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Abstract—Antenna designs play a crucial role in wireless
communication systems where high-performance specifications
are greatly required. The radiation pattern (RP) specification
in both the E-plane and H-plane is important, as it connects
the antenna gain along a given direction. This performance is
calculated in the entire bandwidth for various frequencies and is
time-consuming. To speed up these simulations, a new approach
with the help of a generative adversarial network (GAN) is
presented, leading to the prediction of the expected radiation
pattern outcomes for the determined frequencies. This method
is verified for two previously optimized antennas, one operating
between 8.8-10.1 GHz and the other working in the 11.3-13.16
GHz band. The experimental simulation results prove that the
mean absolute error is less than (.35, which yields suitable
accuracy for RP predictions.

I. INTRODUCTION

In antenna designs, the term ‘radiation pattern (RP)’
presents the directional dependence of the power density of the
radio waves radiated by the source. Typically, the amplitude
is considered, but in some cases, the phase of the signal is
also required [1]. Usually, collecting the signal amplitude and
phase of antennas is not straightforward. Recently, diverse
methods such as Fourier transform [2], element-level pattern
diversity (ELPD) technique, and various optimization methods
have been presented, leading to the analysis of the RPs [3].
However, synthesizing RPs with these methods for both E- and
H-planes requires considerable computation time. To tackle
this problem, recently intelligent-based methods have been
presented in which deep neural networks [4] have proved their
effectiveness in various antenna designs.

Deep learning (DL) is based on artificial neural networks,
and the generative adversarial network (GAN) is a type of
DL network that leads to creating data as the input real data.
This study is devoted to employing the GAN network to
predict the RP of antennas for both E- and H-planes at various
frequencies. Firstly, an accurate model is trained by specifying
the model loss function and training options. Afterward, the
new data (i.e., RP) is predicated through the trained model.
For proving the effectiveness of the proposed method, the
RPs of two optimized antennas (presented in [4]) at 0° and
90° are considered, and the GAN network is trained and
constructed for predicting the specific schematic of RP at the
determined frequencies. The proposed method facilitates long-
lasting RP simulations and can estimate the RP features for
specific frequencies.

This paper is organized as follows: Section II presents the
proposed methodology leading to predicting the RP of antenna
for diverse frequencies. Section III describes the practical
implementation of the method in the passive antennas, and
finally, Section IV concludes this paper.

II. PROPOSED METHODOLOGY

The GAN network was initially developed by Ian Goodfel-
low in 2014 [5] for predicting generative models. It leads to
constitute images, text, audio, and video that are analogous to
real data. This section is devoted to presenting the application
of the GAN network in the RP images achieved from passive
antenna simulations.

The general structure of the GAN network is presented
in Fig. 1 in which a custom training loop is excused and
includes ‘Generator’ and ‘Discriminator’ networks. The input
of the generator network includes random vectors leading to
generated data, namely training data. From another side of
view, the discriminator network produces data from both a)
training data and b) generated data from the generator. As the
output of this network, the observations are classified as either
‘real” or ‘generated’ [6]. In summary, the generator produces
new data, and the discriminator evaluates whether the data is
‘real’ from the training data or ‘fake’ from the generator. The
generator and discriminator work against each other until the
generator can create realistic data.
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Fig. 1. Typical diagram of GAN structure.

As presented in Fig. 1, the real images as the training data
are first inserted into the neural network in which the image
datastore is created and resized. After determining the filter

L Predicated labels
Discriminator [=# .
(Real/Generated)



size with the number of filters, the network is ready for training
the network with a custom training loop.

After defining the two networks (i.e., generator network
and discriminator network), the training options for ‘epochs’
numbers with minimum batch size are specified. The validity
of the GAN network must be calculated using the accuracy
specification. To calculate the accuracy of the trained GAN
network, related loss functions with scores for both discrimi-
nator and generator networks must be determined.

III. SIMULATION RESULTS

To prove the effectiveness of the proposed method, we
simulate two antennas at the frequency band of 8.8-10.1
GHz and 11.3-13.16 GHz, respectively, and intend to predict
RPs for these antennas at specific frequencies. This section
is devoted to presenting the practical implementation of the
proposed methodology leading to the prediction of the RPs
for determined frequencies.

As it is known, training any neural network needs a suf-
ficient amount of training data. For this case, various RPs
at E- and H-plane are extracted for diverse values of design
parameters at different frequencies. Afterward, the proposed
network is trained based on the presented structure in Fig.
1. The target of the trained network is to predict the RPs of
passive antennas in E- and H-plane for various determined
frequencies.
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Fig. 2. Optimized antennas in [4]; Antenna-1 (left), Antenna-2 (right).

The proposed methodology is executed on the two opti-
mized antennas in [4]. Fig. 2 reports the structures of antennas
in which the suitable amount of training data (here, 500
RP images) is achieved by iterating the values of design
parameters and getting the related RPs for each one. For both
of the designs, three specific frequencies are selected. Hence,
the proposed GAN network in this study targets the selection
of the center frequency and the external limits of the band of
interest. In the generator network, the filter size and number of
filters are defined as 5 and 64, respectively. In the discriminator
network, the number of filters is set to 64 as well. Fig.s 3
and 4 present the practical implementation of the proposed
method for two optimized antennas depicted in Fig. 2. This
methodology can prove that the consumed simulation time
for RPs can be reduced effectively since RPs for determined
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Fig. 3. RPs for antenna-1 at ¢ = 0 (left), ¢ = 90° (right).
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Fig. 4. RPs for antenna-2 at ¢ = 0 (left), ¢ = 90° (right).

frequencies can be predicted with a mean absolute error of
less than 0.35 through the GAN networks.

IV. CONCLUSION

This study provides the practical implementation of deep
learning image completion technique through a GAN network
for extrapolating the RPs of passive antennas. The proposed
approach predicts the RPs of passive antennas for E- and H-
plane at center frequencies. This methodology will facilitate
the simulations devoted to extracting the RPs that are signifi-
cantly time-consuming.
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