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Abstract. This paper introduces a concept of approximate spectral gap to analyze the mixing time of reversible
Markov chain Monte Carlo (MCMC) algorithms for which the usual spectral gap is degenerate or
almost degenerate. We use the idea to analyze an MCMC algorithm to sample from mixtures of
densities. As an application we study the mixing time of a Gibbs sampler for variable selection in
linear regression models. We show that, properly tuned, the algorithm has a mixing time that grows
at most polynomially with the dimension. Our results also suggest that the mixing time improves
when the posterior distribution contracts towards the true model and the initial distribution is well
chosen.
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1. Introduction. Understanding the type of problems for which fast Markov chain Monte
Carlo (MCMC) sampling is possible is a question of fundamental interest. The study of the
size of the spectral gap is a widely used approach for that purpose. However, the technique
can be too coarse when dealing with distributions with small isolated local modes. To be
more precise, let 7 be some probability measure of interest on some measurable space X, and
let K be a Markov kernel with invariant distribution 7. For the purpose of sampling from
7 using K, one can represent an isolated local mode as a subset A such that K(x, X \ A) is
small compared to 7(X \ A) for all z € A. In this case, K will have a small conductance, and
a small spectral gap. Note, however, that if m(A) is also small (that is, we are dealing with a
small isolated mode A), then since

/ 7(dz)K(z, A) = / m(dz)K (z, X \ A),
X\A

A

we see that the set A will be typically hard to reach in the first place. Hence, any finite-length
Markov chain {Xj, ..., X,}, say, with transition kernel K and initialized in X \ A is unlikely
to visit A. But even when A is never visited, and since 7(A) is small, X,, may still be a good
approximate sample from 7 for large n. This implies that the poor mixing time predicted
by the standard spectral gap may markedly differ from the actual behavior of these finite-
length chains. Motivated by this problem, and building upon the s-conductance of Lovész
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and Simonovits [14], we develop an idea of approximate spectral gap (that we call a (-spectral
gap for some ¢ € [0,1)) which allows us to measure the mixing time of a Markov chain while
discounting the ill effects of overly small sets.

Mixtures are good examples of probability distributions with isolated local modes. We
use the idea to analyze a class of MCMC algorithms to sample from mixtures of densities.
Much is known on the computational complexity of various MCMC algorithms for log-concave
densities (see, e.g., [14, 8, 13, 15], and [5] and the references therein). However, these results
cannot be directly applied to mixtures, since a mixture of log-concave densities is not log-
concave in general. By augmenting the variable of interest to include the mixing variable, a
Gibbs sampler can be used to sample from a mixture. A very nice lower bound on the spectral
gap of such Gibbs samplers is developed in [16]. We reexamine the argument in [16] using the
(-spectral gap concept, leading to Theorem 3.1, which gives potentially better dependence on
the dimension.

Our initial motivation into this work is in large-scale Bayesian variable selection problems.
The Bayesian posterior distributions that arise from these problems are typically mixtures of
log-concave densities with very large numbers of components, and the aforementioned Gibbs
sampler is commonly used for sampling (see, e.g., [10, 21]). We analyze the algorithm in a
regime where the posterior distribution is known to have good contraction properties. In that
regime we show that the algorithm has a mixing time that grows exponentially fast with the
sample size (Theorem 4.3). However, using the approximate spectral gap we also show that
with a good initial distribution (warm-start) the mixing time of the algorithm grows only
polynomially with the number of regressors. The power of the polynomial function depends
mainly on the coherence and the eigenstructure of the regressors (Theorem 4.4).

The paper is organized as follows. We develop the concept of (-spectral gap in section
2. The main result there is Lemma 2.1. In section 3 we study the mixing time of mixtures
of Markov kernels and derive (Theorem 3.1) a generalization of Theorem 1.2 of [16]. We put
these two results together to analysis the linear regression model in section 4. The proofs of
these results can be found in the accompanying supplementary material (supplmaterial.pdf
[local/web 395KB]). Some numerical simulations are detailed in section 4.1.

2. Approximate spectral gaps for Markov chains. Let m be a probability measure on
some measurable space X with sigma-algebra B. For a function f : X — R, we write f € B to

say that f is B-measurable. We let L?(7) denote the Hilbert space of all real-valued square-

integrable (With respect to m) functions on X, equipped with the inner product (f,g). def

S f m(dx) with associated norm || Hg We will also make use of the essential supremum
of f w1th respect to 7 defined as || f||oo = 1nf{M >0: 7({x e X: |f(x)] > M}) =0} If
P is a Markov kernel on X', and n > 1 an integer, P" denotes the nth iterate of P, defined

recursively as P"(x, A) f Jx P" L dz) (2,A), x € X, A measurable. For f € B, we
define Pf : X — R as Pf(x f v P(x,d2)f(2), x € X, whenever the integral is well
defined. And if p is a probablhty measure on X, then pP is the probability on X defined

as uP(A def Sy 1(dz)P(z,A), A € B. The total variation distance between two probability
measures u, v is defined as

—v Vdéf —v(A ( )
e vl = 250 (1(4) —v(4) = swp / F(@)u(da) / fa
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Let K be a Markov kernel on X' with invariant distribution 7. Without changing notation
we will view K as the linear operator on L?(7) that transforms f into K f as defined above.
We write K* to denote the adjoint of K, that is, the linear operator on L?(7) such that
(Kf,g), = (f,K*g), for all f,g € L?(w). We say that K is reversible with respect to =
(m-reversible, for short) if K = K*, and we say that K is positive if it is m-reversible and
(fyKf), >0forall fe L*(r). Note that the operators K*K and KK* are always positive,
since (f, K*K f), = (Kf,Kf). = |Kf|% > 0, and similarly for K K*. The concept of spectral
gap and the related Poincaré inequalities are commonly used to quantify Markov chain mixing

times. For f € L%(r), we set 7(f) def [y f(x)m(dz), Varg(f) o | f —7(f)]|3, and

el )5 [ [ () = @) r a0 K @, dy) = (1.0), — (K1),
The spectral gap of K is then defined as

A(K) dﬁfinf{m, feL¥n), st Varﬁ(f)>0},

= inf{l— (f,Kf)., f €L2(7r), m(f) =0, 7r(f2) = 1}.

It is well known (see, for instance, [20, Corollary 2.14]) that if mo(dz) = fo(z)m(dz) and
fo € L?(x), then

(2.1) [moK"™ — 7|lvw < v/Varx(fo) (1 = A(K*K))"/2 .

This result can also be derived from Lemma 2.1 below with ¢ = 0 (see 2.7). It follows from
(2.1) that lower bounds on the spectral gap of K*K can be used to derive upper bounds on
the mixing time of K. Note from the definition that

ME*K) =1-sup {|Kf|3, f e L*(n), n(f) =0, n(f?) =1} =1 — || K|,

where K denotes the restriction of K to {f € L?(w) : =(f) = 0}, and || Kp|| denotes its
operator norm. Hence (2.1) can be also written as

(2.2) oK™ = o < v/Vars (fo) | Ko™

So far we have not made any assumption on K besides that it has invariant distribution
m. If we assume that K is positive, then it is well known that || Ko| = sup{(f,Kf), : f €
L?(7), n(f) =0, ©(f?) = 1}. Hence in this case we have ||Ko|| = 1—A(K), and (2.2) becomes

(2.3) [moK™ — o < v/Varz(fo) (1 — A(K))".

In some problems the conductance of K is easier to control than the spectral gap. An
interesting generalization of the conductance introduced by Lovész and Simonovits [14] (which
we shall call here (-conductance) has proven very useful in problems where a warm-start to
the Markov chain is available. For ¢ € [0,1/2), we define the (-conductance of the Markov
kernel K as
Jym(da)K (x, A°)

(m(A) = Q) (w(A) = ()

O (K) Y inf { :

, C<W(A)<1},
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where the infimum above is taken over measurable subsets of X. Note that ®o(K) is the
standard conductance. ®.(K) captures the same concept of ergodic flow as ®o(K), except
that in ®(K) we disregard sets that are either too small or too large under 7. It turns out
that ®.(K) still controls the mixing time of K up to an additive constant that depends on ¢
(see [14, Corollary 1.5]). There are many problems where a direct bound on the spectral gap
instead of the conductance is easier, or yields better results. Motivated by the (-conductance,
we introduce a concept similar to (-spectral gap that directly approximates the spectral gap.
For ¢ € [0,1), we define the (-spectral gap of K as

def . Ex(f, f) 20 N _
(2.4) M(K) = f{VarF(f) - %, feL*(n), st. Varg(f) > ¢, and || f]|co 1}.

The definition can be adapted to norms other than the uniform norm. We focus on the uniform
norm for convenience in the applications. We note that when K is positive, A¢(K) is always
in the interval [0, 2]. In particular for any Markov kernel K, we always have A\ (K*K) € [0, 2].
To see this, given f € L?(r), such that || f|lcc = 1, and Varg(f) > ¢, and writing f = f — 7(f)
so that Var,(f) = 7(f?), we have

"< m(f?) <
m(f2) - §

SK(faf) :ﬂ(f2)_<f7Kf>

Varr(f) — ©(f?) - §
where the first inequality uses the positivity of K. The next proposition shows that the
(-spectral gap can be used to bound convergence to stationarity.

Lemma 2.1. Fiz ¢ € [0,1). For every integer N > 1, and f € L?(r), we have

(o]

(2.5) Vary (K™ f) < Varg(f) (1 = min(1, A (K*K))™ + 2¢[| |-
If K 1is positive, then we have
(2.6) Var (K™ f) < Varg(f) (1 = min(1, A (K)))™ + 2| f]|3-

Proof. See section 5. |

Remark 2.2. The idea of approximate spectral gap developed here is somewhat similar to
the concept of weak Poincaré inequality developed for continuous-time Markov semigroups
with zero spectral gap ([12, 3]). The main difference is that weak Poincaré inequalities lead
to subgeometric rates of convergence of the semigroup, whereas the idea of (-spectral gap
as introduced here leads to a geometric convergence rate, plus an additive remainder that
depends on (.

We conjecture! that for a positive kernel K, it holds that

1 —min(1, \e(K*K)) < (1 —min(1, \;(K)))?.

'm grateful to Daniel Rudolf for stimulating discussions on this problem.
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This result would match the known behavior of the standard spectral gap (¢ = 0) and would
improve the power on the right-hand side of (2.6) from N to 2N. We note that

1= min(1, (6 K)) < sup { IS8, € 22 m(7) = 0n(2) € 1,20 e <20/},

but relating the right-hand side of the last display back to A:(K) when K is positive has
proven difficult.

Let v be some arbitrary initial distribution on X that is absolutely continuous with respect
to 7 with density, say, fo. Then, noting that for any f € L?(n),

!VKN(f)—W(fM:' [ 1) (¥ @) = () #(00)] < ol Vars (V)

we deduce from Lemma 2.1 that

(2.7) sup KN (f) —7(F)] < [l foll2 (1 — min(1, A (K*EK))™N? 4 || foll2v/2€,
feB: ||fllo<1

which gives a bound on the convergence to stationarity of K in total variation. If K is
positive, we can replace A\¢(K*K) by A¢(K) in (2.7). Equation (2.7) captures the main idea
of the paper: when a warm-start is available (that is, the term || fo||21/2¢ is small), the mixing
time of K is well captured by A:(K*K), which can behave better than A\(/K*K)—particularly
in high-dimensional problems with small isolated modes.

2.1. llustration with the small local mode example and further intuition. As in the
introduction, suppose that X = &y U (&f) for some measurable subset Xy of X', and 7 (Af)
is small. The approximate spectral gap can be used to show that if the restriction of K to
AXp is fast mixing and 7(X{§) is small, then the Markov chain warm-started in Ajp is also fast
mixing. Let Ky, be the restriction of K on X defined as

Kxy(z,dy) = K(z,dy) + 65(dy) K (z, &), z € Ap.

It is easy to show that the invariant distribution of Ky, is my,, the restriction of 7 to &p, and
the spectral gap of Ky, is given by
b o 70K @ )0 — S
3 Sy S, T(d2)m(dy) (f(y) — f(@))? ’
where the infimum is taken over all functions for which the denominator is positive. The next
result shows that the spectral gap of Ky, is a lower bound for A¢(K).
Lemma 2.3. For ¢ € [0,1), if 7(Xp) > 1 —(/8, then A\¢(K) > Ax, (K).
Proof. See section 6. u

Suppose that the initial distribution mo(dz) = fo(x)r(dz) is such that ||follcc < B for
some constant B > 1. In that case (2.7) gives, for all n > 1,

(2.8) Ay, (K) L inf {

oK™ — 7oy < B ((1 — min(1, \d(K*K)M? + \/i) .
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Fix ¢p € (0,1), and take ¢ = (3/(2B?). Therefore, if 7(Xp) > 1— (/8 = 1 — ¢3/(16B2%), by
Lemma 2.3 we obtain the following bound on the mixing time of K using the spectral gap of
(K*K) x,:

log( )
2, KN —alle <20 forall N>— 2%/
(29) ol — all <26 forsll N > 53

The condition 7(&xp) > 1 — (@) puts a constraint on the initial distribution 7y and on the
concentration properties of m on AXy. The successful use of the technique typically hinges on
controlling these two aspects.

Another possible approach to bounding the mixing time of K using information from the
restricted kernel is to bound directly (for instance, using coupling) the total variation distance
between mo K™ and mo(Kyx,)"¥. This has been explored in the literature [2, 6, 18], and more
systematically by [24]. This approach typically works well when K has well-understood drift
conditions. Another more classical approach to relating the mixing times of the restricted
and unrestricted chains is via state decomposition theorems [17, 16, 11, 23, 7]. However, this
involves the so-called projection chain that describes jumps between &y and X, which in the
current setting will result in rather pessimistic bounds.

3. Application: Mixing times of mixtures of Markov kernels. To illustrate Lemma 2.1
we consider here the case where X = RP (equipped with its Borel o-algebra B and its Lebesgue
measure, which we write as dz), and 7 is a discrete mixture of log-concave densities of the
form

(3.1) m(dz) o Zﬂ(i,x)dx,

i€l

where | is a nonempty countable set, and for each i € |, 7w(7,-) : RP — [0,00) is a measurable
and integrable function. Sampling from mixtures is more challenging than sampling from
log-concave densities ([9]). A common strategy is to work with the joint distribution on I x X
defined as

2)d
(3.2) 7(D x B) = ZGD Jpr()de o p g
Yiet [y (i v)da

Let m(i|z) oc m(i,x) (resp., m(i) o< [y m(i,xz)dz) denote the implied conditional (resp.,
marginal) distribution on I, and let ﬂ'z(dl‘) o 7 (i, :L')d:L’ be the implied conditional distribution
on X. For each 7 € |, let K; be a transition kernel on X with invariant distribution m;. We
then consider the Markov kernel K defined as

(3.3) K(z,dy) €3 n(ile)Ki(x, dy).

i€l

It is easy to check that for all f,g € L?(r), it holds that

<f) Kg>7r = ZT((Z) <f7 [(lg>7rI .

i€l
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This shows that if, for each i € |, K is m;-reversible (resp., positive), then K is m-reversible
(resp., positive). In particular if each K; is an exact draw from 7;, then K is positive. In [16]
the authors developed a very nice lower bound on the spectral gap of K knowing the spectral
gaps of the K;’s. Their result goes as follows. Suppose that there exist k > 0 and a connected
graph on | such that whenever there is an edge between i, j € |, it holds that

(3.4) / min (7;(x), 7 (x)) de > k.
X
If D(1) denotes the diameter of the graph thus defined, Theorem 1.2 of [16] says that

(3.5) A(K) = 5D min {7 ())A(Kq)} -

The lower bound in (3.5) can be very small when some 7(7) are small, or when the overlap
parameter s is small (which corresponds to the existence of isolated local modes). We combine
the approach in [16] with the canonical path argument of [22, 4] to develop a new bound on
the (-spectral gap of K. We make the following assumption.

H1. There exist Iy C I, and {B;, i € Iy} a family of nonempty measurable subsets of X,
with the following properties:

1. For eachi € Iy, mi(B;) > 1/2.

2. There ezxist K >0 and G C {(i,7) € Iy X lp : i # j} such that

(3:6) /BB win <77r:i<(§3>’ ;j<(§j)>> dv=n

whenever (i,7) € G.
3. For each distinct pair i,j € ly, there exists a path vi; = (io,...,i¢) where each pair
(ig—1,1k) belongs to G, such that ig =i and iy = j. Furthermore we assume that an

edge can appear at most once on a given path. Let T’ def {vij, (4,5) € Iy x Iy, i # j}.

One should view U;ei, {7} % B; as a subset of | x X' that captures most of the probability
mass of the joint distribution 7. We stress that we do not assume the sets {B;, i € lp} to
be known, only that they exist. In the case where 7 is a posterior distribution from some
Bayesian inference problems, such existence results, known as posterior contraction, can often
be obtained under further statistical assumptions.

The graph G captures the proximity between the conditional distributions, and the total
variation distance between adjacent conditional distributions (as captured by k) is the key
parameter that determines the mixing of the kernel K. Indeed, (3.6) implies that the total
variation distance between the restriction of m; to B; and the restriction of m; to B; is at most
2(1 — k).

For v € T, let |y| be the number of edges on . We define

(3.7) m % max Z ‘7ij|wv

«€lo Yij €L i W(L)
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where the summation is taken over all canonical paths v;; that go through node ¢. For ¢ € Iy
and a kernel P on X we also define

3 Jo, Jo, 7(d2) Pz, dy)(f(y) — f(2))* }
o, Jo @m@)(Fw) — f@y? T TR

where the infimum is taken over all bounded measurable functions f for which the denominator
is positive.

(3.8) Ai(P) % inf {

Theorem 3.1. Let 7 be as in (3.1), and K as in (3.3). Assume that H1 holds. Set B 3

Uie{i} x Bi. If for some ¢ € [0,1) it holds that

(3.9) 7(B) 21— o
then
(3.10) A(K) > (1 +“8m> min \i(K;).
Proof. See section 7. |
Note that the constant m satisfies
D(lo)

3.11 < ——=-
(310 ity (1)

Hence the bound in (3.10) improves upon (3.5), even when ¢ = 0. In problems where an
exact draw from 7(-|x) is not available, the kernel K in (3.3) is not usable. In these cases it
is typical to replace those exact draws by MCMC. Extending Theorem 3.1 to such settings is
an important problem that we leave for future research.

4. Example: Analysis of a Gibbs sampler. We consider the Bayesian treatment of a linear
regression problem with response variable z € R™, and covariate matrix X € R™ P with a

spike-and-slab prior distribution on the regression parameter § € RP as in [10, 21]. More

precisely, for some variable selection parameter § € A def {0,1}? and positive parameters

po, p1, we assume that the components of § are conditionally independent, and 6;|{d = 1}
has density N(0,p;"), and 6;/{6 = 0} has density N(0,p,"), where N(y,v?) denotes the
univariate Gaussian distribution with mean p and variance v2. We further assume that given
q € (0,1), the prior distribution of ¢ is a product of Bernoulli with success probability q, and
restricted to be in A, & {6 € A: ||d]]o < s} for some sparsity level s specified by the user.
The resulting posterior distribution on A x RP is

8110 30'D 50
e () S ST 2
> 1a.(8) ¢zl X0 g

(4.1) I1(6,d0|z) (1 ot 22D0)
et emlo)

—q

where D5 € RP*P is a diagonal matrix with jth diagonal element equal to pl_l if 6; = 1,
and pg Lif 0; = 0. The regression error o is assumed to be known. The posterior conditional
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distribution II(4|6, z) is a product of independent Bernoulli distributions constrained to be
s-sparse:

p
(4.2) TI(5]0,2) o 1a,( H —q]'", g ¥ 1

1+ (% _ 1) \/Z %(Pl P0)9

We will assume that sampling from (4.2) is easy. This is the case when s = p (by direct
independent sampling), or when s is large (by a simple rejection scheme). A Metropolis—
Hastings scheme could also be used, but we will focus our analysis on cases where an exact
draw is made from (4.2). The conditional distribution of § given ¢ is N, (mgs, 025s), with mg
and Y; given by

def

(4.3) ms 35Xz and x5 (X’X+02D(*6§>7

Put together, these two conditional distributions yield a simple Gibbs sampling algorithm for
(4.1) with transition kernel given by

(4.4) K(u,d8) Y T(wlu, 2)TI(db|w, ),
wEA,

with invariant distribution

10/

lIsllo D50
(4.5) I(d6]z) < ( - a > ¢ a2l X013 g
SEAS —q det (ZTFD((;))

As pointed out above, K is a positive Markov kernel on the L?(IT). The posterior distribution
(4.5) was analyzed in [21] from a statistical viewpoint. They show that II(:|z) contracts and
recovers well the true underlying signal as n, p — oo, provided that pg grows faster than n, and
one sets p; to be of order n/p? and under some additional statistical assumptions. Therefore
we shall analyze the mixing of the Markov kernel K in (4.4) in that regime.

To proceed we introduce some notation. For § € A and 6 € RP, we write 65 as short for the
componentwise product of § and §, and we define 6¢ defy 9, that is, 67 =1—10;, 1 <j <p.
For a matrix A € RI*P_ As (resp., Ase) denotes the matrix of R?<I0llo (resp., Ra*@=ldllo))
obtained by keeping only the columns of A for which §; =1 (resp., 6; = 0). When 0 = e; (the
Jjth canonical unit vector of RP) we write As (resp., Asc) as A; (resp., A_;). For two elements
6,0" of A, we write § 2 ¢’ to mean that for all j, §; = 1 whenever ¢7 = 1. The support of a
vector u € RP is the vector supp(u) € A such that supp(u); = 1 if and only if |u;| > 0. An
important role is played in the analysis by the matrices

L ¥ 1, + XD( ¢

and the coherence of X defined as
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We will make the assumption that C(s) does not grow with p. It can be easily checked that
if the columns of X are orthogonal, then C(s) = 0. Furthermore, it can be shown that if
X is a realization of random matrix with i.i.d. standard Gaussian entries, and provided that
n > As?log(p), it holds that C(s) < c for some absolute constants ¢, A. We refer the reader

to the supplementary material for details. For any integer a € {1,...,p} we define
v (X4 Lyt Xse) v
(4.6) we ¥ min inf (X5 Ls 5 ) ,veRPIPlo 0 < ojjo<aty.
6: [|6]lo<a n||v||3

Remark 4.1. w, is a form restricted eigenvalue of the matrix X. It can be shown that
if X is a random matrix with i.i.d. standard Gaussian entries, then w, > 0 for a of order
n/log(p). We refer the reader to the supplementary material for details. 0

We make the following assumptions.

H2.
1. There exists a parameter value 6, € RP with sparsity support §, € Ag, with ||6x]|0 = S«,
such that p**I1(04]z) > 1.
2. For some constant u > 0, the prior parameter q satisfies
q 1
4.7 —_— =
(4.7) g

3. The matrix X is nonrandom and such that
(4.8) 1X15=n, j=1,...,p.

Furthermore there exists an integer so > s, such that ws, > 0, where ws, is as defined
as in (4.6).
4. The prior parameters pg, p1 are positive and satisfy
ns

(4.9) po > ciwn,  oipp < (11— Py n, and 14+ 55— <p°
0o o°p1

for some absolute constants c¢; > 1,a > 0, where wy is as defined in (4.6).
Remark 4.2. Tt is well known that some form of restricted strong convexity is needed for
signal recovery in high dimensions. Here this assumption takes the form ws, > 0. In (4.9)
we focus on the regime where py grows as least linearly with n. This is a regime in which the

posterior is known to have good contraction properties. The last two parts of (4.9) are easily
satisfied and are imposed mostly to obtain simple mathematical formulas.

For some constant cg > 0, we introduce the event

def 1
E={zeR": max sup —
dEA, 1<j<p O

}<L§_1Xj, z— X0*>‘ < conlog(p)} :

We note if z ~ N(X6,,0%I,) and || X[z < v/n, then the event z € & holds with high
probability, with ¢ = 2(s + 1).
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Theorem 4.3. Suppose that H2 holds, and z € &. Fiz e € (0,1). Let vy = I1(-|67, 2) for
some arbitrary 60 € A,. Suppose that we choose u in H2 large enough such that

(4.10) u > 2 max <2, Q) ., where o (o\/co + [|0.]11C(s))?,
w1
and the sample size n satisfies

Aguc?olo
n>w, where Q*déf.min 1051,

4.11
(4.11) > i,

for some absolute constant Ag. Then there exists a constant Cy that does not depend on n, p,
or € such that for all

1
(412) N > CO S <log <€> + 5*”9*“20”) 6200“9*‘@0,

we have
HVOKN — Ity <e.

Proof. See section (SM2) in the supplementary material. [ |

Theorem 4.3 follows from the standard spectral gap bound (2.3) together with Theorem
3.1 that we apply with { = 0. In other words, we did not actually exploit the approximate
spectral gap of K in Theorem 4.3. The result shows that when the prior parameter pg is taken
as po = c1n (as required by [21] for good statistical behavior of the posterior), the mixing of
the kernel K scales at most as ell%/lm. This result is consistent with the behaviors observed
in the simulations. That said, it is important to add that (4.12) is an upper bound on the
mixing time which may not be tight, and as such does not prove slow mixing.

In the regime considered here, posterior contraction holds and the posterior distribution
assigns increasingly small probability to {6 : § 2 d.}. The slow mixing obtained above is
actually the result of the difficulty in the chain moving between {§ : § 2 6,} and {6 : § D 4, }.
However, if the Markov chain is initialized in {§ : 0 D .}, it almost never transitions to
{6 : 6 2 d,}, but nevertheless still recovers approximately well the posterior II, since most of
the probability mass is in {§ : § D d,}. Using the approximate spectral gap, we now show
that the latter Markov chain has a better mixing time than the conclusion of Theorem 4.3.
Note that since d, is not known, it is not possible to simply truncate the state space and apply
classical spectral gap tools to the restriction of K to {6 : ¢ D d,}.

To derive this result, we shall focus on the unconstrained case where s = p in (4.1). But
any other value of s € {sg,...,p} will also work. We formalize the posterior contraction as
follows. Given k > 0, we define

Dy {5eA: 526, ||l < |60+ k},

which collects models that contain the true model §, and have at most k false positives, and
we introduce the event

def n
g:gon{ze]R : H(Dk\z)Zl_%

for allkEO}.
p

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/23/22 to 155.41.44.80 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

APPROXIMATE SPECTRAL GAPS FOR MARKOV CHAINS 865

We will say that posterior contraction holds when z € £. We will not directly establish
this property. However, several existing works suggest that this description of the posterior
contraction of II(+|z) holds. For instance, under assumptions similar to those above, [21] shows
that II(Do|Z) > 1 — & with high probability for positive constants a1, az, and [1] shows that
z € € with high probability for a slightly modified version of the posterior distribution (4.1).

Theorem 4.4. Assume H2 and s =p in (4.1). Fize € (0,1). Suppose that vy = II(-|06(, 2)
for some 60 D5, and such that

ulog (45—0)

(4.13) H$WbS8*+g@£§5“0_8”_7ﬂiigﬁ@ﬂ5’

where a is as in H2. Suppose also that (4.10) and (4.11) hold. Then there exists a constant
Cy that does not depend on n, p, or € such that for all z € €, and all

. . PO 20
(4.14) N 2 Co[09o [log () + 118 oulog(p) | p =1

we have
KN — 1|y <e.

Proof. See section (SM3) in the supplementary material. [ |

Condition (4.13) restricts the number of false positives of §() in the initial distribution.
This condition can be relaxed if the contraction of IT on Dy, is faster than the polynomial form
assumed in the event £.

Theorem 4.4 shows that when posterior contraction holds (z € &), and a good initial
distribution is used, the mixing time of K is polynomial in the dimension p and less sensitive
to large values of pg. Instead, the mixing time depends mainly on the coherence parameter
C(s) and the restricted eigenvalue wj. One clear roadblock to the practical use of this result
is finding the initial 8 such that 60) D §,, since 4, is typically unknown. In practice, various
frequentist estimators such as the lasso can be used. At least in a high signal-to-noise-ratio
setting the lasso estimator is known to contain the true model under mild assumptions. We
refer the reader to, for instance, [19].

One of the first papers to analyze the mixing times of the MCMC algorithm in high-
dimensional linear regression models and highlight fast/slow mixing behaviors is [25]. Their
posterior distribution is slightly different from what we looked at in this work. Specifically [25]
applied a Metropolis—Gibbs sampler to the marginal distribution of §, whereas we consider
here a data-augmentation sampler applied to the marginal distribution of 8. These authors
show that in general their sampler has a mixing time that is exponential in p unless the state
space is restricted to models ¢ for which ||6]|p < s for some threshold s, in which case the
worst-case mixing time is O(s?nplog(p)).

4.1. Numerical illustrations. We illustrate some of the conclusions with the following sim-
ulation study. We consider a linear regression model with Gaussian noise N (0, 02), where o2
is set to 1. We experiment with sample size n = p and dimensions p € {500, 1000, 2000, 3000,
4000}. We take X € R™*P as a random matrix with i.i.d. rows drawn from N, (0, ¥) under two
scenarios: a low coherence setting where ¥ = I,, and a high coherence where ¥;; = 0.9l7—l,
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Table 1
Average empirical mixzing time of the samplers in a low-coherence setting. Based on 50 simulation repli-
cations. The numbers in parenthesis are standard errors. The notation > a means that some (or all) of the
replicated mizing times have been truncated.

p = 500 p = 1,000 p = 2,000 p = 3,000 p = 4,000
po=n 866.3 (3,204)  423.6 (2,735) 147.1 (575) > 437.3 > 871.0
FN po=n"%  >111258 > 13,662.6 > 13,2371.6 > 15,948.0 > 16237.3
Yang et al.  5,244.2 (1,379)  12,208.5 (2,463) 27,617.6 (5,803) 43,821.9 (6,453) 54,697.9 (5,611)
po=n 1 (0) 1(0) 1(0) 1 (0) 1(0)
noFN po=n'?® 30.9 (81) 43.7 (55) 123.2 (251) 241.2 (535) 215.3 (250)

Yang et al.  5,191.0 (1,503) 11,975.9 (2,769) 26,877.8 (4,786) 42,285.7 (8,721)  56,264.3 (10,362)

After sampling, we normalized the columns of X to each have norm /n. We fix the number
of nonzero coefficients to s, = 10, and d, is given by

6, =(1,...,1,0,...,0).
—— N——
10 p—10

The nonzero coefficients of 6, are uniformly drawn from (—a — 1, —a) U (a,a + 1), where

log(p)

a=4

We use the following prior parameters values:

n n o
u=2, pl:ﬁa Po € {0_270_2}
These scalings of py and p; roughly match the recommendations of [21] to get posterior
contraction of II(:|z). We use an initial distribution vy = II(-|6(, 2), where §() is such that
160) — 6, ]lo = 2p/10, with two scenarios: a scenario FN (false negative) where 5 out of 10 of
the true positives of §, are set to 0, and a scenario no FN where 6 has only false positives.
To monitor the mixing, we compute the sensitivity and the precision at iteration k as

p
> =1 Lo 1501 15, 51>0}

1 p
SEN = L 2 Mo s, PREC==Eeg O

Jj=1

We empirically measure the mixing time of the algorithm as the first time k where both SENy
and PREC,, reach 1, truncated to 2x10*—that is, we stop any run that has not mixed by 20,000
iterations. For the sampler of [25], we stop any run that has not mixed by 10° iterations. The
average empirical mixing times thus obtained (based on 50 independent MCMC replications)
are presented in Tables 1 and 2.
We can make the following observations.
1. There is sharp difference in behavior between the low- and high-coherence settings.
2. As predicted by our theory, the Markov kernel K mixes better when there is no
false negative in the initialization. The algorithm of [25] seems impervious to the
initialization. It should be noted in comparing the two algorithms that an iteration of

the algorithm of [25] costs roughly p times less than an iteration of the Markov kernel
K.
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Table 2
Average empirical mizing time of the samplers in a high-coherence setting. Based on 50 simulation repli-
cations. The numbers in parenthesis are standard errors. The notation > a means that some (or all) of the
replicated mizing times have been truncated.

p=500 p=1,000 p=2000 p=23,000 p=4000

po=n >20,000 > 10,200 > 18,400 > 17,870 > 19129.1
FN po=n"%  >20,000 >20000 >20,000 >20,000 > 20,000

Yang et al. > 100,000 > 91,177 >75373 > 83,246 > 84,972

Do =1 > 880.1 >1,200.1 >400.9  >800.96 > 900.1

no FN  po=n'®  >4168  >1246.2 >8742  >4252 > 313.6
Yang et al. > 98,067  >87,424 > 73,253 > 77,902 > 82,205

3. The third observation that can be drawn from the results is that when there are false
negatives, the Markov kernel K mixes better with pg = n/o?, compared to py > n/o?,
as predicted by our result. The difference is less noticeable in the high-coherence
setting. This observation is also explained by our bound, since in a high-coherence
setting the parameter p is expected to be large. Another observation here is that when
there are false negatives in the initialization, the mixing time becomes highly variable
(several runs have hit the wallclock).

4. Finally, we notice that the theory of [25] does not fully describe the behavior of their
algorithm, as we see a significant loss of performance in their algorithm with high-
coherence design matrices, which cannot be clearly explained by their result.

5. Proof of Lemma 2.1. Fix ¢ € [0,1), and take f € L?(nx). Since n(f) = m(Kf) and
Var.(f) = (f, ). — 7(f)?, we have

(5.1) Varg(Kf) = Varr(f) = (Kf, Kf) = (f, ) = ([, KK f) o = {f, /) r

:_// x))? m(da)(K*K) (x, dy).

Using the last display together with the definition of Ex«x(f, f), we conclude that for all
fe L),

(5.2) Varr (K f) < Varx(f) — Ex+x (f, f).

Suppose that +00 > || f|lco > 0. If Var,(f) > (|| f||%, then by (5.2)

Var, (K f) < Varg(f) — || fI|ZExx (Hf”oo ‘|fﬂm>
< Varg(f) — ”f”go/\C(K*K) (Varﬂ (”f{]oo> B g)

< Varg(f) (1 = min(1, A (K*K))) + ¢ || flI2A¢ (K*K).
If Vary(f) < ¢|| fl%, then by (5.2)

Varr (K f) < Varz(f) (1 = min(1, \¢(K*K))) + | f 2 A (K*K).
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But if || f||cc = 0, then Var.(f) = 0, and hence Var (K f) = 0 by (5.2), so that the last display
continues to hold. Similarly, if || f|l« = 400, the last display continues to hold. We conclude
that for all f € L?(7),

Varr (K f) < Varz(f) (1 — min(1, A (K*K))) + ¢ f |2 A (K7 K).

We iterate the above inequality to deduce that, for all f € L?(n) and for all n > 1,

Var (K" f) < Varg(f) (1 — min(1, A\¢(K*K)))"
+ CAKTK) Y (1= min(L, A (K*K))) | K" I
Jj=0

C)‘C(K*K) HfHZ
min(1, \¢(K*K)) " 7

< Vare(f) (1= A (K" K))" + 2| £,
where the last inequality uses the A\¢(K*K) € [0,2]. If K is positive, then K*K = K?, and
K admits a square root: there exists a bounded 7-reversible operator S such that S? = K,
and S commutes with K. Furthermore, with I denoting the identity operator, I — K is also

a positive operator: I — K is clearly m-reversible, and (f, (I — K)f), = | fl3 — (/. K [f), >
using the fact that the operator norm of K is less than or equal to one. Hence

(f K f)p = (f KK f) = (f.(K=K*)f) = (f,S(I - K)Sf). =(Sf.(I-K)Sf), >0

Therefore when K is positive we can replace (5.1) by

< Varg (f) (1 = A (K*K))"

Var, (K f) < Vars(f) — = / / 2 e (da) K (, dy)

and proceed as above to obtain the stated bound. This ends the proof. |

6. Proof Lemma 2.3. Take a measurable function f : X — R such that || f|« = 1 and
Var,(f) > (. We have

2Var,(f /Xo /Xo 2r(dz)m(dy)
2
+2 /X O /X . (2))27(dz)m(dy) /X " /X " (2)) 2 (dz)(dy)
/X /X 2 (dary(dy) + 8]l F 2w (X Xo)r(Ho) + Al FIPor(X \ Xo)?

/ (f(y) — F(2))2r(da)m(dy) + 8m(X \ Xp).
Xo J X

Using m(AXp) > 1 — ({/8), we get

2 (Vars(f) = &) > r(de)m(dy) (£(y) — F(2))?.
(vt -5)= [ [,
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Hence
ELS) o JxoSxom( (,dy)(f(y) = f(2))* A
Var( -5 I fxo dy)(f( )= fl@)? T
The statement bound easily follows. |

7. Proof of Theorem 3.1. We rely on the following lemma due to [16] (inequality (47)).

Lemma 7.1. Let v(dz) = f,(x)dx, p(dr) = fu(x)dx be two probability measures on some
measurable space with reference measure dx, such that [min(f,(x), f,(z))dz > € for some
€ > 0. Then for any measurable function h such that [ h?(z)v(dz) < oo and [ h*(x)p(dz) <
o0, we have

/ (h(y) — h(x))2u(dy)v(dz)

2—¢€
<

< 225 [t~ o) Putanntan) + [ ) - na) Potayutas)|.

Choose f € L?(r) such that || f|lcc = 1. We define

def 1 — f(2)? mi(de) Ky (x
) 5 [ (00— 1) ) e ).

From the definition

(1) 26(f.f) = /X /X (f(y) — f(2))? m(dz) [Zwmx)m(x,dy)]

i€l

. 2
(i) /X /X (F() — (@) m(da) Kz, dy)

>23 w(i)E(f. f) =2 i f).

i€l i€lg

Using | x X = BU B¢, where B¢ denotes the complement of B, and || f||s = 1, we have

(7.2) Nara(f / / 2 2 (di, dz)7(dj, dy)
2 / / C 2 2(di, dar)7 (dj, dy)
[ ) = £ el day(a.
/ / 2 7 (di, de)(dj, dy) + 107(B°).
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Expanding the first term on the right-hand side of (7.2) and using (3.9), it follows that

> / / 2 ()i (dy)

o mi(dz) 7 (dy)
+ 2, imm(Bmi(8 // )TH(Bz')Wj‘(Bj)'

Z#.L 7.7€|0

13) 2 (Var($) - §) < ¥

Given an edge e in G, let us write e = (e_,,e4) to denote the two incident nodes of the
edge. For i # j € lp, let v;; denote the chosen canonical path between ¢ and j, and let
10,91, - - -,%¢ be the nodes on that canonical path (with i = ¢ and iy = j). By introducing
generic variables z;, € B;,, one can write f(z;,) — f(2i,) = Zk 1 f(zi,) — f(zi,_,). Using this
and the Cauchy—Schwarz inequality, we have

(7.4) // (f(y) — )ﬂz((c:))ﬂj(dy)

Te_(dw) (dy)
< ] / W sy )
! Z Be, Te_ (Be_) Tey (Be+)
where |v;;| denotes the number of edges on the canonical path 7;;. By (3.6) and Lemma 7.1,

and by using also the assumption that m;(B;) > 1/2, the summation on the right-hand side of
(7.4) is upper bounded by

<8 Z / — f(@)) (A, (dy),

where the summation e € +;; is taken over all edges along the path ~;;, whereas the summation
L € 7,5 is taken over all nodes ¢ along the path «;; including 7 and j. Hence

(75 Y W(i)ﬂ(j)vri(Bi)ﬂj(Bj)/B./Bv (fy) = f(@))* :Tr(((g;)) :jgj;

i#j, i,j€lo
<230 [ [ W - P ndon) Y Pl o

L€|0 /By

which together with (7.3) yields

a6 2(van(n)-§) < (1450) @) [ [ (700~ @) o))

’LE|0
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From the definition of \;(K;), we have

(7.7)

2 X )Ty 7'
L L 0w = 5@ mdnm ) < ST,

which we use in (7.6), to arrive at

(7.8)

8m
(Vare() = §) < ot 0 S s )

2 minge, Ai (K;) =

Inequalities (7.8) and (7.1) together yield

E(f, f) -, Milel Ai(K) s _ K

= = min )\1 (Kz),
(Varﬂ(f)—%> 1—1—8?’“ 1+ 8m i€l
which, together with the definition (2.4) and x < 1, implies the stated bound. [ |
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