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Abstract

Canonical correlation analysis (CCA) is a popular statistical technique for explor-
ing relationships between datasets. In recent years, the estimation of sparse canonical
vectors has emerged as an important but challenging variant of the CCA problem,
with widespread applications. Unfortunately, existing rate-optimal estimators for
sparse canonical vectors have high computational cost. We propose a quasi-Bayesian
estimation procedure that not only achieves the minimax estimation rate, but also
is easy to compute by Markov Chain Monte Carlo (MCMC). The method builds
on ([34]) and uses a re-scaled Rayleigh quotient function as the quasi-log-likelihood.
However, unlike ([34]), we adopt a Bayesian framework that combines this quasi-log-
likelihood with a spike-and-slab prior to regularize the inference and promote sparsity.
We investigate the empirical behavior of the proposed method on both continuous
and truncated data, and we demonstrate that it outperforms several state-of-the-art
methods. As an application, we use the proposed methodology to maximally correlate
clinical variables and proteomic data for better understanding the Covid-19 disease.
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1 Introduction

Canonical correlation analysis (CCA) is a statistical technique –dating back at least to [16]

– that is used to maximally correlate multiple datasets for joint analysis. The technique

has become a fundamental tool in biomedical research where technological advances have

made it possible to observe fundamental biological phenomena from multiple viewpoints —

the so-called multi-omic datasets ([38, 24, 27]). Over the past two decades, limited sample

size and growing dimensionality in these datasets, and the search for meaningful biological

interpretations, have led to the development of sparse CCA ([37, 38, 26, 36, 15]), where a

sparsity assumption is imposed on the canonical vectors.

Statistically optimal estimation of sparse CCA has been recently considered in the lit-

erature. ([11]) derived the minimax rate of estimation of sparse CCA, and proposed a

two-stage estimation procedure that achieves the rate. ([34]) uses a generalized Rayleigh

quotient approach to propose a two-stage estimator that also achieves the minimax rate.

These two rate-optimal estimation procedures share the same limitation, that is, high

computational cost. Specifically, in both approaches, each iteration of the first-stage op-

timization problem has a computational cost of O(p3), where p is the joint number of

variables in the datasets. Furthermore, the two-stage nature of these estimators can also

be a problem in practice, since it can be hard to set the required stopping criterion of the

first-stage solver that guarantees a good behavior of the final estimator.

We address these issues by proposing a conceptually simple, yet rate-optimal quasi-

Bayesian estimator for sparse CCA. More specifically, building on ([34]), we propose a

quasi-Bayesian approach that employs a re-scaled version of the Rayleigh quotient function

as the quasi-log-likelihood together with a spike and slab prior to obtain a quasi-posterior

distribution. The method is agnostic to the covariance matrix estimators used in con-
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structing the Rayleigh quotient function. For example, we observe in our experiments that

both the sample covariance matrix estimator and the Kendall’s-tau-based covariance ma-

trix estimator ([39]) can be used to construct the Rayleigh quotient function, and these

matrices are allowed to be singular. Although we do not pursue this here, one can straight-

forwardly extend our method to solve other generalized eigenvalue problems in the same

spirit as ([34]). In fact, at a high level, our method can be viewed as an improved version

of simulated annealing ([18, 3]) for minimizing the Rayleigh quotient under a sparsity con-

straint. As such, it can be easily extended to tackle other similarly challenging non-convex

statistical optimization problems with sparsity constraints.

We analyze the proposed estimator and derive its convergence rate (see Theorem 2).

In the particular case where sample covariance matrices are used to estimate the Rayleigh

quotient, we show that the estimator achieves the minimax rate for sparse CCA estimation,

under some modest sample size conditions.

We propose a Markov Chain Monte Carlo algorithm based on simulated tempering to

sample from the quasi-posterior distribution, and compute the estimator. At stationarity,

the proposed algorithm has a per-iteration cost of O(s̄2p), where s̄ is the underlying sparsity

level of the posterior distribution. In all our numerical experiments, we have observed that s̄

is of the same order as s?, namely the true sparsity level of the principal canonical vectors,

leading to a very small percentage of false-positives. Furthermore, we show empirically

that for sufficiently large sample size, the mixing time of the algorithm scales linearly in

p. As a result, our estimator has a much lower computational cost than the Rifle estimator

in ([34]). We also compare our method with the popular mixedCCA estimator in ([39]).

The results show that although our method is computationally slower than mixedCCA, it

produces statistically better estimates. We note that the estimation rate of mixedCCA is
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currently unknown.

The paper is organized as follows. In Section 2 we introduce our estimation procedure

and derive its convergence rate. In Section 3 we detail a simulated tempering algorithm to

sample from the resulting quasi-posterior distribution. In Section 4, we study the behavior

of the proposed method on both continuous and truncated data, and compare it with

other methods. In Section 5, we apply the method to a case study, where one aims to

correlate clinical and proteomic data from Covid-19 patients, for a better understanding

of the disease. Our analysis identifies that Alpha-1-acid glycoprotein 1 (AGP 1) plays an

important role in the progression of Covid-19 into a severe illness.

A Python code is available from https://github.com/rachelwho/Sparse-CCA.

2 Quasi-Bayesian sparse CCA using a Rayleigh quo-

tient function

Let (X, Y ) ∈ Rpx ×Rpy be a pair of high-dimensional zero-mean random vectors with joint

distribution f and covariance matrices Σx
def
= E(XXT), Σy

def
= E(Y Y T) and Σxy

def
= E(XY T).

Let (vx?, vy?) ∈ Rpx × Rpy be a pair of principal canonical vectors of f , that is, a vector

pair that solves the following optimization problem:

max
vx∈Rpx , vy∈Rpy

vTx Σxyvy s.t. vT

xΣxvx = vT

yΣyvy = 1. (1)

Since we are only interested in the directions of vT
x? and vT

y?, we set θ?
def
=

(vT
x?,v

T
y?)T

‖(vT
x?,v

T
y?)T‖2 (so

that ‖θ?‖2 = 1) to be our main parameter of interest. The parameter θ? is identifiable only

up to a change of sign, and hence, we shall focus on the estimation of the related projector
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θ?θ
T
? . Let us define p

def
= px + py, and the matrices

A
def
=

 0 Σxy

ΣT
xy 0

 , B
def
=

 Σx 0

0 Σy

 and Σ
def
= A+B =

 Σx Σxy

ΣT
xy Σy

 . (2)

Using simple arguments, we notice that the problem in (1) is equivalent to the following

generalized eigenvalue problem (GEP):

max
θ=(vT

x ,v
T
y )T∈Rp

θTAθ s.t. θTBθ = 2. (3)

Clearly, finding a solution of (3) is equivalent to finding a solution of

max
θ=(vT

x ,v
T
y )T∈Rp

R(θ)
def
=

θTAθ

θTBθ
, (4)

where we convene that 0/0 = 0. The objective function R(·) in (4) is known as the

(generalized) Rayleigh quotient of A and B. The reformulation in (4) suggests a way to

estimate the sparse canonical vectors by directly targeting the Rayleigh quotient, and this

idea was first proposed in ([34]). Note that solving (4) requires specifying matrices A and B,

which are typically unknown in practice. Instead, given n i.i.d. samples Z
def
= {(Xi, Yi)}ni=1

from f , one first constructs estimators of Σx, Σy and Σxy, denoted by Σ̂x, Σ̂y and Σ̂xy,

respectively, and then construct estimators of A and B (denoted by Â and B̂, respectively)

from Σ̂x, Σ̂y, and Σ̂xy in the same way as in (2). In Section 4, we will provide some examples

of constructing Σ̂x, Σ̂y, and Σ̂xy. Based on Â and B̂, one then solves (4) with the Rayleigh

quotient R(·) replaced by its sample version Rn(·; Z), which is defined as

Rn(θ; Z)
def
=

θTÂθ

θTB̂θ
, ∀ θ ∈ Rp.

To guarantee that the Rayleigh quotient Rn(·; Z) is well-defined, we maintain the fol-

lowing assumption throughout this work.
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H1. For all θ ∈ Rp, |θTÂθ| ≤ θTB̂θ.

Remark 1. H1 implies that θTÂθ = 0 whenever θTB̂θ = 0, in which case we have

Rn(θ; Z) = 0/0 = 0. We note that H1 naturally holds when Σ̂x, Σ̂y, and Σ̂xy are sam-

ple covariance matrices. Indeed, if Σ̂x = n−1
∑n

i=1 XiX
T
i , Σ̂y = n−1

∑n
i=1 YiY

T
i , and

Σ̂xy = n−1
∑n

i=1 XiY
T
i , then for θ = (vT

x , v
T
y )T, and by Cauchy-Schwarz’s inequality

|θTÂθ| =
∣∣ 2
n

∑n
i=1 v

T
xXiY

T
i vy

∣∣ ≤ 2
n

{∑n
i=1 〈vx, Xi〉2

}1/2 {∑n
i=1 〈vy, Yi〉

2}1/2

= 2

√
vT
x Σ̂xvx

√
vT
y Σ̂yvy ≤ vT

x Σ̂xvx + vT
y Σ̂yvy = θTB̂θ.

It is worth mentioning that in high-dimensional regimes where p > n, the constructed es-

timators Σ̂x and Σ̂y (e.g., sample covariance matrices) are usually singular, thereby making

a direct maximization of Rn challenging. Similarly, other classical CCA algorithms based on

eigen-decomposition of B̂−1Â, or the singular value decomposition of Σ̂
−1/2
x Σ̂x,yΣ̂

−1/2
y (see

e.g., ([21, 1])) are also difficult to use under these regimes. Furthermore, these classical

methods do not yield sparse estimates of the canonical correlation vectors.

([34]) addressed these issues by maximizing Rn(·; Z) under a sparsity constraint. The

authors show that this maximization problem can be solved provided that a good initial

value that is sufficiently close to global maxima is provided. However, finding such a good

initial value is very costly. Furthermore, the Rayleigh quotient typically admits several

local maxima (as well as local minima and saddle points) that correspond to other canonical

vectors, making direct maximization of Rn very challenging.
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2.1 A Quasi-Bayesian approach

We propose a quasi-Bayesian framework that turns maximizing the Rayleigh quotient into

a Bayesian procedure. More precisely, we propose using

θ 7→ σnRn(θ; Z) (5)

as the quasi-log-likelihood, where σn > 0 is a scaling parameter. We combine this quasi-log-

likelihood with a spike-and-slab prior distribution, which is a common choice for Bayesian

sparse modeling ([13]). Specifically, given a variable selection parameter δ ∈ ∆
def
= {0, 1}p,

we let the conditional distribution of θ given δ be

π(θ|δ) =

p∏
j=1

π(θj|δ), where θj|δ = θj|δj ∼

 N(0, ρ−1
1 ), if δj = 1

N(0, ρ−1
0 ), if δj = 0

, (6)

where ρ0 > ρ1 > 0 are precision parameters. Given some parameter u > 1 and integer s ≥ 1,

the prior distribution of δ is taken as the independent product of Bernoulli distribution

Ber(1/(1 + pu)) conditioned to stay in the set ∆s
def
= {δ ∈ ∆ : ‖δ‖0 ≤ s}. More specifically,

π(δ) ∝ 1∆s(δ)

p∏
j=1

(
1

1 + pu

)δj ( pu

1 + pu

)1−δj
∝ 1∆s(δ)

(
1

pu

)‖δ‖0
, ∀ δ ∈ ∆. (7)

If we combine the spike-and-slab prior with the quasi-log-likelihood in (5), we then obtain

the quasi-posterior distribution

Π(δ, dθ|Z) ∝ 1∆s(δ)

(
1

pu

√
ρ1

ρ0

)‖δ‖0
exp

(
−ρ1

2
‖θδ‖2

2 −
ρ0

2
‖θ − θδ‖2

2 + σnRn(θδ; Z)
)

dθ, (8)

where θδ is the component-wise product of θ and δ, ‖ · ‖2 is the Euclidean norm. Note that

in this posterior distribution, the parameter θ is typically dense. However, since δ is sparse,
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so is θδ. We note that the Rayleigh quotient Rn can take value +∞ when its numerator is

non-zero while its denominator is zero. If this happens over a set with non-zero Lebesgue

measure, then (8) is not well-defined. H1 rules out these cases.

The spike-and-slab prior shown in (6) and (7) is fairly standard, and goes back at least

to ([13]). However the way it is combined with the pseudo-likelihood to yield (8) is non-

standard, and follows from ([2]). The key feature of this approach is that the parameter

θ enters the quasi-likelihood only through its sparsified form θδ (see (8)). This decouples

the active components (namely those corresponding to δj = 1) and the non-active com-

ponents (namely those corresponding to δj = 0), and is particularly attractive from the

computational standpoint. The approach should be viewed as an approximation of the

point-mass spike-and-slab prior ([23]), using the pseudo-prior device in ([5]). We refer the

reader to ([2]) for more details. However, we point out that the posterior contraction theory

developed in ([2]) cannot be applied to our setting.

2.1.1 Hyper-parameter tuning

The posterior distribution Π is very robust to the choice of ρ1 and u, and we recommend

choosing ρ1 ≈ 1 and u ∈ (1, 2] for best performance. The parameter ρ0 has no effect

on the statistical recovery of the selected components of θ, but can adversely impact the

MCMC mixing if its value is too large. We suggest setting ρ0 ∼ n, in order to match the

posterior variance of the selected components that are actually zero (false-positives), and

the posterior variance of the true-negatives.

The sparsity level s is an upper-bound on the true sparsity of the signal, which is

typically unknown. We observe that if δ1, . . . , δp
i.i.d.∼ Ber(1/(1 + pu)), then by Chernoff’s

inequality (see e.g., [35, Theorem 2.3.1]), for any s0 ≥ exp(1), we have P(‖δ‖0 > s0) ≤
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(1/p)(u−1)s0 . This suggests simply choosing s = p in (6), and the resulting prior distribution

would still automatically concentrate on sets ∆s0 , for s0 small. We made this choice in

all our numerical implementations. We found that the resulting posterior distribution is

always automatically sparse, and learns the true sparsity of the signal. However, for the

theoretical analysis of the method we will assume that a sparsity level s is given such that

n ≥ c0s log(p), for some absolute constant c0. We discuss the choice of σn below after the

statement of Theorem 2.

2.2 Connection with simulated annealing

Our methodology can be viewed as a principled version of simulated annealing algorithm

([18, 3]) for computing the Rifle estimator of ([34]). Given s ≥ 1, let Θs
def
= {θ ∈ Rp :

‖θ‖0 ≤ s}. Let σt > 0 be given such that limt→∞ σt = +∞, and define

Πt(dθ) ∝ eσtRn(θ;Z)1Θs(θ)dθ, (9)

where dθ denotes the extension of the Lebesgue measure to the set Θs. The maximization

problem tackled by the authors of Rifle in ([34]) is maxθ∈Θs Rn(θ; Z). A simulated annealing

solution to this problem consists in simulating a non-homogeneous Markov chain with

sequence of transition kernels {Mk, k ≥ 1}, such that Mk has invariant distribution

Πtk . As σtk → ∞, the distribution Πtk puts most of its probability mass around the

global modes of Rn, and the resulting Markov chain behaves similarly (under appropriate

conditions). There are however several limitations to simulated annealing in this particular

setting. First, the set Θs is a union of a large number of subsets with varying dimensions.

Therefore, sampling from Πtk (that is, designing a good Markov kernel Mk with invariant

distribution Πtk) is actually non-trivial. Second, the convergence of simulated annealing is
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known to be highly dependent on the choice of the sequence {σtk , k ≥ 1}. Our approach

circumvents the first issue by working with a relaxation of Θs, using the spike-and-slab

prior. We circumvent the second issue by connecting the annealing schedule to the sample

size n (σtk = σn, see details below), in such a way that the fluctuations in the resulting

distribution Πtk matches the statistical uncertainty of the underlying CCA problem.

2.3 Rate of convergence

Although the Rayleigh quotient Rn(·; Z) may possess multiple local modes, we show in this

section that most of the probability mass of the quasi-posterior distribution Π(·|Z) are

located around {±θ?}. For M,N ∈ Rq×q, we define

〈M,N〉F
def
= Tr(MTN), ‖M‖F

def
=
√
〈M,M〉F, and ‖M‖op

def
= sup

u∈Rq : ‖u‖2=1

‖Mu‖2.

For J ⊆ [1 : q]
def
= {1, . . . , q}, let MJ,J denote the submatrix (Mij)i,j∈J . Given k ≥ 1, we let

λmin(M,k)
def
= min

u∈Rq : ‖u‖2=1,‖u‖0≤k
uTMu, and λmax(M,k)

def
= max

u∈Rq : ‖u‖2=1,‖u‖0≤k
uTMu.

Given an integer α ≥ 1, we set

λ(α)
max(M, s)

def
= max

J⊆[1:q]: ‖J‖0=s
max

A∈Rs×s: ‖A‖F=1

Rank(A)≤α

|〈MJ,J , A〉| .

We first make the following basic assumption without which the sparse CCA problem would

not be well defined.

H 2. The joint density f possesses positive definite covariance matrices Σx, Σy, and Σ,

and a principal canonical vector pair θ? = (vT
x?, v

T
y?)

T, (‖θ?‖2 = 1) with density level1

1Throughout this work, the density level of a vector refers to the proportion of its non-zero elements.
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s?
def
= ‖θ?‖0. Furthermore, the difference between the largest and second largest eigenvalue

of S
def
= B−1/2ΣB−1/2 (denoted by gap), is positive.

Our main assumption on the data generation process is the following.

H3. The dataset Z
def
= {(Xi, Yi)}ni=1 and the integer s ≥ s? are such that the estimators Σ̂x,

Σ̂y, Σ̂ satisfy the following.

1. For some absolute constants 0 < κ ≤ κ̄,

min
(
λmin(Σ̂x, s+ s?), λmin(Σ̂y, s+ s?), λmin(Σ̂, s+ s?)

)
≥ κ,

max
(
λmax(Σ̂x, s+ s?), λmax(Σ̂y, s+ s?), λmax(Σ̂, s+ s?)

)
≤ κ̄.

2. For some constant r1 (depending possibly on n, p),

max
(
λ(2)
max(Σ̂x − Σx, s+ s?), λ

(2)
max(Σ̂y − Σy, s+ s?), λ

(2)
max(Σ̂− Σ, s+ s?)

)
≤ r1.

Theorem 2. Assume H1-H3, and suppose that p ≥ max(c0, s? exp(1)), for some absolute

constant c0. Choose σn such that 1 ≤ σn ≤ p, and u > 1 such that pu−1 > 2. Set

ε
def
=

r1
gap

. (10)

There exists some absolute constant C0 that depends only on κ and κ̄, such that the following

holds. For all M > C0 such that

M2

8gap

(κ
κ̄

)2

σnr
2
1 ≥ s?(u + 1) log(p), (11)

we have

Π

(
(δ, θ) :

∥∥∥∥ θδθT
δ

‖θδ‖2
2

− θ?θT

?

∥∥∥∥
F

> Mε|Z
)
≤ 2e−

M2

8gap(
κ
κ̄)

2
σnr21 ≤ 2

ps?(u+1)
.
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Proof. See Section S-1.1 in supplementary material.

The main conclusion of the theorem is that the posterior Π(·|Z) contracts around θ?θ
T
?

at the rate at least Mε. Furthermore, setting

P̂ def
=

∫
∆s×Rp

θδθ
T
δ

‖θδ‖2
2

Π(dδ, dθ|Z),

the result implies that P̂ (as a frequentist estimator) estimates θ?θ
T
? at the rate Mε. Indeed,

we have∥∥∥P̂ − θ?θT

?

∥∥∥
F
≤
∫

∆s×Rp

∥∥∥∥ θδθT
δ

‖θδ‖2
2

− θ?θT

?

∥∥∥∥
F

Π (dδ, dθ|Z) ≤Mε+ 4e−
M2

8gap(
κ
κ̄)

2
nr21 . (12)

We note that Theorem 2 applies to any given dataset Z and estimators Σ̂x, Σ̂y that

satisfy H3, regardless of how they are formed. In the particular case where Σ̂x, Σ̂y and

Σ̂ are covariances matrices, we show in Proposition 3 below that if f is a sub-Gaussian

distribution, then H3 holds with high probability. Furthermore r1 = C0

√
(s+ s?) log(p)/n.

In that case the condition in (11) becomes

M2

8gap

(κ
κ̄

)2

C2
0

(σn
n

)
(s+ s?) log(p) ≥ s?(u + 1) log(p),

which is easily satisfied when the scaling parameter σn satisfies n = O(σn), as n→∞. In

this case the convergence rate of P̂ towards θ?θ
T
? is

ε =
1

gap

√
(s+ s?) log(p)

n
, (13)

which achieves the minimax rate of the CCA problem, as derived in ([11]), by taking s

as some constant multiple of s?. Further increasing σn has no impact on this rate, but

of course, makes Π more concentrated around the modes of Rn(·; Z), thereby making the

MCMC computation more challenging. This suggests that the choice σn ∝ n is the right

scaling.
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Remark 2.1. The discussion so far has focused on estimating the projector θ?θ
T
? . If the

vector θ? itself is needed, we are able to construct an estimator of θ? from the projector

estimator P̂. Specifically, let v1(P̂) denote the leading eigenvector of P̂, then from the

Davis-Kahan theorem (see e.g., [35, Theorem 4.5.5]), we have

min
(
‖v1(P̂)− θ?‖2, ‖v1(P̂) + θ?‖2

)
≤ 23/2‖P̂ − θ?θT

? ‖ ≤ 23/2‖P̂ − θ?θT

? ‖F, (14)

and ‖P̂ − θ?θT
? ‖F can be bounded as in (12).

2.3.1 On Assumption H3

It is well-known that Assumption H3-(1) holds true in the particular case of covariance

matrices of sub-Gaussian random vectors, provided that the sample size satisfies n ≥ c0(s+

s?) log(p), for some absolute constant c0. See for instance [28] Theorem 1, or [12] Lemma 6.5

for the Gaussian case, and [31] Theorem 3.2 for more general sub-Gaussian distributions.

Under roughly the same sample size conditions, H3-(2) is also known to hold as we show

below.

Proposition 3. Suppose that Z
def
= {(Xi, Yi)}ni=1 are i.i.d. random vectors from a mean-

zero sub-Gaussian distribution f , with sub-Gaussian norm K
def
= sup{‖ 〈Z, u〉 ‖ψ2 , u ∈

Rp, ‖u‖2 = 1}, where ‖ · ‖ψ2 refers to the sub-Gaussian norm of a random variable. Let

Σ̂x = n−1
∑n

i=1 XiX
T
i , Σ̂y = n−1

∑n
i=1 YiY

T
i , and Σ̂ = n−1

∑n
i=1 ZiZ

T
i . There exist absolute

constants c0, C > 1, such that for all 1 ≤ s ≤ p, and all n ≥ 4c0s log(p),

max
(
λ(α)
max(Σ̂x − Σx, s), λ

(α)
max(Σ̂y − Σy, s), λ

(α)
max(Σ̂− Σ, s)

)
≤ CK2λmax(Σ, s)

√
c0αs log(p)

n
,

with probability 1− 2p−(c0−1)s.

Proof. See Section S-2 in supplementary material.
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2.3.2 Bayesian inference

We have developed a method that employs a quasi-posterior distribution to produce a

frequentist estimator. The idea of using a Bayesian framework to produce frequentist

estimators is of course well-established in statistical decision theory ([29]). The extension

to quasi-likelihood functions is also not new ([22, 6, 7]). An important statistical question

here is whether one can use the full quasi-posterior distribution Π(·|Z) to carry inference on

θ?θ
T
? , for instance through credible sets. The difficulty is the lack of calibration of the quasi-

likelihood function (we could easily replace σn by 2σn as a scaling factor in the Rayleigh

quotient). To address this issue some authors have developed post-processing methods

to match samples from the quasi-posterior distribution to the corresponding frequentist

central limit theorem distribution ([4, 33]). However these methods rely crucially on the

Bernstein-von Mises theorem and the central limit theorem that are only well-understood

in fixed-dimensional settings. Extending these ideas to the (high/growing)-dimensional

setting remains largely open. We leave this question as a possible future research. Currently

we do not advocate the use of our quasi-posterior distribution for Bayesian inference on θ?.

3 Computation using Markov Chain Monte Carlo

As shown in Section 2.3, by re-scaling (annealing) the Rayleigh quotient function, we have

created a posterior distribution Π(·|Z) that puts most of its probability mass around its

global mode (located near {±θ?}). However, the annealing also significant decreases the

accessibility of the global mode starting from other parts of the space. To effectively deal

with this configuration, we propose a Markov Chain Monte Carlo sampling strategy based

on simulated tempering ([14, 20]). Given K temperatures 1 = t1 < t2 < . . . < tK , and
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K positive weights c1, . . . , cK , we introduce an extended distribution on X
def
= ∆ × Rp ×

{1, . . . , K}, which is

Π̄(δ, dθ, k|Z) ∝ 1

ck
exp

(
a

tk
‖δ‖0 −

ρ1

2tk
‖θδ‖2

2 −
ρ0

2tk
‖θ − θδ‖2

2 +
σn
tk

Rn(θδ; Z)

)
dθ. (15)

We recover the distribution (8) as the conditional distribution of (δ, θ) given k = 1 in

(15). To sample from (15), we use a simulated tempering Metropolis-Hastings-within-

Gibbs strategy that is described in Algorithm 1 in the supplementary material S-3. The

algorithm is very fast and scales well with the dimension p, and iteration k of the algorithm

has computational cost O(p‖δ(k)‖2
0).

Algorithm 1 generates a Markov chain {X(t), t ≥ 0}, where X(t) = (δ(t), θ(t), k(t)) ∈

X that is phi-irreducible aperiodic with invariant distribution given by (15). The pairs

(δ(t), θ(t)) at times t where {k(t) = 1} then give the desired approximate samples from

Π(·|Z). For the investigation of mixing of the algorithm, please see the supplementary

material.

4 Numerical studies

We perform a simulation study that compares our approach to the frequentist methods Rifle

in [34] and mixedCCA in [39]. We investigate the behavior of these methods in two settings:

(i) continuous datasets, where we use sample covariance matrix estimator and (ii) mixed

datasets, where we use Kendall’s-tau-based estimator as proposed in [39]. The Python

codes for our method is available from https://github.com/rachelwho/Sparse-CCA.
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4.1 Simulated data generation

We simulate the datasets using the following model from [34]. Specifically, we let px = py =

p/2, and consider two (p/2)-dimensional random vectors X and Y with joint distribution

(X, Y ) ∼ N(0,Σ). Here we let

Σ =

Σx Σxy

ΣT
xy Σy

 and Σxy =
λ1Σxvx?v

T
y?Σy√

vT
x?Σxvx?

√
vT
y?Σyvy?

,

where 0 < λ1 < 1 is the largest generalized eigenvalue, and vx? and vy? are the principal

canonical vectors. The structures of Σx and Σy vary across different experimental settings,

and will be described in the subsequent sections. Clearly, (vx?, vy?) is the maximizer of

the Rayleigh quotient in (4), and λ1 is the maximum value. Then we generate n samples

Z = {(X(i), Y (i))}ni=1 from N(0,Σ).

4.2 Comparison with other methods

We compare our method to two other methods, namely Rifle [34] and mixedCCA [39]. We

investigate the behaviors of these methods in two settings. In the first setting, we use

continuous datasets and compare our method with both Rifle and mixedCCA. In the second

setting, we use mixed datasets and compare our method with mixedCCA (since Rifle is only

designed for the continuous datasets).

4.2.1 Description of Rifle and mixedCCA

Before presenting our experimental results, let us briefly describe the other two methods,

namely Rifle and mixedCCA. Rifle is a two-stage algorithm, where in the first stage, it

(approximately) solves a convex relaxation of the problem in (1) to produce an initial
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estimate of the singular vectors (vT
x , v

T
y )T, which are then refined in the second stage using

gradient ascent on the Rayleigh quotient Rn(·; Z), with a truncation step such that only

the m entries with the largest absolute values are kept (and the remaining entries are set

to zero). Here m is a user-specified parameter that indicates the desired sparsity level of

the estimated principle canonical vectors (vx, vy) – similar to s above. Note that since

the first stage involves solving a matrix optimization problem, its computational time is

typically much higher than that of the second stage. As a different approach, mixedCCA

proposes a novel and robust estimator Σ̂ for the covariance matrix Σ, namely the Kendall’s-

tau-based estimator, and estimates the canonical vectors (vx, vy) by solving the following

convex problem:

max
vx,vy

vT

x Σ̂xyvy − λ1‖vx‖1 − λ2‖vy‖1, s.t. vT

x Σ̂xvx ≤ 1, vT

y Σ̂yvy ≤ 1, (16)

where λ1 and λ2 are positive regularization parameters that need to be selected. Problem

(16) is then solved via a sequence of LASSO problems.

4.2.2 Comparison with continuous datasets

We randomly generated 100 continuous datasets using the model in Section 4.1, with the

covariance matrices Σx and Σy constructed in a similar way to [39]. Specifically, we set

the sample size n = 200 and the dimension p = 500, and let Σx and Σy have the same

structure, namely a block-diagonal matrix with five blocks of dimensions {d1, ..., d5}, re-

spectively, and the (j, j′)-th element of each block takes value 0.7|j−j
′|. We set {d1, ..., d5} =

{25, 50, 83, 50, 42} for Σx and {d1, ..., d5} = {83, 50, 62, 31, 24} for Σy. In addition, we let

λ1 = 0.8, (vx?)j = (vy?)j = 1/
√

3 for j ∈ {1, 6, 11}, and (vx?)j = (vy?)j = 0 otherwise.

Therefore, the true density level is s? = 6. In constructing the Rayleigh quotient Rn(·; Z),

we used the sample covariance matrices as estimators of Σx, Σy and Σxy.
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In Algorithm 2, we let the set of temperatures be {1, 1/0.9, 1/0.8, 1/0.7, 1/0.6}, and

only recorded the iterations corresponding to temperature 1. For comparison, we used the

implementation of Rifle in the R package Rifle, and set the parameter m = 2s? = 12. As

pointed out in [34], the first stage is computationally expensive to run. In addition, we

empirically found that when the sample size n is not sufficiently large, either the estimated

vx or vy from the first stage of Rifle is often zero vector, which caused us serious problems in

running the second stage. Because of these issues, we evaluated separately the two stages

of Rifle, which we call Rifle1 and Rifle2, respectively. We ran Rifle1 with default parameters,

and ran Rifle2 starting from a solution generated by perturbing the ground-truth (vT
x?, v

T
y?)

T,

where the perturbation was drawn from a centered Gaussian with standard deviation 0.2.

We used the implementation of mixedcca in the R package mixedCCA, where λ1 and λ2 were

selected using two different criteria, namely BIC1 and BIC2. For this reason, we shall call

the resulting algorithms mixedCCA-BIC1 and mixedCCA-BIC2, respectively. All the other

parameters in Rifle and mixedCCA were set to the default values in the R packages. Both

our algorithm and mixedCCA used the starting point found in the R package of mixedCCA.

The output of each algorithm was normalized to have unit Euclidean norms.

Comparison of running times. We first compare the computational efficiency of dif-

ferent algorithms. Since these algorithms converge to possibly different estimators, we

first ran each algorithm for a maximum iteration of 2000 to obtain the “limit point”

of the sequence generated by each algorithm, denoted by (v̂T
x , v̂

T
y )T. Then, we termi-

nated each algorithm if it either reached 1000 iterations or the estimate (vT
x , v

T
y )T satis-

fies max{|error(vx) − error(v̂x)|, |error(vy) − error(v̂y)|} ≤ 1 × 10−4. As mentioned above,

we treated the two stages of Rifle separately. We estimated the computation time for
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Table 1: The computation times of all algorithms averaged across 100 continuous datasets.

Algorithm Simulated tempering MixedCCA-BIC1 MixedCCA-BIC2 Rifle1 Rifle2

Running times (s) 12 9.6 10.9 276 2.2

Rifle1 using the default stopping criterion as in [34], and estimated the running time of

Rifle2 (starting from the perturbed ground-truth) using the termination criterion described

above.

We repeatedly ran these algorithms on 100 different simulated datasets, and show the

averaged estimated computation times of the algorithms in Table 1. The results confirm

the high computational cost of Rifle. The results also show that our proposed estimator

remains computationally competitive compared to mixedCCA, even though it is based on

MCMC.

Comparison of statistical efficiency. We measure the quality of the estimated prin-

ciple canonical vectors vx and vy using three metrics. The first one is the squared-l2 errors

of vx and vy to the ground-truth vx? and vy?, respectively. Specifically, we have

error(vx)
def
= min

(
‖vx − vx?‖2

2 , ‖vx + vx?‖2
2

)
, (17)

and error(vy) is defined similarly. The other two metrics are true-positive rate (TPR) and

true-negative rate (TNR), which measure the quality of variable selection by the estimated

vx and vy. For vx, its TPR and TNR are defined as

TPR(vx)
def
=
|{j : (vx)j 6= 0, (vx?)j 6= 0}|

|{j : (vx?)j 6= 0}|
and TNR(vx)

def
=
|{j : (vx)j = 0, (vx?)j = 0}|

|{j : (vx?)j = 0}|
, (18)

respectively, and for vy, its TPR and TNR are defined similarly.
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To estimate these metrics we run all the algorithms for 1000 iterations, well beyond

their convergence times. For each algorithm, we plot the quality of the estimated vx and

vy (measured by error, TPR and TNR) averaged across 100 datasets, and the results are

shown in Figure 1. Note that for Rifle, we only plot its second stage, which has a better

starting point (namely, the randomly perturbed ground-truth) as compared to the other

two algorithms.

From both Figure 1 and Table 1, we see that our algorithm not only outperforms Rifle

in terms of the quality of estimated vx and vy (across all the three metrics), but also enjoys

much shorter running time. Compared with MixedCCA, although our algorithm has slightly

longer computational time, the quality of estimated vx and vy from our algorithm is better,

and the advantage is especially significant in terms of error and TPR.

4.2.3 Comparison in a mixed data setting

In many applications, particularly bio-medical ones, researchers often face the challenge

that one of the variables X or Y is not observed directly, but only through its truncated

or quantized version. Specifically, we consider the truncated latent Gaussian copula model

of ([39]), which extends both the Gaussian copula model ([19]) and the latent Gaussian

copula model ([9]).

Definition 4 (Gaussian copula model). A random vector Z = (Z1, . . . , Zp)
T is a realization

of the Gaussian copula model, if there exists a transformation h : Rp → Rp such that h(Z) =

(h1(Z1), . . . , hp(Zp))
T ∼ N(0,Σ) and for each j = 1, . . . , p, transformation hj : R → R is

monotonically increasing. We write this as Z ∼ NPN(0,Σ, h).

Definition 5 (Truncated Gaussian copula model). The random vector (XT, Y T)T, where

X ∈ Rpx and Y ∈ Rpy , is a realization of a latent Gaussian copula model with truncation if
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(a) Squared-l2 error (error)

(b) TPR

(c) TNR

Figure 1: Comparison of the quality of estimated vx and vy by all the algorithms in terms of

(a) squared-l2 error (error), (b) TPR and (c) TNR. The results are averaged over 100 continuous

datasets. To better compare TPR and TNR, we show the results starting from the first iteration,

since the initial points are usually not sparse. The performances of mixedCCA-BIC1 and mixedCCA-

BIC2 are indistinguishable on plots (a) and (b).
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there exists a random vector U ∈ Rpy such that (X,U) ∼ NPN(0,Σ, h) and Yj = I(Uj >

Cj)(Uj −Cj) +Cj for all j = 1, . . . , py, where C = (C1, . . . , Cpy) is a truncation parameter.

We write (X, Y ) ∼ TNPN(0,Σ, h, C).

Taking h as the identity map, suppose that we are interested in the sparse CCA of

(X,U) ∼ N(0,Σ), but we observe only independent copies of (X, Y ), where Yj = I(Uj >

Cj)(Uj − Cj) + Cj, for truncation levels C = (C1, . . . , Cpy). Clearly, the classical Pearson

sample covariance estimator cannot be used to estimate Σ. Nevertheless, building on ([9]),

([39]) showed that consistent estimators for Σx, Σy and Σxy can be constructed from inde-

pendent replications of (X, Y ) using a Kendall’s-tau covariance. Based on those estimates

one can readily apply our Rayleigh quotient approach to obtain the sparse canonical corre-

lation vectors of Σ. We compare our estimator with MixedCCA. In this mixed data setting,

and unlike the continuous data setting, we found out that the two methods have compa-

rable performances, with a slight advantage to our method in terms of statistical recovery,

and a slight advantage to MixedCCA in terms of computational speed. We illustrate this

below in a low sample size regime.

We randomly generated 100 mixed datasets in a similar way as in Section 4.2.2, except

with an additional truncation step on the random vector Y . Specifically, we set the sample

size n = 180 and the dimension p = 200, and let Σx and Σy each have five diagonal blocks

of dimensions {d1, ..., d5}, respectively, and the (j, j′)-th element of each block takes value

0.7|j−j
′|. We set {d1, ..., d5} = {10, 20, 33, 20, 17} for Σx and {d1, ..., d5} = {33, 20, 25, 12, 10}

for Σy. In addition, we let vx? and vy? have the same structures as in Section 4.2.2 (so

that the true density level s? = 6), and set λ1 = 0.8. Let truc(·;C) be the (elementwise)

truncation operator at level C, such that given any vector y, truc(y;C)j = yj if yj > C and

truc(y;C)j = C otherwise. (In particular, we can recover the continuous data setting for
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C negatively large.) For each dataset, we generated n samples from (X, truc(U ;C)), where

(X,U) ∼ N(0,Σ).

We ran Algorithm 2 with the set of temperatures {1, 1/0.9, 1/0.8, 1/0.7, 1/0.6}, that we

compare with both mixedCCA-BIC1 and mixedCCA-BIC2 in terms of the running time and

the statistical performances, as measured in Section 4.2.2. To evaluate the convergence

times, we first run both algorithms for N = 10, 000 iterations to obtain their respec-

tive“limit points”.

The statistical performances of these algorithms (as measured by error, TPR and TNR)

over the 100 mixed datasets generated as above are shown in Figure 2, and Figure 3 and

Table 2. Because TPR and TNR are discrete values, we show the results of TPR and TNR

in terms of mean and standard deviation. The computation times are recorded in Table

3. Due to the low sample size, both methods are prone to producing poor estimates that

we consider as outliers. The boxplots in Figure 2 and Figure 3 report the distributions of

error(vx) and error(vy) respectively, with and without these outliers (by removing the points

outside of the whiskers of the boxplots).

In the low-truncation regime (C = −2) we recover the same conclusion as in the contin-

uous data setting that our method outperforms mixedCCA. In the high-truncation setting

(C = 0), our method still slightly outperforms mixedCCA, particularly in the recovery of

vy. The performance in terms of TPR and TNR are mostly similar, but again with a

slight advantage to our method. However, here the computational time of our estimator is

noticeably higher than mixedCCA as shown in Table 3.
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Figure 2: Squared-l2 error (error) of estimated vx by all the algorithms for different truncation

levels C, with outliers (Left) and without outliers (Right)

Figure 3: Squared-l2 error (error) of estimated vy by all the algorithms for different truncation

levels C, with outliers (Left) and without outliers (Right)

24



TPR vx vy

C (Truncation level) -2 -1 0 -2 -1 0

Simulated tempering 0.99 (0.07) 0.99 (0.07) 0.99 (0.07) 1.00 (0.03) 0.99 (0.07) 0.98 (0.09)

MixedCCA-BIC1 1.00 (0.03) 0.99 (0.07) 0.99 (0.07) 1.00 (0.03) 0.99 (0.07) 0.99 (0.07)

MixedCCA-BIC2 1.00 (0.00) 1.00 (0.00) 0.99 (0.07) 1.00 (0.00) 1.00 (0.00) 0.99 (0.07)

(a) TPR

TNR vx vy

C (Truncation level) -2 -1 0 -2 -1 0

Simulated tempering 1.00 (0.01) 1.00 (0.01) 0.99 (0.01) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01)

MixedCCA-BIC1 0.99 (0.01) 0.99 (0.01) 0.98 (0.01) 0.98 (0.01) 0.98 (0.01) 0.98 (0.01)

MixedCCA-BIC2 0.98 (0.02) 0.97 (0.02) 0.96 (0.05) 0.97 (0.02) 0.97 (0.02) 0.95 (0.08)

(b) TNR

Table 2: Mean (and standard deviation) of TPR and TNR of our method and mixedCCA for

different values of truncation level C.

5 Principal canonical correlation of clinical and pro-

teomic data in Covid-19 patients

Covid-19 is an infectious disease that is rapidly sweeping through the world. The disease

is caused by a severe acute respiratory syndrome coronavirus (SARS-CoV-2). There is

currently an intense global effort to better understand the virus and find cures and vac-

cines. We use our methodology to re-analysis a data set produced by [8] that aims to

identify biomarkers for early detection of severely ill Covid-19 patients2. To that end, the

2For reasons that are still poorly understood, about 80% of patients infected by SARS-CoV-2 experience

mild to no symptoms, whereas in about 20% of the cases, patients become severely ill.

25



Method Computation Time (s)

C (Truncation level) -2 -1 0

Simulated tempering 6.04 7.79 16.58

MixedCCA-BIC1 1.54 0.81 2.28

MixedCCA-BIC2 2.15 4.8 6.19

Table 3: The computation times of all algorithms averaged across 100 continuous datasets for

different values of truncation level C.

study enrolled 86 patients (some non-Covid-19 patients, and among the Covid-19 patients,

some that developed mild symptoms, and some that became severely ill). The exact pro-

tocol for recruiting these patients is unclear. For each patient they measured three (3)

physical characteristics (sex, age, and body mass index), twelve (12) clinical variables as

routinely measured from blood samples (white blood cells count, lymphocytes count, C-

reactive protein, etc...). Furthermore, the serum of each patient is analyzed by liquid mass

spectrometry-based proteomics to quantify their proteome and metabolome. In [8], the

data is used to build a statistical model to predict whether or not a Covid-19 patient will

progress to a severe state of illness. The dataset of [8] is freely available from the journal

website.

We use canonical correlation analysis to re-analyze the data. A common working as-

sumption is that SARS-CoV-2 induces patterns of molecular changes that can be detected

in the sera of patients. Canonical correlation analysis may help identify these patterns. To

do this we focus on the proteomic data, and we estimate the principal sparse canonical cor-

relation between the physical and clinical variables on one hand and the proteomic variables

on the other. See for instance [30] for a similar analysis on tuberculosis and malaria.
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We pre-process the data by removing all the proteins for which 50% or more values

are missing, leading to a total of py = 513 proteins, and px = 16 clinical and physical

variables. The sample size n = 86. Liquid mass spectrometry-based proteomics typically

produces a large quantity of missing values ([17, 25]). We make the assumption here

that the missing values are driven mainly by detection limit truncation ([17]). We apply

both our algorithm and mixedCCA to this problem, with the same parameter setting as in

the simulation test on the mixed datasets (cf. Section 4.2.3). We run our algorithm for

N = 10, 000 iterations. Since we do not know the true canonical pair, we will focus on the

estimated canonical correlation to measure the performance of two algorithms. In terms

of the estimated canonical correlation, both our algorithm and mixedCCA takes less than 1

second to converge.

Our estimate of the principal canonical vectors of first dataset (vx?) has only one se-

lected component (corresponding to C-reactive protein – CRP) with estimated inclusion

probability of Π(δj = 1|Z) = 0.99. All other physical and clinical variables have inclusion

probabilities smaller than 0.1. We found also that the principal canonical vectors of the

proteomic data is also driven by a single protein (P02763, also known as Alpha-1-acid gly-

coprotein 1 or AGP 1), with estimated inclusion probability of Π(δj = 1|Z) = 0.89. All

other proteins have inclusion probability smaller than 0.1. Fig. 4 shows the traceplot of

the estimated canonical correlation ρ̂ between the two data set, as well as the boxplot and

autocorrelation function of the MCMC output (after burning in 3/4 of iterations) of the

coefficients of CRP and AGP 1 in the quasi-posterior distribution. The fast decay of the

autocorrelation functions show a good mixing of the MCMC sampler.

MixedCCA also selects CRP for the clinical dataset and AGP 1 for the proteomic dataset,

but both BIC1 and BIC2 criterion select many other variables. mixedCCA-BIC1 also selects
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glucose for clinical dataset and 3 other variables for the proteomic dataset, with estimated

canonical correlation 0.90. mixedCCA-BIC1 selects 8 other variables for clinical dataset and

3 additional variables for the proteomic dataset with estimated canonical correlation 0.93.

Although the estimated canonical correlation of mixedCCA is larger than the estimated

canonical correlation (0.80) in our algorithm, the highly sparse nature of the estimated

canonical vectors estimated from our method is striking.

Several studies have observed the predictive power of C-reative protein (CRP) in the

progression of Covid-19 into a severe illness (see for instance [32] for a meta-analysis). This

suggests that the correlation detected in our analysis between the two datasets is indeed

driven by the progression of Covid-19 into a severe illness. Therefore, our analysis suggests

that protein AGP 1 may also be playing an important role in the progression of Covid-19

into a severe illness. In Fig. 5, we present the boxplot of CRP and AGP 1 by group of

patients. We can see that severe covid patients will have higher value of CRP and AGP

1, compared to non-covid and non-severe patients. We learn from Uniprot3, that AGP 1

functions as transport protein in the blood stream, and appears to function in modulating

the activity of the immune system during the acute-phase reaction. Furthermore, AGP 1

appears on the list of differentially expressed proteins in the sera of severely ill Covid-19

patients designed by [8], and also appeared in the literature as playing a role in the immune

system’s response to malaria ([10]).

6 Conclusion

In this work, we have developed a minimax optimal estimation procedure for sparse canon-

ical correlation analysis using a quasi-Bayesian framework. Our method can be further

3https://www.uniprot.org
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Figure 4: From left to right: The first plot is the trace plot of estimated canonical correlation;

The second and third plot is the autocorrelation and boxplot of the coefficient of CRP from

MCMC output; The fourth and fifth plot is the autocorrelation and boxplot of the coefficient of

AGP 1 from MCMC output.

extended to capture more than one canonical vector, either by deflation, or by reformulat-

ing the problem as a higher dimensional canonical correlation analysis estimation problem

as in [34]. Furthermore, one can straightforwardly extend our method to solve other gener-

alized eigenvalue problems that arise in other statistical problems, as for instance in Fisher

discriminant analysis. At a higher level, the method developed in this work can be viewed

as a more statistical implementation of simulated annealing for optimization under spar-

sity constraints. As such, it can be applied more widely to solve non-convex optimization

problems with sparsity constraints.

SUPPLEMENTARY MATERIAL

Proofs and technical details: It contains the proofs of Theorem 2 and Proposition 3,

as well as the description and investigation of the MCMC algorithms. (.pdf file)
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