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Abstract

Moment condition models with mixed identification strength are models that are point identified
but with estimating moment functions that are allowed to drift to 0 uniformly over the parameter
space. Even though identification fails in the limit, depending on how slow the moment functions
vanish, consistent estimation is possible. Existing estimators such as the generalized method of
moment (GMM) estimator exhibit a pattern of nonstandard or even heterogeneous rate of conver-
gence that materializes by some parameter directions being estimated at a slower rate than others.
This paper derives asymptotic semiparametric efficiency bounds for regular estimators of parame-
ters of these models. We show that GMM estimators are regular and that the so-called two-step
GMM estimator — using the inverse of estimating function’s variance as weighting matrix — is semi-
parametrically efficient as it reaches the minimum variance attainable by regular estimators. This
estimator is also asymptotically minimax efficient with respect to a large family of loss functions.
Monte Carlo simulations are provided that confirm these results.
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1 Introduction

Moment equality based inference methods have made possible the investigation of the empirical content
of many economic models. The validity of the standard methods popularized by Hansen (1982) in his
seminal paper relies upon the property of point identification which means that the moment condition
model is solved at a single point. This indeed guarantees consistent estimation by the generalized
method of moment (GMM). However, some empirical evidence suggest that point identification can
fail leading to poor inference.

Failure of identification occurs when multiple (or a continuum of) elements in the parameter space
solve the model. While it is hard in general to decide whether identification fails by screening sample
mean functions, it appears in empirical applications failing identification that the evidence for this
tends to be more pronounced as the sample size gets larger. This feature has led Staiger and Stock
(1997) and Stock and Wright (2000) among others — in their attempt to shed some light on the
behaviour of estimators under identification failure — to consider a framework that allows the moment

function to drift to zero at the rate n—1/2

uniformly over the parameter space as the sample size n
grows. This is the so-called weak identification. In this framework, point identification is possible at
any given sample size' but in the limit the moment condition becomes uninformative about the true
parameter value. They find out that consistent estimators are not available for weakly identifying
models.

Hahn and Kuersteiner (2002) (in linear IV setting) and Antoine and Renault (2009, 2012) (in
the general GMM context) observe that when moment conditions drift uniformly to zero at a rate
no:0<6<1 /2, consistent estimation is possible and they derive the asymptotic distribution of the
GMM estimator in such settings. This configuration includes the standard identification framework
when 6 = 0. We refer to Andrews and Cheng (2012), Caner (2009), Han and McCloskey (2019),
among others, for further account of such models. Antoine and Renault (2012) further consider the
so-called moment condition model with mixed identification strength in which the components of the
estimating moment function are allowed to have specific drifting rates. They establish that the GMM
estimator is consistent and, even though the rate of convergence may vary in some directions in the
parameter space, by suitable rotation and scaling this estimator is asymptotically normal.

Interestingly, while the rotation and rates of convergence depend on the drifting parameters ds,
they show that usual inference formulas of GMM yield valid inference without the need to know §’s,
the rotation or the convergence rates. This robustness of GMM inference in models with mixed identi-
fication strength motivates a growing literature on the subject. Antoine and Renault (2020) recently
propose a test for weak identification useful to detect whether a moment condition model permits
consistent inference. Dovonon et al. (2023) propose moment selection methods that are consistent
even if the best model is one with mixed identification strength.

This paper is concerned with efficient inference in moment condition models with mixed identifi-

IThis paper considers a triangular array structure for the data which somewhat gives sense to the fact that identifi-
cation is related to sample size. Indeed, in this case, the population distribution, say P,, of the sample is sample size
related. Therefore, identification, as a property linked to the population distribution is also associated to sample size.

This would not be the case in standard frameworks where the population distribution is not sample size related.



cation strength. We derive semiparametric efficiency bounds for this class of models. One of our main
contributions is that the efficiency of the commonly known two-step GMM estimator (2SGMM) in
models with standard identification features carries over to models with mixed identification strength.
Towards the derivation of efficiency bounds, we follow a similar approach to Dovonon and Atchadé
(2020), by considering the implicit family of probability density functions - with respect to the pop-
ulation distribution of the observations - induced by the moment condition model. This family can
be written f2(6,h) where 6 € © is the initial model parameter lying in the Euclidean space R? and
h is an infinite dimension parameter lying in the Hilbert space L?(P,), where P, is the probability
distribution of the sample. P, is allowed to depend on the sample size to accommodate the possibility
of drifting moment functions. We then highlight the local differentiability properties of f, that are
useful to obtain efficiency bounds.

We then follow Begun, Hall, Huang and Wellner (1983) (hereafter, BHHW), and Dovonon and Atchadé
(2020) by proposing a convolution theorem for the asymptotic distribution of regular estimators of 6y,
the true parameter value of the parametric component 6 of the model. Nevertheless, our framework
differs from theirs in two main aspects. First, the reference Hilbert space L?(P,) is sample size de-
pendent. Second, the rate of convergence of the existing estimators is sharp only after rotation of the
parameter space and this rate is typically not the same for all components. These key differences raise
additional challenges to the derivation of efficiency bounds in our context and impose that we revisit
and refine some of the standard tools.

First, while the semiparametric family induced by the moment condition models is the same as in
Dovonon and Atchadé (2020) (except for the dependence on n) its tangent space does show its usual
orthogonality property only in the limit as n grow. More specifically, considering a relevant sequence
(0, hyy) of parameter values and f2(6,,, hy, ) the associated sequence of density functions, the tangent
space of fn,(0n, hn,-) at fn(6o, ho,-) is defined - in the standard framework where P, = P, for all n -
by the set of o € L?(Py) such that

”\/ﬁ(fn(enahn) - fn(907h0)) - aHLZ(PO) — 0 asn— oo.

This implies the orthogonality condition [ «af, (6o, ho)dPy = 0 which holds regardless of sample size.
This property is important in the literature to derive the local asymptotic normality (LAN) prop-
erty of the log-likelihood ratio (see Lemma 2.1 of BHHW). With L?(P,) allowed to vary, we have
[ afn(bo, ho)dP, # 0 in general. However, we show that this quantity converges to 0 and establish the
LAN property under this weaker condition. The LAN property in turn has been essential to derive
our convolution theorem for regular estimators.

The second main difference led us to introduce a notion of regular estimator that involves possibly
many rates and a rotation of the parameter space. We argue that efficiency bounds should be associated
to directions of estimation in which convergence rates are sharp for existing estimators. We then define
local parameters 6,, such that [|[A, R (6, — 6y) —n|| — 0 as n — oo, for some n € RP, where A,, is a
diagonal matrix containing the rates of convergence and R is a suitable rotation matrix. While the
notion of regularity formally introduced in the paper is tied to a rotation through these sequences
of parameters, we show that any estimator regular for a given rotation is also regular for any other

rotation. In addition, an estimator efficient for one rotation is also efficient for any other rotation.



Our main contribution is the semiparametric efficiency bounds for regular estimators of moment
condition models with mixed identification strength. These bounds are obtained via a convolution
theorem that we establish. We show that GMM estimators are regular in the sense mentioned above.
Moreover, any GMM estimator with weighting matrix W converging in probability to the limit of the
inverse variance of the estimating function evaluated at 6y has its asymptotic variance that is equal
to the semiparametric efficiency bound. This shows that the efficiency properties of the standard
two-step GMM estimator established by Chamberlain (1987) continue to hold in models with mixed
identification strength. Our findings also highlight that this estimator is asymptotically minimax
optimal with respect to a large family of loss functions.

The literature on efficiency in moment condition models with non standard identification features is
relatively recent. Dovonon and Atchadé (2020) deal with efficiency bounds in semiparametric models
with singular score functions. Kaji (2021) introduces the notion of weak efficiency inference about
the so-called weakly regular parameters. While these parameters are not consistently estimable, he
proposes a Rao-Blackwellization procedure that generates estimators with reduced dispersion.

Andrews and Mikusheva (2022a, 2022b) derive large sample properties of quasi-Bayes procedures
under weak identification. They propose inference methods that are asymptotically correct and more
desirable — especially for weakly identified models — than many alternative methods.

Our setting differs from theirs by the fact that consistent estimation is possible. Further, while
GMM estimators are not admissible for weakly identified parameters, our results support that the
two-step GMM estimator is admissible in the nearly-weak models that we consider.

The rest of the paper is organized as follows. Section 2 introduces the moment condition models
with mixed identification strength and provides the existing results about estimation and inference.
The semiparametric model induced by the moment condition model is introduced in Section 3 which
also presents the main results of the paper. Section 4 shows simulation results that illustrate the
efficiency of the two-step GMM estimator in models with mixed identification strength and Section 5
concludes. Lengthy proofs are relegated to the Appendix. Throughout the paper, ||a| = Vidaif ais
a vector or ||a|| = \/trace(d’a) if a is a matrix, and |allz2(py refers to the L?(P)-norm of a € L?(P).

2 Moment models with mixed identification strength: existing re-

sults

In this section, we introduce the set-up of moment condition models with mixed identification strength
along with some existing results on inference about model parameters.
Let {Y,;:i=1,...,n} be a triangular array of independent and identically distributed R%-valued

random variables with common distribution P, and described by the population moment condition
Er, (6(Yoi,00) i= [ 0(0,60)Pa(dy) = 0 1)

where ¢(-,-) is a known RF-valued function, fy is the parameter value of interest which is unknown
but lies in O, a subset of RP (k > p). ‘Ep,(-)’ denotes expectation taken under the distribution P, of
Yoi.



Consistent estimation and inference about the true parameter value fy hinge on the properties
of the moment function p : 6 — p,(0) := Ep, [¢(Yyi,0)]. The moment condition model p,(f) = 0 is
uninformative about 6y if all or many elements of © solve the model. In this case, consistent estimation
is compromised. When the moment equation is solved over © only by 6, consistent estimation becomes
a possibility. This is the point identification condition which is the backbone of the GMM inference
theory. In the context of triangular array that is under consideration in this paper, point identification

can be expressed as:

liminf inf |p,(0)| >0, f ighborhood N of 6. 2
im in eelé)l\j\/”p()” or any open neighborhoo of 6y (2)

This strong/point identification property can be restrictive in models where the moment function

is local to zero over O, that is:
IEPn [¢(Yn279)] = 5 p(e) € Rkv o> 07 (3)

with p(f) = 0 if and only if 6 = 6.
In this case, assuming that p(6) is bounded on ©, the identification condition (2) fails. Especially,

sup [lon(0)]) = O(n™°)

so that in the limit as n grows, the moment condition p,(f) = 0 becomes uninformative about 6.
This identification framework is labelled as weak or nearly weak by Antoine and Renault (2009).

Although under the local-to-zero property (3) the model (1) is uninformative about 6y in the
limit, it is known that consistent estimation is possible. This depends on the possibility to estimate
Ep, (¢(Yni,0)) faster than the latter can vanish over the parameter set. In that respect, it is found
that when 0 < 0 < 1/2, consistent estimation is possible while this is ruled out when 6 > 1/2.
This connection between 6 and the possibility of consistent estimation justifies its consideration as
identification strength of the related moment restriction. The smaller ¢ is, the stronger is the associated
restriction.

While (3) considers that all the restrictions have the same strength, one may consider cases where

each moment restriction is allowed to have its own strength leading to the following specification:

Ep, (¢(Ynza 9)) = Lglp(9)7 (4)

with p(f) = 0 < 6 = 6y, where L, is a (k, k)-diagonal matrix with j-th diagonal element equal to 1%,
0; > 0, and n the sample size.

The moment condition model in (4) is referred to as a moment condition model with mixed
identification strength. The restriction strengths d;’s are typically unknown and this family of models
encompasses the standard model when §; = 0 for all j. Although § < 1/2 is, in general, essential to
claim consistency, not all the ¢;’s in (4) need to be smaller than 1/2 for consistency to be granted. For
instance, if there is a subset of moment restrictions with related d;’s smaller than 1/2 and such that
the corresponding sub-vector of p, say pyj, is identifying (e.g., py(f) = 0 < 6 = 6), then consistent

estimation is possible regardless of the magnitude of the identification strength associated to the other



moment restrictions. We will refer to moment restrictions with related § = 0 as being strong, those
with ¢ €]0,1/2] as semi-strong and those with § > 1/2 as weak.

Moment condition models with mixed identification strength have been the object of study by
Antoine and Renault (2009, 2012, 2020, 2021), Caner (2009), and more recently Dovonon et al. (2023).
The main purpose of these studies is to propose inference methods in standard moment condition
models that are robust to some forms of mixed identification strength.

This paper is concerned with efficiency bounds for the estimation of 6y in models with mixed
identification strength. For convenience, we shall focus on a simpler model with LL,, including only
two possibly different values of d; so that we have the following partition of the moment function with
0§51 §(52 < 1/22:

ri(0)

0= (91, 05) € R X R™, pi= (o, ph) €R™ xR Ep, (6(Yair 0)) = =55,

with [p(6) = 0 < 0 = 6y).

It is worth clarifying that the moment condition model of interest is given by (1) while (5) presents
some auxiliary properties typically unknown to the econometrician/practitioner about the behaviour
of the moment function over the parameter set. Note that the properties in (5) include for 4; = 2 = 0,
the standard framework where the model is point identified and the moment function does not drift
to 0 uniformly over ©. In (5), since Ep_(¢1(Yy;,0)) vanishes on © more slowly than Ep, (¢2(Y,,0)),

the former defines the strongest set of moment restrictions if §; < ds.

Examples of moment condition models with mixed identification strength are presented in Dovonon et al.
(2023), Antoine and Renault (2012), and Han and McCloskey (2019). We present below the linear IV

model with nearly weak instruments which also is object of simulation in Section 4.

Example 1. (Linear IV Model with Nearly Weak Instruments). This example relates to linear
regression models with endogenous regressors for which available instrumental variables are possibly
weak. Moreover, the set of instruments may be partitioned in two groups, each with a specific magnitude
of partial correlation with the endogenous regressor(s). As we can see below, such setting leads to a

moment condition model with identification property as in (5).

Specifically, consider the random sample: {w; := (y;, s, 2) ERxRP xR¥ : 4 =1,... n}. Assume
that:

yi = ibo + s, (6)

x; = iy 21 + op 29 + v;, (7)

with : E(zju;) =0, E(zv;) =0, and, for each n, Rank(E(zx})) = p, (8)

where, for j = 1,2, I, =n=%Cj; C; € RP x RNi; 0 < 8y < 65 2 = (24, 25,)"; and ky + kg = k.

2The main results derived in this paper stay valid in the more general cases where L,, features more than 2 identification
strengths. They are also valid in cases where the model includes weak and/or uninformative restrictions (J; > 1/2),
so long as enough strong and/or semi-strong restrictions are included to ensure consistent and asymptotically normal

estimation.



In this representation, d; captures the strength of the instruments z; through the magnitude of its

partial correlation with the endogenous variables. Clearly, 0y solves the moment restriction:
E(zi(y; — z;0)) = 0. (9)

Furthermore, assuming - to simplify - that the sets of instruments zy; and z9; are orthogonal and

letting:
Apy = E(z12y:); Dog o= E(z2i2;); p1(0) :== AnCi(0p — 0); and pa(0) := Ng2Ch(0p — 0),

v [ EGu(yi—2i0)) \ [ n7%pi(6)
E(z(y; — 240)) == < E(oai(ui — 216)) ) = ( 252 o (0) ) .

This shows that the linear IV model in (6)-(8) yields a moment condition model with mized identifi-

we have:

cation strength. Thanks to the rank condition in this model specification, we can also verify that
p(0) == (p1(0)',p2(0)) =0 0 =0p. O

Example 2. (Optimal Prediction). This ezample focuses on nonlinear prediction functions. Specif-
ically, consider the random sample {w; == (y;,7;,2;) € R® : i =1,...,n}, where z; is independent of
z; for all i. Our interest lies in determining the optimal projection of y; onto z; and hy(v,x;), where
hn(+) is a function depending on the sample size n and known up to some parameter v € [0,1]. Let &
and 4 be determined such that §; = &z + hy (9, ;) minimizes % Yoy (yi — 0i)?.

The process of finding these values is equivalent to minimizing %Zle(yz — az; — hy(y,2:))? with
respect to o and . The first-order condition of this minimization problem implies the following moment

conditions:

Elzi(yi — azi — hn(7,2:))]
E[hn7(77 $Z)(yl — Qzy — hn(77 $Z))]

where hp~ (v, ;) = Ohy (7, 24)/07.
Suppose that x; ~ U[—7, 7], with © = 4arctan(1), z; ~ N(0,0%) independently with x;, E(y;|x;) =

0, (10)
0, (11)

cx; for some constant ¢ # 0, and hy (7, ;) = n~0[sin(yx;) — cos(yx;)] for some § € [0,1/2). Let

or(wi,o,y) = zi(yi — az — n0[sin(vya;) — cos(va;)))
é

12
po(wi, o, y) = n0z[sin(ya;) + cos(yz;)] (yi — az —n~ (12)

Olsin(ya;) — cos(’yxi)]).

Using the independence between z; and x;, it is straightforward to see that
Elpr (wi, 0, 7)) = Elzi(yi — az)]  and  Elgo(wi,a,7)] = n E [zy;[sin(yz;) + cos(ya;)]].

Therefore, by setting ¢(w;, a,y) = [(ﬁl(wi,a,y),qbg (wi,a,y)]/, the moment conditions (10)-(11) can be

written as:
) ( 10 > 1
Elp(w;, a,)] = L. “pla,y), L, = s |, 0<d<5, and
0 n 2
playy) = (Elziyi — az)], cEla?[sin(yas) + cos(ya)]]) .



Under the above assumptions, we can verify that

pla,y) =0& a=ag=0c *E(zy), v = ~ 0.8296. O

We now review the existing results on inference about the model parameter ;. We emphasize
those that are useful to us in the next section on the derivation of efficiency bounds. Let the GMM

estimator 6,, be defined by
0, = arg min ¢, (0) W, (0), (13)
0O

where ¢,,(0) :=n"1 3" | ¢(Vni,0) and W, is a sequence of almost surely symmetric positive definite

matrices converging in probability to W, a symmetric positive definite matrix.

Consistency of 6, for 6y is ensured under Assumption A.1 in Appendix A while Assumptions A.1,
A.2, and A.3 present sufficient conditions for the asymptotic normality of this estimator. The asymp-
totic normality of 6, is established by Antoine and Renault (2009, 2012) under the condition that
the Jacobian of p(f) at 6y is full column rank. The rate of convergence of 0,, depends on how fast
the strongest moment function Ep, (¢1(Y,,;,0)) vanishes and on the rank s; of the Jacobian matrix of
p1(0) at Oy. If this rank is smaller than p, the dimension of y, then the remaining moment restrictions
determine the rate of convergence of the s := p — s; remaining directions of the parameter. To

introduce this asymptotic distribution, we rely on the following notation.

We let s; = Rank (g’é} (90)).

If0 < s1 < p, define R = (R1:Ry) a (p, p)-matrix such that RR' = I,, and Ry is a (p, p—s1)-matrix

with columns spanning the null space of gg} (0p) and define:

9p1 15
g= [ 0 and A, = " 0 : (14)
Op2 )R, 1

0 92 (00) R 0 a2,
o If 51 =p, set
apll . ' 1—61
J = W(eo).o , Ap=n2"""1, and R=1I,
o If 51 =0, set
. Opt !
J=(0:22(0)), A,=n2""I, and R=I,
06
e Hinally, if 01 = d9 = 6, set
9p(6o) 1
J==5g7 An=n2 °I,, and R=1I,

Under Assumptions A.1, A.2 and A.3 in Appendix A, we can claim, following Antoine and Renault
(2009, 2012) that, under P,,

AR (6 — 00) -5 N(0,QW)), with QW) := (JWI) L IWEWJ(JIWI)™L,  (15)



where Y is the asymptotic variance of \/n¢, (), under P,.

As is standard in GMM theory, the asymptotic distribution of the GMM estimator depends on the
probability limit W of the weighting matrix. Antoine and Renault (2009) show that the asymptotic
variance (W) is minimal for the choice W = £71. They show (see p.S151) how feasible estima-
tors with asymptotic variance Q(X7!) = (J'271J)~! can be obtained. Interestingly, the proposed
procedure is the same as that of the two-step GMM estimator in standard models. They also show
that standard formulas for inference based on the two-step GMM are valid in the context of moment
condition models with mixed identification strength. This highlights some robustness of the two-step
GMM inference procedure to the identification pattern in (5) under the conditions in Assumptions
A.1, A2 and A.3. We shall reiterate that there is no need to know sy, R, nor the rates of convergence
in A, to build asymptotically valid inference about 8y using the two-step GMM estimator.

In the next section, we derive asymptotic semiparametric efficiency bounds for the estimation of
6p in the moment condition model (1) under the mixed identification strength property in (5). We
show in substance that the minimum variance Q(X~!) corresponds to the semiparametric efficiency

variance-bound for estimators that are regular in a sense that we will make precise.

3 Efficiency bounds

This section derives the asymptotic efficiency bound for the estimation of 8y in the moment condition
model (1) characterized by the mixed identification strength property in (5). For this purpose, we rely
on the technique introduced by Dovonon and Atchadé (2020). Their approach consists in: obtaining
the semiparametric family implicitly induced by (1) in the form {f2(6,h,-) : (6,h) € V}, where
f2(6,h,-) is the probability density function of ¥ with respect to a reference measure, and indexed by
f in © and h lying in a Hilbert space. This semiparametric model is then used to obtain an efficiency
bound in the direction of # by relying on a similar approach to BHHW (1983).

There are two main differences between their set-up and the models of interest in this paper.
First, the population distribution P, of the data is allowed to depend on the sample size n and,
second, common estimators of 6y display a mixture of rates of convergence and eliciting the directions
of sharp rate requires some rotation of the parameter space.

Adapting the existing methods to derive efficiency bounds to this configuration proves to be chal-
lenging. Under the triangular arrays framework implied by the sample dependence of P,, the induced
family of densities also depends on n. We propose an extension of the notion of tangent space and
refine the local asymptotic normality theory used by BHHW to accommodate such families of semi-
parametric models. We also propose an adaptation of the notion of regular estimators to accommodate

our setting where sharp rates are up to a rotation of parameter space.

3.1 (Semi)parametric representation of moment condition models

Consider again the row-wise independent and identically distributed triangular array {Y,1,..., Y}
of Re-valued random vectors and common distribution P,. Let L?(P,) denote L?(R% B(R%), P,),



a Hilbert space of real-valued functions on RY. Following Dovonon and Atchadé (2020), we next
characterize the semiparametric family induced by the moment condition (1) in the form of density
functions with respect to P,. This allows to handle random variables with finite, discrete or continuous
support in a unified manner. Our approach contrasts with Chamberlain (1987) who mainly considers
random variables with finite support and provides extensions to continuous variables through an
approximation theory. The main difference between the current set-up and Dovonon and Atchadé
(2020) is that the reference measure P, in the former depends on n to accommodate triangular arrays,
while it is fixed in the latter.

We let Véj )(b(y, ) denote the j-th order differential of the map 6 — ¢(y,0) evaluated at 6 with
the convention that V((,O)qﬁ(y, 0) = ¢(y,0) and we make the following assumption.

Assumption 1.

(i) There exists a neighbourhood © of 0y, a L*(P,)-neighbourhood N of fno =1, and a finite con-
stant C > 0, such that for P,-almost ally € R, 0 — ¢(y,0) is r-times continuously differentiable
on © and, for all f € N,

[ s [[v§000.0)] 20 Putan < c.
forj=0,...,r
(ii) The matriz ¥, = /gb(y,@o)qS(y,Ho)/Pn(dy) is positive definite.

Assumption 1 imposes some uniform dominance condition on Véj )(b(y, 0) to ensure that this func-
tion is well-behaved. Note also that, when Y,;; is distributed as P,, f, 0(y) = 1 is the density of ¥,; with
respect to P,,. This assumption imposes, in particular, that the relevant functions are integrable with
respect to any density function in a certain neighbourhood of f, 9. The second part of the assumption
is quite standard.

Towards the introduction of the implicit model, further notation is needed. We equip L?(P,) with
the inner product (u,v) = [u(y)v(y)Pn(dy) := Ep, (u(Y)v(Y)). More generally, for u : RY — Rs*"
and v : R? — R*" (u,v) = Ep, (u(Y)v(Y)'), where the expectation of any matrix is understood to

be component-wise.

Let o(y) = (01).---,ox(@)) = S *6(y.00), and @rsa(y) = 1. For all 6 € ©, let py(y) =
E;l/2¢(y,9). Further, let ¢ = (1,¢') = (¢r41,¢") and @9 = (1,¢)) = (r+1,¢p). Thanks to the
moment condition (1), the elements of @ are orthonormal elements of L?(P,). By separability of
L%(P,), ¢ can be extended to have an orthonormal basis {¢; : j > 1} of L?(P,) and let £ denote the
closed span of the subspace L?(P,) generated by {¢; : j > k+2}. Note that the elements of the basis
{oj : j > 1} ultimately depend on n but we do not stress this in the notation for simplicity.

We introduce the map M defined on © x & x L%(P,) taking values in L?(P,) such that for any
(0,h, f) € © x £ x L*(P,),

Mo =3 (et ([ POR@ 1) o+ 3 s -mee (10

j=k+2

10



By construction, the set of solutions of the equation M(€,h, f) = 0 collects all the combinations
(0,f) € © x L*(P,) consistent with the moment condition model. That is, all (#, f) such that
[ #(y,0)f*(y) P (dy) = 0. To see this, note that, for any (6, h, f), M(0,h, f) = 0 if and only if

/¢(y,9)f2(y)Pn(dy) =0, /f2(y)Pn(dy) =1, and (p;,f—h)=0, Vj>k+2

This means that the triplets (6, h, f) that set M to zero are those in which: f? is a density function
with respect to Py; 6 is a solution to the moment condition model with Y having f? as density function
with respect to P,; and h is the projection of f on the directions {y; : j > k + 2} of the considered
basis.

Conversely, if (6, f) € © x L?(P,) is such that f%(y) is a density function with respect to P,
and [ ¢(y,0)f*(y)Pu(dy) = 0, then M(0,proje(f), f) = 0, where projg is the orthogonal projection
operator on the subspace £.

Letting ho = Og, we have M(0y, ho, fn,0) = 0. Lemma 2.1 of Dovonon and Atchadé (2020) shows

that under Assumption 1, M is r-times continuously differentiable and for any g € L?(P,),

V y M(6o, ho, fn0) 9= (9,0) ¢ + Z (i 9)¢; = 9.
J=q+2

It follows that V s M (6o, ho, fn,0) is an isomorphism of L?(P,) and the implicit function theorem allows
us to claim that there exists a neighbourhood V of (g, ho), a neighbourhood U of f, o and a r-times
continuously differentiable function f,,: V — U such that f, (6o, ho) = fn,0 and for all (0,h) € V,

M0, h, fr(6,h)) =0.

The family of functions {f,(0,h,-) : (6,h) € V} defines the semiparametric model induced by the
moment condition (1). This family is further characterized by Proposition B.1 in Appendix B which
follows readily from Lemma 2.2 of Dovonon and Atchadé (2020).

3.2 Efficiency bounds for the (semi)parametric representation

To obtain semiparametric efficiency bounds for the estimation of 6y in model (1), we focus on the
family of semiparametric density functions {f,(0,h,-) : (6,h) € V} induced by the moment condition
model as established by Proposition B.1. Our goal from this point consists in obtaining a bound for
the parametric component # in this induced semiparametric model and then show that this bound is
sharp.

Of interest to us is the approach of BHHW (1983) to derive efficiency bounds for parameters of
semiparametric models represented by a family of density functions depending on both a finite and
an infinite dimension parameters. This approach consists in collecting all the elements o € L?(p) —
where p is a dominating measure with respect to which the family of model densities are expressed —

and all the sequences 0,,, h,, converging to #y and hg such that:

||\/E(fn(9na hy) = fno) — O‘HLZ(M) — 0, asn — oo.
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As maintained in their paper, if the function f, does not vary with n, such «’s necessarily belong
to the tangent set of f,(6,, hy) at (0o, ho) and therefore, satisfy [ af,dp = 0. This property is used
to establish that the log-likelihood ratio of the sample under the distributions f,(6,,h,) and f, o is
asymptotically normal. In turn, the local asymptotic normality (LAN) property of the log-likelihood
ratio is used to derive efficiency bounds for a class of regular estimators.

Although our semiparametric model of interest fits with that analysed by BHHW, a key difference
resides in the fact that our model involves density functions with respect to a dominating measure P,
that varies with the sample size. We first re-examine the result of BHHW in light of this difference and
we propose a refined version of the LAN property established by their Lemma 2.1 that accommodates
our settings.

We propose the extension in a context more general than needed for us by considering sequences of
sigma-finite measures instead of probability measures. Let (X, %) be a measurable space and ji,,,n > 0
a sequence of sigma-finite measures on (X,%). Let f2, n > 0 and g2, n > 0 be two sequences of density
functions on X with respect to p,. Let L?(u,) denote L?(X, %, uy,). By definition, f,, g, € L*(un)
and || full, = 1 and [lgul,, = 15 where [|n]2 = [ h2dp.

Let X,1,...,Xu, be a row-wise independent and identically distributed triangular array of X-

valued random variables. Define the likelihood ratio L,, by:

=1 =1

We have the following result:

Theorem 3.1. (Local asymptotic normality.) If g, and f, defined above are such that, for
On € Lz(,un);
V1 (gn — fn) — O%Hltn —0, as n— o0, (18)

then:
(i) vy = /fnand,un — 0 asn — 0.

(ii) If in addition, ||Oén||;2Ln — a? < 00 asn — 00, then, for every e >0,

an( >6)—>0

as n — 0o, where, for any p-measurable set A, Py(A) = fA f2du, and o® = 4a®. Furthermore,

L= 207123 o (Xi)fo(Xo) — ] 02
i=1

under Py, ,
d 2 2
L, — N(—0%/2,0%)

as n — 0o and the sequences {11y g2(xi)} and {[]i, fi(xz:)} are contiguous.

Proof: See Appendix. [

This result shows that in our context, if a,, € L?(P,) is such that
H\/E(fn(em hn) - fn,O) - anHL2(Pn) — 0, (19)
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we do not necessarily have f o fn,0dP, = 0 but instead

lim [ a,fnodP, =0

n—oo

and the LAN property in Theorem 3.1(ii) can be obtained from this asymptotic form of tangent space.
We shall rely on this refinement to establish the main results in this paper.

Perhaps, at this point, it is worth addressing the fact that, for the same sequence (fy,(0r, hn), fno0),
many sequences «, of elements of L?(P,) may satisfy (19). We observe, thanks to the triangle

inequality, that any pair of sequences ay , and as, that satisfy (19) are such that

et nll 2y — laomllzzey| < llean — a2nllizp,)
< ”\/ﬁ(fn(em hn) - fn,O) - al,n”L2(Pn) + ”\/ﬁ(fn(em hn) - fn,O) - 042,nHL2(Pn) — 0.

As a result, [|a1,|z2(p,) and [lagullz2(p,) have the same limit inferior and the same limit superior.
This property is of particular interest since «, is related to the local asymptotic normal distribution in
Theorem 3.1 only through the limit of its L?(P,)-norm if such a limit exists. Clearly, the existence of
the limit for one solution of (19) implies that any other solution has the same limit. The practical con-

sequence of this is that we can focus on any solution of (19) to develop our asymptotic efficiency theory.

Characterization of the asymptotic tangent space. Let us now give a more specific sense
to gn(-) := fn(bn, hn,-) by determining the set of all sequences of {(0,,hy)}, of interest and the as-
sociated «,, that guarantee (19). For this, we need to make a choice about the rate of convergence
of (0, hy) to (6o, ho). If all the components of 6y were estimable at the same rate, r,, the standard
approach consists in using that rate to characterize the local parameters (6, hy,). This is the case in
the theory of BHHW where r,, = y/n. However, the asymptotic distribution in (15) shows that, except
for the extreme cases of s; = 0 and s; = p, standard estimators of §y do not converge at the same rate

in all directions.

If we were to determine the local sequences 6,, based directly on the rate of convergence of the
GMM estimator, it appears that information related to the directions estimable at a faster rate would
be lost and, thereby compromising efficiency. The results in Section 2 on GMM estimation provide an
intuition about this claim. The rate of convergence of this estimator is n'/27% which is related to the

directions estimable at the slowest rate. From (15), we can claim that, under P,
n 2790, — 6g) —L5 N (0, RoQ(W)gaRb) |

where Q(W )y is the lower-right (s, sg)-sub-matrix of Q(W). This is a degenerated Gaussian limit
that accounts only for a subset of estimation directions by omitting the faster ones.

Because of this, it makes more sense to focus on the rotation of the parameter that disentangle the
estimation directions with sharp rates. As established by (15), the first s; components of vy = R™16
are estimable at rate 7379 while the remaining sy are at rate n37% and those rates are sharp. We

shall consider this fact and explore sequences (6,,) such that:

AyR7Y(6,, —6y) —n — 0, (20)
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as n — oo for some n € RP, and R a rotation matrix satisfying the definition in (14).

Effectively, efficient bounds for 6y are explored in the case 0 < s; < p through its linear trans-
formation vy = R™'6,. We will say that an estimator 6 of 6 is asymptotically efficient if there is a
rotation R as defined in (14) such that R~16 is an asymptotically efficient estimator of VO,R i= R716,.
We shall see that if § is asymptotically efficient for a specific rotation, it is also asymptotically efficient

for any other rotation consistent with that definition.

Remark 1. It is worth mentioning that the set of sequences (0,,) determined by (20) is the same
regardless of the choice of rotation matriz R. Indeed, as shown by Lemma B.1, any other rotation R
consistent with the definition (14) satisfies R = RA, with A a nonsingular block diagonal matriz. It
follows that, if (0,) satisfies (20) with the rotation matriz R, it also satisfies (20) with the rotation
matriz R and n replaced by A'n.

This remark shows that the choice of rotation matrix is immaterial in the collection of local
sequences (6,,) given by (20). We reiterate that the discussion on rotation is relevant only in models

where 0 < s; < p. Note that the relevant sequences (6,,) are such that for some 7 € RP,
if 51 =p, AyR (0, —00) —n=n?>"%(0, —0) —n—0, and
if 51 =0, ApR™ (0, —0p) —np=n'?7%2(0, —0y) —n — 0 (21)

so that no rotation is explicitly involved. Our aim is to derive an efficiency bound for the estimation
of 6y that is valid whether s; = 0, p or 0 < s1 < p. For this reason, we will consider sequences defined
by (20) with the understanding that this definition collapses to (21) in the extreme cases.

Regarding the non-parametric component of the model, we consider (h,) such that

[vn(hn = ho) = Bllr2(p,) — 0 (22)

as n — oo, for some 3 € L?(P,). The parametric rate in the definition of (h,) may seem arbitrary
but the consequence of this choice is that the set of sequences (h,) thus defined is small and may lead
to irrelevant bounds. We shall see later that this set is actually the right one as the resulting bound

will be proved sharp.

Following similar lines to BHHW, we collect all these sequences in specific sets by letting ©(6y, n)
denote the set of all sequences (6,,) satisfying (20) and ©(6y) = U, cre ©(00, 7). Similarly, C(ho, 3)
denotes the collection of all sequences (hy) such that (22) holds and C(ho) = Ugep(n,) C(ho, B), where

B(hg) = {5 € & such that (22) holds for some sequence (h;,) of elements of £} .
The sequences of experiments that we shall consider are:
9721() = fn2(9na hm ')7 with {(en)7 (hn)} € @(90) X C(hO) (23)

From Proposition B.1, (0, h) — f,(0, h) is twice continuously Fréchet differentiable and this is sufficient
to claim that f2(6,h) is Hellinger differentiable at (6, ho). In this case, the limit elements a, in (18)
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are characterized by the Fréchet (or Hellinger) derivatives of f,, (6, h) at (6p, ho). Indeed, by the Taylor’s
formula, there exists a function 7, g, € L*(P,) and a bounded linear operator A, : L?(P,) — L?(P,)
such that:

1gn — fn0— Tn,00 (0 —60) — Apn - (hn — hO)HLZ(Pn) = [[r2(0n, P, ')||L2(Pn), (24)

where ro(6,,, hy,, ) is the Lagrange remainder. If

Vlr2(0n, hn, )l 2cp,) = o(1) (25)

then the leading part of 7,9, - (6, — 00) + Ay - (hn — ho) in L?(P,) would represent «, associated to
the sequence (6, hy,) as in (18).
Lemma B.2 in Appendix B establishes (25) under the condition that

(51,00) € A = {(a, b) € [0,1/2% 0<a<b<[(1/4+a/2) /\3/8]}.

This result is obtained by showing that \/n|[ra(0n, hn, )| 12(p,) = O(n=1/24202) if §, < 1/4 and if
6 > 1/4, \/nllr2(On, hn, )l L2(p,) = O(n~1/2+202=01 \/ p=3/244%2)  We get this result by deriving the
magnitude of [|0?f,(6, h,-)/80;001| 12(p,) and also using the fact that ||6,, — 8o = O(n~1/2+02),
Remark 2. The efficiency bounds that we derive in the next section apply to (61,02) € A. Note
that the condition do < 1/4 + 81/2 corresponds to the condition in Assumption A.3(i) under which
the asymptotic distribution of GMM estimators is derived when the moment function is non-linear in
0. In our study, we will maintain this condition even in case of linearity since the induced family of
densities appears to be non-linear in general as can be seen in (B.1).

The condition on 09 is more restrictive by ruling out values larger than or equal to 3/8. Although

the results that we derive in this paper maintain this sufficient condition, they may still continue to
hold for 3/8 < §3 < 1/2 as illustrated by the simulations in Section 4.

For any (01,02) € A, we have
1Vn(gn = fn0) = Vilrae, - (On = 00) + An - (b — ho))lL2(p,) = 0, as n— oo (26)
Therefore, we can define oy, satisfying (19) as any element of L?(P,) such that:
[atn — V1 (1,00 - (O — 00) + A - (b — o)) [l 2(p,) = 0 as 1 — oo.

For the rest of our analysis, more relevant than the sequence {(6,), (hn)} € ©(0y) x C(ho) itself is its

scaled limit which is some (7, 3) € RP x B(hg). The following proposition characterizes «,, in terms of
n and 5.

Proposition 3.2. Let R, J, and A,, be defined as in (14) with (01,02) € A. Assume that: 6y satisfies
(1); the estimating function ¢(-,-) satisfies (5); Op(0y)/00" is full column rank; Assumptions 1 and
A.4 hold with r = 2. Then, with {(0,), (hn)} € ©(00) x C(6p), the set Ho of o, ’s such that (19) holds

18 essentially given by
2 L —-1/2 p
Ho = O‘nGL(Pn):an:_§77JEn o+ Ap - B, HGR,BGB(%) 5 (27)
where @(+) = E;l/zqﬁ(-, 0o) and Ay, = Vi, fn(0o, ho, ) is given by Proposition B.1.
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In the statement of Proposition 3.2, by “essentially,” we mean that any other solution (ai,) of
(19) satisfies ||, — a1 nllz2(p,) = o(1) for some «,, € Hp. See comment following Theorem 3.1. Also,
the fact that 8 € B(hg) C € ensures that A, - 5 = f.

Proof: See Appendix. [

Example 1. - Linear IV, continued: In this example, Y, ; := w; = (2, yi, ;) with distribution P,.
The elements of the tangent space are given by o, (w) = —(1/2)n J'S, 1/2cp(w)+5(w), withn € RP and
B is any element of L*(P,) orthogonal to y — (1, p(w)); p(w) = %, /2¢(w,90), d(w, bp) := z(y—2'6p),
Yn = Var(¢(Yni,0o)). Finally, J is defined as in (14) with dp;(00) /00" = —A;;C% and s1 = Rank(C1).

Example 2. - Optimal Prediction, continued: In this example, Y, ; == w; = (2;,y;, ;) with distri-
bution P,. The elements of the tangent space are given by o, (w) = —(1/2)77’J’Eﬁl/2<,0(w) + B(w),
with n € RP and B is any element of L*(P,) orthogonal to y +— (1,(w)); p(w) = E;l/zé(w,ﬁo), with
o(w,0) defined by (12), 0 := (a,7), and Sy = Var(¢(Yos, 60)).

To derive J, we obtain:

dp1(0o)
oo’

Ip2(bo)

= [-E(2%),0] = [-02%,0], and 50

(2

= [0, —cE(x? sin(yoz;))] # 0.

Using the definition (14), we obtain in this case, R = Iy and

—o? 0
/= ( 0 —cE(a?sin(yox;)) > ' 28

Remark 3. As is commonly done, thanks to Proposition 3.2, we can index the sequence g2 =
F2(0,, hy) by its associated o, € Ho, i.e. an € Ho such that (19) holds or even by the parameter
(n,8) € RP x B(hg).

Convolution results. Under the sequence of experiments g2 as defined in (23) and the reference
distribution fgvo, the log-likelihood ratio L,, has the expression given in (17) with X,,; replaced by Y,,;
and f,, by fno. The LAN property of g2 at (6o, ho) follows from Theorem 3.1. Specifically, for any
ay € Ho,

Lo, % N(—0%/2,0%),

under f2 as n — oo, where 0 = 4lim,, o [|@3 || 2(p,) if this limit exists.

This LAN property is key to the convolution result that we introduce next. We rule out cases of
super-efficient estimators, by restricting ourselves to regular estimators of 6. The definition of regular
estimator that we rely on is different from the standard one. A meaningful definition shall reflect the
heterogeneity of convergence rates of standard estimators as obtained in (15). Our definition below

accounts for the directions in which information about 6y has the potential to be maximum.

Definition 1. (A, -Regularity) An estimator 6,, of 8y is A,-reqular at f%o if, for every sequence
In() = falOn, b, ) with {(6,), ()} € ©(0y) x C(hg), ApR™(0,, — 6,,) converges in distribution
under g2 and fio = f2(6y, ho) to the same limit S.
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Remark 4. Note that S in this definition may depend on R. However, the A, -reqularity property of
a sequence of estimators 9~n is not associated to a particular rotation as the definition may suggest.
Indeed, we can show that if Definition 1 holds for 0,, it continue to hold if R is replaced by a different

rotation matriz, say R = RA (see Remark 1). In this case, the limiting distribution is A'S instead.

To introduce our main result, we observe that, since hg = 0, B(hg) is a closed subspace of L%(P,)

hence, «;,’s in Proposition 3.2 can also be written
7]/ <J/27_Ll/2§0 - An . b) 7

with n € RP, b= (By,...,8,) € B(ho)? and A, -b = (A, Br,..., Ap - Bp).

Let A,,-b}, with b € B(h)?, be the orthogonal projection of —%J’E;l/zgp onto {A, -b:b e B(hy)P}

and define (the efficient score in the direction of ) as

1
Sy = _§J’2;1/2(p —A,-b;, and I[,=4 li_)m (Sn, 8n)

if this limit exists. We have the following result.

Theorem 3.3. Let 0, be an estimator of 0y, A,-reqular at f72z,0 with limit distribution S. If the con-
clusion of Proposition 3.2 holds - that is: the set of cu,’s such that (19) holds is given by Hg in (27) -

and I, exists and is nonsingular, then:

SLz4U,
where Z ~ N(0,I;1) and is independent of the random vector U.

Proof: See Appendix. [

Theorem 3.3 states that any regular estimator of 6y has an asymptotic variance that is at least as
large as I7'. The next corollary gives a more explicit expression of this bound in terms of moments
of the estimating function ¢(Y,6).

Corollary 3.4. Let R, J, and A, be defined as in (14) with (61,02) € A. Assume that: 6y satisfies
(1); the estimating function ¢(-,-) satisfies (5); Op(6y)/00" is full column rank; Assumptions 1 and
A.J hold with r = 2; and, as n — 00, Xy, := Ep_ [6(Y,00)p(Y,00)'] — X a symmetric positive definite

matriz. If 0, is A, -reqular estimator of 6y with limit distribution S, then
siz+u, (29)
where Z ~ N(0,I;1), with I, = J'%7'J and Z independent of U.

Proof: See Appendix. [

Example 1. — Linear IV, continued: The limit distribution of any regular estimator of 0y in the
model (9) is a convolution of two independent variables Z and U with Z ~ N(0,I;1); I. = J'S71,
J previously defined, and ¥ = lim,,_ o0 2, -
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Example 2. — Optimal Prediction, continued: In this example, the limit distribution of any reqular
estimator of 0y 1= (ap,70) in the model (10)-(11) is a convolution of two independent variables Z
and U with Z ~ N(0,I71); I71 = J7'SJ~1, with J given by (28), and ¥ = lim,, 00 By, with ¥, =
Var(¢(Yni, 00)), Yni = w; = (yi,xi, zi) with distribution P,.

Corollary 3.4 sets Ly := I;! = (J’ »lJ )_1 as the lowest asymptotic variance reachable by any
regular estimator of §y. Note that this result holds regardless of the value of s; = Rank(dp;(6y)/06").
If sy =0 or p, then

_ 9p() 9p(h)’ 5,1 9p(60) -
o6 00 o6 ’

In the case where 0 < s1 < p, J is given by (14) and the bound is as given above. This is effectively

and Ly = <

the efficiency bound for the estimation of vy = R~'6y. However, this result seems to channel more
information than that. From the previous discussion, any estimator 6 of 6, that is A,-regular for one
choice of rotation stays so for any other rotation defined by (14). In addition, the convolution result
above shows that being efficient in terms of one rotation implies efficiency in any other rotation. This
provides some rational to the notion that, when 0 < s; < p, a regular and efficient estimator 6 is
one that is A,-regular for one choice of rotation and reaches the asymptotic semiparametric efficiency
bound for that rotation.

One additional point that is worth mentioning is that Dovonon et al. (2023) have established that
det[(J'S~ )] is rotation invariant. Also, the asymptotic variance of a regular estimator 6 is given
by

I+ Vv, with V=Var(U).

We know that det(I;' + V) > det(I!), with equality if and only if V = 0.2 We can therefore
relate efficiency of any regular estimator 6 to the fact that the determinant of its asymptotic variance
is equal to det(I; ') which is rotation invariant. We recall that the determinant of the variance-
covariance matrix, also known as generalized variance is introduced by Wilks (1932) as the scalar
measure of dispersion in a multivariate statistical population.

Finally, in relation to GMM estimation, from (15), the two-step GMM estimator (2SGMM) émzﬂ
using the weighting matrix W,, with the inverse of ¥ = lim,, o, Varp, (¢(Yni, 6p)) as limit, is asymp-
totically distributed N (0, (J'X~1J)~1). This implies that the bound derived by Corollary 3.4 is sharp.
Note that this choice of weighting matrix is known to be efficient in the standard GMM estimation
setting (see Chamberlain, 1987) and also in singularity settings of first-order local identification failure
(see Dovonon and Atchadé, 2020). Further, we will show in the next section that GMM estimators
are regular and this will bring to light the efficiency status of 2SGMM among regular estimators.

Along with the convolution result in Corollary 3.4, we also derive an asymptotic minimax optimality
result for a general class of loss functions. Let ¢ : RP — R, be a loss function that is subconvex, i.e.,

{z : ¢(z) < a} is closed, convex and symmetric for every a > 0. We have the following.

3See Magnus and Neudecker (2002, Th. 22, p.21).
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Theorem 3.5. Under the same conditions as in Corollary 3.4, if ¢ is subconvexr and 0,, is a measurable
sequence of estimator of 0y, then

sup liminf sup Eg, ¢ (AnR_1 (én - 9n>> >El(Z),

ICHy "7 apel

where Z is defined as in Corollary 3.4 and 9,217% is a sequence f2(On,hn,-) such that (19) holds. The

first supremum, is taken over all finite subset I of Hy.

Using Corollary 3.4, the proof of this result follows readily by the application of Theorem 3.11.5
of van der Vaart and Wellner (1996, p.417).

Regularity of the GMM estimator. We now establish that the GMM estimator is A,-regular
at fno. Consider the GMM estimator, 9n, defined by (13) with a sequence of weighting matrix W,
converging in probability under P, to W, a symmetric positive definite matrix. Equation (15) gives

the asymptotic distribution of én, under P,:
AR (0, — 09) ~ N(0, (W)

which is valid under (1), (5) and Assumptions A.1-A.3. To claim regularity for 6,,, we will establish
that
AR (0 — 6,) - N(0,Q(W)), under g := f2(6,, hy,),

with A, R=Y(0,, — 60y) —n — 0 and /n(h, — hg) — B — 0 in L?(P,) for some n € RP and 3 € &.

We will use the fact that the measures {[]i_; ga(y:)} and {[]iL, fZo(yi)} are contiguous, see
Theorem 3.1. That is, for each sequence of sets Fj, measurable on the probability space (Rd X oo X
RYEBRE x -« x RO, P, := P, ®---® P,), P(F,) — 0, as n — oo implies that Q,(F,) — 0,
where Q,, has density []\_, ¢2(y;) with respect to P,. (The products in the definition are n-fold.)
The consequence of contiguity is that any sequence of random variable of order op(1) (respectively
Op(1)) under P, are also op(1) (respectively Op(1)) under g2. We establish regularity of GMM by
strengthening Assumptions A.1-A.3 by the following assumption:

Assumption 2. (a) There exists a neighbourhood N of 6y and a constant C > 0 such that, for all g
in a L*(P,)-neighbourhood of fno,

sup / 6(y,0)]*9*(y)dPn(y) < C.
0eN

(b) For any non-random sequence (8,) such that 6,, — 6y, as n — oo, [(y,0,)é(y,0,)dP, — X,
with 3 := lim, o Varp, (6(Yni, 6o)).

This assumption is useful to establish that \/n¢,(6,) converges in distribution to N(0, %), under
g2. Part (a) requires fourth moments for the estimating function ¢(y, #) under distributions near the
reference distribution P,,. We can interpret Part (b) as a continuity assumption. If P, were fixed in n,

it would follow from the continuity of 6 — ¢(y, ) for P,-almost all y and some dominance condition.

Proposition 3.6. Assume 6y satisfies (1) and the estimating function ¢(-,-) satisfies (5). If Assump-
tions A.1-A.3 and 2 hold, then the GMM estimator 0, is A,-reqular.
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Proof: See Appendix. [

This proposition establishes the regularity of GMM estimators. Asymptotic normality and the
conclusion of Corollary 3.4 imply that the asymptotic distribution of 6,, is the convolution of indepen-
dent random variables Z and U with Z ~ N (0, (J'S71J)71) and U ~ N(0,Q(W) — (J'S71J)71). The
choice W = X7 yields U = 0 making 2SGMM, éngﬂ, asymptotically semiparametrically efficient

among the family of regular estimators.

This result also establishes that, although the moment function is asymptotically vanishing uni-
formly over the parameter space, 2SGMM is not inadmissible in the sense of Andrews and Mikusheva
(2022a). It is important to note that their statement that GMM is inadmissible in weakly identified
models hinges crucially on the concentration measure v/nl/p, ()| being bounded. Our result does

not contradict theirs since v/nl|p,(0)]|c is unbounded in our framework.

Further comments

1. This paper focuses mainly on moment condition models with identification properties outlined
by (5). Nevertheless, the efficiency results derived would still hold in some relaxed version of
this statement. This is the case if in (5), for j = 1,2,

Ep, (¢j(Yni 0)) =n"%p;(0) is replaced by Ep, (¢;(Yni, 0)) = n"% p;(0) + rjn(6),

with ||7;,(6)| uniformly o(n=%|p;(0)||), that is, there exists a sequence k, — 0 such that: for
any 0 € O, [|rjn(0)]| < kn - n=%lp; (0)]]

In this framework, one shall maintain that, in a neighbourhood Ny, of 6y, and for j = 1, 2:

By, (20000 _ o0 000

90’ g Tom™)

and for s =1,..., kj,

i, (P2 l)) s D00 oo,

00006’ 00006’

2. A general characteristic of moment condition models with mixed identification strength is that
the rate of convergence of common estimators is quite related to the magnitude of the components
of the moment function. In that respect, a linear one-to-one transformation of the model may
result in a change in the convergence rate structure of the estimator including, e.g., the number of
directions of faster convergence rate. In spite of this, the results of this paper show that efficiency
of the 2SGMM is warranted for any specific version of of the moment function considered.
Note that in standard (strong) identification framework, the 2SGMM associated to a moment
condition model is asymptotically equivalent to that of any linear one-to-one transform of that

model.
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3. In a more recent paper, Antoine and Renault (2021) consider a more general family of moment
condition models in which point identification is characterized by:

There exists v € [0,1/2[ such that : Ve >0, liminfn” inf ||p,(0)] > 0. (30)
n—r00 [[6—00]|>€

They establish consistency of GMM estimators under this condition and their asymptotic normal-
ity under further regularity assumptions. We observe that the models with mixed identification
strength considered in this paper fit with this property while being only a subset. There are
models significantly different from those studied in this paper — such as moment condition mod-
els with additively separable moment functions considered by Stock and Wright (2000) — that fit
(30) as well. There are no obvious reasons for us to believe that the bounds derived in this paper
extend to all models with the property in (30). A more careful study may be needed to exhibit

efficient estimators in this framework.

4. An interesting extension that we plan for future research is to investigate the meaning of efficiency
when § > 1/2. Kaji (2021) focuses on this range and adopts a slightly different approach than
ours. He considers a candidate limit measure P that aligns with the model at n = co and, in
particular, is uninformative about the model parameter. Then, he explores sequences of relevant
measures P, (each) identifying the parameter value and converging to P. While the parameter
(considered as a function of the data distribution P,) is not continuous, efficiency can then
be built on some underlying parameter that is estimable and informative about the structural

unidentified parameter.

In our analysis, though, we consider Py, the probability distribution of the data at a given n,
as the reference probability measure and obtain the tangent space at P, of local relevant mea-
sures. Then, we develop a convolution theory based on the limit of this (sample size dependent)
tangent space. We have been able to obtain positive results when it comes to analyzing the case
where 0 < § < 1/2. Such an extension will help shed some light on how the efficiency properties

transition through § = 1/2 and will also allow a meaningful connection to the work of Kaji (2021).

4 Simulations

We analyze the finite sample performance of the two-step GMM estimator of 6y in the moment
condition model (1) in the presence of moment restrictions with nonstandard or mixed identification
strength. We focus on the following linear IV model with conditional heteroskedasticity and two

endogenous variables, as it offers a suitable framework for this exercise:

§
Yi = w1301 + w202 +uy, 1=1,...,n
Ty = 21iT1in + V14, X2 = 22iT2n + 23T3n + V24, (31)
—1(..2
u; = 07 (a1, — Hae), € = pU1i + pU2i + i

xag =Var(ae), jae = E(ade) = 2pV2,
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where 1, = 1.4871_51, Top = T3p = 1.48n_52; y; € R is the ith observation on the dependent variable;
x1; € R and z9; € R are observations on two possibly endogenous regressors; #; and 65 are unknown
scalar structural parameters; z1;, zo;, z3; are instrumental variables, whose strengths are d1, do and 9
respectively [see Dovonon et al. (2023)]; u; is a structural disturbance and (vy14,v9;) are reduced-form
disturbances. The variance o2 of 22.¢; is explicitly given by o2 = 3r{, + 673, + 8473, p* + 732p? +
15. The expression of the structural errors u; in (31) clearly illustrates the presence of conditional
heteroskedasticity in this IV model. The true values of #; and 0, are set at y; = 0po = 0.1, and
(v1,v2,1m, 21, 22,23)" ~ N(0,V), where

V0o 0 ' L,
V=] 0 I, 0 ; V:< >, VZ:< Z).

0 0 V. Pl p= 1
In (31) p measures the correlation between e; and vj;, j = 1,2, and is kept fixed across observations.
Note from the above parametrization that p also determines the degree of endogeneity in the model
(i.e., the correlation between the structural error u; and the reduced-form errors vy, j = 1,2) when
the sample n goes to infinity. We set p to 0.5 and 0.0925. For p = 0.5, Corr(u;,vj;) tends to 0.533
as n grows, while for p = 0.0925, Corr(u;, v;;) tends to 0.301, for both j = 1 and 2. Therefore,
p = 0.5 corresponds to relatively high endogeneity in the model, while p = 0.0925 implies moderate
endogeneity in the model. Throughout the experiments, following Dovonon et al. (2023), we consider
cases where 21, z9 and z3 have equal strength — ; = d2 € {0,0.1,0.2,0.3,0.4,0.45,0.5} — and cases
where they have mixed strength — (d1,02) € {(0,0.2),(0,0.3),(0,0.4), (0.1,0.2)(0.1,0.3), (0.3,0.4) }. We
set the sample size n to 100, 500, 1000, 5000, 8000, and 10000.

We evaluate the performance of the baseline GMM estimator, which is the two-step GMM in
(13) using the optimal weighting matrix W2 = (L, @?zizg)_l, where ; represents the 2SLS
residuals and z; = (21, 22;, 23;)’. We compare its performance with two non-optimal GMM estimators
of 6: (1) the 2SLS estimator obtained by setting W,, = (2 >, zizl’-)_l in (13); and (2) the naive
GMM estimator obtained with W,, = I in (13). To assess and compare these estimators, we use
performance measures, including the component-wise mean squared error (MSE) and the generalized
variance (gVAR), quantified by the determinant of the MSE matrix.

Tables 1-2 display performance ratios (naive estimator to optimal GMM and 2SLS estimator to
optimal GMM) for various sample sizes under different levels of identification strength. Table 1 repre-
sents scenarios with relatively high endogeneity (p = 0.5), while Table 2 reflects moderate endogeneity
(p = 0.0925). The results consistently show that, for both performance metrics (MSE and gVAR),
across all levels of endogeneity (p € 0.0925,0.5) and sample sizes, the benchmark optimal two-step
GMM outperforms both the 2SLS estimator and the naive GMM estimator with W,, = I,. This
superiority of the optimal two-step GMM is particularly pronounced in smaller samples but tends to
stabilize as the sample size increases. These findings align with our theoretical results. Notably, even
in the case of 41 = d5 = 0.5 under which GMM is inconsistent, the optimal two-step GMM estimator
is favored based on the presented ratios. A possible explanation of this result is that the exact finite
n density draws information from the data even when m;, = O(ﬁ) but is insufficient to deliver a

consistent estimator (see e.g., Phillips, 1980).

22



5 Concluding remarks

This paper is concerned with efficient estimation in moment condition models with mixed identification
strength. These models are point identifying at any given sample size but their moment function drifts
to zero uniformly over the parameter space as the sample size grows. This feature makes identification
somewhat weak since the moment function becomes uninformative in the limit. When the moment
function does not drift to zero too fast, consistent estimation is possible and GMM estimators are
shown to be asymptotically normally distributed.

The purpose of this paper is to derive semiparametric efficiency bounds for parameter estimation
in these models. We rely on the approach of Dovonon and Atchadé (2020) that we refine to account
for the fact that the sampling process follows a drifting distribution P, that depends on the sample
size, n, instead of a fixed distribution as commonly considered in the literature.

We show that the asymptotic minimum variance bound for the estimation by regular estimators is
given by (J'S71J)~! where J is given by (14) in Section 2. This bound corresponds to the asymptotic
variance of the GMM estimator using a weighting matrix W,, converging to ¥ ~!, where ¥ is the limit
variance under P, of the estimating function evaluated at 6y. This is the the well-known two-step
GMM estimator. We establish that this estimator is regular and also asymptotically minimax efficient
with respect to a large class of loss functions. Our result extends that of Chamberlain (1987) to the
class of moment condition models with mixed identification strength.

One possible extension that we plan for future work is to consider models describing weakly de-
pendent data. Hallin et al. (2015) have developed a framework useful to study such models in the
parametric framework. An extension of their approach to semiparametric models can be an interest-
ing contribution. The main challenge that we foresee for moment condition models with dependent
data is related to the formulation of the dynamics in the data generating process that shall be gen-
eral enough to accommodate a relevant class of models while being explicit enough to fit with the
framework of Hallin et al. (2015).
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Table 1: Relative performance of the Optimal Two-Step GMM: p = 0.5

Ratio Naive to Optimal GMM Ratio 2SLS to Optimal GMM
IV strength | n — 100 500 1000 5000 8000 10000 100 500 1000 5000 8000 10000
61 < 8y MSE-ratio ()
0 0.2 1374 1.161 1.104 1.029 1.020 1.017 1.387 1.164 1.106 1.029 1.020 1.017
0.3 1.381 1.159 1.105 1.030 1.021 1.018 1.389 1.161 1.107 1.030 1.021 1.018

0 0.4 1.383 1.157 1.100 1.029 1.020 1.017 1.391 1.159 1.102 1.029 1.020 1.017
0.1 0.2 1.513 1.205 1.130 1.038 1.023 1.022 1.529 1.213 1.134 1.040 1.024 1.023
0.1 0.3 1.433 1.245 1.136 1.037 1.025 1.020 1.455 1.252 1.140 1.039 1.026 1.021
0.3 04 1356 1.314 1.249 1.085 1.056 1.057 1.338 1.317 1.248 1.095 1.065 1.067

MSE-ratio ()
0 0.2  1.617 1.298 1.211 1.083 1.064 1.059 1.604 1.294 1.211 1.081 1.064 1.057
0.3 1.502 1.284 1.264 1.100 1.075 1.062 1.486 1.276 1.255 1.097 1.072 1.061

0 0.4 1.428 1.329 1.210 1.088 1.072 1.071 1.405 1.302 1.198 1.079 1.063 1.063
0.1 0.2 1.710 1.393 1.296 1.111 1.074 1.073 1.691 1.386 1.291 1.109 1.072 1.070
0.1 0.3 1.636 1.374 1.282 1.115 1.094 1.080 1.624 1.369 1.277 1.113 1.091 1.078
0.3 0.4 1.534 1.397 1.293 1.115 1.086 1.085 1473 1.362 1.274 1.104 1.079 1.079

gVAR-ratio

0 0.2 4930 2.271 1.787 1.240 1.178 1.159 4.937 2270 1.792 1.237 1.177 1.156

0 0.3 4.303 2.214 1.949 1.283 1.205 1.169 4.259 2195 1.929 1.277 1.198 1.166

0.4 3.898 2364 1.773 1.252 1.195 1.185 3.816  2.279 1.743 1.232 1.178 1.168
0.1 0.2 6.650 2.818 2.144 1.329 1.206 1.203 6.636 2.826 2.146 1.330 1.204 1.196
0.1 0.3 5503 2922 2118 1.338 1.258 1.213 5.588 2937 2.119 1.337 1.253 1.211
0.3 04 4379 3.374 2606 1464 1.317 1.315 3.923 3.215 2528 1.460 1.319 1.325

01 = 02 MSE-ratio ()

0 0 1.376 1.156 1.106 1.029 1.020 1.018 1.385 1.159 1.107 1.029 1.020 1.018
0.1 0.1 1.544 1.231 1.134 1.036 1.026 1.020 1.540 1.239 1.139 1.037 1.027 1.021
0.2 0.2  1.596 1.303 1.186 1.050 1.033 1.027 1.610 1.316 1.195 1.056 1.037 1.031
0.3 0.3 1.382 1.338 1.278 1.090 1.057 1.048 1.347 1.338 1.291 1.098 1.067 1.057
0.4 0.4 1.324 1.236 1.209 1.147 1.079 1.071 1.282 1.129 1.169 1.086 1.060 1.058
0.45 0.45 1.223 1.233 1.206 1.077 1.244 1.141 1.096 1.147 1.068 1.024 1.030 1.022
0.5 0.5 1.243 1.128 1.167 1.108 1.085 1.078 1.127 1.081 1.064 1.024 1.016 1.009

MSE-ratio (6s)

0 0 1.600 1.297 1.238 1.083 1.064 1.067 1.597 1.294 1.237 1.081 1.064 1.064
0.1 0.1 1.790 1.334 1.275 1.124 1.097 1.074 1.767 1.329 1.271 1.122 1.095 1.072
0.2 0.2 1.730 1.438 1.246 1.111 1.094 1.087 1.686 1.431 1.243 1.108 1.093 1.084
0.3 0.3 1.509 1.367 1.277 1.113 1.082 1.088 1.442 1.352 1.263 1.109 1.077 1.084
0.4 0.4 1.421 1.286 1.243 1.135 1.097 1.093 1.341 1.237 1.211 1.109 1.077 1.076
0.45 0.45 1.289 1.259 1.283 1.117 1.107 1.079 1.227 1.202 1.174 1.048 1.019 1.041
0.5 0.5 1.125 1.124 1.193 1.069 1.060 1.086 1.070 1.090 1.090 1.021 1.021 1.021

gVAR-ratio

0 0 4.844 2.249 1.874 1.241 1.178 1.180 4.892 2252 1.877 1.238 1.177 1.174
0.1 0.1  7.603 2.695 2.091 1.355 1.267 1.200 7.383 2.708 2.094 1.353 1.264 1.198
0.2 0.2  7.690 3.510 2.183 1.362 1.277 1.247 7417 3.550 2.207 1.370 1.285 1.251
0.3 0.3 4.348 3.348 2.662 1.473 1.306 1.300 3.775  3.274  2.658 1.481 1.321 1.312
0.4 0.4 3.694 2539 2264 1.689 1.400 1.372 3.088 1.967 2.019 1.453 1.305 1.296
0.45 0.45 2481 2418 2.385 1.435 1.784 1.526 1.801 1911 1.566 1.172 1.152 1.134
0.5 0.5 1974 1.607 1.798 1.432 1.315 1.362 1.487 1.391 1.342 1.102 1.077 1.063
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Table 2: Relative performance of the Optimal Two-Step GMM: p = 0.0925

Ratio Naive to Optimal GMM Ratio 2SLS to Optimal GMM
IV strength | n — 100 500 1000 5000 8000 10000 100 500 1000 5000 8000 10000
61 < 8y MSE-ratio ()
0 0.2 1.128 1.066 1.056 1.024 1.017 1.015 1.131 1.067 1.057 1.024 1.018 1.015
0.3 1.140 1.068 1.053 1.025 1.017 1.016 1.142  1.069 1.054 1.025 1.017 1.017

0 0.4 1.150 1.075 1.058 1.024 1.018 1.015 1.152  1.075 1.059 1.024 1.018 1.016
0.1 0.2 1.259 1.138 1.121 1.044 1.028 1.024 1.262 1.141 1.123 1.045 1.029 1.025
0.1 0.3 1.217 1.162 1.107 1.043 1.031 1.025 1.223 1.165 1.109 1.045 1.032 1.026
0.3 0.4 1.549 1.228 1.182 1.059 1.044 1.035 1.524 1.225 1.174 1.063 1.046 1.039

MSE-ratio ()
0 0.2  1.180 1.096 1.060 1.027 1.017 1.021 1.175 1.094 1.058 1.026 1.017 1.020
0.3 1.216 1.093 1.073 1.027 1.024 1.016 1.205 1.088 1.068 1.024 1.021 1.012

0 0.4 1.186 1.109 1.065 1.024 1.023 1.026 1.162 1.089 1.057 1.018 1.015 1.019
0.1 0.2 1.371 1.210 1.153 1.061 1.044 1.044 1.360 1.205 1.150 1.059 1.043 1.042
0.1 0.3 1.320 1.193 1.151 1.063 1.050 1.048 1.309 1.187 1.146 1.060 1.048 1.045
0.3 0.4 1.524 1.279 1.188 1.078 1.052 1.053 1.462 1.243 1.171 1.069 1.046 1.046

gVAR-ratio

0 0.2 1.772 1.365 1.254 1.107 1.070 1.074 1.766 1.364 1.250 1.105 1.070 1.071

0 0.3 1.922 1.364 1.276 1.109 1.085 1.067 1.893 1.354 1.266 1.102 1.080 1.059

0.4 1.860 1.421 1.270 1.098 1.085 1.086 1.791 1.372 1.251 1.087 1.068 1.072
0.1 0.2 2978 1.894 1.669 1.225 1.152 1.143 2.947 1.891 1.667 1.223 1.150 1.140
0.1 0.3 2579 1.923 1.624 1.229 1.172 1.155 2.561 1.912 1.616 1.227 1.169 1.149
0.3 04 5070 2467 1973 1.304 1.205 1.187 4.504 2320 1.889 1.290 1.197 1.179

01 = 02 MSE-ratio ()

0 0 1.128 1.072 1.057 1.023 1.017 1.015 1.131 1.073 1.057 1.023 1.018 1.015
0.1 0.1 1.222  1.143 1.116 1.042 1.030 1.026 1.227 1.146 1.118 1.044 1.031 1.026
0.2 0.2 1.350 1.226 1.150 1.052 1.038 1.030 1.334 1.230 1.154 1.055 1.040 1.032
0.3 0.3 1.766 1.223 1.193 1.063 1.053 1.039 1.463 1.226 1.186 1.065 1.055 1.042
0.4 0.4 1.280 1.059 1.215 1.074 1.046 1.050 1.222  1.098 1.132 1.048 1.036 1.040
0.45 0.45 1.712 1.148 1.371 1.027 1.014 1.144 1.437 1.099 1.037 1.019 1.012 1.025
0.5 0.5 1.043 1.111 1.107 1.382 1.014 1.058 1.039 1.069 1.050 1.017 1.011 1.052

MSE-ratio (6s)

0 0 1.186 1.101 1.066 1.020 1.020 1.014 1.184 1.100 1.063 1.017 1.018 1.012
0.1 0.1 1.303 1.197 1.146 1.063 1.054 1.035 1.297 1.193 1.143 1.062 1.052 1.033
0.2 0.2 1.363 1.244 1.187 1.078 1.052 1.044 1.352 1.241 1.184 1.075 1.050 1.042
0.3 0.3 1.490 1.251 1.192 1.082 1.055 1.050 1.399 1.235 1.185 1.079 1.052 1.046
0.4 0.4 1.470 1.145 1.170 1.088 1.054 1.057 1.366 1.154 1.144 1.069 1.043 1.046
0.45 0.45 1483 1.185 1.187 1.059 1.035 1.061 1.337 1.156 1.104 1.036 1.022 1.032
0.5 0.5 1.023 1.122 1.130 1.124 1.070 1.032 1.017 1.078 1.057 1.014 1.020 1.046

gVAR-ratio

0 0 1.789 1.394 1.269 1.088 1.076 1.058 1.793 1.393 1.264 1.083 1.074 1.055
0.1 0.1 2534 1.872 1.635 1.229 1.179 1.125 2.531 1.868 1.631 1.228 1.177 1.124
0.2 0.2 3.390 2.327 1.862 1.285 1.193 1.157 3.254  2.329 1.865 1.287 1.193 1.157
0.3 0.3 6.748 2.344 2.019 1.323 1.233 1.189 4.156 2.291 1975 1.320 1.232 1.186
0.4 0.4 3370 1.543 2.020 1.363 1.215 1.234 2.678 1.635 1.677 1.256 1.168 1.184
0.45 0.45 5.510 1.850 2.523 1.177 1.104 1.475 3418 1.614 1.313 1.113 1.073 1.118
0.5 0.5 1.253 1.553 1.565 2.134 1.177 1.100 1.184 1.327 1.232 1.065 1.064 1.162

25



A Assumptions

Assumption A.1. (i) p:= (p}, ph)" € R* x R¥2 js continuous on the compact parameter set © C RP such
that, V0 € ©, p(8) =0 < 6 = 0.
(ii) supgee V1 [|6n(0) = Ep, (6(Yin, 0))|| = Op, (1), with  6(0) =n~" 3L, ¢(Yin, 0)-
Assumption A.2. (i) 0y is interior to © and ¢(y,0) is continuously differentiable on © for P,-almost all
Y.
(i) /idn(0) % N(0,%), under P,.

/
) 8p(00 = (ap;(eo) : 6p;(9°)> 18 full column rank and, for j = 1,2,

00 a0
%ns(0) (M) H — 0p, (1),

and +/n sup 207 BT

9¢;(Yin,00)\ _ _s,0p;(00)
]EP ( =n 69, ) 06,/\/'90

06’

where Ny, is a neighbourhood of 6.

Assumption A.3. (i) ¢1(y,0) is linear in 0 or ds < % + %1

(i1) 0 ¢(Yin,0) is twice continuously differentiable P, -almost everywhere in a neighbourhood Ny, of 6y and,
with j = 1,2,

5 8 ¢n ,Js

00006

uniformly over Ny,, where H;js(0)’s are (p,p)-matriz functions of 0 and ¢, ;s is the s-th entry of ¢n. ;.

Vs:1<s<kj, (0) L2 H,,(0),

Assumption A.4. There exists a neighbourhood Ny, of 0y and a L?*(P,)-neighbourhood Ni of fno := 1 such

g 0
that, with j,k=1,...,p, and L, = e 5 ,
0 n°2 I,

Ep, (M) :]L;lap(@) Ep, <w> 1! 82P(9)7 Vo ENGO,

00 20, ° 00,00y, " 00,00y
sup Ep, ([|o(Y,0)]*) = O(1), sup Ep, (/09(Y,0)/00;]|*) = O(1),
0eNy, 96./\/90
*o(y, 0

P ()P (y) = O(1).

9¢(y, 0 / H
su dP,(y) = O(1), su
96/\/9036/\/1 / H (y) @) W) 96/\/9036/\/1 39 39k

Assumptions A.1, A.2, and A.3 are useful to establish consistency and asymptotic normality of GMM
estimators for moment condition models with mixed identification strength. The second part of Assumption
A.3(i) is required for models that are non linear in the parameters and amounts in our setup to Assumption
6*(i) of Antoine and Renault (2012).

Assumption A.4 is not particularly restrictive. It is useful in Proposition 3.2 to control the Lagrange re-
mainder of the first-order Taylor expansion of the semiparametric density functions induced by the moment

condition model.
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B Propositions and Lemmas

The following proposition further characterizes the family of semiparametric densities functions induced by the

moment condition model (1). This proposition follows readily for Lemma 2.2 of Dovonon and Atchadé (2020).

Proposition B.1. If 0y satisfies (1), and Assumption 1 holds with r = 2, then there exists a neighborhood V
of (0o, ho) in RP x £, where ho denotes the zero element of £, a family {fn(0,h,) : (0,h) € V} of measurable
functions on R, such that fn(0o,ho,-) = fno:=1, and for all (6,h) €V,

[ oworr2.nPadn) =0, [ £20.5)Pudy) = 1.
Furthermore, the map (6, h) — fn(0,h,-) is differentiable and its first partial derivatives are given by

Yhy € &, Vnfu(0,h,) - by = hi — (fn.o.nh1, 86) (fno.n®, 20) " @,

and
1 _
Vw e RP,  Vofn(0,h,) w= —gw/ (f2 6.1, V@) (fn.0n?, Po) " P,

, B) 1 o I
Forj=1,...,p, %fn(euha'):_§< 3,9,h7%@0><fn,0,h907909> 'p.
J J

n particular, Vo [n(0, h,-) evaluated at (6, ho) is Vo fn(bo, ho,") = —35 n , where
I cular, Vo fn(0,h,-) evaluated at (8o, ho) is Vo fn (6o, ho,-) = —3T0E0 0, wh
with fno.n(-) standing for f,(0,h,-). Furthermore, for i,k =1....,p,

A7 S e e T
aekaej n\U, 1, ) = 2 n,G,hvaekaej@G n,0,hP; Lo ©

0 0 0 0
- <6_9kfn,9,h  fn.0.hs a—9j¢9> (fr.0.09,P0) '@ — <6T,jfn,e,h  fn.0.n,s 6—%¢9> (fr.0.0P, Po) '@
L fuon L oG ) Fnonrpe) . (B1)
(%j n,0,h 20, n,0,hs L0 n,0,h L5 PO P .

Lemma B.1. Assume R = (R1|R2) is a different rotation matriz than R but also consistent with the definition
n (14), that is, R'R = I, and Ry spans the null space of Op1(6p)/00". Then, there exists a (p, p)-matriz A such
A 0

that: R=RA, A=
“ 0 A,

) and A’A = Iy, where Ay and As are (s1,s1)- and (p— s1, p— s1)-matrices,

respectively.

Lemma B.2. Letra(0, h,-) be the Lagrange remainder of the first-order Taylor’s expansion of (6, h) — fn(0,h, ")
around (0o, ho). Let {(0,,), (hn)} € ©(0p) x C(ho) and (0, hy) such that:

On =tn0n + (1 —tn)00, hp =tohy + (1 —ty)ho, tn € (0,1).

Assume 0y satisfies (1) and (61,62) € A = {(a,b) € [0,1/2[>:0<a <b< (1/4+a/2) A 3/8}.
Then, if Assumptions 1 and A.j hold with r = 2, we have:

Valle2(On, b, )l z2(p,) = o(1).
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C Proofs

Proof of Lemma B.1: Write R = (R; | Rz). Since Ry spans the null space of 9p1(6p)/06’, then Ry = Ry As,
where Aj is a (p— s1,p— s1)-nonsingular matrix. The fact that RYRo = I,,_g, ensures that A5A4y = I,_,, . Also,
the fact that RjRg = 0 implies that the columns of R, lie in the span of the columns of Ry so that Ry = Ry 4,

and we can also claim that A} A; = I, and the result follows. [

Proof of Lemma B.2: We have:

fn(ena ]_7/717 ) = fn,O + Tn00 (9_71 - 90) + A, - (Bn - hO) + r2(9_naﬁn7 ')7

see (24) for the definition of r, g, and A,. By second-order differentiability of f,,, we have:

_ 1 <& 82 o _
[r2(Ons s Ml z2py < |5 Y 52 Fn (0, By ) (On s — 005) (O — Oo.1)

2 £~ 06,00
40 (18 = B0l = hollzzcr,) + O (I = hollEacr,) [y -
Thus, )
Valea BB Moo < @Z ] B! (1)

with § = t0,, + (1 — )0y and h = th, + (1 — t)he; t € (0,1). By definition, ||k, — hollr2(p,) < [hn —
hollz2(p,) = O(n=1/2) and |0, — 60| < [0, — Oo|| = O(n~1/2+%2) and, the second-order differentiability ensures
that: [|9%f(0,h,-)/00;00k| r2(p,) = O(1) and it follows that:

\/ﬁ|‘r2(é’ﬂ7 Bn, )HLQ(PTL) = O(n_1/2+262)-

Therefore, if 02 < 1/4, /n|[r2(0n, hn, )| 12(p,) = o(1).
Consider the case 02 > 1/4. If

o

- — -1 —1+42652
30,00, O(n=*vn ), (C.2)

L2(Pn)

fn(év Bv )

VAllEa B, B, Ylza(py) = On™0 V= 1H252) 5 O(n=1/24202) = O(n=51=1/2428 vy p=3/24482) — o(1),

for any (61,02) € A. To complete the proof, let us establish (C.2). Again, take any (6,,, h,,) convex combination
of (0, hy) and (0o, ho). We have:

n'=202 an(ém Bm ) - fn,0||L2(Pn) < n'=2% ”Tnﬂo (én —00)+ Ay - (Bn - hO)||L2(Pn) +nlm20 ||r2(9_n7 Bm ')||L2(Pn)
<221y 0, (00 — 00) + An - (hn — ho)llz2(py) + 0202 v2(0n, By )| 22 -

The proof of Proposition 3.2, we establish that /|7y g,(0n — 00) + Ay - (hn — ho)| £2(p,) = O(1) and it results
that, for d > 1/4,
n17262|‘7ﬂn,90(9n —0o) + Ap - (hn — hO)”L?(Pn) =o(1).

We can thus claim that

171722 (fa By s ) = )| 22(p) = O(), (C.3)

which also holds for (6, h) as it is also a convex combination of (6,,, h,) and (6, ho). We will use this to establish
(C.2).
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02f(0,h,-)/06,;00y is given by (B.1) which, using the expression of the first-order derivative of f,,, can also

be written:
0? 1 52
9 0 = =220 =L 0 ) (frsnd e)
39k89Jf ( s 1Ly ) 2< n,0,h> 80k89J 909> <f 0.hP (p9> %)

1 9 0 _ 1 0 _ o _1-
+3 < no.h 5g- <P0> (fn,0,nP> o) <fn,0,h<P, 20, <P0> (fn,0,n®,P0) @

1 9 0 _ 1 0 _ o _1-
+3 < noh 56 <P0> (fn,0,nP> Do) <fn,0,h<P, 90, <P0> (fn,0,n®,P0) " @

1/ .5 o _ _ _..1/_0 _ 1o
P an n 9 - Jn 5 n 5 . C4
+3 <fn,0,h7 a0, 909> (fn.0.nP; Po) <9069kf 0.h <Pe> (fn0.nP,P0)  @. (CA4)
We next derive the limits or bounds for each of the inner products involved in this expression but evaluated at
(6, h). We use the notation f,,(6,h,), fn.0,hs fo.n interchangeably.
(a) Consider: (fg 59, @g). Note that

o 1 _ B 1
P(y) = Eﬁl/2¢(y,90) , @ely) = E;l/2¢(y,9) .
Hence,
N 1 oy, 0)'s,
<f9,h%<ﬂe> = /fe,h(y) ( E;l/2¢(y,90) E;l/2¢(y,90)¢(y,9_)’2];1/2 dPy,(y).

We have: (a.1)

/fgﬁdpn =1+ /(fgﬁ — 1)dP,.
But, from (C.3),

\ [ G- 1dr.) < ( [t~ 1>2dPn> o),

Thus:
/f(;’,;dPn =1+0(n""2%2)

(a.2)
/ F 1 )6y, 00)dPa(y) = / 6y, 00)dPa(y) + / (J5(6) — Dé(y, 60)dPa(y) = / (Ja(y) — 1)(y. 00)dP, (v).

Note that
} [tant - 1>¢><y,oo>dpn<y>} < ([t~ 1>2dPn)1/2 (/ |¢<y,oo>|2dpn<y>)l/2.
Thus,
[ 36t 00)iPa(w) = O 1475,
(a.3)

/ J37©)6(y, B)APA(y) = / 6y, 0)dP, (y) + / (fan ) — D)ly.B)dP, (y)

=0(n~") + /(fé,ﬁ(y) —1)¢(y,0)dPn(y) = O(n~°") + O(n~112%),
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/féh Dy, 00)0(y,0)' dP,(y) = /¢(y,90)¢(y,9)’dPn(y) +/( 5n(y) — D)oy, 00)p(y, 0) dP,(y).

Under the conditions of the lemma, 6 — [ ¢(y,600)¢(y,0) dP,(y) is continuously differentiable in a neighbour-

hood of 6y and we write
/éf’(y, 00)(y,0) dPu(y) = S + O(|0 = 6o]|) = £y + O(n~1/2+02),

By the Cauchy-Schwarz inequality,

‘/ oy, 00)$(y, 9)’dPn(y)’

< ([t~ 1>2dPn)1/2 (/ |¢<y,oo>|4dpn)l/4 (/ |¢<y,é>||4dpn>1/4 — 012,

As a result,

and we can also claim that

(b) Consider: <f9 o 3982 ~Dg >

< o,k 89 90; (‘09> /th aekae o(y,0)'S a2 )dPn(y).

We can write:

2

[ 5500 00 0P 0) = [ 260, DR )+ [53500 1) bl DaPat) = (1) + 2.

By assumption, (1) =L, ! gepg;) It follows that (1) = O(n=%). It is not hard to see that

1/2 1/2
||<2>||<(/ (fo - >2dPn) (2 ap [ fz(y)l52¢(y79)/39k89jll2dPn(y)> = O(n~1+2%),

0eNy, feEN:

, 9>H — O(n=0) + O(n~14202) = O(n=0 v n~1+22),

9 = _
<fe2,haa—9j¢e> :/fgg,g(y)( 0 a%qb(y,@)’xnm )dPn(y)

and we establish as in (b) that the norm of this quantity is of order O(n =% v n=1+2%)

00(u.7) 2172
(oo ge0) = [ a0 s s a2, (y)
AP 99, Yo 6,n\Y 0 E;l/2¢(y,eo)aqbég;e)’E;l/Q n\Y).
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We have:

s < 25 o] -
S/H% dPn(y)Jr(/(f )”2 (/Haqs 0.0

S]]
</ ||¢<y,90>||H@¢8+9; arut) + ([ a1 )/(/ J6s,00)

It follows that <f§)j1¢7, %‘,j@g> =0(1).

)dP()H

2

1/2
dPn(y)> = O0(1) + O(n~11202),

ar, ) +] [ ot - 1>¢<y,eo>a¢§9 e, o)

1/2
Pu(y ))

= 0( )+ O(n~112%2),

5¢y, )

(e) Counsider: <¢a%jféﬁv¢’§>-
We know from Proposition B.1,

Hence,

o a'p '3 By, 0)%,
<9089jf9,h7909>—<a90 <P=SDG>—/< 12, "5 - (y, 00) 512 o' - 6y, 60) by, Y 172 AP, (y).

We have:
/ a' pdP,

where we use (c) and (a).

< al /(1 + 16y, ) )dP, (y) = O(n~% v n~11+202),

|/ - st a0apuio]| <l {0+ 610,000 1000001 0P = O~ v =25

| [ e+ st0ap,) < ol [0+ 1060001 ot 0] a2 0

1/2 1/2
< lall (/(1+||¢(y,90 1)?dP,( ) (/HqS v, 0)||* dP.( ) — O(n~0 v 1420,

H [ae ¢<y,90>¢<y,é>/dpn<y>H < all 1+ 190 00)1) 1966 00)] 60D 4P (0

1/2 1/2
< lal (/<1+||¢<y,oo>||>2|¢<y,eo>|2dpn<y>) (/ ||¢<y,é>||2dpn<y>) — O(n% v,

Since the eigenvalues of 3, are bounded from above and away from 0, we can claim that H< ai fon ¢§>H =
O( —01 vV n 1+252)
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We obtain (C.2) by applying the triangle inequality and then the Cauchy-Schwarz inequality to the terms
in (C.4) . Then, the order of magnitude follows from (a), (b), (c), (d), and (e) above. O

Proof of Theorem 3.1:
(i) Writing &, = v/n(gn — fn) — an, we have g, = fn, + @, //n + e, /y/n. Thus:
2 2
9 « € anfn entn Qnén
— 2 2
n N * N + n

g =fr+ 2+ L+2
n
Integrating each side with respect to p, yields:

1 1 2
2/anfnd,un = —%/afldun — %/Eidun —2/5nfndun— %/anandun

and the result follows by the Cauchy-Schwarz inequality and the fact that [ a2dpu, is bounded, [e2du, — 0

asn — oo and [ f2du, = 1.

(ii) We establish this result by relying on Le Cam’s second lemma (see Bickel et al., 1998, Lemma 2, p.500).
To obtain the first and second conclusion in (ii), it suffices to show that:
(a) For all € > 0 and as n — oo,

max an( —1‘>e)—>0,
1<i<n

and (b) Under f2,

T gn(Xni) 4N o2 /d o2
W"'_2;<fn(Xm) 1)—>N( /4,02).

By the triangle inequality, (18) implies that ||v/n(gn — fo)llp. — ll@nlln, — 0 as n — oo and as a result,

nl|gn — anQn — a? = limp, o0 HanH2n and ||gn — fn”#n — 0.

To establish (a), pick € > 0; we have:

2 X’n.i
?”%EXM; _1’) :/|9121_f121|d,un:/|gn_fn||gn+fn|d,un

< (/(gn - fn)Qdun> - </(gn + fn)Qdun>

and the expected result follows since f(gn + fn)zd,un < 4.

2 (Xni)
?3<xm>—1’>f) < Efn(

Py, (

1/2

To establish (b), let
Zn = —= —Un |,
with v, = Ey, (n(X0i)/ [ (Xni)) = /anfndun. We obtain (b) by showing that under f2, Z, converges in

distribution to N(0,4a?) and that Ef, (W, — Z, + a®)? = o(1).

Under f2, Ey, (n(Xni)/ fn(Xni) — vn) = 0 and Vary, (an(Xni)/ fo(Xni) — vn) = [a2dp, — v: — a? as
n — oo. Therefore, the central limit theorem for row-wise independent and identically distributed triangular
arrays ensures that under f2,
Zn 5 N(0,02).
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Next, we observe that Ef, (W,, — Z,, + a®)? = Vary, (W,, — Z, + a®) + [Ey, (W, — Z,, + a?)]2. We have:

Efn (Wn — Zn+ a2) = ]Efn (Wn) + a* =2n (/gnfndﬂn - 1) + a® = _n/(gn - fn)QdMn + a? =0
as n — oQ.

Vorg, W — 2o+ ) = Varg, (¥ — 20) = Vary (St {3258 1 - o (328822 1))

— 4Va,rfn (\/ﬁ(gn(Xni)_'fn(xni))_an(xni))

n ni

_ \/ﬁ In (Xni) = fn(Xni)) —an(Xni 2 \/ﬁ In (Xni) = fn(Xni)) —an(Xni 2
= 4E;, ([ (gn( )fn()((m)z)) (Xni)] ) 4 |:Efn ( (gn( )fn()((m-))) ( ))}

= 4 [Wilgn = fu) =~ Pl — 4 ( [Witg, ~ 5) - an1fndun) 2

< Allilgn = fo) = anll2, + 4 (VG0 = fa) = anllun | fall)®

= 8[[Vnlgn — fn) — w2, =0, as n— oo

This establishes (b).
We can therefore apply Le Cam’s second lemma and claim that log L, — (W,, — &) = op;, (1). Therefore,

1
under f2,

M)

log L, % N(—02/2,02)

and we can claim using Le Cam’s first lemma (see van der Vaart, 1998, p.88) that {I];_; ¢g2(z;)} and {IT;_; f2(z:)}
are contiguous. [

Proof of Proposition 3.2: In this proof, we focus only on the case where (d1,02) € A, 61 < d2 and 0 < s1 < p.

All the other cases follow along the same lines. The Taylor expansion yields (24) with 7,.,(-) = Vo fn(60, ho, )
and A, = Vi fa (00, ho, -). From Proposition B.1, 7, g, (-) = =T, %, 20(-), with T, = Ep, (52,6(Y, 6p)). This

proposition also gives:
Vu € E, Vifu(0,h,) - u=1u—{fnont o) (fnond o) " @,

with fr.on = fu(0,h,-). At (0o, o), {fn.6.nu, @a) = (u, @) = 0, since u € €. Hence, Vy, £, (00, ho, ) - u = u. It
follows that, since h,,, hg € &,

Vhfn(907 ho, ) ’ (hn - hO) = hy, — ho.
Recall that 6,, and h,, are defined such that: A,R~'(0, — 6p) —n — 0 and /n(h, — ho) — 8 — 0 in L?(P,)
(see Equations (20) and (22)). For (d1,02) € A, according to the discussion leading to the statement of the
proposition, we need to find o, € L?(P,) such that

Han — \/ﬁ[rn)go . (971 — 90) + A, - (hn — hO)]HLQ(Pn) — 0.

It is obvious that [|\/nAn - (hn — ho) — An - Bl 2P,y = V1 (hn — ho) = BllL2(p,) — 0, as n — oo.
Also,
1
Py (On = 00) = =5 (6 — 00) T, 2,
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and

n—01 9p1(60)

7 _ _ _ DR 0
Fn(Gn — 90) == ( n—62 BP(Z?QU) > RAnlAnR 1(971 — 90) =n 1/2 ( 141
00’

n=%2DyR; DyR; ) AnF7 (0 = bo),
with D; = 8%—?‘)). (We use the fact that Dy Ry = 0.) Hence,

VNl (0, — 00) = Jn + o(1).
As a result, we can set

1
an() = =50 IS 2() + Ay - B, nERY, fEE D

Proof of Theorem 3.3: This proof follows similar lines to that of Theorem 4.4 in Dovonon and Atchadé
(2020). Let S,, = A,R~'(0,, — 6,,). The characteristic function of S,, under g2 is

E,, [exp(iw'Sy)]

Il
=
Q

:exp(iw’Aanl(én - 9n))}

= By, [exp(iw/An R (0 — 00 — (0 — 00))]

_eXp(iw’Aanl(én —0p)) exp(—iw'(n + an))} ,
for some n € R? and ¢, :== A, R~1(,, — 0y) — n which tends to 0 as n — 0. Thus,
Ey, [exp(iw'S,)] = E,, [exp(iw’AnR’l(én — b)) exp(—iw’n)] +o(1)

Ef, o [exp(iw’AnR_l(en —0p) —iw'n+ Ln)} +o(1).

This holds for any sequence {g2(-)} associated to any a,, = —%n’J'Eﬁlﬂcp — A, b, with b = (f1,...,5,) €

B(ho)? (where “associated” is meant in the sense described by Equation (19)). In particular, this holds for:

1
Ay = 7’]/ (—5(]/2;1/2(p — An . b:;) .

Thanks to Theorem 3.1, under f2, A R™Y(6,, — ), % Dy ‘;‘:8,/:1)) — I/n)) converges in distribution

coordinate-wise to (5,1 Zy), with: v, =Ey,  (n(Yni)/ fr,o(Yni)), Zo ~ N(0,I,), and

I. =4 lim <—%J’E;1/2<p—An-b;,—%J’E;l/Qcp—An-b;;>.

n—oo

Therefore, by the Prohorov’s theorem, there is a subsequence of (AnR_l(én — b)), Ln> that converges weakly
under f2  to (S, 7' Zo — in'L.n). Along that subsequence, we can claim that:

Efn,o exp (iw/AnRil(én - 90) - iw/n + Ln)

(C.5)
— Eexp (iw'S —iw'n+n'Zy — 0/ Ln) = Eexp [iw'S + ' Zo] exp|—iw'n — 1o/ L] .
Also, 0,, being a A,-regular estimator ensures that
E,, exp [iw’AnR_l(én - 9,1)} — Eexp(iw'S). (C.6)
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Letting ®(w,v) = Eexp(iw'S 4 iv' Zy), we have
1
D (w,0) = E [exp(ivw'S + 1’ Zy)] exp [—iw’n — 577’1*77} :

The right-hand-side of this equality is analytic in 77 and constant on RP. As a result, it is constant for n € CP.

Now, choosing n = —il, 'w, we have:
1
®(w,0) = Eexp [iw' (S — I, Zy)] exp [—iw’l*lw] . (C.7)

One can recognize in (C.7), the product of the characteristic functions of U = S — Z and Z with Z = I[1Z, ~
N(0,I;%) independent of U. This concludes the proof. [

Proof of Corollary 3.4: Under the conditions of the Corollary, the conditions of Proposition 3.2 and Theorem
3.3 are satisfied. As a result, (29) holds. It remains to show that I, = J'¥~!J. From Theorem 3.3, I, =
4<—%J’E;l/2gp — A, b, —%J’Z;1/2gp — A, -bk), with b € B(ho)?, and A,, - b} the orthogonal projection of
—3J'¢ onto {A,, -b:b € B(ho)P}. Recall that B(hg) is a subspace of £. Hence from Proposition B.1, along
with simple derivations, we have that, for any 8 € B(ho),

Ap - Bi=Vifallo, ho,) - B=B= Y ap;
j>k+2
where for j > k+2, a; = (3, ;) = [ Bp;dP,. The last equality follows from the fact that 5 € £. Hence, A, - 8
is orthogonal to ¢ for any 8 € B(hg). Thus b}, = 0 and

n
n—roo n—oo n—oo

1 1
I, =4 lim <§J’2n1/2¢,§J’2n1/2¢> = lim J’E*l/z‘/w’dpnzgl/?JZ lim J'S, g =727 O

Proof of Proposition 3.6: Note that since, from (15) 6, —fy = Op(n~'/2+%2) under P,,, this also holds under
¢2. By the definition, we also have 6, — 6y = O(n~1/21%2) 5o that 6, — 6,, = Op(n~/21%2) under g¢2.
The first order optimality condition for GMM is given by:

aén(én)l T N _
S W 60 (0,) = 0.
By the mean-value expansion, we write
a(lgn (én)/ PSR 6&11 (én)/ T aén(én) N _
o0 Won(0,) + 20 W 20 (0, —6,) =0, (C.8)

where 6,, € (én, 60,,) and may differ from row to row.
From Lemma A.5 of Antoine and Renault (2009), we can claim that:

\/ﬁa(bgié?")RAgl Py and ﬁa¢gé,9")RA;1 Ny (C.9)

both under P, and ¢2. Also, W — W 250, under g2. Tt follows that (recall that R’ = R~1):

00 W 00’

Next, we show that \/n¢, (6,) = % S &(Yi, 0,) converges in distribution to N(0,X) under g2.
By construction, M(60,,, hy, gn) = 0. Hence, using (16), we get (g2, g, ) = 0. That is

nA TR RA;Y LS JWJ, under ¢2. (C.10)

/ G2 (1)0(y. 6,)'S;V2dP, (y) = 0,
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which implies that [ g2 (y)é(y, 0,)dP,(y) = 0, that is
Ey, (¢(Yni, 0n)) = 0.
Also,
VCLTgn (¢(Yn17 9”)) - Egn (¢(Yn17 on)(b(ynu 9 )
= [ 60820000, (62(0) = DaPa) + [ 60,6000, AP 1),

By Assumption 2(b), [ ¢(y,6,)¢(y,0,)'dP,(y) = £ + o(1). Note that:

6(9,0n)0(y, 00)' (2 () — 1)dPa( 16(3, 0)6(3, 0) 1192 (9) — 1/dPa(y)
I o</ )
< ( [(on=1y2ar, / 6(y, 00 (9n(y) + 1>2dPn<y>) /

1/2
< llgn - Ulz2(ry ( [ 160 2 wiarat +2 [ |¢><y,en>||4dpn<y>)

< 2\/5”9"— 1 z2(p,y = 2VC| gn — ) =o(1),

where the second inequality follows from the Cauchy-Schwarz inequality and the last one follows from Assump-
tion 2(a). Thus, Vary, (¢(Yni,0,)) — X, as n — co. The central limit theorem for row-wise independent and
identically distributed triangular arrays ensures that:

Viidn(0,) —% N(0,%), under g2. (C.11)

We write (C.8) as

— — a¢n( n) — — a(lgn(én)/ T 6&71(971) — —1/p _
VA R RS WG, (0) + /i R S RAnlﬁ[AnR 1(971—9”)} -

Using (C.9) and (C.10), this yields:

JW A1 (0) + JWT [AR™1 (G, — 9,1)} = op(1),

that is:
AR (0, — 0,) = —(J'WI) LT W /1o (0,) + op(1),

where the op(1) is under g2. Using (C.11), we conclude that
AnR_l(én - on) —d) N(07 Q(W))a

under g2 and we claim that 0, is A,-regular. [
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