled with the recurrent nature of the

random sequence and an ultra-lightweight design. Distinguishing

itself from the Baseline HDC (with pseudo-random sources, such as

linear-feedback shift registers - LFSR), our method does not employ

multiple random sequences to generate m di�erent D-sized vectors

and subsequently use them forHV generation. Instead, we gen-

erate only a single D-sized sequence and employ it to generate m

di�erent vectors.

Once a VDC-2 sequence is generated, we employ the proposed

circuit structure of Figure 2 (a) to generate di�erent symbol (Po-

sition)HVs. This circuit comprises a T-FF and an XOR gate. The

binary sequence elements are paired and compared with a scalar

(ď) value (in binary) within the range [0, D]. Each element from the

VDC-2 generator (with size D) is compared with ď , and the result is

recorded as logic 1 if ď > Ā and logic 0 otherwise. The generated

bit is then fed to a T-FF and XORed with itself. With this con�gura-

tion, the resulting vector exhibits a 1

2
probability (half logic 1s and

half logic 0s) with quasi-random distribution. By repeating this

operation for ć di�erent symbolHVs, independent quasi-random

Figure 3: Unary Level HV compared to the conventional randomly bit-�ipped
Level HV.

HVs with a probability of ČĨ = 1

2
are generated at a very low cost.

At this juncture, we establish a design checkpoint to report the

cost of the proposed HV generation design. The proposed design

consumes 25% less power than the Baseline design for generating

each Ā=1024 sizeHV .

3.2 Design 2: Unary Computing for Level HVs

Another key contribution of this work is to develop lightweight

logic hardware for representing Level HVs in the HDC system.

For the �rst time in the literature, we represent Level HVs not

randomly but deterministically by unary generatedHVs.We argue

there is no need for randomness in LevelHVs. Our proposed design

for generating unary style LevelHVs includes a left shifter module,

an up-counter (CNT ), and a comparator (CMP). For Ā g 256, the

shifter block shifts the pixel intensity value by (Ģĥĝ2Ā − 8)-bits to

generate the desired Level HV for the current pixel intensity value.

The up-counter is a Ģĥĝ2Ā-bit Johnson counter built with simple D-

type �ip �ops. The structure of the proposed LevelHV generator is

depicted in Figure 2(b). The rest of the encoding process, including

binding and bundling phases, remains the same as in the Baseline

HDC [20] (Figure 2(c)).

A signi�cant aspect of utilizing unary-style Level HVs is in

their inherent energy e�ciency due to a single transition from

0 to 1 (or from 1 to 0) [24], as depicted in Figure 3. Since there

is only one bit-level transition (≈ 0 activity factor), the associated

switching power dissipation is negligible. This provides a signi�-

cant improvement over the BaselineHV generation methods. The

Baseline approach su�ers from high switching activity due to lever-

aging a random bit-�ipping process [6], which increases the overall

switching (dynamic) power consumption of the system.

4 EXPERIMENTAL RESULTS

4.1 Hardware E�ciency

To evaluate the hardware e�ciency of the proposed design, we

implemented the design of Figure 2 in Verilog HDL and synthesized

it using the Synopsys Design Compiler v2018.06 with the 45nm

FreePDK gate library. Table 1 compares the hardware cost of the

Baseline and the proposed Position HV generator. Since the Base-

line Position HV generator utilizes LFSR as the random source,

generating the needed independent and orthogonalHVs signi�-

cantly increases area, power, and energy consumption proportional

to the number of distinct pixel positions inside the image. In other

words, for any image as the model input, we require Ĩ×ę distinct

LFSRs, where r and c are the numbers of image rows and columns,

respectively. On the other hand, incorporating the proposed Posi-

tionHV generator does not require many distinctHV generators.

Employing a single VDC-2 sequence as the random source would be

su�cient to generate independent and orthogonal Position HVs

when integrating it with a T-FF and an XOR gate. Utilizing the
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Table 1: Hardware Cost Comparison of Generating Position HVs using the
Baseline and the Proposed Method (D = 1024)

Design

Approach

Baseline Proposed

CPL

(ns)

Area

(Ćm2)

Power

(mW)

Energy

(nJ)

CPL

(ns)

Area

(Ćm2)

Power

(mW)

Energy

(nJ)

Per HV bit 0.380 246 0.797 3.03×10-4 0.430 288 0.597 2.57×10-4

Per entire HV 0.380 246 0.797 0.310 0.430 288 0.597 0.263

Per Image 0.380 192864 624.8 243.0 0.430 288 0.597 206.1

The results are obtained by considering the MNIST dataset images as a reference. ∥ CPL: Critical

Path Latency.

Table 2: Hardware Cost Comparison of Generating a Single Level HV using
the Baseline and the Proposed Method (D = 1024)

Design

Approach

CPL

(ns)

Area

(Ćm2)

Power

(mW)

Area×Delay

(Ćm2
×ns )

Baseline 0.330 10587 49.621 3493.710

Proposed 0.310 287 0.725 88.970

Considering 8-bit gray-scale image pixels within the [0,255] interval.

proposed Position HV generator reduces the power consumption

by 98% while improving energy e�ciency by 15% compared to the

Baseline method.

Similarly, we implemented the proposed unary-based Level HV

generator. In contrast to the Baseline method, which requires �ip-

ping the bits in random positions of Level HVs at each iteration,

the proposed method is free from randomness. For the Baseline

approach, we generate Level HVs by �ipping Ā

ĉ
=

1024

256
number of

bits at each iteration starting with theHV of full zeros (ĉ is pixel

intensity range or maximum value). Table 2 reports the correspond-

ing hardware costs. As can be seen, the Baseline HDC with random

bit-�ipping consumes signi�cantly higher area and power. More

importantly, our proposed unary Level HV generator outperforms

the Baseline design in terms of area-delay product.

4.2 Medical MNIST Performance

We evaluated the performance of the proposed HV generator on

various datasets of medical MNIST (medMNIST) [33], including

DermaMNIST, BloodMNIST, RetinaMNIST, and BreastMNIST. The

primary goal of this analysis is to see how hardware simpli�ca-

tion in our proposal impacts the accuracy of classi�cation tasks,

particularly those involving challenging biomedical datasets.

The medMNIST contains diverse medical datasets. We selected

speci�c sub-datasets based on varying numbers of classes. Specif-

ically, DermaMNIST comprises seven classes, BloodMNIST eight,

RetinaMNIST �ve, and BreastMNIST two classes. Figure 4 assesses

the performance of our proposal (which employs VDC-2-based

single-source random PositionHVs and unary LevelHVs) and the

Baseline design (with pseudo-random sources for Position and Level

HVs) across all datasets. We incorporate epoch-based training

options, given the increased complexity of these datasets compared

to conventional handwritten digit classi�cation tasks [8].

Throughout each epoch, we process the entire training dataset

and evaluate the accuracy of the validation set. We monitor training

Table 3: Performance Metric Equations

Sensitivity ĐČ
(ĐČ+ĂĊ )

F1-Measure 2×ĐČ
2×ĐČ+ĂČ+ĂĊ

Precision ĐČ
ĐČ+ĂČ Balanced Acc.

ďěĤĩğĪ .+ďĦěęğ Ĝ .
2

Speci�city ĐĊ
(ĂČ+ĐĊ )

FMI
√

(ČĨěę. × ďěĤĩğĪ .)

accuracy and perform bias-variance checks to ensure generaliza-

tion and avoid over�tting. The best-performing model from the

validation is tested based on heatmap confusion matrix metrics,

including sensitivity, precision, speci�city, F1-measure, balanced

accuracy, and Fowlkes–Mallows Index (FMI). The equations of all

these metrics are given in Table 3 (ĐČ : True Positives, ĐĊ : True

Negatives, ĂČ : False Positives, and ĂĊ : False Negatives).

Examining the results, our method consistently outperforms

in accuracy (ýęę :
ĐČ+ĐĊ

ĐČ+ĐĊ+ĂČ+ĂĊ ) as depicted in Figures 4 (a),

(c), (e), and (g). When assessing the validation accuracy perfor-

mance for the initial 30 epochs, the gradual ascent indicates faster

improvement with our method compared to the Baseline design.

Furthermore, the Baseline design needs to undergo more than one

iteration. Hence, for the Baseline design with random HV gen-

erators, we present the best result among 10 trials. We adopted

a learning rate (ā)-based model update for incremental learning.

During each sampling process, the model undergoes validation

accuracy evaluation, considering the impact of the new training

sample HV (ℎ). If validation improves based on the new contribu-

tion to the classHV (ÿ), then the training sample’s e�ect on the

learning model is incorporated, contributing to the classHV via

accumulation (as illustrated in Figure 2 (c)). The formula for updat-

ing classHV in the event of validation accuracy improvement is

ÿĤěĭ = ÿĥĢĚ + (ā × ℎ) (otherwise, it is ÿĤěĭ = ÿĥĢĚ − (ā × ℎ) [25]).

Our experiments achieved optimal results around ā=0.1 and ā=0.2.

We reported the results based on ā=0.1.

Next, we conducted a more comprehensive model evaluation for

each dataset using confusion matrices. Heatmap plots in Figure 4

visualize the improvement of each metric from 0 to 1. Generally,

for each metric, our design consistently outperforms the Baseline

design (Figures 4 (b), (d), (f), and (h)) when considering the perfor-

mance of individual class labels. For example, for DermaMNIST,

the sensitivity (a metric indicating the correctly predicted positive

values) never drops to 0.1 with our approach, whereas the Base-

line design reaches that level for some classes. The highest scores

achieved in both architectures are for speci�city (representing the

proportion of correctly predicted negative cases). For precision

(true positive accuracy, re�ecting con�dence score), our design

outperforms for nearly every per-class label across datasets. Addi-

tionally, the proposed architecture exhibits superior performance

for F1-measure, which considers both precision and recall. The

second-best metric for both hardware architectures is balanced

accuracy, o�ering a more insightful perspective for performance

analysis considering imbalanced confusion matrices (i.e., unevenly

distributed class labels). Lastly, FMI, a similarity calculation met-

ric, consistently yields better scores with our HDC architecture,

indicating higher predicted-actual class similarities. Thus, the new

hardware design with VDC-2 sequences and unary processing facil-

itates end-to-end processing with a lightweight design and better
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Figure 4: Performance evaluation of the proposed architecture on Medical MNIST datasets [33]. (a) Our approach in DermaMNIST, (b) Baseline HDC in DermaMNIST,
(c) Our approach in BloodMNIST, (d) Baseline HDC in BloodMNIST, (e) Our approach in RetinaMNIST, (f) Baseline HDC in RetinaMNIST, (g) Our approach in
BreastMNIST, and (h) Baseline HDC in BreastMNIST. Ā=1024 in all experiments.

ML performance, even for challenging medical datasets across vari-

ous performance metrics.

5 CONCLUSION

Hypervector (HV) generation is a crucial step in Hyperdimen-

sional Computing (HDC) in terms of accuracy and hardware e�-

ciency. The record-based encoding of HDC necessitates incorpo-

rating orthogonalHVs for the Positional data types and utilizing

correlated neighbor HVs for the Level HVs. The state-of-the-art

(SOTA) methods employ pseudo-randomness for generating orthog-

onal Positional HVs. The intrinsic nature of pseudo-randomness

leads to the deterioration of the overall model performance and

throughput of the HDC system. In this work, we apply � Van der

Corput (VDC) quasi-random sequence for generating PositionHVs

and � unary-based Level HV for the �rst time in the HDC liter-

ature. While the SOTA methods utilize distinct random sources
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for generating Position HVs, our proposal utilizes a single cost-

e�cient sequence generator. We avoid using a random bit-�ipping

scheme by employing unary-based Level HV generation. This

makes the hardware implementation more convenient and e�cient.

Our evaluation results demonstrate signi�cant improvements of

6.4%, 98%, and 15% in classi�cation accuracy, power consumption,

and energy e�ciency, respectively.
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