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Abstract

Canonical correlation analysis (CCA) is a popular statistical technique for explor-
ing relationships between datasets. In recent years, the estimation of sparse canonical
vectors has emerged as an important but challenging variant of the CCA problem,
with widespread applications. Unfortunately, existing rate-optimal estimators for
sparse canonical vectors have high computational cost. We propose a quasi-Bayesian
estimation procedure that not only achieves the minimax estimation rate, but also
is easy to compute by Markov Chain Monte Carlo (MCMC). The method builds
on ([34]) and uses a re-scaled Rayleigh quotient function as the quasi-log-likelihood.
However, unlike ([34]), we adopt a Bayesian framework that combines this quasi-log-
likelihood with a spike-and-slab prior to regularize the inference and promote sparsity.
We investigate the empirical behavior of the proposed method on both continuous
and truncated data, and we demonstrate that it outperforms several state-of-the-art
methods. As an application, we use the proposed methodology to maximally correlate
clinical variables and proteomic data for better understanding the Covid-19 disease.
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1 Introduction

Canonical correlation analysis (CCA) is a statistical technique —dating back at least to [16]
— that is used to maximally correlate multiple datasets for joint analysis. The technique
has become a fundamental tool in biomedical research where technological advances have
made it possible to observe fundamental biological phenomena from multiple viewpoints —
the so-called multi-omic datasets ([38, 24, 27]). Over the past two decades, limited sample
size and growing dimensionality in these datasets, and the search for meaningful biological
interpretations, have led to the development of sparse CCA ([37, 38, 26, 36, 15]), where a
sparsity assumption is imposed on the canonical vectors.

Statistically optimal estimation of sparse CCA has been recently considered in the lit-
erature. ([11]) derived the minimax rate of estimation of sparse CCA, and proposed a
two-stage estimation procedure that achieves the rate. ([34]) uses a generalized Rayleigh
quotient approach to propose a two-stage estimator that also achieves the minimax rate.
These two rate-optimal estimation procedures share the same limitation, that is, high
computational cost. Specifically, in both approaches, each iteration of the first-stage op-
timization problem has a computational cost of O(p?®), where p is the joint number of
variables in the datasets. Furthermore, the two-stage nature of these estimators can also
be a problem in practice, since it can be hard to set the required stopping criterion of the
first-stage solver that guarantees a good behavior of the final estimator.

We address these issues by proposing a conceptually simple, yet rate-optimal quasi-
Bayesian estimator for sparse CCA. More specifically, building on ([34]), we propose a
quasi-Bayesian approach that employs a re-scaled version of the Rayleigh quotient function
as the quasi-log-likelihood together with a spike and slab prior to obtain a quasi-posterior

distribution. The method is agnostic to the covariance matrix estimators used in con-



structing the Rayleigh quotient function. For example, we observe in our experiments that
both the sample covariance matrix estimator and the Kendall’s-tau-based covariance ma-
trix estimator ([39]) can be used to construct the Rayleigh quotient function, and these
matrices are allowed to be singular. Although we do not pursue this here, one can straight-
forwardly extend our method to solve other generalized eigenvalue problems in the same
spirit as ([34]). In fact, at a high level, our method can be viewed as an improved version
of simulated annealing ([18, 3]) for minimizing the Rayleigh quotient under a sparsity con-
straint. As such, it can be easily extended to tackle other similarly challenging non-convex
statistical optimization problems with sparsity constraints.

We analyze the proposed estimator and derive its convergence rate (see Theorem 2).
In the particular case where sample covariance matrices are used to estimate the Rayleigh
quotient, we show that the estimator achieves the minimax rate for sparse CCA estimation,
under some modest sample size conditions.

We propose a Markov Chain Monte Carlo algorithm based on simulated tempering to
sample from the quasi-posterior distribution, and compute the estimator. At stationarity,
the proposed algorithm has a per-iteration cost of O(5%p), where 5 is the underlying sparsity
level of the posterior distribution. In all our numerical experiments, we have observed that s
is of the same order as s,, namely the true sparsity level of the principal canonical vectors,
leading to a very small percentage of false-positives. Furthermore, we show empirically
that for sufficiently large sample size, the mixing time of the algorithm scales linearly in
p. As a result, our estimator has a much lower computational cost than the Rifle estimator
in ([34]). We also compare our method with the popular mixedCCA estimator in ([39]).
The results show that although our method is computationally slower than mixedCCA, it

produces statistically better estimates. We note that the estimation rate of mixedCCA is



currently unknown.

The paper is organized as follows. In Section 2 we introduce our estimation procedure
and derive its convergence rate. In Section 3 we detail a simulated tempering algorithm to
sample from the resulting quasi-posterior distribution. In Section 4, we study the behavior
of the proposed method on both continuous and truncated data, and compare it with
other methods. In Section 5, we apply the method to a case study, where one aims to
correlate clinical and proteomic data from Covid-19 patients, for a better understanding
of the disease. Our analysis identifies that Alpha-1-acid glycoprotein 1 (AGP 1) plays an
important role in the progression of Covid-19 into a severe illness.

A Python code is available from https://github.com/rachelwho/Sparse-CCA.

2 Quasi-Bayesian sparse CCA using a Rayleigh quo-
tient function

Let (X,Y) € RP* x RPv be a pair of high-dimensional zero-mean random vectors with joint
distribution f and covariance matrices 3, < E(XX"), %, o E(YY™) and X, o E(XY™).

Let (Vgx, Vys) € RP* x RPY be a pair of principal canonical vectors of f, that is, a vector

pair that solves the following optimization problem:

T T T
max Vi Dy s.t. VX pVy = U, 20Uy = 1. 1
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that ||6,]|2 = 1) to be our main parameter of interest. The parameter 0, is identifiable only

up to a change of sign, and hence, we shall focus on the estimation of the related projector
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0.0F. Let us define p o Pz + Dy, and the matrices

0 X, | Xz O . Yo Y

AY "1, pY« and L A4+ B= )
Yoy O 0 X, X5, Xy

Using simple arguments, we notice that the problem in (1) is equivalent to the following

generalized eigenvalue problem (GEP):

max 0*A0 st. 0°BO = 2. (3)

0=(vi vl )TeRp
Clearly, finding a solution of (3) is equivalent to finding a solution of

def 0T A0
R(9) & 7 22 4
0:(11}:{2%))%6]1@? ) 0T BO’ (4)

where we convene that 0/0 = 0. The objective function R(-) in (4) is known as the
(generalized) Rayleigh quotient of A and B. The reformulation in (4) suggests a way to
estimate the sparse canonical vectors by directly targeting the Rayleigh quotient, and this
idea was first proposed in ([34]). Note that solving (4) requires specifying matrices A and B,
which are typically unknown in practice. Instead, given n i.i.d. samples Z < {(X:, )y
from f, one first constructs estimators of ¥, 3, and 3;,, denoted by f]x, f]y and f]my,
respectively, and then construct estimators of A and B (denoted by A and B, respectively)
from im, f]y, and f)xy in the same way as in (2). In Section 4, we will provide some examples
of constructing 3, iy, and i‘wy. Based on A and B, one then solves (4) with the Rayleigh
quotient R(+) replaced by its sample version R, (+;Z), which is defined as

TA
R.(0;Z) Y 0 Ae, Vo € R”.

0T Bo

To guarantee that the Rayleigh quotient R, (+;Z) is well-defined, we maintain the fol-

lowing assumption throughout this work.



H1. For all § € R?, |97 Af| < 0™ BY.

Remark 1. H1 implies that 9T A0 = 0 whenever TBf = 0, in which case we have
R.(6;Z) = 0/0 = 0. We note that H1 naturally holds when 3, 3,, and ¥,, are sam-
ple covariance matrices. Indeed, if ¥, = n '3 XX, ¥, = n ' 21, VY, and

Sy =n"! > iy XiYT, then for 0 = (v, v,;)", and by Cauchy-Schwarz’s inequality

1/2

A . n 12 fn
|07 AD| = |% Zi:l UgXin“y‘ < % {Zi:l <Uw>Xi>2} {Zi:l (vy, Y;>2}
= 2\/1};290%\ /v;f]yvy < Ugixvx + v;iyvy = 0T B0.

It is worth mentioning that in high-dimensional regimes where p > n, the constructed es-
timators 3, and f]y (e.g., sample covariance matrices) are usually singular, thereby making
a direct maximization of R, challenging. Similarly, other classical CCA algorithms based on
eigen-decomposition of B_lfl, or the singular value decomposition of S 1/ 22%2; 1/2 (see
e.g., ([21, 1])) are also difficult to use under these regimes. Furthermore, these classical
methods do not yield sparse estimates of the canonical correlation vectors.

([34]) addressed these issues by maximizing R, (-;Z) under a sparsity constraint. The
authors show that this maximization problem can be solved provided that a good initial
value that is sufficiently close to global maxima is provided. However, finding such a good
initial value is very costly. Furthermore, the Rayleigh quotient typically admits several

local maxima (as well as local minima and saddle points) that correspond to other canonical

vectors, making direct maximization of R, very challenging.



2.1 A Quasi-Bayesian approach

We propose a quasi-Bayesian framework that turns maximizing the Rayleigh quotient into

a Bayesian procedure. More precisely, we propose using
0 — 0,R,(0;Z) (5)

as the quasi-log-likelihood, where o,, > 0 is a scaling parameter. We combine this quasi-log-
likelihood with a spike-and-slab prior distribution, which is a common choice for Bayesian
sparse modeling ([13]). Specifically, given a variable selection parameter § € A o {0,1}7,

we let the conditional distribution of 8 given ¢ be

Ld N(0, p7Y), if 6, =1
7(0]6) = [ 7(6:15), where 6,5 = 0,16 ~ 0.07) T ()
e N(0,p,"), if ;=0
where pg > p; > 0 are precision parameters. Given some parameter u > 1 and integer s > 1,

the prior distribution of § is taken as the independent product of Bernoulli distribution

Ber(1/(1+ p")) conditioned to stay in the set A o {0 € A: ||0]lo < s}. More specifically,

P %\ 1\ 6o
0) o 1a,( H(l—i—p) (1+p“> o<1A3(5>(];) , VéeA. (7)

7j=1
If we combine the spike-and-slab prior with the quasi-log-likelihood in (5), we then obtain

the quasi-posterior distribution

11l

1

I1(8, d6|Z) o¢ 1a,(6) (—u ﬂ) exp (= 2X110113 = 22110 05113 + R (05:2) ) 46, (8)
PV po 2 2

where 65 is the component-wise product of # and d, || - ||2 is the Euclidean norm. Note that

in this posterior distribution, the parameter # is typically dense. However, since ¢ is sparse,
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so is #5. We note that the Rayleigh quotient R,, can take value +0o when its numerator is
non-zero while its denominator is zero. If this happens over a set with non-zero Lebesgue
measure, then (8) is not well-defined. H1 rules out these cases.

The spike-and-slab prior shown in (6) and (7) is fairly standard, and goes back at least
to ([13]). However the way it is combined with the pseudo-likelihood to yield (8) is non-
standard, and follows from ([2]). The key feature of this approach is that the parameter
6 enters the quasi-likelihood only through its sparsified form 605 (see (8)). This decouples
the active components (namely those corresponding to §; = 1) and the non-active com-
ponents (namely those corresponding to §; = 0), and is particularly attractive from the
computational standpoint. The approach should be viewed as an approximation of the
point-mass spike-and-slab prior ([23]), using the pseudo-prior device in ([5]). We refer the
reader to ([2]) for more details. However, we point out that the posterior contraction theory

developed in ([2]) cannot be applied to our setting.

2.1.1 Hyper-parameter tuning

The posterior distribution II is very robust to the choice of p; and u, and we recommend
choosing p; ~ 1 and u € (1,2] for best performance. The parameter py has no effect
on the statistical recovery of the selected components of 8, but can adversely impact the
MCMC mixing if its value is too large. We suggest setting py ~ n, in order to match the
posterior variance of the selected components that are actually zero (false-positives), and
the posterior variance of the true-negatives.

The sparsity level s is an upper-bound on the true sparsity of the signal, which is
typically unknown. We observe that if d;,...,9, RS Ber(1/(1 + p")), then by Chernoff’s
inequality (see e.g., [35, Theorem 2.3.1]), for any sq > exp(1l), we have P(||d]jp > s¢) <



S

(1/ p)(ufl) ° . This suggests simply choosing s = p in (6), and the resulting prior distribution

would still automatically concentrate on sets A, , for sy small. We made this choice in

S0
all our numerical implementations. We found that the resulting posterior distribution is
always automatically sparse, and learns the true sparsity of the signal. However, for the
theoretical analysis of the method we will assume that a sparsity level s is given such that

n > coslog(p), for some absolute constant ¢y. We discuss the choice of o,, below after the

statement of Theorem 2.

2.2 Connection with simulated annealing

Our methodology can be viewed as a principled version of simulated annealing algorithm
([18, 3]) for computing the Rifle estimator of ([34]). Given s > 1, let O, o {0 € R :

10]lo < s}. Let o; > 0 be given such that lim; ,o, 0y = +00, and define
I1,(d6) o e 21 (6)do), (9)

where df denotes the extension of the Lebesgue measure to the set ©,. The maximization
problem tackled by the authors of Rifle in ([34]) is maxyce, Rn(0;Z). A simulated annealing
solution to this problem consists in simulating a non-homogeneous Markov chain with
sequence of transition kernels {My, k > 1}, such that My has invariant distribution
IT;,. As oy, — o0, the distribution II;, puts most of its probability mass around the
global modes of R,, and the resulting Markov chain behaves similarly (under appropriate
conditions). There are however several limitations to simulated annealing in this particular
setting. First, the set Oy is a union of a large number of subsets with varying dimensions.

Therefore, sampling from II;, (that is, designing a good Markov kernel M, with invariant

distribution II;, ) is actually non-trivial. Second, the convergence of simulated annealing is



known to be highly dependent on the choice of the sequence {oy,, & > 1}. Our approach
circumvents the first issue by working with a relaxation of O, using the spike-and-slab
prior. We circumvent the second issue by connecting the annealing schedule to the sample
size n (o, = oy, see details below), in such a way that the fluctuations in the resulting

distribution II;, matches the statistical uncertainty of the underlying CCA problem.

2.3 Rate of convergence

Although the Rayleigh quotient R, (+; Z) may possess multiple local modes, we show in this
section that most of the probability mass of the quasi-posterior distribution II(-|Z) are

located around {#60,}. For M, N € R7? we define

def def

(M, N)p = Te(M"N), ||M][r <

(M, M)g, and [[M|op = sup [[Mull.

u€RY: [Jul2=1

For J C [1:¢] o {1,...,¢}, let M, ; denote the submatrix (M,;); jes. Given k > 1, we let

Amin( M, k) def min uwMu, and Amax(M, k) dof max u" Mu.

u€R?: [|ull2=1,[lullo<k u€R?: [|lullz=1,[lullo<k

Given an integer o > 1, we set

def
)\S,‘f;)X(M, s) = max max (M, A).
JC[L:g): | Jllo=s AersXs: |A|g=1
Rank(A)<a

We first make the following basic assumption without which the sparse CCA problem would
not be well defined.

H 2. The joint density f possesses positive definite covariance matrices ¥, ¥,, and X,

and a principal canonical vector pair 0, = (vy,,v;)", (0.2 = 1) with density level

IThroughout this work, the density level of a vector refers to the proportion of its non-zero elements.
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s, & |0«]|0- Furthermore, the difference between the largest and second largest eigenvalue

of S def p-1/2yp-1/2 (denoted by gap), is positive.

Our main assumption on the data generation process is the following.

H3. The dataset Z % {(X;,Y:)}, and the integer s > s, are such that the estimators Se,
f]y, )y satisfy the following.

1. For some absolute constants 0 < k < K,
min (Amin(ixa s+ 5*)7 )\min(iyy s+ S*)a >\min<27 s+ 5*)) Z K
max <>\max(iza S + S*)u )\max(iw S + S*)) Amax(i7 S + S*)) S R

2. For some constant r; (depending possibly on n,p),

A ~

max (Afﬁgx(Ex — Y545, A& (B, -, s+s,), \D (2% s+ s*)> <n.

max

Theorem 2. Assume HI1-H3, and suppose that p > max(cy, s, exp(1)), for some absolute

constant cy. Choose o, such that 1 < o, <p, and u > 1 such that p"~' > 2. Set

def N
€= —. (10)
gap
There exists some absolute constant Cy that depends only on k and K, such that the following

holds. For all M > Cy such that

M? kN2
sgop (1) oot 2 50 D log(o) i
we have
0507 a2 (s, o 9
IT( (0,0) : ‘—6—9*93 >M€|Z> < 2e 8gap(,§) mn < _
< ”95”% F ps*(u"‘l)
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Proof. See Section S-1.1 in supplementary material. O

The main conclusion of the theorem is that the posterior I1(:|Z) contracts around 6,07

at the rate at least Me. Furthermore, setting

e 007
pd:f/ 9% 11(d8,d0|Z),
Auxre 10513

we have

the result implies that P (as a frequentist estimator) estimates 6,60] at the rate Me. Indeed,
0507
ot — 0,07

<)
F Ay xRP ||95||%

We note that Theorem 2 applies to any given dataset Z and estimators i]x, iy that

T1(d5, d6)Z) < Me + de s (5) i, (12)
F

Hﬁ—&ﬂ

satisfy H3, regardless of how they are formed. In the particular case where S, f]y and

>, are covariances matrices, we show in Proposition 3 below that if f is a sub-Gaussian

distribution, then H3 holds with high probability. Furthermore ry = Cy\/(s + s,) log(p)/n.

In that case the condition in (11) becomes

]\42 E 2 o'n
8gap (g) Co (g) (s 4 s.)log(p) > s.(u+1)log(p),
which is easily satisfied when the scaling parameter o, satisfies n = O(0,,), as n — co. In

this case the convergence rate of P towards 0.0} is

c_ 1 [(s+sy) log(p)’ (13)

gap n
which achieves the minimax rate of the CCA problem, as derived in ([11]), by taking s
as some constant multiple of s,. Further increasing o, has no impact on this rate, but
of course, makes IT more concentrated around the modes of R, (+;Z), thereby making the
MCMC computation more challenging. This suggests that the choice o, o« n is the right

scaling.
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Remark 2.1. The discussion so far has focused on estimating the projector 6,07. If the
vector 0, itself is needed, we are able to construct an estimator of 0, from the projector
estimator P. Specifically, let v1(7/5) denote the leading eigenvector of 7/5, then from the
Davis-Kahan theorem (see e.g., [35, Theorem 4.5.5]), we have

min ([[or(P) = Oulla, 01(P) + 0uls) < 22 = 0,071l < 22| — 0,01, (14)

and |P — 0,07 ||¢ can be bounded as in (12).

2.3.1 On Assumption H3

It is well-known that Assumption H3-(1) holds true in the particular case of covariance
matrices of sub-Gaussian random vectors, provided that the sample size satisfies n > co(s+
s4) log(p), for some absolute constant cy. See for instance [28] Theorem 1, or [12] Lemma 6.5
for the Gaussian case, and [31] Theorem 3.2 for more general sub-Gaussian distributions.
Under roughly the same sample size conditions, H3-(2) is also known to hold as we show
below.

Proposition 3. Suppose that Z & {(X;,Y)}y are i.i.d. random vectors from a mean-

zero sub-Gaussian distribution f, with sub-Gaussian norm K < sup{|| (Z,u) ||y, u €
RP, |ul|la = 1}, where || - ||y, refers to the sub-Gaussian norm of a random variable. Let
YN, =n Y X XE, S, =t YT, and X =nt S0 Z,ZF . There exist absolute

constants ¢y, C' > 1, such that for all 1 < s < p, and all n > 4cyslog(p),

~

(XA]I - 217 S)? )\Er?a)x<2y - 21/7 S)’ )‘Ev?a)x

max Y

(5%, s)) < O A (S, 5)y | 20 108(p)

max ()\(O‘)
n

with probability 1 — 2p~(c0—1)s,
Proof. See Section S-2 in supplementary material. O
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2.3.2 Bayesian inference

We have developed a method that employs a quasi-posterior distribution to produce a
frequentist estimator. The idea of using a Bayesian framework to produce frequentist
estimators is of course well-established in statistical decision theory ([29]). The extension
to quasi-likelihood functions is also not new ([22, 6, 7]). An important statistical question
here is whether one can use the full quasi-posterior distribution II(-|Z) to carry inference on
0,07, for instance through credible sets. The difficulty is the lack of calibration of the quasi-
likelihood function (we could easily replace o,, by 20, as a scaling factor in the Rayleigh
quotient). To address this issue some authors have developed post-processing methods
to match samples from the quasi-posterior distribution to the corresponding frequentist
central limit theorem distribution ([4, 33]). However these methods rely crucially on the
Bernstein-von Mises theorem and the central limit theorem that are only well-understood
in fixed-dimensional settings. Extending these ideas to the (high/growing)-dimensional
setting remains largely open. We leave this question as a possible future research. Currently

we do not advocate the use of our quasi-posterior distribution for Bayesian inference on 6,.

3 Computation using Markov Chain Monte Carlo

As shown in Section 2.3, by re-scaling (annealing) the Rayleigh quotient function, we have
created a posterior distribution II(:|Z) that puts most of its probability mass around its
global mode (located near {£6,}). However, the annealing also significant decreases the
accessibility of the global mode starting from other parts of the space. To effectively deal
with this configuration, we propose a Markov Chain Monte Carlo sampling strategy based

on simulated tempering ([14, 20]). Given K temperatures 1 = t; < t5 < ... < tg, and

14



K positive weights ¢y, ..., cx, we introduce an extended distribution on X LA x RP x

{1,..., K}, which is
_ 1 a Op
£1(5, 6, K|2Z) o - exp <—||5||0 L6502 = L2 6 — 0512 + TR, (05 z>) a. (1)
Ck tk th th tk

We recover the distribution (8) as the conditional distribution of (¢,6) given & = 1 in
(15). To sample from (15), we use a simulated tempering Metropolis-Hastings-within-
Gibbs strategy that is described in Algorithm 1 in the supplementary material S-3. The
algorithm is very fast and scales well with the dimension p, and iteration k of the algorithm
has computational cost O(p||6®||2).

Algorithm 1 generates a Markov chain {X® ¢ > 0}, where X = (6@, 6® k®) ¢
X that is phi-irreducible aperiodic with invariant distribution given by (15). The pairs
(6®,0®) at times t where {k® = 1} then give the desired approximate samples from
[1(-|Z). For the investigation of mixing of the algorithm, please see the supplementary

material.

4 Numerical studies

We perform a simulation study that compares our approach to the frequentist methods Rifle
in [34] and mixedCCA in [39]. We investigate the behavior of these methods in two settings:
(i) continuous datasets, where we use sample covariance matrix estimator and (ii) mixed
datasets, where we use Kendall’s-tau-based estimator as proposed in [39]. The Python

codes for our method is available from https://github.com/rachelwho/Sparse-CCA.
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4.1 Simulated data generation

We simulate the datasets using the following model from [34]. Specifically, we let p, = p, =
p/2, and consider two (p/2)-dimensional random vectors X and Y with joint distribution
(X,Y) ~ N(0,X%). Here we let

Yo X A2V U, 2
Y= Y and Y, = ! yr Y

)
T T
Egy 2y \/Um*zzvm* \/Uy*zyvy*

where 0 < A\; < 1 is the largest generalized eigenvalue, and v,, and v,, are the principal
canonical vectors. The structures of >, and >, vary across different experimental settings,
and will be described in the subsequent sections. Clearly, (v, vy.) is the maximizer of
the Rayleigh quotient in (4), and A; is the maximum value. Then we generate n samples

Z={(XD, YO} from N(0,X).

4.2 Comparison with other methods

We compare our method to two other methods, namely Rifle [34] and mixedCCA [39]. We
investigate the behaviors of these methods in two settings. In the first setting, we use
continuous datasets and compare our method with both Rifle and mixedCCA. In the second
setting, we use mixed datasets and compare our method with mixedCCA (since Rifle is only

designed for the continuous datasets).

4.2.1 Description of Rifle and mixedCCA

Before presenting our experimental results, let us briefly describe the other two methods,
namely Rifle and mixedCCA. Rifle is a two-stage algorithm, where in the first stage, it

(approximately) solves a convex relaxation of the problem in (1) to produce an initial
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estimate of the singular vectors (v}, vy )T, which are then refined in the second stage using
gradient ascent on the Rayleigh quotient R, (-;Z), with a truncation step such that only
the m entries with the largest absolute values are kept (and the remaining entries are set
to zero). Here m is a user-specified parameter that indicates the desired sparsity level of
the estimated principle canonical vectors (v,,v,) — similar to s above. Note that since
the first stage involves solving a matrix optimization problem, its computational time is
typically much higher than that of the second stage. As a different approach, mixedCCA
proposes a novel and robust estimator S for the covariance matrix X, namely the Kendall’s-

tau-based estimator, and estimates the canonical vectors (v,,v,) by solving the following

convex problem:

Enzijxvgflmyvy — Mllvalli = Aallvgll, st 0TS, <1, v;f]yvy <1, (16)
Yy

where \; and Ay are positive regularization parameters that need to be selected. Problem

(16) is then solved via a sequence of LASSO problems.

4.2.2 Comparison with continuous datasets

We randomly generated 100 continuous datasets using the model in Section 4.1, with the
covariance matrices ¥, and ¥, constructed in a similar way to [39]. Specifically, we set
the sample size n = 200 and the dimension p = 500, and let ¥, and X, have the same
structure, namely a block-diagonal matrix with five blocks of dimensions {ds, ..., ds}, re-
spectively, and the (4, j')-th element of each block takes value 0.79791. We set {d,, ..., ds} =
{25, 50,83, 50,42} for 3, and {dy,....,ds} = {83,50,62,31,24} for ¥,. In addition, we let
M o= 0.8, (v); = (vye); = 1/3/3 for j € {1,6,11}, and (v4y); = (vye); = 0 otherwise.
Therefore, the true density level is s, = 6. In constructing the Rayleigh quotient R, (+; Z),

we used the sample covariance matrices as estimators of X, ¥, and X,,.
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In Algorithm 2, we let the set of temperatures be {1,1/0.9,1/0.8,1/0.7,1/0.6}, and
only recorded the iterations corresponding to temperature 1. For comparison, we used the
implementation of Rifle in the R package Rifle, and set the parameter m = 2s, = 12. As
pointed out in [34], the first stage is computationally expensive to run. In addition, we
empirically found that when the sample size n is not sufficiently large, either the estimated
v, or v, from the first stage of Rifle is often zero vector, which caused us serious problems in
running the second stage. Because of these issues, we evaluated separately the two stages
of Rifle, which we call Riflel and Rifle2, respectively. We ran Riflel with default parameters,
and ran Rifle2 starting from a solution generated by perturbing the ground-truth (vy,, v,,)",
where the perturbation was drawn from a centered Gaussian with standard deviation 0.2.
We used the implementation of mixedcca in the R package mixedCCA, where A\; and Ay were
selected using two different criteria, namely BIC1 and BIC2. For this reason, we shall call
the resulting algorithms mixedCCA-BIC1 and mixedCCA-BIC2, respectively. All the other
parameters in Rifle and mixedCCA were set to the default values in the R packages. Both

our algorithm and mixedCCA used the starting point found in the R package of mixedCCA.

The output of each algorithm was normalized to have unit Euclidean norms.

Comparison of running times. We first compare the computational efficiency of dif-
ferent algorithms. Since these algorithms converge to possibly different estimators, we
first ran each algorithm for a maximum iteration of 2000 to obtain the “limit point”
of the sequence generated by each algorithm, denoted by (9;,0;)*. Then, we termi-
nated each algorithm if it either reached 1000 iterations or the estimate (vy,v,)" satis-
fies max{|error(v,) — error(d,)|, |error(v,) — error(d,)|} < 1 x 107*. As mentioned above,

we treated the two stages of Rifle separately. We estimated the computation time for
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Table 1: The computation times of all algorithms averaged across 100 continuous datasets.

Algorithm Simulated tempering | MixedCCA-BIC1 | MixedCCA-BIC2 | Riflel | Rifle2
Running times (s) 12 9.6 10.9 276 2.2

Riflel using the default stopping criterion as in [34], and estimated the running time of
Rifle2 (starting from the perturbed ground-truth) using the termination criterion described
above.

We repeatedly ran these algorithms on 100 different simulated datasets, and show the
averaged estimated computation times of the algorithms in Table 1. The results confirm
the high computational cost of Rifle. The results also show that our proposed estimator
remains computationally competitive compared to mixedCCA, even though it is based on

MCMC.

Comparison of statistical efficiency. We measure the quality of the estimated prin-
ciple canonical vectors v, and v, using three metrics. The first one is the squared-l, errors

of v, and v, to the ground-truth v,, and v,,, respectively. Specifically, we have
error(v,) ' min (JJve — Va3 Vs + vx*||§) ) (17)

and error(v,) is defined similarly. The other two metrics are true-positive rate (TPR) and
true-negative rate (TNR), which measure the quality of variable selection by the estimated

v, and v,. For v, its TPR and TNR are defined as

det [{7 1 (va)j # 0, () 7 0} oy det {7 () = 0, (02 = O}
TPR() = 0 (o) 2001 SR UGy —0y Y

respectively, and for v,, its TPR and TNR are defined similarly.
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To estimate these metrics we run all the algorithms for 1000 iterations, well beyond
their convergence times. For each algorithm, we plot the quality of the estimated v, and
v, (measured by error, TPR and TNR) averaged across 100 datasets, and the results are
shown in Figure 1. Note that for Rifle, we only plot its second stage, which has a better
starting point (namely, the randomly perturbed ground-truth) as compared to the other
two algorithms.

From both Figure 1 and Table 1, we see that our algorithm not only outperforms Rifle
in terms of the quality of estimated v, and v, (across all the three metrics), but also enjoys
much shorter running time. Compared with MixedCCA, although our algorithm has slightly
longer computational time, the quality of estimated v, and v, from our algorithm is better,

and the advantage is especially significant in terms of error and TPR.

4.2.3 Comparison in a mixed data setting

In many applications, particularly bio-medical ones, researchers often face the challenge
that one of the variables X or Y is not observed directly, but only through its truncated
or quantized version. Specifically, we consider the truncated latent Gaussian copula model
of ([39]), which extends both the Gaussian copula model ([19]) and the latent Gaussian

copula model ([9]).

Definition 4 (Gaussian copula model). A random vector Z = (7, ..., Z,)" is a realization
of the Gaussian copula model, if there exists a transformation h : R? — R? such that h(Z) =
(hi(Z1), ..., hy(Zy))" ~ N(0,X) and for each j = 1,...,p, transformation h; : R — R is
monotonically increasing. We write this as Z ~ NPN(0, X, h).

Definition 5 (Truncated Gaussian copula model). The random vector (X, Y™)", where

X e RPr and Y € RPv, is a realization of a latent Gaussian copula model with truncation if
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Figure 1: Comparison of the quality of estimated v, and v, by all the algorithms in terms of

(a) squared-ly error (error), (b) TPR and (c) TNR. The results are averaged over 100 continuous

datasets. To better compare TPR and TNR, we show the results starting from the first iteration,

since the initial points are usually not sparse. The performances of mixedCCA-BIC1 and mixed CCA-

BIC2 are indistinguishable on plots (a) and (b).

21



there exists a random vector U € RPv such that (X,U) ~ NPN(0,%,h) and Y; = I(U; >
C))(U;=Cj)+Cjforall j =1,...,p,, where C' = (C4,...,C,,) is a truncation parameter.
We write (X,Y) ~ TNPN(0, %, h,C).

Taking h as the identity map, suppose that we are interested in the sparse CCA of
(X,U) ~ N(0,), but we observe only independent copies of (X,Y'), where Y; = I(U; >
C;)(U; — Cj) + Cj, for truncation levels C' = (C,...,C),). Clearly, the classical Pearson
sample covariance estimator cannot be used to estimate ¥. Nevertheless, building on ([9]),
([39]) showed that consistent estimators for ¥,, ¥, and X, can be constructed from inde-
pendent replications of (X,Y") using a Kendall’s-tau covariance. Based on those estimates
one can readily apply our Rayleigh quotient approach to obtain the sparse canonical corre-
lation vectors of ¥. We compare our estimator with MixedCCA. In this mixed data setting,
and unlike the continuous data setting, we found out that the two methods have compa-
rable performances, with a slight advantage to our method in terms of statistical recovery,
and a slight advantage to MixedCCA in terms of computational speed. We illustrate this
below in a low sample size regime.

We randomly generated 100 mixed datasets in a similar way as in Section 4.2.2, except
with an additional truncation step on the random vector Y. Specifically, we set the sample
size n = 180 and the dimension p = 200, and let ¥, and X, each have five diagonal blocks
of dimensions {dy, ..., ds}, respectively, and the (7, j')-th element of each block takes value
0.70=7"l. We set {dy, ...,ds} = {10, 20, 33,20, 17} for &, and {d1, ..., ds} = {33,20,25, 12,10}
for ¥,. In addition, we let v,, and v,, have the same structures as in Section 4.2.2 (so
that the true density level s, = 6), and set A; = 0.8. Let truc(-; C) be the (elementwise)
truncation operator at level C, such that given any vector y, truc(y; C),; = y; if y; > C and

truc(y; C'); = C otherwise. (In particular, we can recover the continuous data setting for
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C negatively large.) For each dataset, we generated n samples from (X, truc(U;C)), where
(X,U) ~N(0,%).

We ran Algorithm 2 with the set of temperatures {1,1/0.9,1/0.8,1/0.7,1/0.6}, that we
compare with both mixedCCA-BIC1 and mixedCCA-BIC2 in terms of the running time and
the statistical performances, as measured in Section 4.2.2. To evaluate the convergence
times, we first run both algorithms for N = 10,000 iterations to obtain their respec-
tive “limit points”.

The statistical performances of these algorithms (as measured by error, TPR and TNR)
over the 100 mixed datasets generated as above are shown in Figure 2, and Figure 3 and
Table 2. Because TPR and TNR are discrete values, we show the results of TPR and TNR
in terms of mean and standard deviation. The computation times are recorded in Table
3. Due to the low sample size, both methods are prone to producing poor estimates that
we consider as outliers. The boxplots in Figure 2 and Figure 3 report the distributions of
error(v,) and error(v,) respectively, with and without these outliers (by removing the points
outside of the whiskers of the boxplots).

In the low-truncation regime (C' = —2) we recover the same conclusion as in the contin-
uous data setting that our method outperforms mixedCCA. In the high-truncation setting
(C = 0), our method still slightly outperforms mixedCCA, particularly in the recovery of
vy. The performance in terms of TPR and TNR are mostly similar, but again with a
slight advantage to our method. However, here the computational time of our estimator is

noticeably higher than mixedCCA as shown in Table 3.
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TPR Vg Uy

C' (Truncation level) -2 -1 0 -2 -1 0
Simulated tempering |0.99 (0.07) [0.99 (0.07) |0.99 (0.07)|1.00 (0.03) 0.9 (0.07) |0.98 (0.09)
MixedCCA-BIC1  [1.00 (0.03) 0.99 (0.07) |0.99 (0.07) | 1.00 (0.03) |0.99 (0.07) |0.99 (0.07)
MixedCCA-BIC2  |1.00 (0.00) |1.00 (0.00) |0.99 (0.07)|1.00 (0.00) | 1.00 (0.00) |0.99 (0.07)

(a) TPR

TNR Uy Uy

C' (Truncation level) -2 -1 0 -2 -1 0
Simulated tempering | 1.00 (0.01) | 1.00 (0.01)|0.99 (0.01) | 1.00 (0.00) | 1.00 (0.00)|0.99 (0.01)
MixedCCA-BICT  |0.99 (0.01) |0.99 (0.01) |0.98 (0.01) |0.98 (0.01) [0.98 (0.01) |0.98 (0.01)
MixedCCA-BIC2  |0.98 (0.02) |0.97 (0.02) |0.96 (0.05) |0.97 (0.02) [0.97 (0.02) |0.95 (0.08)

(b) TNR

Table 2: Mean (and standard deviation) of TPR and TNR of our method and mixedCCA for

different values of truncation level C'.

5 Principal canonical correlation of clinical and pro-
teomic data in Covid-19 patients

Covid-19 is an infectious disease that is rapidly sweeping through the world. The disease
is caused by a severe acute respiratory syndrome coronavirus (SARS-CoV-2). There is
currently an intense global effort to better understand the virus and find cures and vac-
cines. We use our methodology to re-analysis a data set produced by [8] that aims to

identify biomarkers for early detection of severely ill Covid-19 patients®. To that end, the

2For reasons that are still poorly understood, about 80% of patients infected by SARS-CoV-2 experience

mild to no symptoms, whereas in about 20% of the cases, patients become severely ill.
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Method Computation Time (s)

C' (Truncation level) | -2 | -1 0

Simulated tempering [6.04 | 7.79 16.58
MixedCCA-BIC1 1.5410.81 2.28
Mixed CCA-BIC2 2.15] 4.8 6.19

Table 3: The computation times of all algorithms averaged across 100 continuous datasets for

different values of truncation level C.

study enrolled 86 patients (some non-Covid-19 patients, and among the Covid-19 patients,
some that developed mild symptoms, and some that became severely ill). The exact pro-
tocol for recruiting these patients is unclear. For each patient they measured three (3)
physical characteristics (sex, age, and body mass index), twelve (12) clinical variables as
routinely measured from blood samples (white blood cells count, lymphocytes count, C-
reactive protein, etc...). Furthermore, the serum of each patient is analyzed by liquid mass
spectrometry-based proteomics to quantify their proteome and metabolome. In [8], the
data is used to build a statistical model to predict whether or not a Covid-19 patient will
progress to a severe state of illness. The dataset of [8] is freely available from the journal
website.

We use canonical correlation analysis to re-analyze the data. A common working as-
sumption is that SARS-CoV-2 induces patterns of molecular changes that can be detected
in the sera of patients. Canonical correlation analysis may help identify these patterns. To
do this we focus on the proteomic data, and we estimate the principal sparse canonical cor-
relation between the physical and clinical variables on one hand and the proteomic variables

on the other. See for instance [30] for a similar analysis on tuberculosis and malaria.
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We pre-process the data by removing all the proteins for which 50% or more values
are missing, leading to a total of p, = 513 proteins, and p, = 16 clinical and physical
variables. The sample size n = 86. Liquid mass spectrometry-based proteomics typically
produces a large quantity of missing values ([17, 25]). We make the assumption here
that the missing values are driven mainly by detection limit truncation ([17]). We apply
both our algorithm and mixedCCA to this problem, with the same parameter setting as in
the simulation test on the mixed datasets (cf. Section 4.2.3). We run our algorithm for
N = 10,000 iterations. Since we do not know the true canonical pair, we will focus on the
estimated canonical correlation to measure the performance of two algorithms. In terms
of the estimated canonical correlation, both our algorithm and mixedCCA takes less than 1
second to converge.

Our estimate of the principal canonical vectors of first dataset (v,,) has only one se-
lected component (corresponding to C-reactive protein — CRP) with estimated inclusion
probability of II(6; = 1|Z) = 0.99. All other physical and clinical variables have inclusion
probabilities smaller than 0.1. We found also that the principal canonical vectors of the
proteomic data is also driven by a single protein (P02763, also known as Alpha-1-acid gly-
coprotein 1 or AGP 1), with estimated inclusion probability of II(§; = 1|Z) = 0.89. All
other proteins have inclusion probability smaller than 0.1. Fig. 4 shows the traceplot of
the estimated canonical correlation p between the two data set, as well as the boxplot and
autocorrelation function of the MCMC output (after burning in 3/4 of iterations) of the
coefficients of CRP and AGP 1 in the quasi-posterior distribution. The fast decay of the
autocorrelation functions show a good mixing of the MCMC sampler.

MixedCCA also selects CRP for the clinical dataset and AGP 1 for the proteomic dataset,
but both BIC1 and BIC2 criterion select many other variables. mixedCCA-BIC1 also selects
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glucose for clinical dataset and 3 other variables for the proteomic dataset, with estimated
canonical correlation 0.90. mixedCCA-BIC1 selects 8 other variables for clinical dataset and
3 additional variables for the proteomic dataset with estimated canonical correlation 0.93.
Although the estimated canonical correlation of mixedCCA is larger than the estimated
canonical correlation (0.80) in our algorithm, the highly sparse nature of the estimated
canonical vectors estimated from our method is striking.

Several studies have observed the predictive power of C-reative protein (CRP) in the
progression of Covid-19 into a severe illness (see for instance [32] for a meta-analysis). This
suggests that the correlation detected in our analysis between the two datasets is indeed
driven by the progression of Covid-19 into a severe illness. Therefore, our analysis suggests
that protein AGP 1 may also be playing an important role in the progression of Covid-19
into a severe illness. In Fig. 5, we present the boxplot of CRP and AGP 1 by group of
patients. We can see that severe covid patients will have higher value of CRP and AGP
1, compared to non-covid and non-severe patients. We learn from Uniprot?®, that AGP 1
functions as transport protein in the blood stream, and appears to function in modulating
the activity of the immune system during the acute-phase reaction. Furthermore, AGP 1
appears on the list of differentially expressed proteins in the sera of severely ill Covid-19
patients designed by [8], and also appeared in the literature as playing a role in the immune

system’s response to malaria ([10]).

6 Conclusion

In this work, we have developed a minimax optimal estimation procedure for sparse canon-

ical correlation analysis using a quasi-Bayesian framework. Our method can be further

3https://www.uniprot.org

28



Esti d correlation _ Autocorrlation of CRP Boxplot of CRP Autocorrlation of AGP 1 Boxplot of AGP 1

10 é

0.8 fRAANL_IM _1aibes .10 L
0.6

0.4

0.2

0.2
500 1000 1500 2000 0 100 200
Iterations Lag

o
)
o

AGP 1

Figure 4: From left to right: The first plot is the trace plot of estimated canonical correlation;
The second and third plot is the autocorrelation and boxplot of the coefficient of CRP from
MCMC output; The fourth and fifth plot is the autocorrelation and boxplot of the coefficient of
AGP 1 from MCMC output.

extended to capture more than one canonical vector, either by deflation, or by reformulat-
ing the problem as a higher dimensional canonical correlation analysis estimation problem
as in [34]. Furthermore, one can straightforwardly extend our method to solve other gener-
alized eigenvalue problems that arise in other statistical problems, as for instance in Fisher
discriminant analysis. At a higher level, the method developed in this work can be viewed
as a more statistical implementation of simulated annealing for optimization under spar-
sity constraints. As such, it can be applied more widely to solve non-convex optimization

problems with sparsity constraints.
SUPPLEMENTARY MATERIAL

Proofs and technical details: It contains the proofs of Theorem 2 and Proposition 3,

as well as the description and investigation of the MCMC algorithms. (.pdf file)
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