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ABSTRACT

Hyperdimensional Computing (HDC) is a brain-inspired computing
paradigm introduced to achieve energy efficiency with a lightweight
and single-pass training model. Hypervectors (HVs) at the heart of
the HDC systems play a fundamental role in elevating the accuracy
and obtaining the desired performance. Image-based HV encoding
requires two types of HVs: Position and Level HVs. State-of-the-art
approaches utilize pseudo-random methods for generating these
HVs, which might degrade system performance and cause higher
power consumption due to poor randomness in HV generation.
These conventional methods require iteratively calculating orthog-
onal Positional HVs for acceptable accuracy. This work proposes a
fast, ultra-lightweight, and high-quality HV generator incorporat-
ing low-discrepancy random sequences and the emerging unary
bit-stream processing. For the first time, we employ unary com-
puting (UC) to generate Level HVs, demonstrating that there is no
need for randomness in HDC systems. We generate Position HVs
using a single-source quasi-random sequence with a recurrence
property. Our proposed HV generation technique improves the
overall HDC accuracy by up to 6.4% for the medical MNIST dataset
while reducing the power consumption of HV generation by 98%.
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1 INTRODUCTION

Unary computing (UC) [23, 31, 32] has emerged as a compelling
computational paradigm, drawing inspiration from human brain sig-
nals. The paradigm is well-known for offering streamlined hardware
architectures. In contrast to traditional positional binary encoding,
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where significance is attributed to bit positions, UC represents data
using cumulative counts distributed throughout a bit-stream with
logic 1, while the remaining positions hold logic @. This uncon-
ventional presentation of data significantly simplifies arithmetic
operations while providing high robustness to error. Hyperdimen-
sional computing (HDC) is another brain-inspired computational
model representing scalars (and symbols) using long hypervectors
(HVs) reminiscent of bit-streams. For machine learning (ML) tasks
such as classification, HDC encodes input data into long vectors
to capture class information and construct learning models [17].
The encoding process involves various steps, including HV gener-
ation, shifting, multiplication, and addition of resulting HVs. Each
new data point contributes to the HV of the same class with no
error optimization. The process is single-pass, meaning each input
data is processed only once. While some state-of-the-art (SOTA)
approaches adopt single-pass learning [15], epoch-based processing
is also popular [7, 35].

In the existing literature, only a few studies explored unary bit-
stream processing in classifier systems [4, 10, 22, 26]. This work
employs UC in designing HDC systems to achieve the lightest
possible classifier network. Conventionally, HDC systems employ
correlation-aware bit flipping for data encoding. In this approach,
similar numerical values are encoded with correlation, while dis-
tant values exhibit a larger margin of uncorrelation. Prior methods
introduce randomness in bit changes when transitioning HYV bits
from one value to another. In this work, we advocate unary HVs,
free from randomness. Generating unary HV's is straightforward
and cost-efficient, offering a promising alternative to conventional
random HV's. We further introduce a novel encoding approach uti-
lizing single-source quasi-randomness using low-discrepancy (LD)
sequences [16] to generate Position HVs. Unlike previous meth-
ods that employed a different random sequence for each Positional
HV, our approach uses a simple logic design to produce various
HVs while ensuring the necessary orthogonality for the position
HYVs [30]. The key contributions of this work are as follows:

@ Introducing novel encoding methods for generating Position and
Level HVs.

@ Presenting a cost-efficient design for generating HV's by ex-
ploiting quasi-random sequences.

® Reevaluating feature extraction-free, straightforward data pro-
cessing for HDC by utilizing unary bit-stream processing.

® Assessing the Medical MNIST dataset for biomedical applica-
tions of HDC and analyzing various ML metrics derived from the
confusion matrix.
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2 BACKGROUND

HDC is a niche computing paradigm emerging as a promising tool
in electronic design systems for tiny ML applications, especially
for classification tasks. HDC system blocks are built with several
levels of logic gates, such as XOR gates, counters, and shifters [1, 9].
Encoding, identified as the first and most crucial step in HDC sys-
tems [5, 12], is nearly the only stage where input data undergoes
processing. Data processing typically occurs in a single pass in
most HDC models. The encoding process transforms input data
(e.g., scalars/symbols) into a distinct format (i.e., bit vectors), gener-
ating class information corresponding to each data label. An effi-
cient encoding stage plays a pivotal role in enhancing the overall
system performance, improving accuracy, and facilitating energy-
efficient design [5, 9, 14]. In the final stage, a similarity calculation
is necessary to identify similar classes and label the sample [29].

In a high-level classification, HDC systems can be divided into
two categories: @ symbol-only systems and @ numerical-value
systems [9, 11]. If the classification problem contains only symbols,
such as language classification or text processing [3], the symbols
are the only input values to process. For instance, in these cases,
letters or positions are the critical symbol-like inputs converted
to HVs. For inputs such as pixel values in image classification
problems, the HDC system treats the data as numerical values.
Generally, the closer the numerical values, the more similar HV's
are in the HDC model.

This study focuses on a medical image processing system [33],
where pixels and their positions are important for the HDC model.
The encoding process begins by converting these data into suitable
HVs. The resulting HVs are binary, comprising logic 1s and
0s. Ensuring correlation among the generated vectors is crucial,
making the choice of the random source needed for generating
HVs pivotal. Particularly for HVs requiring orthogonality, the
level of randomness holds significant importance. Since symbols
(here, pixel positions) lack numerical information, they must be
equally treated, with an equal probability for both logic 1 and
0 within the vector. There should be no inherent similarity between
the HVs corresponding to different symbols. Each symbol must
remain independent to ensure classifiers estimate it unbiasedly.
Hence, for symbol-based problems, the midpoint of a probability
range (0 < Pr = 1 < 1) is chosen for each HV.

The SOTA methods commonly rely on pseudo-random sequences
for the encoding stage [2, 13, 27, 34]. However, employing quasi-
random sequences for HV generation could revolutionize the par-
adigm. In this study, we explore the use of quasi-random Van der
Corput (VDC) sequences, as the basis for HV generation. In general,
any VDC sequence in an arbitrary base 8 (VDC-8) could be ob-
tained by simply reversing the digits with respect to the radix point,
which is a value in the [0, 1] interval. For instance, the decimal
value 107 in base 5 is represented by (412)s. The corresponding
VDC-5 value is found by 2x 571 + 1 x 572 +4x 573 = 15795. Con-
sidering the high demand for low-cost generation of HYV's, we
explore the special case of using powers-of-2 bases for the VDC
sequences (VDC-2"). This is as simple as designing a logs(D)-bit
counter, where D is the HV length. In this case, a simple hard-
wiring scheme can easily generate any VDC-2" sequence without
adding any extra hardware component [21, 28].
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Figure 1: Similarity comparison of different V' generation sources.
(a) Pseudo-Random, (b) VDC-2", and (c) Proposed HV generator.
The first 10 HV's are selected for each method (D = 1024).

HVs must have an equal number of logic 1s and @s. On the
other hand, the performance of HDC models is highly dependent
on the level of orthogonality between HVs; The more orthogonal
H Vs, the better the HDC performance. The conventional (Baseline)
HYV generation methods with pseudo-random sequences create
low-quality HV's due to the poor “randomness” of these sequences.
Figure 1 demonstrates the inter-orthogonality between a sample
of ten HVs when utilizing different V' generator sources. The
cosine similarity is used to measure the level of orthogonality [2].
For the pseudo-random method (Figure 1 (a)), the orthogonality is
poor due to existing intrinsic randomness in 4V generation. On
the other hand, the one with VDC-2" sequences performs perfectly,
as there are no fluctuations in its orthogonality plot (Figure 1 (b)). As
the symbol HV's (or Positional HV's) require high orthogonality,
the VDC-2" sequences may not perform well when the number
of distinct symbols exceeds logz(D). To address this limitation,
we propose a novel technique to generate independent HVs by
utilizing only one sequence generator (VDC-2), one T flip-flop (T-
FF), and one XOR gate. Figure 1 (c) depicts the inter-orthogonality
performance of the first ten HVs utilizing the proposed single-
random source HV generator.

3 PROPOSED METHOD

3.1 Design 1: Single-Source, Yet Sufficiently-Random
Generator for Position HV's

Our initial design proposal focuses on symbol-based HV genera-
tion and its corresponding encoding. Presently, the SOTA utilizes
any random source, in most cases “pseudo”-random [18, 19]. How-
ever, relying on such random sources poses several risks. Firstly,
there is the issue of randomness, which necessitates repetition.
While a training trial with a particular randomness may yield sat-
isfactory validation accuracy for a classification problem, another
iteration could produce a better or worse result. Consequently, it
is necessary to iterate multiple times to achieve the best accuracy.
The number of needed iterations to guarantee high accuracy, par-
ticularly for the cases of using shorter HV's, can be very high.
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Figure 2: The overall design of proposed HV generators. (a) Position HYV
generator including 1xVDC-2 random sequence generator + 1xcomparator +
1=xT-FF + 1xXOR gate. (b) Level H{V generator design including 1xup-counter
+ 1xleft-shifter + 1xcomparator. The output HVs (L’s) are correlated to each
other in a unary format representation. (c) The conventional record-based
encoding in the HDC model.

Another concern with pseudo-randomness in HV generation
is the efficiency of hardware design. The concern extends beyond
its relation to randomness and encompasses hardware design con-
siderations. While it may be acceptable to utilize pre-determined
random vectors for a limited dataset, thereby disregarding compu-
tational load, certain problems require dynamic vector generation.
For instance, in cases where the size of input images (e.g., pixel
positions) varies, additional position vectors are essential. Hence,
an ideal HDC system requires an HV generator with: strong or-
thogonality, lightweight hardware, and reduced iteration to ensure
efficient generation of HVs. To satisfy these requirements, we
use a quasi-random sequence generator to produce the VDC-2 se-
quence. Our primary objective is to achieve optimal randomness
in a single iteration, entangled with the recurrent nature of the
random sequence and an ultra-lightweight design. Distinguishing
itself from the Baseline HDC (with pseudo-random sources, such as
linear-feedback shift registers - LFSR), our method does not employ
multiple random sequences to generate m different D-sized vectors
and subsequently use them for HV generation. Instead, we gen-
erate only a single D-sized sequence and employ it to generate m
different vectors.

Once a VDC-2 sequence is generated, we employ the proposed
circuit structure of Figure 2 (a) to generate different symbol (Po-
sition) HV's. This circuit comprises a T-FF and an XOR gate. The
binary sequence elements are paired and compared with a scalar
(S) value (in binary) within the range [0, D]. Each element from the
VDC-2 generator (with size D) is compared with S, and the result is
recorded as logic 1if S > D and logic @ otherwise. The generated
bit is then fed to a T-FF and XORed with itself. With this configura-
tion, the resulting vector exhibits a % probability (half logic 1s and
half logic @s) with quasi-random distribution. By repeating this
operation for K different symbol Vs, independent quasi-random

ISLPED’24, August 5-7, 2024, Newport Beach, CA

Unary level HV

777 090 .00

Single transition

Figure 3: Unary Level {V compared to the conventional randomly bit-flipped
Level HYV.

Random level HV

Multiple transitions

HV's with a probability of Pr = % are generated at a very low cost.
At this juncture, we establish a design checkpoint to report the
cost of the proposed HV generation design. The proposed design
consumes 25% less power than the Baseline design for generating
each D=1024 size HV.

3.2 Design 2: Unary Computing for Level HVs

Another key contribution of this work is to develop lightweight
logic hardware for representing Level HV's in the HDC system.
For the first time in the literature, we represent Level HVs not
randomly but deterministically by unary generated HV's. We argue
there is no need for randomness in Level H{V's. Our proposed design
for generating unary style Level HV's includes a left shifter module,
an up-counter (CNT), and a comparator (CMP). For D > 256, the
shifter block shifts the pixel intensity value by (logaD — 8)-bits to
generate the desired Level HV for the current pixel intensity value.
The up-counter is a loga D-bit Johnson counter built with simple D-
type flip flops. The structure of the proposed Level HV generator is
depicted in Figure 2(b). The rest of the encoding process, including
binding and bundling phases, remains the same as in the Baseline
HDC [20] (Figure 2(c)).

A significant aspect of utilizing unary-style Level HVs is in
their inherent energy efficiency due to a single transition from
0 to 1 (or from 1 to @) [24], as depicted in Figure 3. Since there
is only one bit-level transition (x 0 activity factor), the associated
switching power dissipation is negligible. This provides a signifi-
cant improvement over the Baseline {V generation methods. The
Baseline approach suffers from high switching activity due to lever-
aging a random bit-flipping process [6], which increases the overall
switching (dynamic) power consumption of the system.

4 EXPERIMENTAL RESULTS
4.1 Hardware Efficiency

To evaluate the hardware efficiency of the proposed design, we
implemented the design of Figure 2 in Verilog HDL and synthesized
it using the Synopsys Design Compiler v2018.06 with the 45nm
FreePDK gate library. Table 1 compares the hardware cost of the
Baseline and the proposed Position HV generator. Since the Base-
line Position HYV generator utilizes LFSR as the random source,
generating the needed independent and orthogonal HV's signifi-
cantly increases area, power, and energy consumption proportional
to the number of distinct pixel positions inside the image. In other
words, for any image as the model input, we require rxc distinct
LFSRs, where r and c are the numbers of image rows and columns,
respectively. On the other hand, incorporating the proposed Posi-
tion HV generator does not require many distinct HV generators.
Employing a single VDC-2 sequence as the random source would be
sufficient to generate independent and orthogonal Position HV's
when integrating it with a T-FF and an XOR gate. Utilizing the
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Table 1: Hardware Cost Comparison of Generating Position Vs using the
Baseline and the Proposed Method (D = 1024)

. Baseline Proposed
Design
CPL Area Power Energy| CPL Area Power Energy
Approach R .
(ms) (pm*) (mW) (0J) |(ns) (pm*) (mW) (n])
Per HV bit [0.380 246 0.797 3.03x10|0.430 288 0.597 2.57x107*

Per entire HYV |0.380 246  0.797 0.310 [0.430 288 0.597 0.263

Per Image  [0.380 192864 624.8  243.0 |0.430 288 0.597  206.1

The results are obtained by considering the MNIST dataset images as a reference. || CPL: Critical
Path Latency.

Table 2: Hardware Cost Comparison of Generating a Single Level HV using
the Baseline and the Proposed Method (D = 1024)

Design CPL Area Power AreaxDelay
Approach (ns) (um?) (mW) (um?xns )
Baseline 0.330 10587 49.621 3493.710
Proposed 0.310 287 0.725 88.970

Considering 8-bit gray-scale image pixels within the [0,255] interval.

proposed Position HV generator reduces the power consumption
by 98% while improving energy efficiency by 15% compared to the
Baseline method.

Similarly, we implemented the proposed unary-based Level HV
generator. In contrast to the Baseline method, which requires flip-
ping the bits in random positions of Level Vs at each iteration,
the proposed method is free from randomness. For the Baseline
approach, we generate Level HV's by flipping % = % number of
bits at each iteration starting with the HV of full zeros (M is pixel
intensity range or maximum value). Table 2 reports the correspond-
ing hardware costs. As can be seen, the Baseline HDC with random
bit-flipping consumes significantly higher area and power. More
importantly, our proposed unary Level H{V generator outperforms
the Baseline design in terms of area-delay product.

4.2 Medical MNIST Performance

We evaluated the performance of the proposed HV generator on
various datasets of medical MNIST (medMNIST) [33], including
DermaMNIST, BloodMNIST, RetinaMNIST, and BreastMNIST. The
primary goal of this analysis is to see how hardware simplifica-
tion in our proposal impacts the accuracy of classification tasks,
particularly those involving challenging biomedical datasets.

The medMNIST contains diverse medical datasets. We selected
specific sub-datasets based on varying numbers of classes. Specif-
ically, DermaMNIST comprises seven classes, BloodMNIST eight,
RetinaMNIST five, and BreastMNIST two classes. Figure 4 assesses
the performance of our proposal (which employs VDC-2-based
single-source random Position HV's and unary Level HV's) and the
Baseline design (with pseudo-random sources for Position and Level
HVs) across all datasets. We incorporate epoch-based training
options, given the increased complexity of these datasets compared
to conventional handwritten digit classification tasks [8].

Throughout each epoch, we process the entire training dataset
and evaluate the accuracy of the validation set. We monitor training
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Table 3: Performance Metric Equations

sgs o P 2XTP
Sensitivity TPiFN] F1-Measure XTP+FPiFN
Precision % Balanced Acc. w
Specificity % FMI v/ (Prec. X Sensit.)

accuracy and perform bias-variance checks to ensure generaliza-
tion and avoid overfitting. The best-performing model from the
validation is tested based on heatmap confusion matrix metrics,
including sensitivity, precision, specificity, F1-measure, balanced
accuracy, and Fowlkes—Mallows Index (FMI). The equations of all
these metrics are given in Table 3 (TP: True Positives, TN: True
Negatives, FP: False Positives, and FN: False Negatives).

Examining the results, our method consistently outperforms
in accuracy (Acc : %) as depicted in Figures 4 (a),
(c), (e), and (g). When assessing the validation accuracy perfor-
mance for the initial 30 epochs, the gradual ascent indicates faster
improvement with our method compared to the Baseline design.
Furthermore, the Baseline design needs to undergo more than one
iteration. Hence, for the Baseline design with random HV gen-
erators, we present the best result among 10 trials. We adopted
a learning rate (n)-based model update for incremental learning.
During each sampling process, the model undergoes validation
accuracy evaluation, considering the impact of the new training
sample HV (h). If validation improves based on the new contribu-
tion to the class HV (C), then the training sample’s effect on the
learning model is incorporated, contributing to the class HYV via
accumulation (as illustrated in Figure 2 (c)). The formula for updat-
ing class HV in the event of validation accuracy improvement is
Chnew = Coiq + (n X h) (otherwise, it is Cpery = Co1g — (1 X h) [25]).
Our experiments achieved optimal results around 7=0.1 and =0.2.
We reported the results based on =0.1.

Next, we conducted a more comprehensive model evaluation for
each dataset using confusion matrices. Heatmap plots in Figure 4
visualize the improvement of each metric from 0 to 1. Generally,
for each metric, our design consistently outperforms the Baseline
design (Figures 4 (b), (d), (f), and (h)) when considering the perfor-
mance of individual class labels. For example, for DermaMNIST,
the sensitivity (a metric indicating the correctly predicted positive
values) never drops to 0.1 with our approach, whereas the Base-
line design reaches that level for some classes. The highest scores
achieved in both architectures are for specificity (representing the
proportion of correctly predicted negative cases). For precision
(true positive accuracy, reflecting confidence score), our design
outperforms for nearly every per-class label across datasets. Addi-
tionally, the proposed architecture exhibits superior performance
for F1-measure, which considers both precision and recall. The
second-best metric for both hardware architectures is balanced
accuracy, offering a more insightful perspective for performance
analysis considering imbalanced confusion matrices (i.e., unevenly
distributed class labels). Lastly, FMI, a similarity calculation met-
ric, consistently yields better scores with our HDC architecture,
indicating higher predicted-actual class similarities. Thus, the new
hardware design with VDC-2 sequences and unary processing facil-
itates end-to-end processing with a lightweight design and better
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Figure 4: Performance evaluation of the proposed architecture on Medical MNIST datasets [33]. (a) Our approach in DermaMNIST, (b) Baseline HDC in DermaMNIST,
(c) Our approach in BloodMNIST, (d) Baseline HDC in BloodMNIST, (e) Our approach in RetinaMNIST, (f) Baseline HDC in RetinaMNIST, (g) Our approach in

BreastMNIST, and (h) Baseline HDC in BreastMNIST. D=1024 in all experiments.

ML performance, even for challenging medical datasets across vari-
ous performance metrics.

5 CONCLUSION

Hypervector (HV) generation is a crucial step in Hyperdimen-
sional Computing (HDC) in terms of accuracy and hardware effi-
ciency. The record-based encoding of HDC necessitates incorpo-
rating orthogonal HV's for the Positional data types and utilizing

correlated neighbor HV's for the Level HVs. The state-of-the-art
(SOTA) methods employ pseudo-randomness for generating orthog-
onal Positional HV's. The intrinsic nature of pseudo-randomness
leads to the deterioration of the overall model performance and
throughput of the HDC system. In this work, we apply @ Van der
Corput (VDC) quasi-random sequence for generating Position HV's
and @ unary-based Level HV for the first time in the HDC liter-
ature. While the SOTA methods utilize distinct random sources
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for generating Position HVs, our proposal utilizes a single cost-
efficient sequence generator. We avoid using a random bit-flipping
scheme by employing unary-based Level HV generation. This
makes the hardware implementation more convenient and efficient.
Our evaluation results demonstrate significant improvements of
6.4%, 98%, and 15% in classification accuracy, power consumption,
and energy efficiency, respectively.
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