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Abstract

Moment condition models with mixed identification strength are models that are point identified

but with estimating moment functions that are allowed to drift to 0 uniformly over the parameter

space. Even though identification fails in the limit, depending on how slow the moment functions

vanish, consistent estimation is possible. Existing estimators such as the generalized method of

moment (GMM) estimator exhibit a pattern of nonstandard or even heterogeneous rate of conver-

gence that materializes by some parameter directions being estimated at a slower rate than others.

This paper derives asymptotic semiparametric efficiency bounds for regular estimators of parame-

ters of these models. We show that GMM estimators are regular and that the so-called two-step

GMM estimator – using the inverse of estimating function’s variance as weighting matrix – is semi-

parametrically efficient as it reaches the minimum variance attainable by regular estimators. This

estimator is also asymptotically minimax efficient with respect to a large family of loss functions.

Monte Carlo simulations are provided that confirm these results.
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1 Introduction

Moment equality based inference methods have made possible the investigation of the empirical content

of many economic models. The validity of the standard methods popularized by Hansen (1982) in his

seminal paper relies upon the property of point identification which means that the moment condition

model is solved at a single point. This indeed guarantees consistent estimation by the generalized

method of moment (GMM). However, some empirical evidence suggest that point identification can

fail leading to poor inference.

Failure of identification occurs when multiple (or a continuum of) elements in the parameter space

solve the model. While it is hard in general to decide whether identification fails by screening sample

mean functions, it appears in empirical applications failing identification that the evidence for this

tends to be more pronounced as the sample size gets larger. This feature has led Staiger and Stock

(1997) and Stock and Wright (2000) among others – in their attempt to shed some light on the

behaviour of estimators under identification failure – to consider a framework that allows the moment

function to drift to zero at the rate n−1/2 uniformly over the parameter space as the sample size n

grows. This is the so-called weak identification. In this framework, point identification is possible at

any given sample size1 but in the limit the moment condition becomes uninformative about the true

parameter value. They find out that consistent estimators are not available for weakly identifying

models.

Hahn and Kuersteiner (2002) (in linear IV setting) and Antoine and Renault (2009, 2012) (in

the general GMM context) observe that when moment conditions drift uniformly to zero at a rate

n−δ : 0 ≤ δ < 1/2, consistent estimation is possible and they derive the asymptotic distribution of the

GMM estimator in such settings. This configuration includes the standard identification framework

when δ = 0. We refer to Andrews and Cheng (2012), Caner (2009), Han and McCloskey (2019),

among others, for further account of such models. Antoine and Renault (2012) further consider the

so-called moment condition model with mixed identification strength in which the components of the

estimating moment function are allowed to have specific drifting rates. They establish that the GMM

estimator is consistent and, even though the rate of convergence may vary in some directions in the

parameter space, by suitable rotation and scaling this estimator is asymptotically normal.

Interestingly, while the rotation and rates of convergence depend on the drifting parameters δs,

they show that usual inference formulas of GMM yield valid inference without the need to know δ’s,

the rotation or the convergence rates. This robustness of GMM inference in models with mixed identi-

fication strength motivates a growing literature on the subject. Antoine and Renault (2020) recently

propose a test for weak identification useful to detect whether a moment condition model permits

consistent inference. Dovonon et al. (2023) propose moment selection methods that are consistent

even if the best model is one with mixed identification strength.

This paper is concerned with efficient inference in moment condition models with mixed identifi-

1This paper considers a triangular array structure for the data which somewhat gives sense to the fact that identifi-

cation is related to sample size. Indeed, in this case, the population distribution, say Pn, of the sample is sample size

related. Therefore, identification, as a property linked to the population distribution is also associated to sample size.

This would not be the case in standard frameworks where the population distribution is not sample size related.
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cation strength. We derive semiparametric efficiency bounds for this class of models. One of our main

contributions is that the efficiency of the commonly known two-step GMM estimator (2SGMM) in

models with standard identification features carries over to models with mixed identification strength.

Towards the derivation of efficiency bounds, we follow a similar approach to Dovonon and Atchadé

(2020), by considering the implicit family of probability density functions - with respect to the pop-

ulation distribution of the observations - induced by the moment condition model. This family can

be written f2
n(θ, h) where θ ∈ Θ is the initial model parameter lying in the Euclidean space Rp and

h is an infinite dimension parameter lying in the Hilbert space L2(Pn), where Pn is the probability

distribution of the sample. Pn is allowed to depend on the sample size to accommodate the possibility

of drifting moment functions. We then highlight the local differentiability properties of fn that are

useful to obtain efficiency bounds.

We then follow Begun, Hall, Huang andWellner (1983) (hereafter, BHHW), and Dovonon and Atchadé

(2020) by proposing a convolution theorem for the asymptotic distribution of regular estimators of θ0,

the true parameter value of the parametric component θ of the model. Nevertheless, our framework

differs from theirs in two main aspects. First, the reference Hilbert space L2(Pn) is sample size de-

pendent. Second, the rate of convergence of the existing estimators is sharp only after rotation of the

parameter space and this rate is typically not the same for all components. These key differences raise

additional challenges to the derivation of efficiency bounds in our context and impose that we revisit

and refine some of the standard tools.

First, while the semiparametric family induced by the moment condition models is the same as in

Dovonon and Atchadé (2020) (except for the dependence on n) its tangent space does show its usual

orthogonality property only in the limit as n grow. More specifically, considering a relevant sequence

(θn, hn) of parameter values and f2
n(θn, hn, ·) the associated sequence of density functions, the tangent

space of fn(θn, hn, ·) at fn(θ0, h0, ·) is defined - in the standard framework where Pn = P0 for all n -

by the set of α ∈ L2(P0) such that

‖√n(fn(θn, hn)− fn(θ0, h0))− α‖L2(P0) → 0 as n → ∞.

This implies the orthogonality condition
∫

αfn(θ0, h0)dP0 = 0 which holds regardless of sample size.

This property is important in the literature to derive the local asymptotic normality (LAN) prop-

erty of the log-likelihood ratio (see Lemma 2.1 of BHHW). With L2(Pn) allowed to vary, we have
∫

αfn(θ0, h0)dPn 6= 0 in general. However, we show that this quantity converges to 0 and establish the

LAN property under this weaker condition. The LAN property in turn has been essential to derive

our convolution theorem for regular estimators.

The second main difference led us to introduce a notion of regular estimator that involves possibly

many rates and a rotation of the parameter space. We argue that efficiency bounds should be associated

to directions of estimation in which convergence rates are sharp for existing estimators. We then define

local parameters θn such that ‖ΛnR
′(θn − θ0) − η‖ → 0 as n → ∞, for some η ∈ Rp, where Λn is a

diagonal matrix containing the rates of convergence and R is a suitable rotation matrix. While the

notion of regularity formally introduced in the paper is tied to a rotation through these sequences

of parameters, we show that any estimator regular for a given rotation is also regular for any other

rotation. In addition, an estimator efficient for one rotation is also efficient for any other rotation.
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Our main contribution is the semiparametric efficiency bounds for regular estimators of moment

condition models with mixed identification strength. These bounds are obtained via a convolution

theorem that we establish. We show that GMM estimators are regular in the sense mentioned above.

Moreover, any GMM estimator with weighting matrix Ŵ converging in probability to the limit of the

inverse variance of the estimating function evaluated at θ0 has its asymptotic variance that is equal

to the semiparametric efficiency bound. This shows that the efficiency properties of the standard

two-step GMM estimator established by Chamberlain (1987) continue to hold in models with mixed

identification strength. Our findings also highlight that this estimator is asymptotically minimax

optimal with respect to a large family of loss functions.

The literature on efficiency in moment condition models with non standard identification features is

relatively recent. Dovonon and Atchadé (2020) deal with efficiency bounds in semiparametric models

with singular score functions. Kaji (2021) introduces the notion of weak efficiency inference about

the so-called weakly regular parameters. While these parameters are not consistently estimable, he

proposes a Rao-Blackwellization procedure that generates estimators with reduced dispersion.

Andrews and Mikusheva (2022a, 2022b) derive large sample properties of quasi-Bayes procedures

under weak identification. They propose inference methods that are asymptotically correct and more

desirable – especially for weakly identified models – than many alternative methods.

Our setting differs from theirs by the fact that consistent estimation is possible. Further, while

GMM estimators are not admissible for weakly identified parameters, our results support that the

two-step GMM estimator is admissible in the nearly-weak models that we consider.

The rest of the paper is organized as follows. Section 2 introduces the moment condition models

with mixed identification strength and provides the existing results about estimation and inference.

The semiparametric model induced by the moment condition model is introduced in Section 3 which

also presents the main results of the paper. Section 4 shows simulation results that illustrate the

efficiency of the two-step GMM estimator in models with mixed identification strength and Section 5

concludes. Lengthy proofs are relegated to the Appendix. Throughout the paper, ‖a‖ =
√
a′a if a is

a vector or ‖a‖ =
√

trace(a′a) if a is a matrix, and ‖a‖L2(P ) refers to the L2(P )-norm of a ∈ L2(P ).

2 Moment models with mixed identification strength: existing re-

sults

In this section, we introduce the set-up of moment condition models with mixed identification strength

along with some existing results on inference about model parameters.

Let {Yni : i = 1, . . . , n} be a triangular array of independent and identically distributed Rd-valued

random variables with common distribution Pn and described by the population moment condition

EPn
(φ(Yni, θ0)) :=

∫

φ(y, θ0)Pn(dy) = 0, (1)

where φ(·, ·) is a known Rk-valued function, θ0 is the parameter value of interest which is unknown

but lies in Θ, a subset of Rp (k ≥ p). ‘EPn
(·)’ denotes expectation taken under the distribution Pn of

Yni.
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Consistent estimation and inference about the true parameter value θ0 hinge on the properties

of the moment function ρ : θ 7→ ρn(θ) := EPn
[φ(Yni, θ)]. The moment condition model ρn(θ) = 0 is

uninformative about θ0 if all or many elements of Θ solve the model. In this case, consistent estimation

is compromised. When the moment equation is solved over Θ only by θ0, consistent estimation becomes

a possibility. This is the point identification condition which is the backbone of the GMM inference

theory. In the context of triangular array that is under consideration in this paper, point identification

can be expressed as:

lim inf
n→∞

inf
θ∈Θ\N

‖ρn(θ)‖ > 0, for any open neighborhood N of θ0. (2)

This strong/point identification property can be restrictive in models where the moment function

is local to zero over Θ, that is:

EPn
[φ(Yni, θ)] :=

ρ(θ)

nδ
, ρ(θ) ∈ Rk, δ > 0, (3)

with ρ(θ) = 0 if and only if θ = θ0.

In this case, assuming that ρ(θ) is bounded on Θ, the identification condition (2) fails. Especially,

sup
θ∈Θ

‖ρn(θ)‖ = O(n−δ)

so that in the limit as n grows, the moment condition ρn(θ) = 0 becomes uninformative about θ0.

This identification framework is labelled as weak or nearly weak by Antoine and Renault (2009).

Although under the local-to-zero property (3) the model (1) is uninformative about θ0 in the

limit, it is known that consistent estimation is possible. This depends on the possibility to estimate

EPn
(φ(Yni, θ)) faster than the latter can vanish over the parameter set. In that respect, it is found

that when 0 ≤ δ < 1/2, consistent estimation is possible while this is ruled out when δ ≥ 1/2.

This connection between δ and the possibility of consistent estimation justifies its consideration as

identification strength of the related moment restriction. The smaller δ is, the stronger is the associated

restriction.

While (3) considers that all the restrictions have the same strength, one may consider cases where

each moment restriction is allowed to have its own strength leading to the following specification:

EPn
(φ(Yni, θ)) = L−1

n ρ(θ), (4)

with ρ(θ) = 0 ⇔ θ = θ0, where Ln is a (k, k)-diagonal matrix with j-th diagonal element equal to nδj ,

δj ≥ 0, and n the sample size.

The moment condition model in (4) is referred to as a moment condition model with mixed

identification strength. The restriction strengths δj ’s are typically unknown and this family of models

encompasses the standard model when δj = 0 for all j. Although δ < 1/2 is, in general, essential to

claim consistency, not all the δj ’s in (4) need to be smaller than 1/2 for consistency to be granted. For

instance, if there is a subset of moment restrictions with related δj ’s smaller than 1/2 and such that

the corresponding sub-vector of ρ, say ρ[], is identifying (e.g., ρ[](θ) = 0 ⇔ θ = θ0), then consistent

estimation is possible regardless of the magnitude of the identification strength associated to the other
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moment restrictions. We will refer to moment restrictions with related δ = 0 as being strong, those

with δ ∈]0, 1/2[ as semi-strong and those with δ ≥ 1/2 as weak.

Moment condition models with mixed identification strength have been the object of study by

Antoine and Renault (2009, 2012, 2020, 2021), Caner (2009), and more recently Dovonon et al. (2023).

The main purpose of these studies is to propose inference methods in standard moment condition

models that are robust to some forms of mixed identification strength.

This paper is concerned with efficiency bounds for the estimation of θ0 in models with mixed

identification strength. For convenience, we shall focus on a simpler model with Ln including only

two possibly different values of δj so that we have the following partition of the moment function with

0 ≤ δ1 ≤ δ2 < 1/22:

φ := (φ′
1, φ

′
2)

′ ∈ Rk1 × Rk2 , ρ := (ρ′1, ρ
′
2)

′ ∈ Rk1 × Rk2 : EPn
(φj(Yni, θ)) =

ρj(θ)

nδj
, j = 1, 2, (5)

with [ρ(θ) = 0 ⇔ θ = θ0].

It is worth clarifying that the moment condition model of interest is given by (1) while (5) presents

some auxiliary properties typically unknown to the econometrician/practitioner about the behaviour

of the moment function over the parameter set. Note that the properties in (5) include for δ1 = δ2 = 0,

the standard framework where the model is point identified and the moment function does not drift

to 0 uniformly over Θ. In (5), since EPn
(φ1(Yni, θ)) vanishes on Θ more slowly than EPn

(φ2(Yni, θ)),

the former defines the strongest set of moment restrictions if δ1 < δ2.

Examples of moment condition models with mixed identification strength are presented in Dovonon et al.

(2023), Antoine and Renault (2012), and Han and McCloskey (2019). We present below the linear IV

model with nearly weak instruments which also is object of simulation in Section 4.

Example 1. (Linear IV Model with Nearly Weak Instruments). This example relates to linear

regression models with endogenous regressors for which available instrumental variables are possibly

weak. Moreover, the set of instruments may be partitioned in two groups, each with a specific magnitude

of partial correlation with the endogenous regressor(s). As we can see below, such setting leads to a

moment condition model with identification property as in (5).

Specifically, consider the random sample: {wi := (yi, xi, zi) ∈ R×Rp ×Rk : i = 1, . . . , n}. Assume

that:

yi = x′iθ0 + ui, (6)

xi = Π1nz1i +Π2nz2i + vi, (7)

with : E(ziui) = 0, E(zivi) = 0, and, for each n,Rank(E(zix
′
i)) = p, (8)

where, for j = 1, 2, Πjn = n−δjCj ; Cj ∈ Rp × Rkj ; 0 ≤ δ1 ≤ δ2; zi = (z′1i, z
′
2i)

′; and k1 + k2 = k.

2The main results derived in this paper stay valid in the more general cases where Ln features more than 2 identification

strengths. They are also valid in cases where the model includes weak and/or uninformative restrictions (δj ≥ 1/2),

so long as enough strong and/or semi-strong restrictions are included to ensure consistent and asymptotically normal

estimation.
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In this representation, δj captures the strength of the instruments zj through the magnitude of its

partial correlation with the endogenous variables. Clearly, θ0 solves the moment restriction:

E(zi(yi − x′iθ)) = 0. (9)

Furthermore, assuming - to simplify - that the sets of instruments z1i and z2i are orthogonal and

letting:

∆11 := E(z1iz
′
1i); ∆22 := E(z2iz

′
2i); ρ1(θ) := ∆11C

′
1(θ0 − θ); and ρ2(θ) := ∆22C

′
2(θ0 − θ),

we have:

E(zi(yi − x′iθ)) :=

(

E(z1i(yi − x′iθ))

E(z2i(yi − x′iθ))

)

=

(

n−δ1ρ1(θ)

n−δ2ρ2(θ)

)

.

This shows that the linear IV model in (6)-(8) yields a moment condition model with mixed identifi-

cation strength. Thanks to the rank condition in this model specification, we can also verify that

ρ(θ) := (ρ1(θ)
′, ρ2(θ)′)′ = 0 ⇔ θ = θ0. �

Example 2. (Optimal Prediction). This example focuses on nonlinear prediction functions. Specif-

ically, consider the random sample {wi := (yi, xi, zi) ∈ R3 : i = 1, . . . , n}, where xi is independent of

zi for all i. Our interest lies in determining the optimal projection of yi onto zi and hn(γ, xi), where

hn(·) is a function depending on the sample size n and known up to some parameter γ ∈ [0, 1]. Let α̂

and γ̂ be determined such that ŷi = α̂zi + hn(γ̂, xi) minimizes 1
n

∑n
i=1(yi − ŷi)

2.

The process of finding these values is equivalent to minimizing 1
n

∑n
i=1(yi − αzi − hn(γ, xi))

2 with

respect to α and γ. The first-order condition of this minimization problem implies the following moment

conditions:

E[zi(yi − αzi − hn(γ, xi))] = 0, (10)

E[hnγ(γ, xi)(yi − αzi − hn(γ, xi))] = 0, (11)

where hnγ(γ, xi) = ∂hn(γ, xi)/∂γ.

Suppose that xi ∼ U [−π, π], with π = 4arctan(1), zi ∼ N(0, σ2) independently with xi, E(yi|xi) =
cxi for some constant c 6= 0, and hn(γ, xi) = n−δ[sin(γxi)− cos(γxi)] for some δ ∈ [0, 1/2). Let

φ1(wi, α, γ) = zi
(

yi − αzi − n−δ[sin(γxi)− cos(γxi)]
)

φ2(wi, α, γ) = n−δxi[sin(γxi) + cos(γxi)]
(

yi − αzi − n−δ[sin(γxi)− cos(γxi)]
)

.
(12)

Using the independence between zi and xi, it is straightforward to see that

E[φ1(wi, α, γ)] = E[zi(yi − αzi)] and E[φ2(wi, α, γ)] = n−δE
[

xiyi[sin(γxi) + cos(γxi)]
]

.

Therefore, by setting φ(wi, α, γ) =
[

φ1(wi, α, γ), φ2(wi, α, γ)
]′
, the moment conditions (10)-(11) can be

written as:

E[φ(wi, α, γ)] = L−1
n ρ(α, γ), Ln =

(

1 0

0 nδ

)

, 0 ≤ δ <
1

2
, and

ρ(α, γ) =
(

E[zi(yi − αzi)], cE
[

x2i [sin(γxi) + cos(γxi)]
])′

.
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Under the above assumptions, we can verify that

ρ(α, γ) = 0 ⇔ α = α0 = σ−2E(ziyi), γ = γ0 ≈ 0.8296. �

We now review the existing results on inference about the model parameter θ0. We emphasize

those that are useful to us in the next section on the derivation of efficiency bounds. Let the GMM

estimator θ̂n be defined by

θ̂n = argmin
θ∈Θ

φ̄n(θ)
′Wnφ̄n(θ), (13)

where φ̄n(θ) := n−1
∑n

i=1 φ(Yni, θ) and Wn is a sequence of almost surely symmetric positive definite

matrices converging in probability to W , a symmetric positive definite matrix.

Consistency of θ̂n for θ0 is ensured under Assumption A.1 in Appendix A while Assumptions A.1,

A.2, and A.3 present sufficient conditions for the asymptotic normality of this estimator. The asymp-

totic normality of θ̂n is established by Antoine and Renault (2009, 2012) under the condition that

the Jacobian of ρ(θ) at θ0 is full column rank. The rate of convergence of θ̂n depends on how fast

the strongest moment function EPn
(φ1(Yni, θ)) vanishes and on the rank s1 of the Jacobian matrix of

ρ1(θ) at θ0. If this rank is smaller than p, the dimension of θ0, then the remaining moment restrictions

determine the rate of convergence of the s2 := p − s1 remaining directions of the parameter. To

introduce this asymptotic distribution, we rely on the following notation.

We let s1 = Rank
(

∂ρ1
∂θ′ (θ0)

)

.

• If 0 < s1 < p, defineR = (R1
...R2) a (p, p)-matrix such that RR′ = Ip and R2 is a (p, p−s1)-matrix

with columns spanning the null space of ∂ρ1
∂θ′ (θ0) and define:

J =

(

∂ρ1
∂θ′ (θ0)R1 0

0 ∂ρ2
∂θ′ (θ0)R2

)

and Λn =

(

n
1

2
−δ1Is1 0

0 n
1

2
−δ2Is2

)

. (14)

• If s1 = p, set

J =

(

∂ρ′1
∂θ

(θ0)
... 0

)′
, Λn = n

1

2
−δ1Ip, and R = Ip.

• If s1 = 0, set

J =

(

0
...
∂ρ′2
∂θ

(θ0)

)′
, Λn = n

1

2
−δ2Ip, and R = Ip.

• Finally, if δ1 = δ2 = δ, set

J =
∂ρ(θ0)

∂θ′
, Λn = n

1

2
−δIp, and R = Ip.

Under Assumptions A.1, A.2 and A.3 in Appendix A, we can claim, following Antoine and Renault

(2009, 2012) that, under Pn,

ΛnR
−1(θ̂n − θ0)

d−→ N(0,Ω(W )), with Ω(W ) := (J ′WJ)−1J ′WΣWJ(J ′WJ)−1, (15)
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where Σ is the asymptotic variance of
√
nφ̄n(θ0), under Pn.

As is standard in GMM theory, the asymptotic distribution of the GMM estimator depends on the

probability limit W of the weighting matrix. Antoine and Renault (2009) show that the asymptotic

variance Ω(W ) is minimal for the choice W = Σ−1. They show (see p.S151) how feasible estima-

tors with asymptotic variance Ω(Σ−1) = (J ′Σ−1J)−1 can be obtained. Interestingly, the proposed

procedure is the same as that of the two-step GMM estimator in standard models. They also show

that standard formulas for inference based on the two-step GMM are valid in the context of moment

condition models with mixed identification strength. This highlights some robustness of the two-step

GMM inference procedure to the identification pattern in (5) under the conditions in Assumptions

A.1, A.2 and A.3. We shall reiterate that there is no need to know s1, R, nor the rates of convergence

in Λn to build asymptotically valid inference about θ0 using the two-step GMM estimator.

In the next section, we derive asymptotic semiparametric efficiency bounds for the estimation of

θ0 in the moment condition model (1) under the mixed identification strength property in (5). We

show in substance that the minimum variance Ω(Σ−1) corresponds to the semiparametric efficiency

variance-bound for estimators that are regular in a sense that we will make precise.

3 Efficiency bounds

This section derives the asymptotic efficiency bound for the estimation of θ0 in the moment condition

model (1) characterized by the mixed identification strength property in (5). For this purpose, we rely

on the technique introduced by Dovonon and Atchadé (2020). Their approach consists in: obtaining

the semiparametric family implicitly induced by (1) in the form {f2(θ, h, ·) : (θ, h) ∈ V}, where

f2(θ, h, ·) is the probability density function of Y with respect to a reference measure, and indexed by

θ in Θ and h lying in a Hilbert space. This semiparametric model is then used to obtain an efficiency

bound in the direction of θ by relying on a similar approach to BHHW (1983).

There are two main differences between their set-up and the models of interest in this paper.

First, the population distribution Pn of the data is allowed to depend on the sample size n and,

second, common estimators of θ0 display a mixture of rates of convergence and eliciting the directions

of sharp rate requires some rotation of the parameter space.

Adapting the existing methods to derive efficiency bounds to this configuration proves to be chal-

lenging. Under the triangular arrays framework implied by the sample dependence of Pn, the induced

family of densities also depends on n. We propose an extension of the notion of tangent space and

refine the local asymptotic normality theory used by BHHW to accommodate such families of semi-

parametric models. We also propose an adaptation of the notion of regular estimators to accommodate

our setting where sharp rates are up to a rotation of parameter space.

3.1 (Semi)parametric representation of moment condition models

Consider again the row-wise independent and identically distributed triangular array {Yn1, . . . , Ynn}
of Rd-valued random vectors and common distribution Pn. Let L2(Pn) denote L2(Rd,B(Rd), Pn),
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a Hilbert space of real-valued functions on Rd. Following Dovonon and Atchadé (2020), we next

characterize the semiparametric family induced by the moment condition (1) in the form of density

functions with respect to Pn. This allows to handle random variables with finite, discrete or continuous

support in a unified manner. Our approach contrasts with Chamberlain (1987) who mainly considers

random variables with finite support and provides extensions to continuous variables through an

approximation theory. The main difference between the current set-up and Dovonon and Atchadé

(2020) is that the reference measure Pn in the former depends on n to accommodate triangular arrays,

while it is fixed in the latter.

We let ∇(j)
θ φ(y, θ) denote the j-th order differential of the map θ 7→ φ(y, θ) evaluated at θ with

the convention that ∇(0)
θ φ(y, θ) = φ(y, θ) and we make the following assumption.

Assumption 1.

(i) There exists a neighbourhood Θ of θ0, a L2(Pn)-neighbourhood N of fn,0 ≡ 1, and a finite con-

stant C > 0, such that for Pn-almost all y ∈ Rd, θ 7→ φ(y, θ) is r-times continuously differentiable

on Θ and, for all f ∈ N ,
∫

sup
θ∈Θ

∥

∥

∥∇(j)
θ φ(y, θ)

∥

∥

∥ f2(y)Pn(dy) ≤ C,

for j = 0, . . . , r.

(ii) The matrix Σn =

∫

φ(y, θ0)φ(y, θ0)
′Pn(dy) is positive definite.

Assumption 1 imposes some uniform dominance condition on ∇(j)
θ φ(y, θ) to ensure that this func-

tion is well-behaved. Note also that, when Yni is distributed as Pn, fn,0(y) = 1 is the density of Yni with

respect to Pn. This assumption imposes, in particular, that the relevant functions are integrable with

respect to any density function in a certain neighbourhood of fn,0. The second part of the assumption

is quite standard.

Towards the introduction of the implicit model, further notation is needed. We equip L2(Pn) with

the inner product 〈u, v〉 =
∫

u(y)v(y)Pn(dy) := EPn
(u(Y )v(Y )). More generally, for u : Rd → Rs×r

and v : Rd → Rq×r, 〈u, v〉 = EPn
(u(Y )v(Y )′), where the expectation of any matrix is understood to

be component-wise.

Let ϕ(y) = (ϕ1(y), . . . , ϕk(y))
′ = Σ

−1/2
n φ(y, θ0), and ϕk+1(y) = 1. For all θ ∈ Θ, let ϕθ(y) =

Σ
−1/2
n φ(y, θ). Further, let ϕ̄ = (1, ϕ′)′ = (ϕk+1, ϕ

′)′ and ϕ̄θ = (1, ϕ′
θ)

′ = (ϕk+1, ϕ
′
θ)

′. Thanks to the

moment condition (1), the elements of ϕ̄ are orthonormal elements of L2(Pn). By separability of

L2(Pn), ϕ̄ can be extended to have an orthonormal basis {ϕj : j ≥ 1} of L2(Pn) and let E denote the

closed span of the subspace L2(Pn) generated by {ϕj : j ≥ k+2}. Note that the elements of the basis

{ϕj : j ≥ 1} ultimately depend on n but we do not stress this in the notation for simplicity.

We introduce the map M defined on Θ × E × L2(Pn) taking values in L2(Pn) such that for any

(θ, h, f) ∈ Θ× E × L2(Pn),

M(θ, h, f) :=
1

2

〈

f2, ϕθ

〉

ϕ+
1

2

(
∫

f2(y)Pn(dy) − 1

)

ϕk+1 +
∞
∑

j=k+2

〈ϕj , f − h〉ϕj . (16)
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By construction, the set of solutions of the equation M(θ, h, f) = 0 collects all the combinations

(θ, f) ∈ Θ × L2(Pn) consistent with the moment condition model. That is, all (θ, f) such that
∫

φ(y, θ)f2(y)Pn(dy) = 0. To see this, note that, for any (θ, h, f), M(θ, h, f) = 0 if and only if

∫

φ(y, θ)f2(y)Pn(dy) = 0,

∫

f2(y)Pn(dy) = 1, and 〈ϕj , f − h〉 = 0, ∀j ≥ k + 2.

This means that the triplets (θ, h, f) that set M to zero are those in which: f2 is a density function

with respect to Pn; θ is a solution to the moment condition model with Y having f2 as density function

with respect to Pn; and h is the projection of f on the directions {ϕj : j ≥ k + 2} of the considered

basis.

Conversely, if (θ, f) ∈ Θ × L2(Pn) is such that f2(y) is a density function with respect to Pn

and
∫

φ(y, θ)f2(y)Pn(dy) = 0, then M(θ,projE(f), f) = 0, where projE is the orthogonal projection

operator on the subspace E .
Letting h0 = 0E , we have M(θ0, h0, fn,0) = 0. Lemma 2.1 of Dovonon and Atchadé (2020) shows

that under Assumption 1, M is r-times continuously differentiable and for any g ∈ L2(Pn),

∇fM(θ0, h0, fn,0) · g = 〈g, ϕ̄〉 ϕ̄+
∑

j≥q+2

〈ϕj , g〉ϕj = g.

It follows that ∇fM(θ0, h0, fn,0) is an isomorphism of L2(Pn) and the implicit function theorem allows

us to claim that there exists a neighbourhood V of (θ0, h0), a neighbourhood U of fn,0 and a r-times

continuously differentiable function fn: V → U such that fn(θ0, h0) = fn,0 and for all (θ, h) ∈ V,

M(θ, h, fn(θ, h)) = 0.

The family of functions {fn(θ, h, ·) : (θ, h) ∈ V} defines the semiparametric model induced by the

moment condition (1). This family is further characterized by Proposition B.1 in Appendix B which

follows readily from Lemma 2.2 of Dovonon and Atchadé (2020).

3.2 Efficiency bounds for the (semi)parametric representation

To obtain semiparametric efficiency bounds for the estimation of θ0 in model (1), we focus on the

family of semiparametric density functions {fn(θ, h, ·) : (θ, h) ∈ V} induced by the moment condition

model as established by Proposition B.1. Our goal from this point consists in obtaining a bound for

the parametric component θ in this induced semiparametric model and then show that this bound is

sharp.

Of interest to us is the approach of BHHW (1983) to derive efficiency bounds for parameters of

semiparametric models represented by a family of density functions depending on both a finite and

an infinite dimension parameters. This approach consists in collecting all the elements α ∈ L2(µ) –

where µ is a dominating measure with respect to which the family of model densities are expressed –

and all the sequences θn, hn converging to θ0 and h0 such that:

‖√n(fn(θn, hn)− fn,0)− α‖L2(µ) −→ 0, as n → ∞.
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As maintained in their paper, if the function fn does not vary with n, such α’s necessarily belong

to the tangent set of fn(θn, hn) at (θ0, h0) and therefore, satisfy
∫

αfndµ = 0. This property is used

to establish that the log-likelihood ratio of the sample under the distributions fn(θn, hn) and fn,0 is

asymptotically normal. In turn, the local asymptotic normality (LAN) property of the log-likelihood

ratio is used to derive efficiency bounds for a class of regular estimators.

Although our semiparametric model of interest fits with that analysed by BHHW, a key difference

resides in the fact that our model involves density functions with respect to a dominating measure Pn

that varies with the sample size. We first re-examine the result of BHHW in light of this difference and

we propose a refined version of the LAN property established by their Lemma 2.1 that accommodates

our settings.

We propose the extension in a context more general than needed for us by considering sequences of

sigma-finite measures instead of probability measures. Let (X,C ) be a measurable space and µn, n ≥ 0

a sequence of sigma-finite measures on (X,C ). Let f2
n, n ≥ 0 and g2n, n ≥ 0 be two sequences of density

functions on X with respect to µn. Let L2(µn) denote L2(X,C , µn). By definition, fn, gn ∈ L2(µn)

and ‖fn‖µn
= 1 and ‖gn‖µn

= 1; where ‖h‖2µ =
∫

h2dµ.

Let Xn1, . . . ,Xnn be a row-wise independent and identically distributed triangular array of X-

valued random variables. Define the likelihood ratio Ln by:

Ln = log

{

n
∏

i=1

g2n(Xni)

/

n
∏

i=1

f2
n(Xni)

}

. (17)

We have the following result:

Theorem 3.1. (Local asymptotic normality.) If gn and fn defined above are such that, for

αn ∈ L2(µn),

‖√n(gn − fn)− αn‖µn
→ 0, as n → ∞, (18)

then:

(i) νn :=

∫

fnαndµn → 0 as n → ∞.

(ii) If in addition, ‖αn‖2µn
→ a2 < ∞ as n → ∞, then, for every ǫ > 0,

Pfn

(∣

∣

∣

∣

∣

Ln − 2n−1/2
n
∑

i=1

[αn(Xni)/fn(Xni)− νn] + σ2/2

∣

∣

∣

∣

∣

> ǫ

)

→ 0

as n → ∞, where, for any µ-measurable set A, Pf (A) =
∫

A f2dµ, and σ2 = 4a2. Furthermore,

under Pfn ,

Ln
d−→ N(−σ2/2, σ2)

as n → ∞ and the sequences
{
∏n

i=1 g
2
n(xi)

}

and
{
∏n

i=1 f
2
n(xi)

}

are contiguous.

Proof: See Appendix. �

This result shows that in our context, if αn ∈ L2(Pn) is such that

‖√n(fn(θn, hn)− fn,0)− αn‖L2(Pn) → 0, (19)
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we do not necessarily have
∫

αnfn,0dPn = 0 but instead

lim
n→∞

∫

αnfn,0dPn = 0

and the LAN property in Theorem 3.1(ii) can be obtained from this asymptotic form of tangent space.

We shall rely on this refinement to establish the main results in this paper.

Perhaps, at this point, it is worth addressing the fact that, for the same sequence (fn(θn, hn), fn,0),

many sequences αn of elements of L2(Pn) may satisfy (19). We observe, thanks to the triangle

inequality, that any pair of sequences α1,n and α2,n that satisfy (19) are such that

∣

∣‖α1,n‖L2(Pn) − ‖α2,n‖L2(Pn)

∣

∣ ≤ ‖α1,n − α2,n‖L2(Pn)

≤ ‖√n(fn(θn, hn)− fn,0)− α1,n‖L2(Pn) + ‖√n(fn(θn, hn)− fn,0)− α2,n‖L2(Pn) → 0.

As a result, ‖α1,n‖L2(Pn) and ‖α2,n‖L2(Pn) have the same limit inferior and the same limit superior.

This property is of particular interest since αn is related to the local asymptotic normal distribution in

Theorem 3.1 only through the limit of its L2(Pn)-norm if such a limit exists. Clearly, the existence of

the limit for one solution of (19) implies that any other solution has the same limit. The practical con-

sequence of this is that we can focus on any solution of (19) to develop our asymptotic efficiency theory.

Characterization of the asymptotic tangent space. Let us now give a more specific sense

to gn(·) := fn(θn, hn, ·) by determining the set of all sequences of {(θn, hn)}n of interest and the as-

sociated αn that guarantee (19). For this, we need to make a choice about the rate of convergence

of (θn, hn) to (θ0, h0). If all the components of θ0 were estimable at the same rate, rn, the standard

approach consists in using that rate to characterize the local parameters (θn, hn). This is the case in

the theory of BHHW where rn =
√
n. However, the asymptotic distribution in (15) shows that, except

for the extreme cases of s1 = 0 and s1 = p, standard estimators of θ0 do not converge at the same rate

in all directions.

If we were to determine the local sequences θn based directly on the rate of convergence of the

GMM estimator, it appears that information related to the directions estimable at a faster rate would

be lost and, thereby compromising efficiency. The results in Section 2 on GMM estimation provide an

intuition about this claim. The rate of convergence of this estimator is n1/2−δ2 which is related to the

directions estimable at the slowest rate. From (15), we can claim that, under Pn,

n1/2−δ2(θ̂n − θ0)
d−→ N

(

0, R2Ω(W )22R
′
2

)

,

where Ω(W )22 is the lower-right (s2, s2)-sub-matrix of Ω(W ). This is a degenerated Gaussian limit

that accounts only for a subset of estimation directions by omitting the faster ones.

Because of this, it makes more sense to focus on the rotation of the parameter that disentangle the

estimation directions with sharp rates. As established by (15), the first s1 components of ν0 = R−1θ0

are estimable at rate n
1

2
−δ1 while the remaining s2 are at rate n

1

2
−δ2 and those rates are sharp. We

shall consider this fact and explore sequences (θn) such that:

ΛnR
−1(θn − θ0)− η → 0, (20)
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as n → ∞ for some η ∈ Rp, and R a rotation matrix satisfying the definition in (14).

Effectively, efficient bounds for θ0 are explored in the case 0 < s1 < p through its linear trans-

formation ν0 = R−1θ0. We will say that an estimator θ̃ of θ0 is asymptotically efficient if there is a

rotation R as defined in (14) such that R−1θ̃ is an asymptotically efficient estimator of ν0,R := R−1θ0.

We shall see that if θ̃ is asymptotically efficient for a specific rotation, it is also asymptotically efficient

for any other rotation consistent with that definition.

Remark 1. It is worth mentioning that the set of sequences (θn) determined by (20) is the same

regardless of the choice of rotation matrix R. Indeed, as shown by Lemma B.1, any other rotation R

consistent with the definition (14) satisfies R = RA, with A a nonsingular block diagonal matrix. It

follows that, if (θn) satisfies (20) with the rotation matrix R, it also satisfies (20) with the rotation

matrix R and η replaced by A′η.

This remark shows that the choice of rotation matrix is immaterial in the collection of local

sequences (θn) given by (20). We reiterate that the discussion on rotation is relevant only in models

where 0 < s1 < p. Note that the relevant sequences (θn) are such that for some η ∈ Rp,

if s1 = p, ΛnR
−1(θn − θ0)− η = n1/2−δ1(θn − θ0)− η → 0, and

if s1 = 0, ΛnR
−1(θn − θ0)− η = n1/2−δ2(θn − θ0)− η → 0 (21)

so that no rotation is explicitly involved. Our aim is to derive an efficiency bound for the estimation

of θ0 that is valid whether s1 = 0, p or 0 < s1 < p. For this reason, we will consider sequences defined

by (20) with the understanding that this definition collapses to (21) in the extreme cases.

Regarding the non-parametric component of the model, we consider (hn) such that

‖√n(hn − h0)− β‖L2(Pn) → 0 (22)

as n → ∞, for some β ∈ L2(Pn). The parametric rate in the definition of (hn) may seem arbitrary

but the consequence of this choice is that the set of sequences (hn) thus defined is small and may lead

to irrelevant bounds. We shall see later that this set is actually the right one as the resulting bound

will be proved sharp.

Following similar lines to BHHW, we collect all these sequences in specific sets by letting Θ(θ0, η)

denote the set of all sequences (θn) satisfying (20) and Θ(θ0) =
⋃

η∈Rp Θ(θ0, η). Similarly, C(h0, β)
denotes the collection of all sequences (hn) such that (22) holds and C(h0) =

⋃

β∈B(h0)
C(h0, β), where

B(h0) = {β ∈ E such that (22) holds for some sequence (hn) of elements of E} .

The sequences of experiments that we shall consider are:

g2n(·) := f2
n(θn, hn, ·), with {(θn), (hn)} ∈ Θ(θ0)× C(h0). (23)

From Proposition B.1, (θ, h) 7→ fn(θ, h) is twice continuously Fréchet differentiable and this is sufficient

to claim that f2
n(θ, h) is Hellinger differentiable at (θ0, h0). In this case, the limit elements αn in (18)
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are characterized by the Fréchet (or Hellinger) derivatives of fn(θ, h) at (θ0, h0). Indeed, by the Taylor’s

formula, there exists a function rn,θ0 ∈ L2(Pn) and a bounded linear operator An : L2(Pn) → L2(Pn)

such that:

‖gn − fn,0 − rn,θ0 · (θn − θ0)−An · (hn − h0)‖L2(Pn) = ‖r2(θn, hn, ·)‖L2(Pn), (24)

where r2(θn, hn, ·) is the Lagrange remainder. If

√
n‖r2(θn, hn, ·)‖L2(Pn) = o(1) (25)

then the leading part of rn,θ0 · (θn − θ0) + An · (hn − h0) in L2(Pn) would represent αn associated to

the sequence (θn, hn) as in (18).

Lemma B.2 in Appendix B establishes (25) under the condition that

(δ1, δ2) ∈ ∆ :=
{

(a, b) ∈ [0, 1/2[2: 0 ≤ a ≤ b < [(1/4 + a/2) ∧ 3/8]
}

.

This result is obtained by showing that
√
n‖r2(θn, hn, ·)‖L2(Pn) = O(n−1/2+2δ2) if δ2 < 1/4 and if

δ2 ≥ 1/4,
√
n‖r2(θn, hn, ·)‖L2(Pn) = O(n−1/2+2δ2−δ1 ∨ n−3/2+4δ2). We get this result by deriving the

magnitude of ‖∂2fn(θ, h, ·)/∂θj∂θk‖L2(Pn) and also using the fact that ‖θn − θ0‖ = O(n−1/2+δ2).

Remark 2. The efficiency bounds that we derive in the next section apply to (δ1, δ2) ∈ ∆. Note

that the condition δ2 < 1/4 + δ1/2 corresponds to the condition in Assumption A.3(i) under which

the asymptotic distribution of GMM estimators is derived when the moment function is non-linear in

θ. In our study, we will maintain this condition even in case of linearity since the induced family of

densities appears to be non-linear in general as can be seen in (B.1).

The condition on δ2 is more restrictive by ruling out values larger than or equal to 3/8. Although

the results that we derive in this paper maintain this sufficient condition, they may still continue to

hold for 3/8 ≤ δ2 < 1/2 as illustrated by the simulations in Section 4.

For any (δ1, δ2) ∈ ∆, we have

‖√n(gn − fn,0)−
√
n(rn,θ0 · (θn − θ0) +An · (hn − h0))‖L2(Pn) → 0, as n → ∞. (26)

Therefore, we can define αn satisfying (19) as any element of L2(Pn) such that:

‖αn −√
n (rn,θ0 · (θn − θ0) +An · (hn − h0)) ‖L2(Pn) → 0 as n → ∞.

For the rest of our analysis, more relevant than the sequence {(θn), (hn)} ∈ Θ(θ0)× C(h0) itself is its
scaled limit which is some (η, β) ∈ Rp×B(h0). The following proposition characterizes αn in terms of

η and β.

Proposition 3.2. Let R, J , and Λn be defined as in (14) with (δ1, δ2) ∈ ∆. Assume that: θ0 satisfies

(1); the estimating function φ(·, ·) satisfies (5); ∂ρ(θ0)/∂θ
′ is full column rank; Assumptions 1 and

A.4 hold with r = 2. Then, with {(θn), (hn)} ∈ Θ(θ0)× C(θ0), the set H0 of αn’s such that (19) holds

is essentially given by

H0 =

{

αn ∈ L2(Pn) : αn = −1

2
η′J ′Σ−1/2

n ϕ+An · β, η ∈ Rp, β ∈ B(h0)
}

, (27)

where ϕ(·) = Σ
−1/2
n φ(·, θ0) and An = ∇hfn(θ0, h0, ·) is given by Proposition B.1.
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In the statement of Proposition 3.2, by “essentially,” we mean that any other solution (α1,n) of

(19) satisfies ‖αn − α1,n‖L2(Pn) = o(1) for some αn ∈ H0. See comment following Theorem 3.1. Also,

the fact that β ∈ B(h0) ⊂ E ensures that An · β = β.

Proof: See Appendix. �

Example 1. – Linear IV, continued: In this example, Yn,i := wi = (zi, yi, xi) with distribution Pn.

The elements of the tangent space are given by αn(w) = −(1/2)η′J ′Σ−1/2
n ϕ(w)+β(w), with η ∈ Rp and

β is any element of L2(Pn) orthogonal to y 7→ (1, ϕ(w)); ϕ(w) = Σ
−1/2
n φ(w, θ0), φ(w, θ0) := z(y−x′θ0),

Σn = V ar(φ(Yni, θ0)). Finally, J is defined as in (14) with ∂ρj(θ0)/∂θ
′ = −∆jjC

′
j and s1 = Rank(C1).

Example 2. – Optimal Prediction, continued: In this example, Yn,i := wi = (zi, yi, xi) with distri-

bution Pn. The elements of the tangent space are given by αn(w) = −(1/2)η′J ′Σ−1/2
n ϕ(w) + β(w),

with η ∈ Rp and β is any element of L2(Pn) orthogonal to y 7→ (1, ϕ(w)); ϕ(w) = Σ
−1/2
n φ(w, θ0), with

φ(w, θ) defined by (12), θ := (α, γ), and Σn = V ar(φ(Yn,i, θ0)).

To derive J , we obtain:

∂ρ1(θ0)

∂θ′
= [−E(z2i ), 0] = [−σ2, 0], and

∂ρ2(θ0)

∂θ′
=

[

0,−cE
(

x3i sin(γ0xi)
)]

6= 0.

Using the definition (14), we obtain in this case, R = I2 and

J =

(

−σ2 0

0 −cE
(

x3i sin(γ0xi)
)

)

. (28)

Remark 3. As is commonly done, thanks to Proposition 3.2, we can index the sequence g2n :=

f2
n(θn, hn) by its associated αn ∈ H0, i.e. αn ∈ H0 such that (19) holds or even by the parameter

(η, β) ∈ Rp × B(h0).

Convolution results. Under the sequence of experiments g2n as defined in (23) and the reference

distribution f2
n,0, the log-likelihood ratio Ln has the expression given in (17) with Xni replaced by Yni

and fn by fn,0. The LAN property of g2n at (θ0, h0) follows from Theorem 3.1. Specifically, for any

αn ∈ H0,

Ln
d→ N(−σ2/2, σ2),

under f2
n,0 as n → ∞, where σ2 = 4 limn→∞ ‖α2

n‖L2(Pn) if this limit exists.

This LAN property is key to the convolution result that we introduce next. We rule out cases of

super-efficient estimators, by restricting ourselves to regular estimators of θ0. The definition of regular

estimator that we rely on is different from the standard one. A meaningful definition shall reflect the

heterogeneity of convergence rates of standard estimators as obtained in (15). Our definition below

accounts for the directions in which information about θ0 has the potential to be maximum.

Definition 1. (Λn-Regularity) An estimator θ̃n of θ0 is Λn-regular at f2
n,0 if, for every sequence

gn(·) := fn(θn, hn, ·) with {(θn), (hn)} ∈ Θ(θ0) × C(h0), ΛnR
−1(θ̃n − θn) converges in distribution

under g2n and f2
n,0 = f2

n(θ0, h0) to the same limit S.
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Remark 4. Note that S in this definition may depend on R. However, the Λn-regularity property of

a sequence of estimators θ̃n is not associated to a particular rotation as the definition may suggest.

Indeed, we can show that if Definition 1 holds for θ̃n, it continue to hold if R is replaced by a different

rotation matrix, say R = RA (see Remark 1). In this case, the limiting distribution is A′S instead.

To introduce our main result, we observe that, since h0 = 0, B(h0) is a closed subspace of L2(Pn)

hence, αn’s in Proposition 3.2 can also be written

η′
(

J ′Σ−1/2
n ϕ−An · b

)

,

with η ∈ Rp, b = (β1, . . . , βp) ∈ B(h0)p and An · b := (An · β1, . . . , An · βp)′.

Let An·b∗
n, with b∗

n ∈ B(h0)p, be the orthogonal projection of−1
2J

′Σ−1/2
n ϕ onto {An · b : b ∈ B(h0)p}

and define (the efficient score in the direction of θ) as

sn = −1

2
J ′Σ−1/2

n ϕ−An · b∗
n and I∗ = 4 lim

n→∞
〈sn, sn〉

if this limit exists. We have the following result.

Theorem 3.3. Let θ̃n be an estimator of θ0, Λn-regular at f2
n,0 with limit distribution S. If the con-

clusion of Proposition 3.2 holds - that is: the set of αn’s such that (19) holds is given by H0 in (27) -

and I∗ exists and is nonsingular, then:

S
d
= Z + U,

where Z ∼ N(0, I−1
∗ ) and is independent of the random vector U .

Proof: See Appendix. �

Theorem 3.3 states that any regular estimator of θ0 has an asymptotic variance that is at least as

large as I−1
∗ . The next corollary gives a more explicit expression of this bound in terms of moments

of the estimating function φ(Y, θ).

Corollary 3.4. Let R, J , and Λn be defined as in (14) with (δ1, δ2) ∈ ∆. Assume that: θ0 satisfies

(1); the estimating function φ(·, ·) satisfies (5); ∂ρ(θ0)/∂θ
′ is full column rank; Assumptions 1 and

A.4 hold with r = 2; and, as n → ∞, Σn := EPn
[φ(Y, θ0)φ(Y, θ0)

′] → Σ a symmetric positive definite

matrix. If θ̃n is Λn-regular estimator of θ0 with limit distribution S, then

S
d
= Z + U, (29)

where Z ∼ N(0, I−1
∗ ), with I∗ = J ′Σ−1J and Z independent of U .

Proof: See Appendix. �

Example 1. – Linear IV, continued: The limit distribution of any regular estimator of θ0 in the

model (9) is a convolution of two independent variables Z and U with Z ∼ N(0, I−1
∗ ); I∗ = J ′Σ−1J ,

J previously defined, and Σ = limn→∞Σn.

17



Example 2. – Optimal Prediction, continued: In this example, the limit distribution of any regular

estimator of θ0 := (α0, γ0) in the model (10)-(11) is a convolution of two independent variables Z

and U with Z ∼ N(0, I−1
∗ ); I−1

∗ = J−1ΣJ−1, with J given by (28), and Σ = limn→∞Σn with Σn =

V ar(φ(Yn,i, θ0)), Yn,i := wi = (yi, xi, zi)
′ with distribution Pn.

Corollary 3.4 sets Lb := I−1
∗ =

(

J ′Σ−1J
)−1

as the lowest asymptotic variance reachable by any

regular estimator of θ0. Note that this result holds regardless of the value of s1 = Rank(∂ρ1(θ0)/∂θ
′).

If s1 = 0 or p, then

J =
∂ρ(θ0)

∂θ′
and Lb =

(

∂ρ(θ0)
′

∂θ
Σ−1∂ρ(θ0)

∂θ′

)−1

.

In the case where 0 < s1 < p, J is given by (14) and the bound is as given above. This is effectively

the efficiency bound for the estimation of ν0 = R−1θ0. However, this result seems to channel more

information than that. From the previous discussion, any estimator θ̃ of θ0 that is Λn-regular for one

choice of rotation stays so for any other rotation defined by (14). In addition, the convolution result

above shows that being efficient in terms of one rotation implies efficiency in any other rotation. This

provides some rational to the notion that, when 0 < s1 < p, a regular and efficient estimator θ̃ is

one that is Λn-regular for one choice of rotation and reaches the asymptotic semiparametric efficiency

bound for that rotation.

One additional point that is worth mentioning is that Dovonon et al. (2023) have established that

det[(J ′Σ−1J)−1] is rotation invariant. Also, the asymptotic variance of a regular estimator θ̃ is given

by

I−1
∗ + V, with V = V ar(U).

We know that det(I−1
∗ + V ) ≥ det(I−1

∗ ), with equality if and only if V = 0.3 We can therefore

relate efficiency of any regular estimator θ̃ to the fact that the determinant of its asymptotic variance

is equal to det(I−1
∗ ) which is rotation invariant. We recall that the determinant of the variance-

covariance matrix, also known as generalized variance is introduced by Wilks (1932) as the scalar

measure of dispersion in a multivariate statistical population.

Finally, in relation to GMM estimation, from (15), the two-step GMM estimator (2SGMM) θ̂n,Σ−1

using the weighting matrix Wn with the inverse of Σ = limn→∞ V arPn
(φ(Yni, θ0)) as limit, is asymp-

totically distributed N(0, (J ′Σ−1J)−1). This implies that the bound derived by Corollary 3.4 is sharp.

Note that this choice of weighting matrix is known to be efficient in the standard GMM estimation

setting (see Chamberlain, 1987) and also in singularity settings of first-order local identification failure

(see Dovonon and Atchadé, 2020). Further, we will show in the next section that GMM estimators

are regular and this will bring to light the efficiency status of 2SGMM among regular estimators.

Along with the convolution result in Corollary 3.4, we also derive an asymptotic minimax optimality

result for a general class of loss functions. Let ℓ : Rp → R+ be a loss function that is subconvex, i.e.,

{x : ℓ(x) ≤ a} is closed, convex and symmetric for every a ≥ 0. We have the following.

3See Magnus and Neudecker (2002, Th. 22, p.21).
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Theorem 3.5. Under the same conditions as in Corollary 3.4, if ℓ is subconvex and θ̃n is a measurable

sequence of estimator of θ0, then

sup
I⊂H0

lim inf
n→∞

sup
αn∈I

Egn,αn
ℓ
(

ΛnR
−1

(

θ̃n − θn

))

≥ Eℓ(Z),

where Z is defined as in Corollary 3.4 and g2n,αn
is a sequence f2(θn, hn, ·) such that (19) holds. The

first supremum is taken over all finite subset I of H0.

Using Corollary 3.4, the proof of this result follows readily by the application of Theorem 3.11.5

of van der Vaart and Wellner (1996, p.417).

Regularity of the GMM estimator. We now establish that the GMM estimator is Λn-regular

at fn,0. Consider the GMM estimator, θ̂n, defined by (13) with a sequence of weighting matrix Wn

converging in probability under Pn to W , a symmetric positive definite matrix. Equation (15) gives

the asymptotic distribution of θ̂n, under Pn:

ΛnR
−1(θ̂n − θ0)

d−→ N(0,Ω(W ))

which is valid under (1), (5) and Assumptions A.1-A.3. To claim regularity for θ̂n, we will establish

that

ΛnR
−1(θ̂n − θn)

d−→ N(0,Ω(W )), under g2n := f2
n(θn, hn),

with ΛnR
−1(θn − θ0)− η −→ 0 and

√
n(hn − h0)− β −→ 0 in L2(Pn) for some η ∈ Rp and β ∈ E .

We will use the fact that the measures {∏n
i=1 g

2
n(yi)} and {∏n

i=1 f
2
n,0(yi)} are contiguous, see

Theorem 3.1. That is, for each sequence of sets Fn measurable on the probability space (Rd × · · · ×
Rd,B(Rd × · · · × Rd),Pn := Pn ⊗ · · · ⊗ Pn), Pn(Fn) → 0, as n → ∞ implies that Qn(Fn) → 0,

where Qn has density
∏n

i=1 g
2
n(yi) with respect to Pn. (The products in the definition are n-fold.)

The consequence of contiguity is that any sequence of random variable of order oP (1) (respectively

OP (1)) under Pn are also oP (1) (respectively OP (1)) under g2n. We establish regularity of GMM by

strengthening Assumptions A.1-A.3 by the following assumption:

Assumption 2. (a) There exists a neighbourhood N of θ0 and a constant C > 0 such that, for all g

in a L2(Pn)-neighbourhood of fn,0,

sup
θ∈N

∫

‖φ(y, θ)‖4g2(y)dPn(y) ≤ C.

(b) For any non-random sequence (θn) such that θn → θ0, as n → ∞,
∫

φ(y, θn)φ(y, θn)
′dPn → Σ,

with Σ := limn→∞ V arPn
(φ(Yni, θ0)).

This assumption is useful to establish that
√
nφ̄n(θn) converges in distribution to N(0,Σ), under

g2n. Part (a) requires fourth moments for the estimating function φ(y, θ) under distributions near the

reference distribution Pn. We can interpret Part (b) as a continuity assumption. If Pn were fixed in n,

it would follow from the continuity of θ 7→ φ(y, θ) for Pn-almost all y and some dominance condition.

Proposition 3.6. Assume θ0 satisfies (1) and the estimating function φ(·, ·) satisfies (5). If Assump-

tions A.1-A.3 and 2 hold, then the GMM estimator θ̂n is Λn-regular.
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Proof: See Appendix. �

This proposition establishes the regularity of GMM estimators. Asymptotic normality and the

conclusion of Corollary 3.4 imply that the asymptotic distribution of θ̂n is the convolution of indepen-

dent random variables Z and U with Z ∼ N(0, (J ′Σ−1J)−1) and U ∼ N(0,Ω(W )− (J ′Σ−1J)−1). The

choice W = Σ−1 yields U ≡ 0 making 2SGMM, θ̂nΣ−1 , asymptotically semiparametrically efficient

among the family of regular estimators.

This result also establishes that, although the moment function is asymptotically vanishing uni-

formly over the parameter space, 2SGMM is not inadmissible in the sense of Andrews and Mikusheva

(2022a). It is important to note that their statement that GMM is inadmissible in weakly identified

models hinges crucially on the concentration measure
√
n‖ρn(θ)‖∞ being bounded. Our result does

not contradict theirs since
√
n‖ρn(θ)‖∞ is unbounded in our framework.

Further comments

1. This paper focuses mainly on moment condition models with identification properties outlined

by (5). Nevertheless, the efficiency results derived would still hold in some relaxed version of

this statement. This is the case if in (5), for j = 1, 2,

EPn
(φj(Yni, θ)) = n−δjρj(θ) is replaced by EPn

(φj(Yni, θ)) = n−δjρj(θ) + rjn(θ),

with ‖rjn(θ)‖ uniformly o(n−δj‖ρj(θ)‖), that is, there exists a sequence kn → 0 such that: for

any θ ∈ Θ, ‖rjn(θ)‖ ≤ kn · n−δj‖ρj(θ)‖.
In this framework, one shall maintain that, in a neighbourhood Nθ0 of θ0, and for j = 1, 2:

EPn

(

∂φj(Yni, θ)

∂θ′

)

= n−δj
∂ρj(θ)

∂θ′
+ o(n−δ2)

and for s = 1, . . . , kj ,

EPn

(

∂2φjs(Yni, θ)

∂θ∂θ′

)

= n−δj
∂2ρjs(θ)

∂θ∂θ′
+ o(n−δj).

2. A general characteristic of moment condition models with mixed identification strength is that

the rate of convergence of common estimators is quite related to the magnitude of the components

of the moment function. In that respect, a linear one-to-one transformation of the model may

result in a change in the convergence rate structure of the estimator including, e.g., the number of

directions of faster convergence rate. In spite of this, the results of this paper show that efficiency

of the 2SGMM is warranted for any specific version of of the moment function considered.

Note that in standard (strong) identification framework, the 2SGMM associated to a moment

condition model is asymptotically equivalent to that of any linear one-to-one transform of that

model.
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3. In a more recent paper, Antoine and Renault (2021) consider a more general family of moment

condition models in which point identification is characterized by:

There exists ν ∈ [0, 1/2[ such that : ∀ǫ > 0, lim inf
n→∞

nν inf
‖θ−θ0‖>ǫ

‖ρn(θ)‖ > 0. (30)

They establish consistency of GMM estimators under this condition and their asymptotic normal-

ity under further regularity assumptions. We observe that the models with mixed identification

strength considered in this paper fit with this property while being only a subset. There are

models significantly different from those studied in this paper – such as moment condition mod-

els with additively separable moment functions considered by Stock and Wright (2000) – that fit

(30) as well. There are no obvious reasons for us to believe that the bounds derived in this paper

extend to all models with the property in (30). A more careful study may be needed to exhibit

efficient estimators in this framework.

4. An interesting extension that we plan for future research is to investigate the meaning of efficiency

when δ ≥ 1/2. Kaji (2021) focuses on this range and adopts a slightly different approach than

ours. He considers a candidate limit measure P that aligns with the model at n = ∞ and, in

particular, is uninformative about the model parameter. Then, he explores sequences of relevant

measures Pn (each) identifying the parameter value and converging to P . While the parameter

(considered as a function of the data distribution Pn) is not continuous, efficiency can then

be built on some underlying parameter that is estimable and informative about the structural

unidentified parameter.

In our analysis, though, we consider Pn, the probability distribution of the data at a given n,

as the reference probability measure and obtain the tangent space at Pn of local relevant mea-

sures. Then, we develop a convolution theory based on the limit of this (sample size dependent)

tangent space. We have been able to obtain positive results when it comes to analyzing the case

where 0 ≤ δ < 1/2. Such an extension will help shed some light on how the efficiency properties

transition through δ = 1/2 and will also allow a meaningful connection to the work of Kaji (2021).

4 Simulations

We analyze the finite sample performance of the two-step GMM estimator of θ0 in the moment

condition model (1) in the presence of moment restrictions with nonstandard or mixed identification

strength. We focus on the following linear IV model with conditional heteroskedasticity and two

endogenous variables, as it offers a suitable framework for this exercise:































yi = x1iθ1 + x2iθ2 + ui, i = 1, . . . , n

x1i = z1iπ1n + v1i, x2i = z2iπ2n + z3π3n + v2i,

ui = σ−1
ε (x21iεi − µxε), εi = ρv1i + ρv2i + ηi,

σ2
ε = V ar(x21iεi), µxε := E(x21iεi) = 2ρ

√
2,

(31)
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where π1n = 1.48n−δ1 , π2n = π3n = 1.48n−δ2 ; yi ∈ R is the ith observation on the dependent variable;

x1i ∈ R and x2i ∈ R are observations on two possibly endogenous regressors; θ1 and θ2 are unknown

scalar structural parameters; z1i, z2i, z3i are instrumental variables, whose strengths are δ1, δ2 and δ2

respectively [see Dovonon et al. (2023)]; ui is a structural disturbance and (v1i, v2i) are reduced-form

disturbances. The variance σ2
ε of x21iεi is explicitly given by σ2

ε = 3π4
1n + 6π2

1n + 84π2
1nρ

2 + 732ρ2 +

15. The expression of the structural errors ui in (31) clearly illustrates the presence of conditional

heteroskedasticity in this IV model. The true values of θ1 and θ2 are set at θ01 = θ02 = 0.1, and

(v1, v2, η, z1, z2, z3)
′ ∼ N(0,V), where

V =







V 0 0

0 I2 0

0 0 Vz






, V =

(

1 ρ

ρ 1

)

, Vz =

(

1 ρz

ρz 1

)

.

In (31) ρ measures the correlation between εi and vji, j = 1, 2, and is kept fixed across observations.

Note from the above parametrization that ρ also determines the degree of endogeneity in the model

(i.e., the correlation between the structural error ui and the reduced-form errors v1j , j = 1, 2) when

the sample n goes to infinity. We set ρ to 0.5 and 0.0925. For ρ = 0.5, Corr(ui, vji) tends to 0.533

as n grows, while for ρ = 0.0925, Corr(ui, vji) tends to 0.301, for both j = 1 and 2. Therefore,

ρ = 0.5 corresponds to relatively high endogeneity in the model, while ρ = 0.0925 implies moderate

endogeneity in the model. Throughout the experiments, following Dovonon et al. (2023), we consider

cases where z1, z2 and z3 have equal strength – δ1 = δ2 ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5} – and cases

where they have mixed strength – (δ1, δ2) ∈ {(0, 0.2), (0, 0.3), (0, 0.4), (0.1, 0.2)(0.1, 0.3), (0.3, 0.4)}. We

set the sample size n to 100, 500, 1000, 5000, 8000, and 10000.

We evaluate the performance of the baseline GMM estimator, which is the two-step GMM in

(13) using the optimal weighting matrix Ŵ opt
n =

(

1
n

∑n
i=1 û

2
i ziz

′
i

)−1
, where ûi represents the 2SLS

residuals and zi = (z1i, z2i, z3i)
′. We compare its performance with two non-optimal GMM estimators

of θ: (1) the 2SLS estimator obtained by setting Wn =
(

1
n

∑n
i=1 ziz

′
i

)−1
in (13); and (2) the naive

GMM estimator obtained with Wn = Ik in (13). To assess and compare these estimators, we use

performance measures, including the component-wise mean squared error (MSE) and the generalized

variance (gVAR), quantified by the determinant of the MSE matrix.

Tables 1-2 display performance ratios (naive estimator to optimal GMM and 2SLS estimator to

optimal GMM) for various sample sizes under different levels of identification strength. Table 1 repre-

sents scenarios with relatively high endogeneity (ρ = 0.5), while Table 2 reflects moderate endogeneity

(ρ = 0.0925). The results consistently show that, for both performance metrics (MSE and gVAR),

across all levels of endogeneity (ρ ∈ 0.0925, 0.5) and sample sizes, the benchmark optimal two-step

GMM outperforms both the 2SLS estimator and the naive GMM estimator with Wn = Ik. This

superiority of the optimal two-step GMM is particularly pronounced in smaller samples but tends to

stabilize as the sample size increases. These findings align with our theoretical results. Notably, even

in the case of δ1 = δ2 = 0.5 under which GMM is inconsistent, the optimal two-step GMM estimator

is favored based on the presented ratios. A possible explanation of this result is that the exact finite

n density draws information from the data even when πjn = O
(

1√
n

)

but is insufficient to deliver a

consistent estimator (see e.g., Phillips, 1980).
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5 Concluding remarks

This paper is concerned with efficient estimation in moment condition models with mixed identification

strength. These models are point identifying at any given sample size but their moment function drifts

to zero uniformly over the parameter space as the sample size grows. This feature makes identification

somewhat weak since the moment function becomes uninformative in the limit. When the moment

function does not drift to zero too fast, consistent estimation is possible and GMM estimators are

shown to be asymptotically normally distributed.

The purpose of this paper is to derive semiparametric efficiency bounds for parameter estimation

in these models. We rely on the approach of Dovonon and Atchadé (2020) that we refine to account

for the fact that the sampling process follows a drifting distribution Pn that depends on the sample

size, n, instead of a fixed distribution as commonly considered in the literature.

We show that the asymptotic minimum variance bound for the estimation by regular estimators is

given by (J ′Σ−1J)−1, where J is given by (14) in Section 2. This bound corresponds to the asymptotic

variance of the GMM estimator using a weighting matrix Wn converging to Σ−1, where Σ is the limit

variance under Pn of the estimating function evaluated at θ0. This is the the well-known two-step

GMM estimator. We establish that this estimator is regular and also asymptotically minimax efficient

with respect to a large class of loss functions. Our result extends that of Chamberlain (1987) to the

class of moment condition models with mixed identification strength.

One possible extension that we plan for future work is to consider models describing weakly de-

pendent data. Hallin et al. (2015) have developed a framework useful to study such models in the

parametric framework. An extension of their approach to semiparametric models can be an interest-

ing contribution. The main challenge that we foresee for moment condition models with dependent

data is related to the formulation of the dynamics in the data generating process that shall be gen-

eral enough to accommodate a relevant class of models while being explicit enough to fit with the

framework of Hallin et al. (2015).
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Table 1: Relative performance of the Optimal Two-Step GMM: ρ = 0.5

Ratio Naive to Optimal GMM Ratio 2SLS to Optimal GMM

IV strength ↓ n → 100 500 1000 5000 8000 10000 100 500 1000 5000 8000 10000

δ1 < δ2 MSE-ratio (θ̂1)

0 0.2 1.374 1.161 1.104 1.029 1.020 1.017 1.387 1.164 1.106 1.029 1.020 1.017

0 0.3 1.381 1.159 1.105 1.030 1.021 1.018 1.389 1.161 1.107 1.030 1.021 1.018

0 0.4 1.383 1.157 1.100 1.029 1.020 1.017 1.391 1.159 1.102 1.029 1.020 1.017

0.1 0.2 1.513 1.205 1.130 1.038 1.023 1.022 1.529 1.213 1.134 1.040 1.024 1.023

0.1 0.3 1.433 1.245 1.136 1.037 1.025 1.020 1.455 1.252 1.140 1.039 1.026 1.021

0.3 0.4 1.356 1.314 1.249 1.085 1.056 1.057 1.338 1.317 1.248 1.095 1.065 1.067

MSE-ratio (θ̂2)

0 0.2 1.617 1.298 1.211 1.083 1.064 1.059 1.604 1.294 1.211 1.081 1.064 1.057

0 0.3 1.502 1.284 1.264 1.100 1.075 1.062 1.486 1.276 1.255 1.097 1.072 1.061

0 0.4 1.428 1.329 1.210 1.088 1.072 1.071 1.405 1.302 1.198 1.079 1.063 1.063

0.1 0.2 1.710 1.393 1.296 1.111 1.074 1.073 1.691 1.386 1.291 1.109 1.072 1.070

0.1 0.3 1.636 1.374 1.282 1.115 1.094 1.080 1.624 1.369 1.277 1.113 1.091 1.078

0.3 0.4 1.534 1.397 1.293 1.115 1.086 1.085 1.473 1.362 1.274 1.104 1.079 1.079

gVAR-ratio

0 0.2 4.930 2.271 1.787 1.240 1.178 1.159 4.937 2.270 1.792 1.237 1.177 1.156

0 0.3 4.303 2.214 1.949 1.283 1.205 1.169 4.259 2.195 1.929 1.277 1.198 1.166

0 0.4 3.898 2.364 1.773 1.252 1.195 1.185 3.816 2.279 1.743 1.232 1.178 1.168

0.1 0.2 6.650 2.818 2.144 1.329 1.206 1.203 6.636 2.826 2.146 1.330 1.204 1.196

0.1 0.3 5.503 2.922 2.118 1.338 1.258 1.213 5.588 2.937 2.119 1.337 1.253 1.211

0.3 0.4 4.379 3.374 2.606 1.464 1.317 1.315 3.923 3.215 2.528 1.460 1.319 1.325

δ1 = δ2 MSE-ratio (θ̂1)

0 0 1.376 1.156 1.106 1.029 1.020 1.018 1.385 1.159 1.107 1.029 1.020 1.018

0.1 0.1 1.544 1.231 1.134 1.036 1.026 1.020 1.540 1.239 1.139 1.037 1.027 1.021

0.2 0.2 1.596 1.303 1.186 1.050 1.033 1.027 1.610 1.316 1.195 1.056 1.037 1.031

0.3 0.3 1.382 1.338 1.278 1.090 1.057 1.048 1.347 1.338 1.291 1.098 1.067 1.057

0.4 0.4 1.324 1.236 1.209 1.147 1.079 1.071 1.282 1.129 1.169 1.086 1.060 1.058

0.45 0.45 1.223 1.233 1.206 1.077 1.244 1.141 1.096 1.147 1.068 1.024 1.030 1.022

0.5 0.5 1.243 1.128 1.167 1.108 1.085 1.078 1.127 1.081 1.064 1.024 1.016 1.009

MSE-ratio (θ̂2)

0 0 1.600 1.297 1.238 1.083 1.064 1.067 1.597 1.294 1.237 1.081 1.064 1.064

0.1 0.1 1.790 1.334 1.275 1.124 1.097 1.074 1.767 1.329 1.271 1.122 1.095 1.072

0.2 0.2 1.730 1.438 1.246 1.111 1.094 1.087 1.686 1.431 1.243 1.108 1.093 1.084

0.3 0.3 1.509 1.367 1.277 1.113 1.082 1.088 1.442 1.352 1.263 1.109 1.077 1.084

0.4 0.4 1.421 1.286 1.243 1.135 1.097 1.093 1.341 1.237 1.211 1.109 1.077 1.076

0.45 0.45 1.289 1.259 1.283 1.117 1.107 1.079 1.227 1.202 1.174 1.048 1.019 1.041

0.5 0.5 1.125 1.124 1.193 1.069 1.060 1.086 1.070 1.090 1.090 1.021 1.021 1.021

gVAR-ratio

0 0 4.844 2.249 1.874 1.241 1.178 1.180 4.892 2.252 1.877 1.238 1.177 1.174

0.1 0.1 7.603 2.695 2.091 1.355 1.267 1.200 7.383 2.708 2.094 1.353 1.264 1.198

0.2 0.2 7.690 3.510 2.183 1.362 1.277 1.247 7.417 3.550 2.207 1.370 1.285 1.251

0.3 0.3 4.348 3.348 2.662 1.473 1.306 1.300 3.775 3.274 2.658 1.481 1.321 1.312

0.4 0.4 3.694 2.539 2.264 1.689 1.400 1.372 3.088 1.967 2.019 1.453 1.305 1.296

0.45 0.45 2.481 2.418 2.385 1.435 1.784 1.526 1.801 1.911 1.566 1.172 1.152 1.134

0.5 0.5 1.974 1.607 1.798 1.432 1.315 1.362 1.487 1.391 1.342 1.102 1.077 1.063
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Table 2: Relative performance of the Optimal Two-Step GMM: ρ = 0.0925

Ratio Naive to Optimal GMM Ratio 2SLS to Optimal GMM

IV strength ↓ n → 100 500 1000 5000 8000 10000 100 500 1000 5000 8000 10000

δ1 < δ2 MSE-ratio (θ̂1)

0 0.2 1.128 1.066 1.056 1.024 1.017 1.015 1.131 1.067 1.057 1.024 1.018 1.015

0 0.3 1.140 1.068 1.053 1.025 1.017 1.016 1.142 1.069 1.054 1.025 1.017 1.017

0 0.4 1.150 1.075 1.058 1.024 1.018 1.015 1.152 1.075 1.059 1.024 1.018 1.016

0.1 0.2 1.259 1.138 1.121 1.044 1.028 1.024 1.262 1.141 1.123 1.045 1.029 1.025

0.1 0.3 1.217 1.162 1.107 1.043 1.031 1.025 1.223 1.165 1.109 1.045 1.032 1.026

0.3 0.4 1.549 1.228 1.182 1.059 1.044 1.035 1.524 1.225 1.174 1.063 1.046 1.039

MSE-ratio (θ̂2)

0 0.2 1.180 1.096 1.060 1.027 1.017 1.021 1.175 1.094 1.058 1.026 1.017 1.020

0 0.3 1.216 1.093 1.073 1.027 1.024 1.016 1.205 1.088 1.068 1.024 1.021 1.012

0 0.4 1.186 1.109 1.065 1.024 1.023 1.026 1.162 1.089 1.057 1.018 1.015 1.019

0.1 0.2 1.371 1.210 1.153 1.061 1.044 1.044 1.360 1.205 1.150 1.059 1.043 1.042

0.1 0.3 1.320 1.193 1.151 1.063 1.050 1.048 1.309 1.187 1.146 1.060 1.048 1.045

0.3 0.4 1.524 1.279 1.188 1.078 1.052 1.053 1.462 1.243 1.171 1.069 1.046 1.046

gVAR-ratio

0 0.2 1.772 1.365 1.254 1.107 1.070 1.074 1.766 1.364 1.250 1.105 1.070 1.071

0 0.3 1.922 1.364 1.276 1.109 1.085 1.067 1.893 1.354 1.266 1.102 1.080 1.059

0 0.4 1.860 1.421 1.270 1.098 1.085 1.086 1.791 1.372 1.251 1.087 1.068 1.072

0.1 0.2 2.978 1.894 1.669 1.225 1.152 1.143 2.947 1.891 1.667 1.223 1.150 1.140

0.1 0.3 2.579 1.923 1.624 1.229 1.172 1.155 2.561 1.912 1.616 1.227 1.169 1.149

0.3 0.4 5.070 2.467 1.973 1.304 1.205 1.187 4.504 2.320 1.889 1.290 1.197 1.179

δ1 = δ2 MSE-ratio (θ̂1)

0 0 1.128 1.072 1.057 1.023 1.017 1.015 1.131 1.073 1.057 1.023 1.018 1.015

0.1 0.1 1.222 1.143 1.116 1.042 1.030 1.026 1.227 1.146 1.118 1.044 1.031 1.026

0.2 0.2 1.350 1.226 1.150 1.052 1.038 1.030 1.334 1.230 1.154 1.055 1.040 1.032

0.3 0.3 1.766 1.223 1.193 1.063 1.053 1.039 1.463 1.226 1.186 1.065 1.055 1.042

0.4 0.4 1.280 1.059 1.215 1.074 1.046 1.050 1.222 1.098 1.132 1.048 1.036 1.040

0.45 0.45 1.712 1.148 1.371 1.027 1.014 1.144 1.437 1.099 1.037 1.019 1.012 1.025

0.5 0.5 1.043 1.111 1.107 1.382 1.014 1.058 1.039 1.069 1.050 1.017 1.011 1.052

MSE-ratio (θ̂2)

0 0 1.186 1.101 1.066 1.020 1.020 1.014 1.184 1.100 1.063 1.017 1.018 1.012

0.1 0.1 1.303 1.197 1.146 1.063 1.054 1.035 1.297 1.193 1.143 1.062 1.052 1.033

0.2 0.2 1.363 1.244 1.187 1.078 1.052 1.044 1.352 1.241 1.184 1.075 1.050 1.042

0.3 0.3 1.490 1.251 1.192 1.082 1.055 1.050 1.399 1.235 1.185 1.079 1.052 1.046

0.4 0.4 1.470 1.145 1.170 1.088 1.054 1.057 1.366 1.154 1.144 1.069 1.043 1.046

0.45 0.45 1.483 1.185 1.187 1.059 1.035 1.061 1.337 1.156 1.104 1.036 1.022 1.032

0.5 0.5 1.023 1.122 1.130 1.124 1.070 1.032 1.017 1.078 1.057 1.014 1.020 1.046

gVAR-ratio

0 0 1.789 1.394 1.269 1.088 1.076 1.058 1.793 1.393 1.264 1.083 1.074 1.055

0.1 0.1 2.534 1.872 1.635 1.229 1.179 1.125 2.531 1.868 1.631 1.228 1.177 1.124

0.2 0.2 3.390 2.327 1.862 1.285 1.193 1.157 3.254 2.329 1.865 1.287 1.193 1.157

0.3 0.3 6.748 2.344 2.019 1.323 1.233 1.189 4.156 2.291 1.975 1.320 1.232 1.186

0.4 0.4 3.370 1.543 2.020 1.363 1.215 1.234 2.678 1.635 1.677 1.256 1.168 1.184

0.45 0.45 5.510 1.850 2.523 1.177 1.104 1.475 3.418 1.614 1.313 1.113 1.073 1.118

0.5 0.5 1.253 1.553 1.565 2.134 1.177 1.100 1.184 1.327 1.232 1.065 1.064 1.162

25



A Assumptions

Assumption A.1. (i) ρ := (ρ′1, ρ
′
2)

′ ∈ Rk1 × Rk2 is continuous on the compact parameter set Θ ⊂ Rp such

that, ∀θ ∈ Θ, ρ(θ) = 0 ⇔ θ = θ0.

(ii) supθ∈Θ

√
n
∥

∥φ̄n(θ)− EPn
(φ(Yin, θ))

∥

∥ = OPn
(1), with φ̄n(θ) = n−1

∑n
i=1 φ(Yin, θ).

Assumption A.2. (i) θ0 is interior to Θ and φ(y, θ) is continuously differentiable on Θ for Pn-almost all

y.

(ii)
√
nφ̄n(θ0)

d→ N(0,Σ), under Pn.

(iii) ∂ρ(θ0)
∂θ′

=

(

∂ρ′

1
(θ0)

∂θ

...
∂ρ′

2
(θ0)

∂θ

)′
is full column rank and, for j = 1, 2,

EPn

(

∂φj(Yin, θ0)

∂θ′

)

= n−δj
∂ρj(θ0)

∂θ′
, and

√
n sup

θ∈Nθ0

∥

∥

∥

∥

∂φ̄n,j(θ)

∂θ′
− EPn

(

∂φj(Yin, θ)

∂θ′

)∥

∥

∥

∥

= OPn
(1),

where Nθ0 is a neighbourhood of θ0.

Assumption A.3. (i) φ1(y, θ) is linear in θ or δ2 < 1
4 + δ1

2 .

(ii) θ 7→ φ(Yin, θ) is twice continuously differentiable Pn-almost everywhere in a neighbourhood Nθ0 of θ0 and,

with j = 1, 2,

∀s : 1 ≤ s ≤ kj , nδj
∂2φ̄n,js

∂θ∂θ′
(θ)

Pn−→ Hjs(θ),

uniformly over Nθ0 , where Hjs(θ)’s are (p, p)-matrix functions of θ and φ̄n,js is the s-th entry of φ̄n,j.

Assumption A.4. There exists a neighbourhood Nθ0 of θ0 and a L2(Pn)-neighbourhood N1 of fn,0 := 1 such

that, with j, k = 1, . . . , p, and Ln =

(

nδ1Ik1
0

0 nδ2Ik2

)

,

EPn

(

∂φ(Y, θ)

∂θj

)

= L−1
n

∂ρ(θ)

∂θj
, EPn

(

∂2φ(Y, θ)

∂θj∂θk

)

= L−1
n

∂2ρ(θ)

∂θj∂θk
, ∀θ ∈ Nθ0 ,

sup
θ∈Nθ0

EPn

(

‖φ(Y, θ)‖4
)

= O(1), sup
θ∈Nθ0

EPn

(

‖∂φ(Y, θ)/∂θj‖4
)

= O(1),

sup
θ∈Nθ0

,f∈N1

∫
∥

∥

∥

∥

∂φ(y, θ)

∂θj

∥

∥

∥

∥

2

f2(y)dPn(y) = O(1), sup
θ∈Nθ0

,f∈N1

∫
∥

∥

∥

∥

∂2φ(y, θ)

∂θj∂θk

∥

∥

∥

∥

2

f2(y)dPn(y) = O(1).

Assumptions A.1, A.2, and A.3 are useful to establish consistency and asymptotic normality of GMM

estimators for moment condition models with mixed identification strength. The second part of Assumption

A.3(i) is required for models that are non linear in the parameters and amounts in our setup to Assumption

6*(i) of Antoine and Renault (2012).

Assumption A.4 is not particularly restrictive. It is useful in Proposition 3.2 to control the Lagrange re-

mainder of the first-order Taylor expansion of the semiparametric density functions induced by the moment

condition model.
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B Propositions and Lemmas

The following proposition further characterizes the family of semiparametric densities functions induced by the

moment condition model (1). This proposition follows readily for Lemma 2.2 of Dovonon and Atchadé (2020).

Proposition B.1. If θ0 satisfies (1), and Assumption 1 holds with r = 2, then there exists a neighborhood V
of (θ0, h0) in Rp × E, where h0 denotes the zero element of E, a family {fn(θ, h, ·) : (θ, h) ∈ V} of measurable

functions on Rk, such that fn(θ0, h0, ·) = fn,0 := 1, and for all (θ, h) ∈ V,
∫

φ(y, θ)f2
n(θ, h, y)Pn(dy) = 0,

∫

f2
n(θ, h, y)Pn(dy) = 1.

Furthermore, the map (θ, h) 7→ fn(θ, h, ·) is differentiable and its first partial derivatives are given by

∀h1 ∈ E , ∇hfn(θ, h, ·) · h1 = h1 − 〈fn,θ,hh1, ϕ̄θ〉 〈fn,θ,hϕ̄, ϕ̄θ〉−1
ϕ̄,

and

∀w ∈ Rp, ∇θfn(θ, h, ·) · w = −1

2
w′ 〈f2

n,θ,h,∇θϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1
ϕ̄,

For j = 1, . . . , p,
∂

∂θj
fn(θ, h, ·) = −1

2

〈

f2
n,θ,h,

∂

∂θj
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1ϕ̄.

In particular, ∇θfn(θ, h, ·) evaluated at (θ0, h0) is ∇θfn(θ0, h0, ·) = − 1
2Γ

′
nΣ

−1/2
n ϕ, where

Γn ≡ EPn
(∇θφ(Y, θ0)) .

with fn,θ,h(·) standing for fn(θ, h, ·). Furthermore, for i, k = 1. . . . , p,

∂2

∂θk∂θj
fn(θ, h, ·) = −1

2

〈

f2
n,θ,h,

∂2

∂θk∂θj
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1ϕ̄

−
〈

∂

∂θk
fn,θ,h · fn,θ,h,

∂

∂θj
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1ϕ̄−
〈

∂

∂θj
fn,θ,h · fn,θ,h,

∂

∂θk
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1ϕ̄

−
〈

∂

∂θj
fn,θ,h · ∂

∂θk
fn,θ,h, ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1ϕ̄. (B.1)

Lemma B.1. Assume R = (R1 |R2) is a different rotation matrix than R but also consistent with the definition

in (14), that is, R′R = Ip and R2 spans the null space of ∂ρ1(θ0)/∂θ
′. Then, there exists a (p, p)-matrix A such

that: R = RA, A =

(

A1 0

0 A2

)

and A′A = Ik, where A1 and A2 are (s1, s1)- and (p−s1, p−s1)-matrices,

respectively.

Lemma B.2. Let r2(θ, h, ·) be the Lagrange remainder of the first-order Taylor’s expansion of (θ, h) 7→ fn(θ, h, ·)
around (θ0, h0). Let {(θn), (hn)} ∈ Θ(θ0)× C(h0) and (θ̄n, h̄n) such that:

θ̄n = tnθn + (1− tn)θ0, h̄n = tnhn + (1− tn)h0, tn ∈ (0, 1).

Assume θ0 satisfies (1) and (δ1, δ2) ∈ ∆ := {(a, b) ∈ [0, 1/2[2: 0 ≤ a ≤ b < (1/4 + a/2) ∧ 3/8}.
Then, if Assumptions 1 and A.4 hold with r = 2, we have:

√
n‖r2(θ̄n, h̄n, ·)‖L2(Pn) = o(1).
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C Proofs

Proof of Lemma B.1: Write R = (R1 | R2). Since R2 spans the null space of ∂ρ1(θ0)/∂θ
′, then R2 = R2A2,

where A2 is a (p−s1, p−s1)-nonsingular matrix. The fact that R′
2R2 = Ip−s1 ensures that A′

2A2 = Ip−s1 . Also,

the fact that R′
1R2 = 0 implies that the columns of R1 lie in the span of the columns of R2 so that R1 = R1A1

and we can also claim that A′
1A1 = Is1 and the result follows. �

Proof of Lemma B.2: We have:

fn(θ̄n, h̄n, ·) = fn,0 + rn,θ0 · (θ̄n − θ0) +An · (h̄n − h0) + r2(θ̄n, h̄n, ·),

see (24) for the definition of rn,θ0 and An. By second-order differentiability of fn, we have:

‖r2(θ̄n, h̄n, ·)‖L2(Pn) ≤

∥

∥

∥

∥

∥

∥

1

2

p
∑

j,k=1

∂2

∂θj∂θk
fn(θ̄, h̄, ·)(θ̄n,j − θ0,j)(θ̄n,k − θ0,k)

+O
(

‖θ̄n − θ0‖‖h̄n − h0‖L2(Pn)

)

+O
(

‖h̄n − h0‖2L2(Pn)

)∥

∥

∥

L2(Pn)
.

Thus,
√
n‖r2(θ̄n, h̄n, ·)‖L2(Pn) ≤

√
n

2

p
∑

j,k=1

∥

∥

∥

∥

∂2

∂θj∂θk
fn(θ̄, h̄, ·)

∥

∥

∥

∥

L2(Pn)

· ‖θ̄n − θ0‖2 + o(1), (C.1)

with θ̄ = tθ̄n + (1 − t)θ0 and h̄ = th̄n + (1 − t)h0; t ∈ (0, 1). By definition, ‖h̄n − h0‖L2(Pn) ≤ ‖hn −
h0‖L2(Pn) = O(n−1/2) and ‖θ̄n − θ0‖ ≤ ‖θn − θ0‖ = O(n−1/2+δ2 ) and, the second-order differentiability ensures

that: ‖∂2f(θ̄, h̄, ·)/∂θj∂θk‖L2(Pn) = O(1) and it follows that:

√
n‖r2(θ̄n, h̄n, ·)‖L2(Pn) = O(n−1/2+2δ2 ).

Therefore, if δ2 < 1/4,
√
n‖r2(θ̄n, h̄n, ·)‖L2(Pn) = o(1).

Consider the case δ2 ≥ 1/4. If

∥

∥

∥

∥

∂2

∂θj∂θk
fn(θ̄, h̄, ·)

∥

∥

∥

∥

L2(Pn)

= O(n−δ1 ∨ n−1+2δ2), (C.2)

√
n‖r2(θ̄n, h̄n, ·)‖L2(Pn) = O(n−δ1 ∨ n−1+2δ2)×O(n−1/2+2δ2 ) = O(n−δ1−1/2+2δ2 ∨ n−3/2+4δ2) = o(1),

for any (δ1, δ2) ∈ ∆. To complete the proof, let us establish (C.2). Again, take any (θ̄n, h̄n) convex combination

of (θn, hn) and (θ0, h0). We have:

n1−2δ2‖fn(θ̄n, h̄n, ·)− fn,0‖L2(Pn) ≤ n1−2δ2‖rn,θ0(θ̄n− θ0)+An · (h̄n−h0)‖L2(Pn) +n1−2δ2‖r2(θ̄n, h̄n, ·)‖L2(Pn)

≤ n1−2δ2‖rn,θ0(θn − θ0) +An · (hn − h0)‖L2(Pn) + n1−2δ2‖r2(θ̄n, h̄n, ·)‖L2(Pn).

The proof of Proposition 3.2, we establish that
√
n‖rn,θ0(θn − θ0) +An · (hn − h0)‖L2(Pn) = O(1) and it results

that, for δ2 ≥ 1/4,

n1−2δ2‖rn,θ0(θn − θ0) +An · (hn − h0)‖L2(Pn) = o(1).

We can thus claim that

‖n1−2δ2(fn(θ̄n, h̄n, ·)− fn,0)‖L2(Pn) = O(1), (C.3)

which also holds for (θ̄, h̄) as it is also a convex combination of (θn, hn) and (θ0, h0). We will use this to establish

(C.2).
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∂2f(θ, h, ·)/∂θj∂θk is given by (B.1) which, using the expression of the first-order derivative of fn, can also

be written:

∂2

∂θk∂θj
fn(θ, h, ·) = −1

2

〈

f2
n,θ,h,

∂2

∂θk∂θj
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1ϕ̄

+
1

2

〈

f2
n,θ,h,

∂

∂θk
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1

〈

fn,θ,hϕ̄,
∂

∂θj
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1ϕ̄

+
1

2

〈

f2
n,θ,h,

∂

∂θj
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1

〈

fn,θ,hϕ̄,
∂

∂θk
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1ϕ̄

+
1

2

〈

f2
n,θ,h,

∂

∂θj
ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1

〈

ϕ̄
∂

∂θk
fn,θ,h, ϕ̄θ

〉

〈fn,θ,hϕ̄, ϕ̄θ〉−1ϕ̄. (C.4)

We next derive the limits or bounds for each of the inner products involved in this expression but evaluated at

(θ̄, h̄). We use the notation fn(θ, h, ·), fn,θ,h, fθ,h interchangeably.

(a) Consider: 〈fθ̄,h̄ϕ̄, ϕ̄θ̄〉. Note that

ϕ̄(y) =

(

1

Σ
−1/2
n φ(y, θ0)

)

, ϕ̄θ(y) =

(

1

Σ
−1/2
n φ(y, θ)

)

.

Hence,

〈fθ̄,h̄ϕ̄, ϕ̄θ̄〉 =
∫

fθ̄,h̄(y)

(

1 φ(y, θ̄)′Σ−1/2
n

Σ
−1/2
n φ(y, θ0) Σ

−1/2
n φ(y, θ0)φ(y, θ̄)

′Σ−1/2
n

)

dPn(y).

We have: (a.1)

∫

fθ̄,h̄dPn = 1 +

∫

(fθ̄,h̄ − 1)dPn.

But, from (C.3),
∣

∣

∣

∣

∫

(fθ̄,h̄ − 1)dPn

∣

∣

∣

∣

≤
(∫

(fθ̄,h̄ − 1)2dPn

)1/2

= O(n−1+2δ2).

Thus:
∫

fθ̄,h̄dPn = 1 +O(n−1+2δ2 ).

(a.2)

∫

fθ̄,h̄(y)φ(y, θ0)dPn(y) =

∫

φ(y, θ0)dPn(y) +

∫

(fθ̄,h̄(y)− 1)φ(y, θ0)dPn(y) =

∫

(fθ̄,h̄(y)− 1)φ(y, θ0)dPn(y).

Note that

∣

∣

∣

∣

∫

(fθ̄,h̄(y)− 1)φ(y, θ0)dPn(y)

∣

∣

∣

∣

≤
(∫

(fθ̄,h̄ − 1)2dPn

)1/2 (∫

‖φ(y, θ0)‖2dPn(y)

)1/2

.

Thus,
∫

fθ̄,h̄(y)φ(y, θ0)dPn(y) = O(n−1+2δ2 ).

(a.3)

∫

fθ̄,h̄(y)φ(y, θ̄)dPn(y) =

∫

φ(y, θ̄)dPn(y) +

∫

(fθ̄,h̄(y)− 1)φ(y, θ̄)dPn(y)

= O(n−δ1) +

∫

(fθ̄,h̄(y)− 1)φ(y, θ̄)dPn(y) = O(n−δ1) +O(n−1+2δ2 ).
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(a.4)

∫

fθ̄,h̄(y)φ(y, θ0)φ(y, θ̄)
′dPn(y) =

∫

φ(y, θ0)φ(y, θ̄)
′dPn(y) +

∫

(fθ̄,h̄(y)− 1)φ(y, θ0)φ(y, θ̄)
′dPn(y).

Under the conditions of the lemma, θ̄ 7→
∫

φ(y, θ0)φ(y, θ̄)
′dPn(y) is continuously differentiable in a neighbour-

hood of θ0 and we write
∫

φ(y, θ0)φ(y, θ̄)
′dPn(y) = Σn +O(‖θ̄ − θ0‖) = Σn +O(n−1/2+δ2 ).

By the Cauchy-Schwarz inequality,

∣

∣

∣

∣

∫

(fθ̄,h̄(y)− 1)φ(y, θ0)φ(y, θ̄)
′dPn(y)

∣

∣

∣

∣

≤
(∫

(fθ̄,h̄ − 1)2dPn

)1/2 (∫

‖φ(y, θ0)‖4dPn

)1/4 (∫

‖φ(y, θ̄)‖4dPn

)1/4

= O(n−1+2δ2 ).

As a result,

〈fθ̄,h̄ϕ̄, ϕ̄θ̄〉 = Ik+1 + o(1)

and we can also claim that

〈fθ̄,h̄ϕ̄, ϕ̄θ̄〉−1 = Ik+1 + o(1).

(b) Consider:
〈

f2
θ̄,h̄

, ∂2

∂θk∂θj
ϕ̄θ̄

〉

〈

f2
θ̄,h̄,

∂2

∂θk∂θj
ϕ̄θ̄

〉

=

∫

f2
θ̄,h̄(y)

(

0 ∂2

∂θk∂θj
φ(y, θ̄)′Σ−1/2

n

)

dPn(y).

We can write:

∫

f2
θ̄,h̄(y)

∂2

∂θk∂θj
φ(y, θ̄)dPn(y) =

∫

∂2

∂θk∂θj
φ(y, θ̄)dPn(y) +

∫

(f2
θ̄,h̄(y)− 1)

∂2

∂θk∂θj
φ(y, θ̄)dPn(y) = (1) + (2).

By assumption, (1) = L−1
n

∂2ρ(θ̄)
∂θk∂θj

. It follows that (1) = O(n−δ1 ). It is not hard to see that

‖(2)‖ ≤
(∫

(fθ̄,h̄ − 1)2dPn

)1/2
(

2 sup
θ∈Nθ,f∈N1

∫

f2(y)‖∂2φ(y, θ)/∂θk∂θj‖2dPn(y)

)1/2

= O(n−1+2δ2 ).

Thus:
∥

∥

∥

〈

f2
θ̄,h̄

, ∂2

∂θk∂θj
ϕ̄θ̄

〉∥

∥

∥ = O(n−δ1) +O(n−1+2δ2) = O(n−δ1 ∨ n−1+2δ2).

(c) Consider:
〈

f2
θ̄,h̄

, ∂
∂θj

ϕ̄θ̄

〉

〈

f2
θ̄,h̄,

∂

∂θj
ϕ̄θ̄

〉

=

∫

f2
θ̄,h̄(y)

(

0 ∂
∂θj

φ(y, θ̄)′Σ−1/2
n

)

dPn(y)

and we establish as in (b) that the norm of this quantity is of order O(n−δ1 ∨ n−1+2δ2).

(d) Consider:
〈

fθ̄,h̄ϕ̄,
∂

∂θj
ϕ̄θ̄

〉

.

〈

fθ̄,h̄ϕ̄,
∂

∂θj
ϕ̄θ̄

〉

=

∫

fθ̄,h̄(y)

(

0 ∂φ(y,θ̄)′

∂θj
Σ

−1/2
n

0 Σ
−1/2
n φ(y, θ0)

∂φ(y,θ̄)′

∂θj
Σ

−1/2
n

)

dPn(y).
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We have:

∥

∥

∥

∥

∫

fθ̄,h̄(y)
∂φ(y, θ̄)′

∂θj
dPn(y)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

∂φ(y, θ̄)′

∂θj
dPn(y)

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

(fθ̄,h̄(y)− 1)
∂φ(y, θ̄)′

∂θj
dPn(y)

∥

∥

∥

∥

≤
∫

∥

∥

∥

∥

∂φ(y, θ̄)′

∂θj

∥

∥

∥

∥

dPn(y) +

(∫

(fθ̄,h̄ − 1)2dPn

)1/2
(

∫
∥

∥

∥

∥

∂φ(y, θ̄)′

∂θj

∥

∥

∥

∥

2

dPn(y)

)1/2

= O(1) +O(n−1+2δ2 ).

∥

∥

∥

∥

∫

fθ̄,h̄(y)φ(y, θ0)
∂φ(y, θ̄)′

∂θj
dPn(y)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

φ(y, θ0)
∂φ(y, θ̄)′

∂θj
dPn(y)

∥

∥

∥

∥

+

∥

∥

∥

∥

∫

(fθ̄,h̄(y)− 1)φ(y, θ0)
∂φ(y, θ̄)′

∂θj
dPn(y)

∥

∥

∥

∥

≤
∫

‖φ(y, θ0)‖
∥

∥

∥

∥

∂φ(y, θ̄)′

∂θj

∥

∥

∥

∥

dPn(y) +

(∫

(fθ̄,h̄ − 1)2dPn

)1/2
(

∫

‖φ(y, θ0)‖2
∥

∥

∥

∥

∂φ(y, θ̄)′

∂θj

∥

∥

∥

∥

2

dPn(y)

)1/2

= O(1) +O(n−1+2δ2 ).

It follows that
〈

fθ̄,h̄ϕ̄,
∂

∂θj
ϕ̄θ̄

〉

= O(1).

(e) Consider:
〈

ϕ̄ ∂
∂θj

fθ̄,h̄, ϕ̄θ̄

〉

.

We know from Proposition B.1,

∂

∂θj
fθ̄,h̄ = −1

2

〈

f2
θ̄,h̄,

∂ϕ̄θ̄

∂θj

〉

〈

fθ̄,h̄ϕ̄, ϕ̄θ̄

〉−1
ϕ̄ := a′ϕ̄.

Hence,

〈

ϕ̄
∂

∂θj
fθ̄,h̄, ϕ̄θ̄

〉

= 〈a′ϕ̄ · ϕ̄, ϕ̄θ̄〉 =
∫

(

a′ϕ̄ a′ϕ̄ · φ(y, θ̄)Σ−1/2
n

Σ
−1/2
n a′ϕ̄ · φ(y, θ0) Σ

−1/2
n a′ϕ̄ · φ(y, θ0)φ(y, θ̄)′Σ−1/2

n

)

dPn(y).

We have:
∣

∣

∣

∣

∫

a′ϕ̄dPn

∣

∣

∣

∣

≤ ‖a‖
∫

(1 + ‖φ(y, θ0)‖)dPn(y) = O(n−δ1 ∨ n−1+2δ2),

where we use (c) and (a).

∥

∥

∥

∥

∫

a′ϕ̄ · φ(y, θ0)dPn(y)

∥

∥

∥

∥

≤ ‖a‖
∫

(1 + ‖φ(y, θ0)‖) ‖φ(y, θ0)‖ dPn(y) = O(n−δ1 ∨ n−1+2δ2).

∥

∥

∥

∥

∫

a′ϕ̄ · φ(y, θ̄)dPn(y)

∥

∥

∥

∥

≤ ‖a‖
∫

(1 + ‖φ(y, θ0)‖)
∥

∥φ(y, θ̄)
∥

∥ dPn(y)

≤ ‖a‖
(∫

(1 + ‖φ(y, θ0)‖)2dPn(y)

)1/2 (∫
∥

∥φ(y, θ̄)
∥

∥

2
dPn(y)

)1/2

= O(n−δ1 ∨ n−1+2δ2).

∥

∥

∥

∥

∫

a′ϕ̄ · φ(y, θ0)φ(y, θ̄)′dPn(y)

∥

∥

∥

∥

≤ ‖a‖
∫

(1 + ‖φ(y, θ0)‖) ‖φ(y, θ0)‖
∥

∥φ(y, θ̄)
∥

∥ dPn(y)

≤ ‖a‖
(∫

(1 + ‖φ(y, θ0)‖)2 ‖φ(y, θ0)‖2 dPn(y)

)1/2 (∫
∥

∥φ(y, θ̄)
∥

∥

2
dPn(y)

)1/2

= O(n−δ1 ∨ n−1+2δ2).

Since the eigenvalues of Σn are bounded from above and away from 0, we can claim that
∥

∥

∥

〈

ϕ̄ ∂
∂θj

fθ̄,h̄, ϕ̄θ̄

〉∥

∥

∥
=

O(n−δ1 ∨ n−1+2δ2).
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We obtain (C.2) by applying the triangle inequality and then the Cauchy-Schwarz inequality to the terms

in (C.4) . Then, the order of magnitude follows from (a), (b), (c), (d), and (e) above. �

Proof of Theorem 3.1:

(i) Writing εn =
√
n(gn − fn)− αn, we have gn = fn + αn/

√
n+ εn/

√
n. Thus:

g2n = f2
n +

α2
n

n
+

ε2n
n

+ 2
αnfn√

n
+ 2

εnfn√
n

+ 2
αnεn
n

.

Integrating each side with respect to µn yields:

2

∫

αnfndµn = − 1√
n

∫

α2
ndµn − 1√

n

∫

ε2ndµn − 2

∫

εnfndµn − 2√
n

∫

αnεndµn

and the result follows by the Cauchy-Schwarz inequality and the fact that
∫

α2
ndµn is bounded,

∫

ε2ndµn → 0

as n → ∞ and
∫

f2
ndµn = 1.

(ii) We establish this result by relying on Le Cam’s second lemma (see Bickel et al., 1998, Lemma 2, p.500).

To obtain the first and second conclusion in (ii), it suffices to show that:

(a) For all ǫ > 0 and as n → ∞,

max
1≤i≤n

Pfn

(∣

∣

∣

∣

g2n(Xni)

f2
n(Xni)

− 1

∣

∣

∣

∣

> ǫ

)

→ 0,

and (b) Under f2
n,

Wn := 2

n
∑

i=1

(

gn(Xni)

fn(Xni)
− 1

)

d→ N(−σ2/4, σ2).

By the triangle inequality, (18) implies that ‖√n(gn − fn)‖µn
− ‖αn‖µn

→ 0 as n → ∞ and as a result,

n‖gn − fn‖2µn
→ a2 ≡ limn→∞ ‖αn‖2µn

and ‖gn − fn‖µn
→ 0.

To establish (a), pick ǫ > 0; we have:

ǫPfn

(∣

∣

∣

g2

n(Xni)
f2
n(Xni)

− 1
∣

∣

∣ > ǫ
)

≤ Efn

(∣

∣

∣

g2

n(Xni)
f2
n(Xni)

− 1
∣

∣

∣

)

=

∫

|g2n − f2
n|dµn =

∫

|gn − fn||gn + fn|dµn

≤
(
∫

(gn − fn)
2dµn

)1/2 (∫

(gn + fn)
2dµn

)1/2

and the expected result follows since
∫

(gn + fn)
2dµn ≤ 4.

To establish (b), let

Zn =
2√
n

n
∑

i=1

(

αn(Xni)

fn(Xni)
− νn

)

,

with νn ≡ Efn(αn(Xni)/fn(Xni)) =

∫

αnfndµn. We obtain (b) by showing that under f2
n, Zn converges in

distribution to N(0, 4a2) and that Efn(Wn − Zn + a2)2 = o(1).

Under f2
n, Efn(αn(Xni)/fn(Xni) − νn) = 0 and V arfn(αn(Xni)/fn(Xni) − νn) =

∫

α2
ndµn − ν2n → a2 as

n → ∞. Therefore, the central limit theorem for row-wise independent and identically distributed triangular

arrays ensures that under f2
n,

Zn
d→ N(0, σ2).
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Next, we observe that Efn(Wn − Zn + a2)2 = Varfn(Wn − Zn + a2) + [Efn(Wn − Zn + a2)]2. We have:

Efn(Wn − Zn + a2) = Efn(Wn) + a2 = 2n

(∫

gnfndµn − 1

)

+ a2 = −n

∫

(gn − fn)
2dµn + a2 → 0

as n → ∞.

V arfn(Wn − Zn + a2) = V arfn(Wn − Zn) = 4V arfn

(

∑n
i=1

{

gn(Xni)
fn(Xni)

− 1− 1√
n

(

αn(Xni)
fn(Xni)

− νn

)})

= 4Varfn

(√
n(gn(Xni)−fn(Xni))−αn(Xni)

fn(Xni)

)

= 4Efn

(

[
√
n(gn(Xni)−fn(Xni))−αn(Xni)]

2

fn(Xni)2

)

− 4
[

Efn

(√
n(gn(Xni)−fn(Xni))−αn(Xni)

fn(Xni)

)]2

= 4

∫

[
√
n(gn − fn)− αn]

2dµn − 4

(∫

[
√
n(gn − fn)− αn]fndµn

)2

≤ 4‖√n(gn − fn)− αn‖2µn
+ 4 (‖√n(gn − fn)− αn‖µn

‖fn‖µn
)
2

= 8‖√n(gn − fn)− αn‖2µn
→ 0, as n → ∞.

This establishes (b).

We can therefore apply Le Cam’s second lemma and claim that logLn − (Wn − σ2

4 ) = oPfn
(1). Therefore,

under f2
n,

logLn
d→ N(−σ2/2, σ2)

and we can claim using Le Cam’s first lemma (see van der Vaart, 1998, p.88) that
{
∏n

i=1 g
2
n(xi)

}

and
{
∏n

i=1 f
2
n(xi)

}

are contiguous. �

Proof of Proposition 3.2: In this proof, we focus only on the case where (δ1, δ2) ∈ ∆, δ1 < δ2 and 0 < s1 < p.

All the other cases follow along the same lines. The Taylor expansion yields (24) with rn,θ0(·) = ∇θfn(θ0, h0, ·)
and An = ∇hfn(θ0, h0, ·). From Proposition B.1, rn,θ0(·) = − 1

2Γ
′
nΣ

−1/2
n ϕ(·), with Γn = EPn

(

∂
∂θ′

φ(Y, θ0)
)

. This

proposition also gives:

∀u ∈ E , ∇hfn(θ, h, ·) · u = u− 〈fn,θ,hu, ϕ̄θ〉 〈fn,θ,hϕ̄, ϕ̄θ〉−1
ϕ̄,

with fn,θ,h := fn(θ, h, ·). At (θ0, h0), 〈fn,θ,hu, ϕ̄θ〉 = 〈u, ϕ̄〉 = 0, since u ∈ E . Hence, ∇hfn(θ0, h0, ·) · u = u. It

follows that, since hn, h0 ∈ E ,
∇hfn(θ0, h0, ·) · (hn − h0) = hn − h0.

Recall that θn and hn are defined such that: ΛnR
−1(θn − θ0) − η → 0 and

√
n(hn − h0) − β → 0 in L2(Pn)

(see Equations (20) and (22)). For (δ1, δ2) ∈ ∆, according to the discussion leading to the statement of the

proposition, we need to find αn ∈ L2(Pn) such that

‖αn −√
n[rn,θ0 · (θn − θ0) +An · (hn − h0)]‖L2(Pn) → 0.

It is obvious that ‖√nAn · (hn − h0)−An · β‖L2(Pn) = ‖√n(hn − h0)− β‖L2(Pn) → 0, as n → ∞.

Also,

rn,θ0 · (θn − θ0) = −1

2
(θn − θ0)

′Γ′
nΣ

−1/2
n ϕ
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and

Γn(θn − θ0) =

(

n−δ1 ∂ρ1(θ0)
∂θ′

n−δ2 ∂ρ2(θ0)
∂θ′

)

RΛ−1
n ΛnR

−1(θn − θ0) = n−1/2

(

D1R1 0

nδ1−δ2D2R1 D2R2

)

ΛnR
−1(θn − θ0),

with Dj =
∂ρj(θ0)

∂θ′
. (We use the fact that D1R2 = 0.) Hence,

√
nΓn(θn − θ0) = Jη + o(1).

As a result, we can set

αn(·) = −1

2
η′J ′Σ−1/2

n ϕ(·) +An · β, η ∈ Rp, β ∈ E . �

Proof of Theorem 3.3: This proof follows similar lines to that of Theorem 4.4 in Dovonon and Atchadé

(2020). Let Sn = ΛnR
−1(θ̃n − θn). The characteristic function of Sn under g2n is

Egn [exp(iw′Sn)] = Egn

[

exp(iw′ΛnR
−1(θ̃n − θn))

]

= Egn

[

exp(iw′ΛnR
−1(θ̃n − θ0 − (θn − θ0)))

]

= Egn

[

exp(iw′ΛnR
−1(θ̃n − θ0)) exp(−iw′(η + εn))

]

,

for some η ∈ Rp and εn := ΛnR
−1(θn − θ0)− η which tends to 0 as n → 0. Thus,

Egn [exp(iw′Sn)] = Egn

[

exp(iw′ΛnR
−1(θ̃n − θ0)) exp(−iw′η)

]

+ o(1)

= Efn,0

[

exp(iw′ΛnR
−1(θ̃n − θ0)− iw′η + Ln)

]

+ o(1).

This holds for any sequence {g2n(·)} associated to any αn = − 1
2η

′J ′Σ−1/2
n ϕ − An · b, with b = (β1, . . . , βp) ∈

B(h0)
p (where “associated” is meant in the sense described by Equation (19)). In particular, this holds for:

αn = η′
(

−1

2
J ′Σ−1/2

n ϕ−An · b∗
n

)

.

Thanks to Theorem 3.1, under f2
n,0,

(

ΛnR
−1(θ̃n − θ0),

2√
n

∑n
i=1

(

αn(Yni)
fn(Yni)

− νn

))

converges in distribution

coordinate-wise to (S, η′Z0), with: νn = Efn,0
(αn(Yni)/fn,0(Yni)), Z0 ∼ N(0, I∗), and

I∗ = 4 lim
n→∞

〈

−1

2
J ′Σ−1/2

n ϕ−An · b∗
n,−

1

2
J ′Σ−1/2

n ϕ−An · b∗
n

〉

.

Therefore, by the Prohorov’s theorem, there is a subsequence of
(

ΛnR
−1(θ̃n − θ0), Ln

)

that converges weakly

under f2
n,0 to

(

S, η′Z0 − 1
2η

′I∗η
)

. Along that subsequence, we can claim that:

Efn,0
exp

(

iw′ΛnR
−1(θ̃n − θ0)− iw′η + Ln

)

→ E exp
(

iw′S − iw′η + η′Z0 − 1
2η

′I∗η
)

= E exp
[

iw′S + η′Z0] exp[−iw′η − 1
2η

′I∗η
]

.

(C.5)

Also, θ̃n being a Λn-regular estimator ensures that

Egn exp
[

iw′ΛnR
−1(θ̃n − θn)

]

→ E exp(iw′S). (C.6)
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Letting Φ(w, v) = E exp(iw′S + iv′Z0), we have

Φ(w, 0) = E [exp(iw′S + η′Z0)] exp

[

−iw′η − 1

2
η′I∗η

]

.

The right-hand-side of this equality is analytic in η and constant on Rp. As a result, it is constant for η ∈ Cp.

Now, choosing η = −iI−1
∗ w, we have:

Φ(w, 0) = E exp
[

iw′(S − I−1
∗ Z0)

]

exp

[

−1

2
w′I−1

∗ w

]

. (C.7)

One can recognize in (C.7), the product of the characteristic functions of U = S − Z and Z with Z = I−1
∗ Z0 ∼

N(0, I−1
∗ ) independent of U . This concludes the proof. �

Proof of Corollary 3.4: Under the conditions of the Corollary, the conditions of Proposition 3.2 and Theorem

3.3 are satisfied. As a result, (29) holds. It remains to show that I∗ = J ′Σ−1J. From Theorem 3.3, I∗ =

4〈− 1
2J

′Σ−1/2
n ϕ−An · b∗

n,− 1
2J

′Σ−1/2
n ϕ− An · b∗

n〉, with b∗
n ∈ B(h0)

p, and An · b∗
n the orthogonal projection of

− 1
2J

′ϕ onto {An · b : b ∈ B(h0)
p}. Recall that B(h0) is a subspace of E . Hence from Proposition B.1, along

with simple derivations, we have that, for any β ∈ B(h0),

An · β := ∇hfn(θ0, h0, ·) · β = β =
∑

j≥k+2

ajϕj ,

where for j ≥ k+2, aj = 〈β, ϕj〉 =
∫

βϕjdPn. The last equality follows from the fact that β ∈ E . Hence, An · β
is orthogonal to ϕ for any β ∈ B(h0). Thus b

∗
n = 0 and

I∗ = 4 lim
n→∞

〈

1

2
J ′Σ−1/2

n ϕ,
1

2
J ′Σ−1/2

n ϕ

〉

= lim
n→∞

J ′Σ−1/2
n

∫

ϕϕ′dPnΣ
−1/2
n J = lim

n→∞
J ′Σ−1

n J = J ′Σ−1J. �

Proof of Proposition 3.6: Note that since, from (15) θ̂n−θ0 = OP (n
−1/2+δ2) under Pn, this also holds under

g2n. By the definition, we also have θn − θ0 = O(n−1/2+δ2) so that θ̂n − θn = OP (n
−1/2+δ2) under g2n.

The first order optimality condition for GMM is given by:

∂φ̄n(θ̂n)
′

∂θ
Ŵ φ̄n(θ̂n) = 0.

By the mean-value expansion, we write

∂φ̄n(θ̂n)
′

∂θ
Ŵ φ̄n(θn) +

∂φ̄n(θ̂n)
′

∂θ
Ŵ

∂φ̄n(θ̄n)

∂θ′
(θ̂n − θn) = 0, (C.8)

where θ̄n ∈ (θ̂n, θn) and may differ from row to row.

From Lemma A.5 of Antoine and Renault (2009), we can claim that:

√
n
∂φ̄n(θ̂n)

∂θ′
RΛ−1

n
P−→ J and

√
n
∂φ̄n(θ̄n)

∂θ′
RΛ−1

n
P−→ J, (C.9)

both under Pn and g2n. Also, Ŵ −W
P−→ 0, under g2n. It follows that (recall that R

′ = R−1):

nΛ−1
n R−1 ∂φ̄n(θ̂n)

′

∂θ
Ŵ

∂φ̄n(θ̄n)

∂θ′
RΛ−1

n
P−→ J ′WJ, under g2n. (C.10)

Next, we show that
√
nφ̄n(θn) =

1√
n

∑n
i=1 φ(Yni, θn) converges in distribution to N(0,Σ) under g2n.

By construction, M(θn, hn, gn) = 0. Hence, using (16), we get 〈g2n, ϕθn〉 = 0. That is
∫

g2n(y)φ(y, θn)
′Σ−1/2

n dPn(y) = 0,

35



which implies that
∫

g2n(y)φ(y, θn)dPn(y) = 0, that is

Egn (φ(Yni, θn)) = 0.

Also,

V argn(φ(Yni, θn)) = Egn (φ(Yni, θn)φ(Yni, θn)
′)

=

∫

φ(y, θn)φ(y, θn)
′(g2n(y)− 1)dPn(y) +

∫

φ(y, θn)φ(y, θn)
′dPn(y).

By Assumption 2(b),
∫

φ(y, θn)φ(y, θn)
′dPn(y) = Σ + o(1). Note that:

∥

∥

∥

∥

∫

φ(y, θn)φ(y, θn)
′(g2n(y)− 1)dPn(y)

∥

∥

∥

∥

≤
∫

‖φ(y, θn)φ(y, θn)′‖ |g2n(y)− 1|dPn(y)

≤
(∫

(gn − 1)2dPn

∫

‖φ(y, θn)‖4(gn(y) + 1)2dPn(y)

)1/2

≤ ‖gn − 1‖L2(Pn) ·
(

2

∫

‖φ(y, θn)‖4g2n(y)dPn(y) + 2

∫

‖φ(y, θn)‖4dPn(y)

)1/2

≤ 2
√
C‖gn − 1‖L2(Pn) := 2

√
C‖gn − fn,0‖L2(Pn) = o(1),

where the second inequality follows from the Cauchy-Schwarz inequality and the last one follows from Assump-

tion 2(a). Thus, V argn(φ(Yni, θn)) → Σ, as n → ∞. The central limit theorem for row-wise independent and

identically distributed triangular arrays ensures that:

√
nφ̄n(θn)

d−→ N(0,Σ), under g2n. (C.11)

We write (C.8) as:

√
nΛ−1

n R−1 ∂φ̄n(θ̂n)
′

∂θ
Ŵ

√
nφ̄n(θn) +

√
nΛ−1

n R−1 ∂φ̄n(θ̂n)
′

∂θ
Ŵ

∂φ̄n(θ̄n)

∂θ′
RΛ−1

n

√
n
[

ΛnR
−1(θ̂n − θn)

]

= 0.

Using (C.9) and (C.10), this yields:

J ′W
√
nφ̄n(θn) + J ′WJ

[

ΛnR
−1(θ̂n − θn)

]

= oP (1),

that is:

ΛnR
−1(θ̂n − θn) = −(J ′WJ)−1J ′W

√
nφ̄n(θn) + oP (1),

where the oP (1) is under g
2
n. Using (C.11), we conclude that

ΛnR
−1(θ̂n − θn)

d−→ N(0,Ω(W )),

under g2n and we claim that θ̂n is Λn-regular. �
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