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Abstract

The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation
in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To
study the evolution of longevity-associated traits and infectious disease, we generated near-complete
genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of
positive selection, analyses of structural variation, and functional experiments in primary cell lines, we
identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in
bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals
and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also
find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and
other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs
of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse
taxa uncover the molecular bases of extreme adaptations in non-model organisms.

Keywords

Aging, Bats, Cancer, Evolutionary Biology, Functional Genomics, Immunity, Infectious Disease

Introduction

Bats (order Chiroptera) represent approximately 20% of all known mammalian species and are
one of the most phenotypically diverse clades of mammals’2. Since their emergence 60 million years
ago®d, many bat lineages have independently evolved a wide variety of life history strategies and
phenotypic traits, including exceptional changes in longevity, viral tolerance, and immune defense®'".
Such systems, in which shared traits have evolved de novo multiple times, are powerful resources for
dissecting the genetic basis of phenotypes. Rigorous approaches to studying these traits, however,
depend on high-quality, well-annotated genomes to test evolutionary and genomic hypotheses, and on
experimental functional systems to validate these hypotheses.

The largest genus of bats - Myotis - is estimated to have emerged approximately 33 million years
ago'?'3, and encompasses over 139 described species spanning six continents and a wide range of
ecological niches''?>'*, Myotis species demonstrate some of the most extreme variation in lifespan
amongst mammals®15-'8 including a six-fold difference in lifespan between the longest-lived species (M.
brandltii, 42 years''%, Figure 1A) and the shortest-lived species (M. nigricans, 7 yrs'>2°) which diverged
approximately 10.6 million years ago®'4?'22_ |n addition, Myotis species have been used as systems for
investigating virus tolerance and other pathogen resistance?*2° associated with the expansion and
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contraction of antiviral defenses?®2°, which have contributed to bats’ ecological role as zoonotic
reservoirs0.11.30-33,

The origin, evolution, and functional basis of these phenotypes can be studied experimentally in
model organisms as well as via comparative evolutionary methods. The power of comparative
evolutionary studies is constrained by several factors including incomplete phylogenetic coverage; poor
temporal resolution; the quality and composition of gene annotations; and availability of functional data
and tools for validation. Rapidly evolving genes, such as those associated with adaptations to pathogens
3436 present particular challenges for homology and alignment based methods. Similarly, poor
phenotypic resolution and long divergence times between study species hinders the power of statistical
approaches to identify patterns of selection and diversification®’°. Meanwhile, model organism-based
approaches contribute a different, complementary perspective and provide the power of functional
analyses; however, these studies can suffer from issues related to the suitability and diversity of the
model species’ genotype and phenotype.

While studies on the genetic basis of longevity in short-lived model organisms have been crucial
for identifying and dissecting several key aging pathways, comparative studies of exceptionally long-lived
organisms have uncovered novel genes and pleiotropic effects governing lifespan®®4'-%3, The
comparative approach, however, has historically been hindered by limitations in available genomic
resources and genetic tools for study. Similarly, studies of infectious disease response are common and
powerful in model organisms, but the lack of diversity and inbred lines limits their scope. Bats in particular
present an important case study in, and opportunity to study, variation in virus adaptation strategies due
to bats’ role as zoonotic reservoirs and their specific resistance to viruses*®°4. While previous studies
have shown unique infectious disease adaptations in bats, including loss of important inflammatory genes
and expansions of and adaptation in some immune gene families®-%, they are typically hampered by the
breadth and number of species analyzed, and only rarely functionally validate results from genomic
analyses.

Here we combined comparative and functional approaches in Myotis to uncover strong genomic
and functional evidence of adaptation to both aging-related and infectious diseases. We present for the
first time a robust quantification of relative intrinsic cancer risk across mammals, finding that Myotis are
overrepresented at the extreme of increased cancer risk. Consistent with this observation, we identified
pervasive selection of genes in longevity- and cancer-related processes, especially in lineages which
have undergone the greatest changes in lifespan. Furthermore, we found strong evidence of adaptation
in response to DNA viruses in Myotis and other bats. Genome-wide enrichment of adaptation being driven
by DNA viruses is unique to bats in comparison with other large groups of mammals. Finally, using near-
complete assemblies, we identified structural variations encompassing stress response, immunity, and
inflammation genes, including a trans-species copy number polymorphism of protein kinase R (PKR).
Together, our results suggest that pleiotropy and co-evolution of traits in Myotis has played a key role in
the evolution of exceptional longevity and infectious disease resistance.


https://paperpile.com/c/Bof62T/ySeIf+gBuBQ+Xa2km+G4FxQ
https://paperpile.com/c/Bof62T/hQ0az+6LaVi+af07b+eVRX0+Jn5O0+Go3rj
https://paperpile.com/c/Bof62T/yaHlv+iLSvj+nNtST
https://paperpile.com/c/Bof62T/PQuCv+RT9XT+EVdiN+bY8vv
https://paperpile.com/c/Bof62T/hbHL1+BIaxA+qnFwY+zvhi7+Oon01+OLquH+IV8uy+a1j1F+O09Cs+nNtST+9qlkn+dzOpx+jVbSY+PDw4a
https://paperpile.com/c/Bof62T/nNtST+U5hk8
https://paperpile.com/c/Bof62T/U5hk8+2JtRm+PMcl8
https://doi.org/10.1101/2024.10.10.617725
http://creativecommons.org/licenses/by-nc-nd/4.0/

109

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

126
127
128
129
130
131
132

133
134

135
136
137
138
139
140
141
142
143
144

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.10.617725; this version posted November 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Results

High quality chromosome-level assemblies of 8 Myotis bat species

To study how lifespan and viral response have evolved in Myotis, we collected skin punches and
derived primary cell lines from several North American (“Nearctic”’)?' species (Figure 1A,C), including
from one of the longest-lived mammals, Myotis lucifugus™. Using these cell lines and flash frozen tissues
we generated de novo haplotype-resolved, chromosome-scale genome assemblies for eight species
(Figure 1A) using a combination of long-read PacBio HiFi sequencing and HiC scaffolding. These
genomes are highly contiguous, with an average of 98.6% of nucleotides assembled into 22-23 syntenic
chromosome-scale scaffolds corresponding to the published karyotype®” with an average QV of 66.
These genomes have among the lowest auNG scores of any Chiroptera genome published to date
(Figure 1A, E; Table S1). Across all 8 genomes, each autosome has been completely assembled
telomere-to-telomere (T2T) in at least one species (Figure 1E). Within assemblies, 29%-70% of
chromosomes are fully assembled with an average of less than one gap per chromosome (Table S1).
When comparing the assemblies of species generated from tissue samples versus primary cell lines, we
found that they were broadly comparable and structurally similar. However, genomes assembled from
cell lines had slightly improved statistics likely attributable to the increased quality and molecular weight
of extracted DNA (Figure 1A, D, E; Table S1).

Genomes were annotated using well-established pipelines® leveraging multiple lines of evidence,
including short-read RNAseq, gene prediction (AUGUSTUS-CGP?%8, GeneMark-ES®; gene projections®,
TOGA?®"); and homology (miniprot®?). In total, we identified an average of 27,536 protein coding genes
per species. We benchmarked our annotations using BUSCO®%4 (V5.4.3) mammalian ortholog sets
indicating these annotations are 98.2%-98.5% complete (Figure 1C). We also annotated a recent
assembly of Myotis yumanensis® for inclusion in downstream analyses. Overall, these fully annotated
genomes represent some of the most contiguous mammalian assemblies to date.

Resolving the phylogeny and the evolution of body size and lifespan in
nearctic Myotis

The phylogenetic relationships within Myotis have been the subject of much debate, with a
number of conflicting phylogenies described in the literature based on different choices of genetic
markers'#®-6% To resolve the phylogeny of Nearctic Myotis, we identified single copy orthologs of 17,509
protein genes present in 536 mammalian genomes resulting in 30.6M aligned nucleotides. These
alignments were used to build a maximum likelihood tree of Eutheria. The Chiroptera sub-clade was then
time-calibrated using available fossil-based node calibrations (Figure 1B; Figure S1; Table S2). Our
results conclusively recapitulate known sister species pairs including M. lucifugus and M. occultus; M.
yumansis and M. velifer; and M. evotis and M. thysanodes. Our proposed phylogeny resolves the
complex relationship between these sister taxa, with 100% bootstrap support at all nodes throughout
Chiroptera.
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Using our resolved Nearctic Myotis phylogeny, we re-examined the evolution of body size and
lifespan in Chiroptera. In mammals and other metazoans, there is a strong allometric scaling (positive
correlation with body size) of lifespan. Bats have been noted as an exception to this rule: they are
exceptionally long-lived for their body size''®7°, and this exceptional longevity has evolved de novo
multiple times®7%71. However, these observations have not been tested using phylogenetically corrected
statistics leveraging well-resolved phylogenies. To test the hypothesis of non-allometric scaling of
lifespan in bats, we modeled the evolution of body size and lifespan across a supertree of over 1000
placental mammals (Eutheria)®” (Figure 2; Table S2). In agreement with previous studies in
vertebrates’ 1744507280 " changes in body size are pervasive across mammals, with extreme changes
seen in whales (Cetacea)’®™, elephantids (Proboscidea)*?**72, and in sloths and armadillos
(Xenarthra)™8%-82 (Figure 2A; Table S2). Within bats, major changes in body size are only observed at
the root of the lineage and within Yinpterochrioptera (megabats including genera Pteropus, Eidolon,
Megaderma, and Rhinolophus). Outside of these clades, only minor changes in body size were observed
(Figure 2A). The evolution of lifespan across mammals mirrors the evolution of body size; branches with
large increases in body size (e.g. Cetacea ancestor, Primate ancestor) have also experienced large
increases in lifespan (Figure 2B), leading to an overall positive association between lifespan and body
size (Figure S2A). However, despite little change in body size in bats (Figure 2A, C), we observed some
of the largest changes in lifespan across mammals towards the tips of the tree (Figure 2B, D), consistent
with the theory of multiple independent increases in lifespan across bats. This is especially true in Myotis,
where we saw many of the fastest increases in lifespan, including for Myotis grisescens (4.15x increase,
100th percentile), Myotis brandtii (2.25x increase, 100th percentile), Myotis Ilucifugus (1.56x, 98th
percentile), Myotis myotis (1.1x increase, 79nd percentile), and the Myotis common ancestor (1.26x
increase, 92rd percentile) (Figure 2D; Figure S2C; Table S2). We next used phylogenetically-corrected
generalized linear models and ANCOVA to study the relationship between body size and lifespan across
mammals. While we find that non-bat mammals experience a 0.159% increase in lifespan per 1%
increase in body size on average, bats experience a 0.223% increase in lifespan years per 1% increase
in body size; these rates were not significantly different, however, suggesting that lifespan allometry is
conserved in bats after accounting for phylogeny (Figure S2E-F; pANCOVA, p=0.29).

Rapid changes in body size and lifespan can have major implications for the evolution of cancer
risk and resistance across mammals. The lifetime cancer risk of an individual is modeled as the product
of body size (i.e. the number of cells within an individual), lifespan, and a constant representing the
intrinsic cancer risk per cell per unit time. Within species, lifetime cancer risk scales linearly with body
size, and with lifespan by a power-law of exponent 6838 In contrast to this within-species relationship,
there is no significant correlation between body size, lifespan, and cancer risk across species®% - a
phenomenon known as Peto’s Paradox. The observation of similar lifetime cancer incidence rates across
mammals’3#°0 suggests that species with more cells or longer lifespans have adapted to reduce their
cancer risks (i.e. increased cancer resistance) (Figure 2E).

We hypothesized that the very rapid evolution of increased lifespan in Myotis would thus result in
a dramatic increase in their expected cancer risk compared to other mammals. This can be quantified by
the Reduced Intrinsic Cancer Risk per cell (RICR) between an extant mammal and its most recent
ancestor, calculated as the log; ratio of body size and lifespan between the two nodes (Figure 2E)**.
Decreases in RICR correspond to an increase in the expected cancer risk. We used estimates of body
size and lifespan across Eutheria to quantify changes in (RICR) across placental mammals (Figure 2F)*.
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188 Bats overall were slightly overrepresented in the bottom 10% of RICR with an odds ratio of 1.15,
189  highlighting the impact of rapid lifespan evolution on cancer risk. The longest-lived Myotis (M. grisescens,
190 39 yrs & 1st pct; M. brandltii, 42 yrs & 2nd percentile; M. lucifugus, 36 yrs & 4th pct) and their most recent
191  common ancestors (lucifugus-occultus, ~26 yrs & 8th pct; Myotis common ancestor, ~22 yrs & 14th pct)
192 demonstrated some of the most pronounced decreases in RICR among mammals (Figure 2F; Figure
193  S2D; Table S2). Similar to other extreme cases of body size and lifespan in vertebrates*46.50.52.73,91-94
194  the pronounced changes in RICR seen in Myotis imply an extraordinarily strong selective pressure to
195  evolve cancer resistance mechanisms at multiple points across Chiroptera in general, and within Myotis
196  in particular.

197 Evolutionary signatures of cancer resistance in Myotis

198 We next set out to identify genes under positive selection across our phylogeny of Nearctic Myofis.
199  We used aBSREL® to test for branch-specific positive selection among 15,734 single-copy orthologous
200 genes identified in 536 mammalian genomes. We found that on average, 22.7% of genes were under
201 selection across the 9 nearctic Myotis species and their internal branches after multiple testing correction
202 at FDR<=5%; and 5.23% of genes were significant and had omega values above 1, signaling positive
203  selection (Table S3). These genes were enriched for several pathways involved in immunity, cancer, and
204 aging (Table $3). Many of these genes lie at the intersection of these two processes, including members
205 of the Cluster of Differentiation (CD) family, Serpin family, insulin signaling pathway, redox repair, and
206 iron storage (Figure 3A; Table S3), suggesting possible pleiotropic influences on genes under selection.

207 To test this, we quantified the contribution of genes under selection to pathways associated with
208  the hallmark of cancer®®-% by measuring the proportion of cancer-associated pathways overrepresented
209 among genes under selection throughout the phylogeny (Figure 3A; insets). Many nodes within nearctic
210  Myotis were enriched for cancer hallmark pathways, especially at the recent ancestors of the longest-
211 lived species (e.g. M. lucifugus, M. occultus; Figure 3A). Testing the overall contribution of genes that
212  have undergone selection in each species since the common Myotis ancestor, we observed significant
213  enrichments in the representation of cancer-associated pathways only in species lineages with reductions
214  in RICR (M. lucifugus, M. occultus, M. evotis, M. thysanodes, M. yumanensis; Figure 3B). This suggests
215 that while genes under selection in nearctic Myotis frequently contribute to cancer-associated pathways,
216  cancer resistance has only driven consistent selection in the longest-lived lineages with the greatest
217  increases in cancer risk.

218 We also observed that many key genes involved in ferroptosis - specifically in iron transport,
219  glutathione metabolism, and lipid peroxidation - were under both positive and negative selection at
220 multiple instances throughout the phylogeny (Table S3). Many of these genes were recurrently under
221  selection in each species’ lineage, such as with ferritin (both heavy and light chains) at three distinct
222  points in the evolutionary history of M. yumanensis. Genes under selection in iron transport are
223  specifically involved in the regulation of free iron in the cell, specifically in the export and reduction of the
224  free radical catalyst Fe?* (ferroportin, HMOX1) and the import, storage, and maintenance of Fe** (ferritin
225 and transferrin receptors 1 and 2). Additionally, we observe selective signatures in glutathione
226  metabolism and oxidative stress response including: SLC3A2 and SLC7A11, a heterodimer pair
227 facilitating cystine import and glutamate export; glutathione synthetase; and glutathione peroxidase 3
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228 (GPX3). Finally, we observed a pattern of selection in genes involved in synthesizing and maintaining
229  key polyunsaturated fatty acids involved in ferroptosis, including LPCAT3, ALOX15, and PRDX5.

230 To test for intensified and relaxed selection in genes in long-lived or short-lived Myotis, we ran
231 RELAX® on 12,438 genes present across 11 Myotis species, identifying 263 genes under intensified
232  selection (k>1) and 101 genes under relaxed selection (k<1) after multiple testing correction (paq<0.05).
233 Among genes of note showing significant intensified selection were USP9X (an X-linked ubiquitin
234  protease associated with cancer and T cell development'®19! k=48.6); CDK16 (an oncogenic cyclin-
235  dependentkinase that regulates autophagy'%2'%3, k=44.9); and FGFR2 (a cell growth receptor associated
236  with human cancers that is also a viral interacting protein'®1% k=26.1) (Figure S3B; Table S4).
237  Performing a gene set enrichment analysis for the 364 significant genes, we find a strong association
238 among genes under intensified selection with FGF2 signaling, chromatin remodeling, and pathways
239 associated with both retroviruses and coronaviruses (Figure S3C; Table S4). Finally, using
240 RERConverge'®, we investigated how genes’ evolutionary rates correlated with the evolution of body
241  size, lifespan, or the first two principal components of body size and lifespan across Myotis, and found a
242  number of genes enriched in pathways associated with innate immunity, gamete production, and various
243  metabolic processes, consistent with our other results (Figure S3D-E; Table S4).

244 The longest-lived bat in our study, M. lucifugus, had an overrepresentation of pathways
245  specifically associated with DNA double-strand break (DSB) repair when looking at both lineage-wide
246  and node-specific enrichments in positive selection using the Reactome database'”” (Figure 3C; Table
247  83). This includes 35 out of 65 genes in the high-fidelity Homologous Recombination Repair pathway,
248 and 21/37 members of the Homology-Directed Repair via Single Strand Annealing (Figure 3C; Table
249  83). These results suggest that M. lucifugus might have an enhanced response to DNA DSBs relative to
250 other bats. To test this hypothesis, we assessed the tolerance of M. lucifugus to neocarzinostatin, a
251 potent radiomimetic agent that induces DNA double-strand breaks (Figure 3D), compared to M. evotis,
252  three non-Myotis bats (Eidolon helvum, Pteropus rodrigensis, and Rousettus lanosus), and humans. At
253 low doses of neocarzinostatin, M. lucifugus was the only species tested showing sensitivity to
254  neocarzinostatin after 24 hours, with a drop in viability and concomitant increase in apoptosis. At high
255 doses, M. lucifugus had the highest level of apoptosis and the greatest drop in viability of all the bats
256 tested, although all bats were more resistant to DNA damage than humans. This is consistent with other
257  long-lived species, including elephants*?%3%° naked mole rats®', and bowhead whales*®'%, where
258 longevity and RICR are associated with an increased ability to clear out damaged cells. Together, these
259  results support the hypothesis that M. lucifugus has evolved an enhanced DNA double-strand break
260 response as predicted by genes exhibiting signatures of positive selection in this species.

261 Adaptation to DNA viruses

262 Amongst genes under selection, a substantial portion were involved with immunity, including
263  members of the immunoglobulin and Cluster of Differentiation gene families. These genes exhibited some of
264  the highest evolutionary rates (®) in our dataset, suggesting that they are under strong selection in Myotis (Table

265 S3; Table S4). Because immune pathways are only one aspect of host viral adaptation'®®, we tested for
266  adaptive signatures in virus-interacting proteins (VIPs) in Myotis and other bats. VIPs are host proteins
267  that physically interact with viral proteins (e.g. CD45, Figure 4A), and can be proviral (contributing to viral
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infection, e.g. viral receptors), antiviral (protective against viral infection, e.g. interferons), or both
depending on infection stage and virus type. Previous studies investigating positive selection across
mammals have found an enrichment for adaptation among a set of 5,528 manually curated VIPs, defined
as host proteins that have at least one experimentally verified physical interaction with a viral protein,
RNA, or DNA™,

By calculating an enrichment score from the ratio of positive selection in VIPs compared to their
matched control genes using BUSTED-MH'?, we found that, like other mammals, Myotis show an
enrichment for adaptation at VIPs (Figure 4B; Table S5). Physical host-virus interactions may not always
result in fitness effects in the host. We therefore repeated our analysis using a gene set restricted to VIPs
with experimental evidence of specific pro- or anti-viral effects, and thus with a stronger expectation of
fitness effects. We observed an even stronger significant elevation in the ratio of positive selection in
these proviral and antiviral VIPs (Figure 4C; Table S5), but no elevation in this ratio in other VIPs (Figure
4D; Table S5). This is consistent with the expectation of viral interaction as the cause of enrichment of
positive selection in VIPs in bats'"'. We repeated this analysis using a dataset of 47 publicly-available
non-Myotis bat genomes, and confirmed these same patterns across bats more broadly, even when
excluding Myotis genomes (Figure 4B inset).

Previous work has suggested that bats may have different physiological responses to DNA and
RNA viruses''?. To determine if this was reflected in genomic VIP adaptation, we compared the
enrichment of positive selection in VIPs that interact only with DNA viruses (DNA VIPs) to those that
interact only with RNA viruses (RNA VIPs). Remarkably, we found that VIP adaptation in Myotis and
other bats is driven by selection in DNA VIPs (Figure 4E and inset). This is in marked contrast to the
observed pattern in RNA VIPs, which show no evidence of enrichment in adaptation (Figure 4F and
inset). Note that this difference between DNA and RNA VIPs cannot be explained by a difference in the
conservation of VIP status between the two. The vast majority of VIPs were discovered between human
proteins and viruses that infect humans """, and a concern could then be that those proteins that are RNA
VIPs in humans have evolved faster than DNA VIPs in bats, ultimately resulting in the more frequent loss
of their VIP status in bats. We can however exclude this possibility, since DNA and RNA VIPs have very
similar average dN/dS ratios (Myotis, 0.2 vs. 0.18 respectively; non-Myotis bats, 0.163 vs. 0.153
respectively).

In contrast to what we observe in bats, VIP adaptation in humans is driven by positive selection
in RNA - and not DNA - VIPs'%'3 To investigate if DNA VIP-driven adaptation in bats is exceptional
among mammals, we replicated these analyses across four other large mammalian orders that are well
represented among publicly-available mammalian genomes: Primates, Glires, Eeungulata, and
Carnivora. We found that while other mammalian orders show a mix of adaptation enrichments in both
RNA and DNA VIPs, none show an absence of genome-wide enrichment of adaptation in RNA VIPs as
observed in bats (Figure S4). These results highlight that bats, including Myotis, may have faced greater
selective pressures from DNA viruses than from RNA viruses, in contrast to other mammals.

Evolution of structural variation within constrained karyotypes

With only six known exceptions, all Myotis species with cytological data have a conserved
karyotype (60+ Myotis spp.: 2n = 44"1%118; M. annectans: 2n = 46''6; M. laniger. 2n = 48""7; M. bechsteinii
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2n = 42"1%; M. daubentoni: 2n = 4229, M. davidii: 2n = 46 '2'; M. macrodactylus: 2n = 44/45'?2123) This
conserved Myotis karyotype, shared among species spread across six continents’?, consists of three
large autosomes and one small metacentric autosome; 17 small telocentric autosomes; and metacentric
X and Y chromosomes 5724, Consistent with this broad cytological conservation, we find large scale
synteny across the Nearctic Myotis in this study. However, structural variants (SVs) including inversions,
duplications, and translocations are relatively common within chromosomes, especially in putative
centromeric regions (Figure 5A, B).

We used SyRI'? to identify SVs across pairwise alignments of Nearctic Myotis genomes relative
to the outgroup M. myotis and identified 6,813 - 8,013 SVs per genome. Most of these events were small,
with 97 - 99% of events under 10Kb. In the three large autosomes, which constitute ~30% of each
genome, we cataloged an average of 509 SVs (Table S6). In contrast, in the small autosomes,
constituting ~65% of each genome, we observed an average of 316 events, highlighting the distinct
structural evolution between these chromosome types (Table S6). However, large (=10Kb) duplications,
large inverted duplications, and large inverted translocations were more common on small autosomes
compared to the large autosomes (Table S6).

We also quantified the distribution of transposable elements (TEs) across chromosomes.
Surprisingly, LINE elements were significantly enriched around the centromeres of all chromosomes,
both metacentric and telocentric (Figure 5B); while this is rare in mammals, it has been recently
described as a feature of Phyllostomid genomes'?. In many cases, particularly in the 3 large metacentric
chromosomes, LINE elements appear to have displaced other TEs. Rolling circle and SINE elements
were particularly depleted concomitant with LINE enrichment. In contrast, SINE elements were enriched
at telomeres. The concentration of segmental duplications is significantly correlated with TE density in
each species (linear regression, p < 0.01; Figure 5B; Figure S5J) highlighting the possible importance
of TEs in facilitating structural evolution.

One particularly striking example of structural evolution we identified is a ~20-Mb block at the
subtelomeric end of chromosome V15 undergoing frequent and recurrent inversions and translocations
in nearctic Myotis (Figure 5A). This region spans several immune-related genes including multiple
members of interleukin signaling pathways, including IL-1 and IL-36. A 10Mb portion of this block was
recently identified as a potential target of recent selection by adaptive introgression®®. We identified
between 2-3 major (8+ kb) blocks in this region exhibiting inversions between Nearctic Myotis, which
correspond to similarly sized regions in the outgroup M. myotis (Figure 5A; Table S5). Additionally, we
noted a depletion of DNA transposable elements at the boundaries of each inversion (Figure 5B),
particularly for rolling circle (RC) and SINE elements. Both of these elements can catalyze large-scale
structural rearrangements via DNA damage repair and homologous recombination, respectively'?’-"31,

Gene duplications and losses can be drivers of evolution via dosage modification'?'%3, sub- and
neofunctionalization®*13%  regulatory network remodeling'®¢, and other processes'®?. We quantified gene
gains and losses across Myotis relative to their single-copy human orthologs. Using CAFE'", we found
38 gene families underwent significant expansions or contractions in at least one nearctic Myotis species
(Figure 5C). However, gain and loss rates varied substantially across branches of the Myotis phylogeny.
The terminal M. auriculus and M. velifer branches had ~4-fold more significant gene family expansions
(37 and 35 families, respectively; Figure 5C) than other Myotis branches. In contrast, the terminal M.
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californicus and M. yumanensis branches had ~2-fold more significant contractions (24 and 23 families,
respectively; Figure 5C) than other Myotis branches. We observe significant overrepresentation of
pathways at FDR<=10% in only 4 gene sets: gene families that underwent significant expansions in M.
auriculus, M. velifer, and M. volans; and genes that underwent significant contractions in M. lucifugus
(Figure S5A-H). Many of these pathways were shared between all sets, including pathways involved in
translation regulation; ROBO receptors and neuronal development; selenoprotein and selenocystine
metabolism; and influenza life cycle (Figure S5A-H).

Given that many of the genes in these pathways are VIPs, we used the method of Huang et al
(2023)* to test if VIP genes in particular underwent significant copy number changes relative to non-VIP
genes. We found that while the birth-death rate of VIP genes is similar to that of other genes (p = 0.071),
together VIP genes are significantly more likely to have undergone expansions and/or contractions on at
least one branch of the Myotis family (p < 0.001; Figure S5I-J). This suggests that there is variation in
gene family birth rates across species, but that VIPs are more dynamic across the Nearctic Myotis as a
whole than other types of genes.

To further explore the functional impact of gene duplications we ranked genes by their maximum
copy number across all genomes. We found that the gene families with the highest copy numbers were
concentrated in pathways associated with cancer, aging, immunity, and olfaction (Figure 5D). One
striking case is FBX031, with ~2.4x more copies on average than the next most duplicated gene in Myotis
(20-48 copies). FBX0O31 is a SCF (SKP1-cullin-F-box) protein ligase involved in cell cycle regulation and
DNA damage response, consisting of two functional domains: a F-Box domain and a CDK binding
domain™®, and has previously been speculated as a driver of longevity in Myotis®. Quantifying FBX0O31
copy number across over 500 mammals using reciprocal best-hit BLAT, we found that this gene was
more highly duplicated in Myotis than in any other mammal genome (Figure 5E). Furthermore, while
there were additional partial matches of non-canonical copies of FBX0O31 in non-Myotis species, all
copies identified in Myotis are full-length genes with functional domains. To model the evolution of gene
copy number, we used GeneRax'® to reconcile the gene tree and species tree. GeneRax infers a gene
family tree under scenarios of gene duplication and loss, taking into account the species tree. We found
support for an original 14 duplications in the common ancestor of Nearctic Myotis, with subsequent gains
and losses in each lineage (Figure 5F). These results highlight a massively expanded gene family in
Myotis with potential consequences for the regulation of stress response and other processes.

An actively segregating, trans-species copy number polymorphism of
the antiviral factor Protein Kinase R, PKR

Our highly contiguous genome assemblies provide a unique opportunity to understand the
evolutionary and functional dynamics of structural variation in adaptation. To illustrate this, we explored
the antiviral innate immune Protein Kinase R (PKR/EIF2AK2), an interferon-stimulated gene with
adaptive duplications unique to Myotis?®. Among our Neartic Myotis genome assemblies, we resolved the
structure of the two known structural haplotypes: H1, containing a single copy of PKR (PKRZ2); and H2,
containing two tandemly duplicated copies of PKR (PKR1 and PKR2; Figure 6A). We also identified a
third haplotype - H3 - with three tandem duplicates of PKR (PKR1, PKR2, and a third copy). While 7 out
of 9 Myotis species carried duplicated haplotypes (H2 in 6 species, H3 in M. californicus), to our surprise,
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5 of these cases were heterozygous for the duplicated haplotype: (i.e. H1/H2 or H1/H3; Figure 6B).
Furthermore, two Myotis individuals (lucifugus and evotis) only encoded for PKR1 (i.e. H1/H1; Figure
6B). To determine the evolutionary history of the duplicates, we used GeneRax'*® to construct a tree from
alignments of all PKR gene copies across Neartic Myotis, using Pipistrellus pygmaeus as a non-Myotis
outgroup (Figure 6C). Our results suggest that PKR2 is the ancestral copy of PKR, and that PKR1
originated from a single duplication event at the root of Myotis. Intriguingly, we observed that in the
heterozygous species, both PKR1 and PKR2 on the duplicated haplotype clustered with other duplicated
haplotypes, resulting in species tree violations for the ancestral copy, PKR2 (Figure 6C). These results
highlight that both the duplicated and unduplicated haplotypes have likely been segregating for over 30
million years, representing an ancient trans-species polymorphism.

PKR is a stress response and innate immune factor that interacts with viral or inverted Alu repeats
dsRNAs via its dsRNA binding motifs (dsRBMs), leading to PKR auto-phosphorylation and
dimerization™%'%' Upon activation, PKR can then phosphorylate various molecules leading to protein
translation shutdown and restriction of viral replication''#1. While the independent functional impacts of
PKR1 and PKR2 were previously investigated?®, the effects of co-expressing both copies remain
unknown. This is important because their final effects may be additive, synergistic or dominant negative,
providing clues into why the PKR duplication is polymorphic both within and between Myotis species. We
therefore investigated the functional impact of the duplicates’ co-expression on steady state protein
levels, homo/hetero-dimer formation, cell viability, protein translation shutdown and antiviral restriction
(Figure 6D-G). We used PKR-KO Hela cells transfected with either Myotis myotis or Myotis velifer PKR1,
PKR2, and PKR1+2. We found that the coexpression of Myotis Flag-PKR1 and Flag-PKR2 did not affect
their protein expression levels (Figure S6A). Interestingly, co-immunoprecipitation (colP) experiments
show that Myotis myotis PKR1 and PKR2 do not interact (i.e. no heterodimers), even though Myotis
myotis PKR1 can dimerize (Figure 6D, Figure S6B). Furthermore, coexpression of PKR1 and PKR2 led
to a simple additive effect in their translation shutdown activity (Figure 6E), suggesting that neither copy
is dominant negative. Using non-toxic doses of Myotis PKRs in the context of VSV-GFP (Vesicular
stomatitis virus encoding a GFP reporter'#?) infections, we found that, although PKR1 and PKR2 are both
antiviral®®, the coexpression of PKR1 and PKR2 is not beneficial against VSV (Figure 6F). Similar results
were found with an unrelated virus, SINV-GFP (Sindbis virus encoding a GFP reporter) (Figure S6C).
Finally, because duplicated haplotypes may lead to increased doses of PKR in Myotis cells, we tested
PKR impact on cell viability. We found that at low doses none of the Myotis PKRs affected cell viability.
However, higher doses of PKRs led to more cell toxicity, potentially resulting in a tradeoff (Figure 6G).
Altogether, this may explain why PKR is rarely duplicated in mammals, and why both single- and duplicate
haplotypes of the loci are segregating across several Myotis species. These genomic and functional
results highlight the impact of an unfixed gene duplicate which may play a role in adaptation to viral
infections.
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Discussion

A functionally empowered approach to comparative genomics

Bats are widely known for their long lifespan, cancer resistance, and viral tolerance®10.1136.70.89,143-
145 As highly complex and pleiotropic processes, the genes and mechanisms underlying these
phenotypes can be challenging to identify. Comparative approaches to identify the genetic bases of these
traits are constrained by the availability of high-quality genomes, annotations, and functional resources
for validation. These challenges are exacerbated in the case of rapidly-evolving phenotypes, such as
host-pathogen interactions.

Here we outline an approach that enables functional comparative biology by generating cell lines
from wing punches of wild caught bats for genome assembly, comparative genomics, and functional
follow up. Cell lines are generated from minimally-invasive biopsies collected in the field thus avoiding
disturbing natural populations. Given the high density of bat species concentrated at single locations
world-wide'#6:147 it is feasible to collect wing punches from a large number of individuals across a wide
phylogenetic range; these wing punches can be used to generate cell lines and sequencing libraries for
reference genomes in a matter of weeks. This is an important advance, not only for efforts to expand
genetic resources across the tree of life'#®-'%0, but for conservation genomics. As our approach can
generate genomic resources from minimal material gathered via non-lethal sampling, it is well-suited for
the study of rare or endangered species for which acquiring sufficient amounts of material can be
challenging.

Evolution of lifespan and cancer risk in a new phylogenetic context

The evolution of body size and lifespan across mammals - and the rapid evolution of lifespan in
Yinpterochiroptera in particular - has major implications for the co-evolution of cancer risk and resistance.
While models of body size evolution are well-studied in mammals”447274 the evolution of lifespan is less
well understood. By explicity modeling the evolution of lifespan separately from body size, we
recapitulate the extant relationship between body size and lifespan across mammals in evolutionary time.
Contrary to prior work, we show that bats exhibit relaxed allometric scaling of lifespan comparable to
other mammals. However, Myotis demonstrates an increased rate of change in lifespan given body size
compared to other mammals. This altered scaling of longevity in Myotis has dramatic consequences for
their intrinsic, per-cell cancer risk and for the evolution of tumor-suppressor genes and pathways. While
cancer risk scales linearly with body size, it scales over time as a power law of 6838287 Meanwhile, while
mammalian body sizes span a 10° range of masses, they only span a 10? range of lifespans'®''. Unlike
other systems where the evolution of cancer resistance has been driven by rapid changes in body size**-
44.8091.94 the body size of Myotis has not significantly changed since their common ancestor. Instead, the
rapid and repeated changes in lifespan across an order of magnitude in Myotis lead to some of the most
significant changes in intrinsic cancer risk seen across mammals.

We found a number of genes under selection across multiple longevity-associated pathways,
consistent with the pleiotropic nature of the aging process. These include members of canonical longevity
pathways such as mTOR-IGF signaling, DNA damage repair, oxidative stress, and the senescence-
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associated secretory phenotype. We additionally identified selection in various pathways that have likely
emerged as a result of the unique biology of bats, including genes at the intersection of immunity and
senescence, such as Serapin-family genes; genes in metabolic pathways including amino acid
metabolism; and pervasive selection observed in the ferroptosis pathway, which sits at the intersection
of bats’ extreme oxidative challenges, metabolic demands, immune function, and cancer resistance. By
quantifying the relative contributions of genes under selection to cancer-related pathways at each node,
we found significant enrichment of these processes across the phylogeny, especially at nodes
undergoing the greatest changes in lifespan and cancer risk.

While the implications of an increased cancer risk are clear, the implications of decreases in
relative cancer risk are less so. As expected by Peto’s Paradox, we observe an overrepresentation of
cancer-related pathways among genes under selection at nodes experiencing high increases in relative
cancer risk, consistent with patterns observed in other vertebrates*446.505273.91-% "However, we also
observed an enrichment in cancer-related pathway representation among genes under selection in nodes
with significant decreases in cancer risk (e.g: M. thysanodes, M. velifer). This combination of low intrinsic
cancer risk alongside the persistence of cancer-related adaptations, has been observed previously in
sloths and armadillos™. Intriguingly, these species demonstrate some of the lowest known rates of cancer
among mammals. While no reports or studies of neoplasia rates have been published in Myotis, the use
of in vitro models of carcinogenesis provides a promising avenue for comparative studies of cancer
resistance under controlled conditions. In agreement with our results, in vitro and xenograft transplant
models have shown that cells of long-lived bats, including M. lucifugus, are more resistant to
carcinogenesis than shorter-lived bats and other mammals'#°. Such studies provide a reliable route for
the experimental validation of the evolution of cancer resistance in species where in vivo work would
otherwise prove ethically or practically intractable.

Viral adaptation and immunity

The nature of viral tolerance and infectious disease adaptation in bats has major implications for
understanding their role as zoonotic reservoirs and mechanisms of infectious disease adaptation. Here
we focus on Virus Interacting Proteins (VIPs) that influence viral response and contain vital information
about the nature of host adaptation to viruses'®. By integrating comparative analyses of VIP adaptation,
VIP and immune gene family expansion and contraction, and functional experiments, we show that virus
adaptation in bats is mostly driven by DNA viruses, as opposed to RNA viruses; we recapitulate and
expand on previous results related to positive selection in immune genes and immune gene family
expansion, contraction, and loss; and demonstrate complex patterns of structural variation, including a
segregating duplication of protein kinase R (PKR), a major protein involved in the antiviral innate immune
system, that has functional relevance in its activity against viruses.

The remarkable dominance of adaptation in response to DNA viruses in bats is in contrast with
viral adaptation in humans and other primates, which is driven by RNA viruses''®'%2; and in other
mammals, in which virus adaptation is driven by a combination of DNA and RNA viruses. Most zoonoses,
including those hosted by bats, are RNA viruses'?, making this especially important in understanding the
dynamics of emerging infectious diseases. This novel finding complements previous observations that
bats are more likely than other mammals to asymptomatically harbor RNA viruses, while being more
susceptible themselves to other pathogens, such as fungi''?. This suggests multiple, non-exclusive,
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possibilities. First, bats may have some other form of response to RNA viruses that sufficiently reduces
the fitness effect of these viruses such that the associated VIPs did not adapt as strongly. Second, our
result does not imply that bats have not adapted to RNA viruses, rather that adaptation to RNA viruses
does not exceed the genomic baseline adaptation, while adaptation to DNA viruses does. Indeed, bats
are known to mount adaptive immune responses to some RNA viruses and the strength of their immune
response can have complex interactions with hibernation and reproduction™. It has been previously
suggested that bats may rely more strongly on adaptive immunity in response to RNA viruses than to
other pathogens''?, though evolutionary functional analyses have also found evidence of innate immune
adaptation to RNA viruses, including RTP4 to flaviviruses'™® and OAS7 to SARS-COVs'™4. This is
consistent with our findings of positive selection and gene family expansion in adaptive immune proteins.

While previous work has shown associations between gene family size and certain phenotypic
traits in bats3¢:54155.1%  confirmation of functional effects of copy number is rare. By resolving individual
haplotypes in these nine Myotis species, we were able to confirm a single duplication event at the origin
of Myotis PKR1 and PKR2. We further demonstrate functional implications of copy number variation in
Protein kinase R, as previously shown in functional evolutionary studies (eg. Jacquet et al. 2022). These
results are especially interesting in the light of other studies that have found trans-species polymorphisms
related to immune genes'. This further illustrates the importance of high-quality genome assemblies
and annotations, to distinguish copy number variation between haplotypes, as well as between functional
copies and pseudogenes’®.

The role of agonistic pleiotropy in driving adaptations in bats

Multiple hypotheses have been proposed to connect the unique physiology and ecology of bats
with the evolution of remarkable adaptations such as viral infection tolerance, stress tolerance, and
exceptional longevity'*. Hypothesized drivers of disease resistance and longevity evolution in bats
include the evolution of flight (e.g. “flight as fever” hypothesis'®, though this hypothesis has recently been
critiqued'®?), the disposable soma hypothesis'®!; metabolic state'®?; torpor®; and other adaptations to
specific environments® 156163164 - Additionally, many studies have highlighted the intersection of one or
more of these traits, including a relationship between hibernation and both longevity® and disease
resistance’?. Our results are consistent with an agonistic pleiotropy hypothesis, wherein genetic
adaptations for many specific traits (e.g. physiological stress to flight, hibernation, DNA virus innate
immunity) may prove beneficial to other seemingly-unrelated traits (e.g. cancer resistance, cellular
homeostasis, longevity).

Consistent with this, many of the genes and pathways highlighted in this study have been found
to play vital roles across physiological traits in bats and other species. For example, two genes under
selection in neartic Myotis - FTH1 and IGFN1 - have been implicated in functional studies as key
hibernation genes'6°-'% viral interacting proteins'®®-'"1 and as pro-longevity genes'’>-'74, Similarly, many
DNA VIPs such as BRCA1/2 and POLG represent core DNA maintenance genes essential for cancer
resistance and longevity®"175-1®1: the existence of active DNA transposable elements such as Helitron in
Myotis may provide another selective pressure on DNA repair genes'®?. Beyond individual genes, many
of the overarching pathways under selection in Myotis, such as those associated with inflammation,
senescence, and ferroptosis lie directly at the intersection of aging-related immune
processes36:5496.75,167.172,183-188 \Whijle these results suggest the possibility that traits such as cancer risk,
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cellular homeostasis, and antiviral response have evolved in tandem due to pleiotropic selection at
overlapping points in bats’ evolutionary histories, further functional validation will be required to
disentangle the functional impacts of these genetic changes and disambiguate the drivers of selection.
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Materials and Methods

Data availability

All sequencing data and genomes generated in this study are available on NCBI under Bioprojects
PRJNA973719 and PRJNA1035541. Annotations generated in this study are available at
https://github.com/docmanny/myotis-gene-annotations. ~ All  other code is available at
https://github.com/sudmantlab/MyotisGenomeAssembly.

Sample collection and cell line derivation

All bats sampled for this study were wild caught under scientific collection permits for California
and Arizona (see Supplemental Table 1). Bats were sampled using standard mist-netting procedures,
including taking standard body measurements, following USGS recommendations for White-Nose
Syndrome and COVID-19 prevention81%,
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For M. lucifugus, the donor individual was field-caught in California and transported to the
Genetics Laboratory of the California Department of Fish and Wildlife, where they were euthanized via
isofluorane. The M. velifer individual was caught in Arizona and euthanized in the field via isoflurane. For
both M. lucifugus and M. velifer, tissues were collected and preserved via flash-freezing in liquid nitrogen.

For M. volans, M. occultus, M. auriculus, and M. californicus, two 3-mm wing punch biopsies were
taken from the left and right plagiopatagium of each donor individual and placed in a live cell collection
media consisting of DMEM/F12 (Gibco) supplemented with 15mM HEPES (Gibco), 20% FBS (Gibco),
and 0.2% Primocin (Invivogen) [@yohe2019; @curty2023; @capel2023]. Wing punches were then
brought back to a cell culture facility in Berkeley, where they were used to generate cell lines as previously
described[@yohe2019; @curty2023; @capel2023]. Additional cell lines for M. lucifugus, M. velifer, M.
yumanensis, M. evotis, and M. thysanodes were similarly collected and generated.

Cell lines for the M. evotis and M. thysanodes genomes were generously provided by Richard
Miller. Cell lines for functional work in Rousettus langosus, Pteropus rodrigensis, and Eidolon helvum
were provided by the San Diego Frozen Zoo.

Sequencing and assembly

For 6 genomes (M. evotis, M. thysanodes, M. volans, M. occultus, M. auriculus, and M.
californicus) DNA was extracted from primary cell lines expanded from 3M cells at Passage 2-4 to
approximately 40M cells per line using a Circulomics BigDNA CCB kit following the UHMW protocol for
cells. DNA from M. lucifugus was extracted from flash-frozen tissue by the Genetics Lab of the California
Department of Fish and Wildlife. PacBio HiFi libraries were generated and sequenced on a Sequel |l
(PacBio) by the Functional Genomics Core at the University of California, Berkeley. For cell-line-derived
genomes, Hi-C libraries for these genomes were generated from 1M cells at Passage 3 using the OmniC
for lllumina kit (Dovetail genomics); libraries were submitted for quality control and sequencing on the
lllumina NovaSeq platform (Novogene). For the M. velifer genomes, DNA was extracted from flash-frozen
tissues, and all DNA extraction, library prep, and sequencing was completed by Dovetail Genomics
following standard protocols. For M. lucifugus, a previously published Hi-C dataset from 4 pooled
individuals was used for scaffolding’®"192,

The PacBio reads were processed using SMRTTools (v6.0.0-1, PacBio) to generate the circular
consensus sequences using the settings --minPasses=3 --minRQ=0.99. Hi-C reads were processed
using trimmomatic'®® (v0.35-6) to remove adapter sequences and low-quality bases using the settings
ILLUMINACLIP:data/trimmomatic-adapters/TruSeq3-PE-2.fa:2:40:15  SLIDINGWINDOW:5:20. To
generate the primary contig assemblies, we used hifiasm'™4'% (v0.14-hd174df1_0) in Hi-C mode,
providing both the CCS reads and the trimmed Hi-C reads as input, and purging duplicates using the -I2
option. For our reference genomes, we proceeded with the primary contig assembly
(*.asm.hic.p_ctg.gfa).

All reference genomes were scaffolded with YAHS'®® (v1.1a.1s) and the Hi-C datasets. Dovetail
Omni-C data were processed and mapped to the genome following the manufacturer's instructions using
bwa'®1%  (v0.7.17-h5bf99c6_8), pairtools’® (v0.3.0-py37hb9c2fc3 5), and samtools?® (v1.12-
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h9aed4be_1). YAHS was run using both default settings as well as with --no-contig-ec; after comparing
the outputs, we proceeded with the --no-contig-ec version for our final assemblies.

To finalize the assemblies, we performed manual curation using PreTextView?*' and the Rapid
Curation toolkit?? (version ff964069). The X chromosomes were identified based on size, synteny across
genomes, and half-coverage observed in XY genomes; putative Y chromosomes were similarly identified
in XY genomes. Mitochondrial genomes were identified and removed from the final assembly by running
mitohifi?®® (v3.0) in contig mode on the assembly and removing all scaffolds identified as mitogenomes.
The consensus mitogenome from mitohifi was designated as the representative mitogenome for the
assembly after manual curation. Finally, to eliminate spurious duplicates, we used FunAnnotate?*
(v1.8.15) and the “clean” function to identify and remove any remaining scaffolds with 90% identical to a
larger scaffold.

|ldentification and annotation of repetitive elements

We used RepeatMasker?®® (version 4.0.7-open) to annotate repetitive elements in our genomes.
We first ran RepeatMasker using a curated database of transposable elements from 249 mammalian
species®2% (David Ray, pers. comm.) and the settings “-engine ncbi -s -noisy -xsmall’ followed by a
second run using RepeatModeler?®®” and RepeatMasker to identify de novo repeats missing from the
curated database. All repeats were then soft-masked in all genomes. To assess the repeat landscape,
we calculated the summary of divergence from the repeat alignments and created the repeat landscape
using auxiliary RepeatMasker scripts (calcDivergenceFromAlign.pl & createRepeatLandscape.pl).

Structural variation

To understand the distribution of structural variants, including segmental duplication events, we
used SyRI (Senteny and Rearrangement Identifier'?®) and BISER (Brisk Inference of Segmental
duplication Evolutionary stRucture?®®). We first masked telomere regions using TIDK (Telomere
Identification toolKit?*°), and mapped the primary 22 scaffolds of the nearctic Myotis genomes to each
other with minimap22'°. The scaffold corresponding to the X chromosome was omitted because there is
no corresponding scaffold in the M. yumanensis assembly. To verify homologous chromosomes and fix
strand orientation, we used fixchr from the SyRI package and manually renamed scaffolds accordingly,
then re-mapped with minimap2. We ran SyRI on the resulting files and plotted the results with plotsr?''.
We ran BISER on the primary 22 scaffolds of the nearctic Myotis genomes with —keep-contigs and default
settings to generate bed files with the inferred segmental duplication regions.

RNA-seq

To assist our annotation efforts, we generated mRNA-seq for 7 of the species sequenced de novo
in this study. For M. velifer, samples of heart, brain, kidneys, lungs, pancreas, and testis collected from
the donor individual were provided to Dovetail Genomics (CA, USA) for mMRNA-seq library preparation
and sequencing. Using the same cell lines used for the genomes of M. occultus, M. thysanodes, M.
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evotis, M. volans, M. auriculus, and M. californicus, we generated rRNA-depleted total RNA-seq libraries
using the NEBNext rRNA Depletion Kit v2 and Ultra Il Directional RNA Library Prep Kits. RNA and
libraries were quality controlled on an Agillent Bioanalyzer using the RNA 6000 Nano and DNA High
Sensitivity assays, respectively. Samples were sequenced on to 100M 150PE reads per sample using
the Novoseq platform (Novogene). For M. lucifugus, we used the following published RNA-seq data on
NCBI SRA generated using poly-A selection and paired-end sequencing: SRR6793287, SRR6793288,
SRR6793289, SRR6793290, SRR6793291, SRR6793292, SRR6793293, SRR6793294, SRR6793295,
SRR6793296, SRR6793297, SRR6793298, SRR6793299, SRR6793300, SRR6793301, SRR7064951,
SRR10512805, SRR10512806, SRR10512807, SRR10512808, SRR10512809, SRR10512818,
SRR10512829, SRR10512840, SRR10512845, SRR10512846, SRR10512847, SRR10512848,
SRR10512849, SRR10512850, SRR10512851, SRR10512852, SRR10083333, SRR10083334,
SRR10083335, SRR10083336, SRR10083337, SRR10083338, SRR10083339, SRR10083340,
SRR10083351, SRR10083352, SRR1916825, SRR1916826, SRR1916827, SRR1916830,
SRR1916832, SRR1916834, SRR1916836, SRR1916839, SRR1916841, SRR1916842, SRR18761564,
SRR18761566, SRR18761568, SRR18761571, SRR18761573, SRR18761563, SRR18761565,
SRR18761567, SRR18761569, SRR18761570, SRR18761572, SRR18761574, SRR1270869,
SRR1270914, SRR1270919, SRR1270921, SRR1270922, SRR1270923, SRR4249979, SRR4249988,
SRR5676382, SRR5676383, SRR5676395, SRR5676396, SRR5676402, SRR1869462, and
SRR1013468.

Gene annotation and alignment

Gene predictions

To create optimal gene annotations, we combined ab initio gene predictions; orthology inferences;
and transcriptomic evidence for a total-evidence dataset facilitated using FunAnnotate?°*2'? with manual
interventions. To generate high-quality orthology-based evidence, we downloaded the UNIPARC
database?'® of genes present in all Chiropteran genomes and mapped these proteins to our genomes
using miniprot®? (v 0.6-r194-dirty). We assembled our transcriptome data into transcripts using
TRINITY?' (v 2.13.2), and mapped these transcripts to our genomes using minimap22'° (v 2.24).

Next, we ran BUSCQO®3%* (version 5.4.3) using the “eutheria_odb10” database and AUGUSTUS®®
to identify BUSCO orthologs in our genomes. GFFs describing the gene structure of single-copy BUSCO
orthologs was then used by FunAnnotate to train SNAP?" and GlimmerHMM?'® (v 3.0.4) prior to gene
prediction. GeneMark-ES® (v 4.72) was run using its self-trained model. AUGUSTUS?'” (v 3.4) was run
using a previously-generated model jointly trained on 6 high-quality bat genome assemblies*® and
supplemented with protein and transcriptome hints generated by FunAnnotate from the UNIPARC and
Trinity datasets.

To leverage high-quality annotations from other genomes, we used TOGA®" (version 1.0.1) to
generate gene annotations for each of our species, using inference from hg38 annotations. TOGA
outputs a table of genes (“reg” genes) associated with the projected transcripts from the reference
genomes, and a BED file describing the CDS structure of these projected transcripts. To generate a final
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GFF file summarizing these data, we converted the original BED file to a GFF file using [program];
removed the erroneous “Gene” level attributes; and added in new “Gene” entries describing the TOGA-
designated genes, modifying the “Parent” attributes of the mRNAs to refer to the correct parent gene.
Transcript projections that were not associated with a TOGA gene designation were then dropped.

Finally, we used LiftOff®® (v1.6.3) to lift over annotations from the Myotis myotis genome
(mMyoMyo1.0_primary®¢). Using BUSCO and manual curation, we assessed both the original GenBank
(GCF_014108235.1) and NCBI RefSeq (GCA _014108235.1) annotations, and selected the NCBI
RefSeq annotation, as it had slightly improved BUSCO scoring and less erroneous intron-exon junctions
at select genes. We removed all non-protein-coding genes from the initial GFF file, then ran LiftOff using
the settings “ -exclude_partial -polish -cds”.

We evaluated each line of evidence by assessing their completeness using BUSCO and
comparing the completeness score to the total number of predicted genes. We found that SNAP and
GLIMMERHMM performed the poorest for gene annotations, with both the lowest BUSCO scores and
the highest number of low-quality predictions. The miniprot-UniParc and TOGA-hg38 datasets generated
the highest quality gene prediction datasets, with near-complete BUSCO scores and reduced low-quality
protein predictions.

Gene prediction curation

We used EvidenceModeler?'® (version 2.0) to generate an initial consensus gene set using only
the best lines of evidence (AUGUSTUS, weight 2; high quality AUGUSTUS, weight 5; TOGA-hg38,
weight 12; miniprot-UniParc, weight 5; and LiftOff-mMyoMyo1, weight 5) with hints from protein orthology
(miniprot-UniParc, weight 6) and RNA-seq (TRINITY, weight 5) for alternative splicing. By default,
EvidenceModeler does not consider genes that are located within intronic regions of other genes. To
restore these genes, we intersected the EvidenceModeler consensus gene GFF with the TOGA-hg38
GFF to identify which genes were present in intronic regions and omitted from EvidenceModeler; these
genes were then added back to the EvidenceModeler gene set.

To eliminate remaining spurious predictions, we cross-referenced our gene annotations against
the SwissProt?'® database using DIAMOND?? (v. 2.1.4) with settings “--ultra-sensitive --outfmt 6 qseqid
bitscore sseqid pident length mismatch gapopen qlen qgstart gend slen sstart send ppos evalue --max-
target-seqs 1 --evalue 1e-10". We kept all genes that matched a protein on SwissProt with at least 80%
identity, matched over 50% of the target sequence, and coded for at least 50 amino acids. Of the
remaining genes, we kept them only if they contained both a start and stop codon with no internal stop
codons.

Finally, we further curated our annotations by putting the EVM and TOGA gene predictions in
competition with each other when they both annotated the same locus, but with different overlapping or
neighboring annotations. In such cases, one of the gene annotations is likely closer to the truth. To
determine which, we compared EVM and TOGA gene models with their closest human gene BLAST hits.
Only proteins with a BLAST match to a human Ensembl v99 annotation with the lowest E-values below
0.001 were considered. These human homologs were used as a reference for curation as they are well-
defined and characterized. We observed that occasionally, either the EVM or TOGA model predicted a
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transcript much longer than their human closest homolog. Closer inspection revealed that such cases
represent artifactual mergers of neighboring genes during the annotation process, clearly visible from the
fact that they map to two distinct human homologs in succession. Such cases were resolved by choosing
the annotations (between EVM and TOGA) that were not affected by the artificial merger. We further
observed a specific class of mergers between neighboring, segmentally duplicated genes, with the
resulting annotations representing chimeric mixes of exons from the duplicates. In such cases we
selected the annotations that clearly stayed within the boundaries of the separate duplicates, as identified
by mapping to the closest human homolog. For the remaining annotations where both TOGA and EVM
both mapped to a single human homolog throughout their entire length, we selected the most complete
annotation that was closest in length to the human homolog.

Orthologous Gene Alignments

Phylogeny and selection analyses described in this manuscript rely on high-quality alignments of
bat orthologous coding sequences. To first find and align orthologous Myotis genes to the greatest extent
possible, we first complemented the gene annotations described above with likely missing annotations
that could still be found through BLAT homology searches. Missing gene annotations are always
expected in non-model species genomes and reflect a feature of annotation pipelines in general, not an
artifactual issue. For example if the first coding exon of a gene falls into a small local assembly gap, the
lack of a start codon may prevent the trigger of a CDS annotation, or may lead to the clearly incomplete
CDS being subsequently filtered out. Similarly, erroneous indels representing sequencing errors may
interrupt coding reading frames. Genes with missing annotations can still be detected in assemblies
through classic BLAST or BLAT homology searches, and then aligned with their annotated orthologs
from other species. To align orthologous Myotis genes from ten species (those sequenced here plus
Myotis myotis and M. yumanensis), we first decided to use Myotis velifer as the Myotis species of
reference, since the RNA-seq data we used was generated with M. velifer tissues.

We first looked for missing homologs of M. velifer genes in the other Myotis genomes by blatting
M. velifer CDS to the other Myotis assemblies (BLAT command line including non-default options -q=dnax
-t=dnax -fine) to find matches outside of already annotated genomic segments. When multiple velifer
CDS matched to the same locus with multiple overlapping homologous BLAT matches, we selected the
match with the highest number of identical nucleotides. The remaining matching BLAT sequences were
further considered if they spanned at least 50% of the velifer CDS, and included 100 codons or more.
BLAT matches including stop codons were removed. This process added 1,837 putative CDS to consider
for orthologous alignments for M. auriculus, 1,785 for M. californicus, 1,796 for M. evotis, 1,505 for M.
lucifugus, 3,234 for M. myotis, 1,826 for M. occultus, 1,822 for M. thysanodes, 1,800 for M. volans and
1,729 for M. yumanensis. The correct reading frames for these putative CDS were then determined by
aligning to the velifer CDS that generated the initial match with MACSE v2. MACSE has the crucial
advantage over other aligners of being able to repair broken reading frames due to sequencing indel
errors or erroneous gene annotations. At this stage, we restricted any further analysis to those velifer
CDS with human homologs (BLASTP E-value<0.001 with at least one human canonical protein-coding
gene from Ensembl). One-to-one orthologs with the 23,030 remaining velifer CDS in other Myotis species
were then determined using Orthofinder v2.5.4%2'. The sequences of each group of ortholog were then
aligned with MACSE v2222 with default settings. The resulting CDS with potentially repaired reading
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frames were then checked with PREQUAL?? to exclude sequencing errors and erroneous inclusion of
non-homologous segments in annotations. The remaining parts of orthologous sequences that passed
PREQUAL filtering were then aligned again using MACSE v2 with default settings. The first round of
alignment with MACSE ensures that we do not remove portions of CDS that look like they have no
homology and would thus be removed by PREQUAL, just because of frameshifts that are easy to repair
first with MACSE. The second round of MACSE is to align the remaining codons once PREQUAL has
removed erroneous portions of CDS that could have otherwise disturbed the alignment process. We
further masked (i.e. replaced with indels) codons near indels with putative alignment errors as described
in Bowman et al.??4, Of the 23,030 initial M. velifer CDSs, this process resulted in 21,756 alignments with
at least one ortholog in another Myotis species.

We also aligned pan-Chiroptera orthologs from 47 non-Myotis genomes publicly available on
NCBI at the time of analysis, to test the generality of our observations to all bats. We used the same
strategy described above to complement Myotis gene annotations with BLAT matches, but this time
blatting velifer CDS on non-Myotis assemblies (with -q=dnax -t=dnax -fine again) to find all the potential
orthologs in the non-Myotis assemblies. We previously found that because BLAT represents a first filter
to include only portions of homologous CDS with good local similarity, using BLAT matches results in
higher quality alignments of orthologs than using existing gene annotations of disparate qualities that too
often include non-homologous portions of introns among other issues??*225, As before with only Myotis
species, we recovered putative one-to-one orthologs with Orthofinder. This process resulted in the
alignment (as previously described with two rounds of MACSE and PREQUAL in the middle) of 19,009
orthologous CDS with at least one non-Myotis orthologous CDS.

To test whether the patterns of virus-driven adaptation observed in bats are unique across
mammals, we also prepared four more datasets of 70 primate orthologous CDS alignments, 138
euungulate alignments, 127 glire alignments, and 82 carnivora alignments (see supplementary files XY
for the species and their respective assemblies used). We used the same pipeline as the one used to
align 47 pan-chiroptera species as described above, except that instead of starting from velifer CDS, we
started from human Ensembl v10922¢ CDS (the longest isoform available in each case) for primates, Mus
musculus Ensembl v109 longest CDS for glires, Canis familiaris Ensembl v109 longest CDS for
carnivores, and Bos taurus Ensembl v109 longest CDS for euungulates . These species were chosen for
the very high quality of their gene annotations.

Gene Trees & Phylogeny

A phylogeny of all 536 mammals in our alignments was generated using IQTREE??" (version
2.3.1) using all gene alignments with the settings “-B 1000 -m GTR+F3x4+R6.” To generate gene trees,
we first filtered our gene alignments to exclude alignments with over 50% gaps in the sequence and less
than 4 species. With the remaining alignments, we used IQTREE to find the best-fitting substitution model
and tree using settings “--wbtl --bnni --alrt 1000 -B 1000 --safe”. The best substitution models for each
gene were saved as a NEXUS file. To generate the phylogeny of bats, we first concatenated all gene
alignments using catfasta2phyml (https://github.com/nylander/catfasta2phyml) to concatenate our
individual gene alignments into species-level alignments, filling in missing species in each sub-alignment
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with gap symbols to preserve the alignment structure. Furthermore, we generated a partition file
describing the region of each gene sub-alignment within the concatenated alignment.

Time-calibration of 59 bat genomes

Using our codon alignments of 59 bat genomes, we generated a time-calibrated phylogeny using
mcmctree??® and PAML??° (v. 4.10.0) using an approximate likelihood method. Using the pan-bat codon
alignments and our phylogeny as input, with fossil calibrations based on previously published work?*36-230-
27 we ran mcmctree twice to generate the Hessian matrix and confirm convergence. This was followed
by 10 independent chains using the “out.BV” file from the first run. Finally, the output files of all 10 chains
were combined to compute final divergence time estimates (see Table S2).

Ancestral Body Size, Lifespan, and Cancer Risk reconstruction

To explore how body size and lifespan have evolved over time in mammals, we used a super-
phylogeny of mammal species®” subsampled to only contain species with extant body size and lifespan
data collected from AnAge'’® and PanTHERIA'®. Ancestral body sizes and lifespans were simulated
separately using StableTraits?38,

To estimate ancestral longevity quotients (AncLQs), we followed the method of Austad and
Fisher'® and used a linear model of lifespan given body size trained on non-flying mammals to predict
the lifespans at each ancestral node given median estimates of body size. AncLQs were then estimated
from the ratio of observed lifespan versus predicted lifespan for each node.

Relative Incidence of Cancer Risk (RICR) was calculated across our mammalian phylogeny
following the method of Vazquez and Lynch (2021)*. The cancer risk K at a given node was calculated
using the log of the median predicted body size and lifespan. An organism's lifetime risk of cancer K is
proportional to D%, where D is the body size and T is the maximum lifespan. RICR is then calculated as
the logy ratio of the cancer risk between a node and its direct ancestor.

Selection Scans & Evolutionary Rates

aBSREL

To conservatively test for branch-specific selection, we used aBSREL®>2%® (version 2.5.48) to test
for selection at each branch within the Nearctic Myotis clade for 15,734 gene alignments spanning 536
mammals. These genes were identified as 1:1 orthologs across the full alignment, with no more than
50% sequence gaps and at least 4 species present in the alignment. We defined genes under selection
as those with an FDR-corrected p-value of less than 0.05; genes were specifically identified as under
positive selection if w>1.

BUSTED
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To quantify the total amount of positive selection across the Myotis tree or the different species
trees used in this manuscript, we used an improved version of the BUSTED'"%23° test called BUSTED-
MH. The original BUSTED test estimates for a given gene the proportion of codons that have evolved
under positive selection, with dN/dS>1, summed over all the branches of a given tree, regardless of the
branch and regardless of the codons in a multi-species alignment. The version of BUSTED we used,
BUSTED-MH, includes two crucial improvements over the original BUSTED that make it much less likely
to generate false positive inferences of positive selection, albeit at the cost of becoming a very
conservative test. First, BUSTED-MH takes synonymous substitution rate variation into account, which
prevents mistaking cases where dN/dS is greater than one just because dS is low, with cases where
dN/dS is greater than one because positive selection actually increased dN. Second, BUSTED-MH takes
complex substitutions that simultaneously involve more than one nucleotide into account in its likelihood
models. This prevents attributing positive selection to cases where dN/dS is greater than one where
instead a complex substitution changed multiple amino acids in a single event. BUSTED-MH has been
shown to strongly reduce the rate of false positives that typically plague dN/dS-based tests of positive
selection?40,

We applied BUSTED-MH to 19,646 Mpyotis orthologous CDS alignments with at least five
orthologs. These orthologs are cases where the Orthofinder gene trees coincide with the species tree.
This effectively removes issues regarding whether we should use the gene or the species tree, at the
cost of removing 2,110 genes from the Myotis selection analysis. Similarly, we applied BUSTED-MH to
17,469 non-Myotis bat alignments with at least five orthologs. This includes a subset of 14,091 alignments
with orthologs in two thirds of the non-Myotis bat species that we specifically used to show that patterns
of virus-driven adaptation are representative of all, and not just a limited subset of bats. We also tested
17,890 primate alignments with at least five orthologs with BUSTED-MH, as well as 19,311 glire, 18,000
carnivora and 18,504 ungulate alignments.

RERConverge

Between-species life history diversity may be undergirded by significant evolutionary rate shifts in
important genes, where evolutionary change across the gene tree correlates either positively or
negatively with changes in a particular life history trait across the trait tree. In Myotis, we were interested
specifically in testing whether or not longevity-related metrics could be correlated with evolutionary rate
shifts for particular genes, and if, among those, we could identify types of genes (gene ontologies) that
were enriched.

To answer this question, we used RERconverge'®, an R package which uses gene trees to
compute relative evolutionary rates (RERs), then tests for correlations between RERs and trait changes
between species. 40 bat genomes were aligned to produce MSAs, which were then split into three groups
to be tested independently: all bats (n=59), non-Myotis bats (n=29), and Myotis (n=11). Gene trees were
constructed under the GTR+G model with the same topology as determined in our phylogenetic analysis,
across all 39 available bat species. After concatenating the gene trees, RERs were calculated in
RERconverge. Trait correlation analysis was performed by regressing these RERs against 4 distinct trait
axes. Two of the axes were maximum longevity and size, which were obtained from AnAge'' and
PanTHERIA'®; an additional two axes were obtained by plotting species along the first 2 principal
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components of size and maximum longevity. Since size generally correlates with longevity, even within
Myotis, PCA allows us to describe species using orthogonal trait axes that roughly correspond to size-
independent longevity and longevity-independent size. Using a Wilcoxon rank-sum test, we then tested
for enrichment in correlation significance amongst different gene sets.

RELAX

The evolution of life history diversity across a clade may also manifest in differential selection
regimes across relevant genes or types of genes. Specifically, the evolution of a particular life history
may be driven by either relaxation or intensification of selection in different genes. In Myotis, we were
again interested in whether we could identify genes and gene sets related to increased longevity within
the clade.

RELAX® is used to identify genes under either relaxation or intensification of selection across
groups groups of species within a clade using MSAs and a labeled species tree. MSAs for 11 available
Myotis species across ~19,000 shared genes were fit using the BS-REL framework to a branch-site
model, using the species tree determined from our phylogenetic analysis. 4 longer-lived species, Myotis
lucifugus, M. occultus, M. evotis, and M. myotis were set as the foreground class with the remaining
species set as the background class. RELAX then used these branch classes to estimate a distribution
of w (dN/dS) for each branch class, constrained by the relaxation factor k. An LRT is performed for k # 1
against k = 1, with k > 1 implying relaxation of selection and k < 1 implying intensification of selection.
The results from this test were then used to perform a Wilcoxon rank-sum test to identify enrichment in
the significance of the k-parameter amongst different gene sets.

VIPs

To determine if Myotis and other bats are enriched for adaptation at Virus Interacting Proteins
(VIPs), we conducted a test comparing levels of adaptation, inferred by BUSTED, in sets of VIP genes
compared to matched control genes. Sets of control genes were resampled in a bootstrap procedure
(https://github.com/DavidPierreEnard/Gene_Set_Enrichment_Pipeline) to generate 95% confidence
intervals for sets of genes at progressively smaller BUSTED p-value thresholds'%11".113.152 \When VIPs
are subject to greater levels of positive selection than expected relative to the sets of matched control
genes, we expect a pattern in which the high p-value thresholds show weaker enrichment but smaller
confidence intervals, because more genes are used in these calculations. As the p-value threshold gets
smaller, the signal of enrichment is expected to get stronger but at the expense of larger confidence
intervals.

We generated five sets of VIP genes: A set of all VIP genes with aligned orthologs from at least
five species in the tested clade (Nearctic Myotis or pan-Chiroptera without Myotis); a set of VIP genes
with known pro- and/or anti-viral activity; a set of VIP genes with no known pro- and/or anti-viral activity;
a set of VIP genes that interact only with DNA viruses; and a set of VIP genes that interact only with RNA
viruses. Because both the number of species and genes included, as well as their level of homology,
influences the power of these tests we also tested the influence of the stringency of gene choice by
generating a separate set of genes for the pan-Chiroptera analyses that included only genes with aligned
orthologs in at least two thirds of the non-Myotis species. Analyses using this more limited set of genes
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show the same result in terms of enrichment of adaptation in VIP genes and comparing DNA VIPs and
RNA VIPs, showing that the observed patterns are valid across bats regardless of the stringency of
homology.

The bootstrap procedure matches a tested gene set of interest such as VIPs with sets of control
genes (non-VIPs when testing VIPs) that have the same average values as the set of interest for multiple
potential confounding factors that could explain differences in adaptation instead of interactions with
viruses. For example, if the level of gene mMRNA expression has an influence on the rate of adaptation,
we then need to match VIPs with control sets of non-VIPs that collectively have the same average
expression as VIPs. For each group of tested VIPs we build 1,000 control sets with randomly sampled
non-VIPs according to a matching procedure described in Enard & Petrov 2020'%224!, We match the 27
following factors between VIPs and non-VIPs, for all tested groups of species:

e the length of the aligned CDS.

e the overall CDS GC content in each orthologous alignment.

e the GC content at aligned codons’ position 1, 2 and 3 separately.

e the number of species with a onetoone ortholog out of all the species included in an alignment,
where species with no ortholog are represented by gaps the whole length of the alignment.

e the number of species with an ortholog at least 90% of the length of the species of reference
(Myotis velifer in bats, human in primates, etc; see above).

e the overall proportion of each orthologous alignment made of indels.

e the three synonymous rates of evolution estimated by the likelihood model of HYPHY Busted.

e the proportions of codons that fall in the three latter synonymous rates.

e average human mRNA expression in 53 GTEx v7 tissues?*, in log. of Transcripts Per Million

(TPM).

lymphocyte human mRNA expression from GTEx v7, in logz of TPM.

testis human mRNA expression from GTEXx v7, in logz of TPM.

MRNA expression in logz of TPM for six separate Myotis velifer tissues: heart, brain, kidneys,

lungs, pancreas, and testis.

e the number in log, of protein-protein interactions (PPIs) in the human protein interaction
network?43,

e the proportion of genes that are immune genes according to Gene Ontology annotations of
the closest human homolog including Gene Ontology terms GO:0002376 (immune system
process), GO:0006952 (defense response), and/or GO:0006955 (immune response) as of
summer 2021244,

e the proportion of housekeeping genes defined as genes with stable expression across many
human tissues, listed in Eisenberg & Levanon?#°.

e the overall dN/dS ratio estimated by Busted for the orthologous CDS alignments.

We match the overall dN/dS between VIPs and control non-VIPs to account for an important
issue of dN/dS tests: dN/dS-based tests tend to lose statistical power to detect positive selection
in CDS alignments with higher selective constraint?*6. The amount of positively selected sites
being equal, positive selection tests based on dN/dS tend to have lower statistical power and
tend to generate more false negative results when the rest of the coding sequence is more highly
constrained. VIPs tend to be much more strongly constrained than non-VIPs'%, which gives a
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strong, unfair statistical disadvantage to VIPs when testing positive selection with BUSTED or
other HYPHY tests. We limit this issue by matching VIPs and control non-VIPs for dN/dS. Thus,
VIPs have an excess of adaptation compared to non-VIPs when they have a balance of the same
total amount of non-synonymous changes more tilted towards advantageous rather than neutral
amino acid changes. In this case non-VIPs still have less constraint (more neutral changes) than
VIPs, and thus still more power to detect positive selection, but not to an extent as severe and
unfair as if we did not match the overall dN/dS'®. In the case where VIPs do not have an excess
of adaptation, then they have the same balance of advantageous and neutral amino acid changes
resulting in the same overall dN/dS. This is the case of RNA VIPs in bats in this study; this internal
negative control shows that the matching of dN/dS works as intended.

Gene Duplications

To quantify patterns of gene duplication and loss, we quantified the copy number of genes with
human orthologs from our gene annotations for each nearctic Myotis genome. To calculate per-gene
expansion and loss rates and their statistical significance, we ran CAFE'3” v5 on the previously described
set of copy number counts using our time-calibrated species tree pruned to include only the nine nearctic
Myotis species. M. myotis was excluded because of its lower quality assembly. We ran CAFE on the
subset of genes with two or more copies in at least one species using a Poisson distribution for the root
frequency (-p), first generating an error model to correct for genome assembly and annotation error (-e).
We compared the base model (each gene family belongs to the same evolutionary rate category) to
gamma models (each gene family can belong to one of k evolutionary rate categories) with different
values of k. A final gamma model with k=9 was chosen to balance model log likelihood with the number
of gene families for which the optimizer failed. The model was run three separate times to ensure
convergence.

To understand if genes in these pathways have higher birth rates or are more likely to have
significant changes in gene copy number than expected relative to other genes, we compared the gene
copy birth rate A and number of genes that have significantly expanded or contracted in copy number on
at least one branch within our nearctic Myotis phylogeny. Following Huang et al.*®, we tested if VIP genes
in particular underwent significant copy number changes or had significantly different birth/death rates
than non-VIP genes. For each category of VIP genes (all VIPs, DNA VIPs, DNA only VIPs, RNA VIPs,
and RNA only VIPs), we generated 100 bootstrap sets of control non-VIP genes with the same number
of genes as the corresponding VIP gene set. We ran CAFE on each set of VIP genes and the
corresponding control non-VIP genes to infer per-gene birth-death rates and per-gene, per-branch
expansion/loss events.

Assessment of DNA Double-Strand Break Tolerance

We assessed each species’ tolerance to DNA double strand breaks using a by measuring viability,
cytotoxicty, and apoptosis across a range of doses of Neocarzinostatin, a radiomimetic drug. We
measured dose response curves in wing-derived primary dermal fibroblasts across 5 bat species (Myotis
lucifugus, n=8; Myotis evotis, n=3; Rousettus langosus, n=2; Eidolon helvum, n=2; Pteropus rodrigensis,
n=2) using the multiplexed ApoTox-Glo assay (Promega). Using 96-well plates, two individuals and 11
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doses were assessed simultaneously with four technical replicates. Results were normalized to treatment
controls for each individual in R as previously described?*24346:50,

Mapping PKR exons

We further validated the annotations for the PKR locus by re-aligning the primary M. velifer coding
sequence back to the nine nearctic Myotis reference genomes, as well as a non-Myotis outgroup,
Pipistrellus pygmaeus, and the genome haplotypes for each of these species. Because the presence of
two copies makes this task challenging for most aligners, we independently aligned the M. velifer
reference PKR sequence to sequential sections of each genome in 50kb search regions surrounding the
known loci in each genome. This alignment search was conducted for 5 regions upstream (250 kb) and
5 regions downstream (250 kb) of the known loci. In species with two known copies, the location of each
copy was included in a separate search region. This was to prevent erroneous merging or loss of exons.
These regions were retrieved using bedtools getfasta?*” and alignment was performed using miniprot®2.
Miniprot settings were optimized to retain secondary alignments (-p 0 -n 1 —outsc=0.0 —outc=0.0) and
find known exons with accurate boundaries (-J 18 -F 21 -O 15 -L 10). The resulting dff file was converted
to bed format using AGAT?*®, sequences retrieved with bedtools getfasta, and a custom script used to
remove identical duplicates. Finally, all sequences were aligned with MACSE v2.07°%2, We used
BISER'2%208 to confirm the presence of segmental duplications in these regions.

PKR cell lines and vectors

All PKR experiments were performed using HeLa PKR-KO cells (kindly provided by A. Geballe,
Fred Hutchinson Cancer Center, Seattle WA) that were plated either at densities of 5x10*4 cells/mL in
24-well plates or at 1x1075 cells/mL in 12-well plates. The cells were maintained at 37°C with 5% CO,
and cultured in DMEM supplemented with 5% fetal bovine serum (FBS), 1% penicillin/ streptomycin mix
and 1 ug/mL puromycin (Sigma-Aldrich). All transfections were performed 24 hours after seeding, using
3 uL of TransIT-LT1 Transfection Reagent (Mirus Bio) per 1 ug of DNA and Opti-MEM media. We used
previously-generated pSG5-FLAGxX2 vectors encoding either M. myotis PKR-1 (GenBank OP006550),
M. myotis PKR-2 (GenBank OP006559), M. velifer PKR-1 (GenBank OP006558), or M. velifer PKR-2
(GenBank OP006557)?. Plasmids encoding the interferon-stimulated gene 1SG20%*' and a constitutively
active variant of the sterile alpha motif domain-containing protein 9-like SAMD9L-F886Lfs*11 (here,
SAMD9L?%%) were used as controls in viral infections and cell translation experiments, respectively.

Western blot

We assessed for the steady state protein expression of M. myotis Flag-PKRs after transfection
of 350 ng and 700 ng of DNA plasmids encoding either PKR1 alone, PKR2 alone, or both PKR1 and
PKR2 (175 ng of each and 350 ng of each, respectively). Briefly, cells were re-suspended and lysed in
ice-cold RIPA buffer (50 mM Tris pH8, 150 mM NaCl, 2 mM EDTA, 0.5% NP40) with protease inhibitor
cocktail (Roche) and sonicated. 20 yL of the clarified fraction was denatured with 5 pL of 6x Laemmli
buffer at 95°C for 5 min and loaded into 4-20% BioRad Criterion TGX Stain-Free precast gel. The wet
transfer into a PVDF membrane was executed overnight at 4°C. The membranes were blocked in a
1xTBS-T buffer (Tris HCI 50 mM pH8, NaCl 30 mM, 0.05% of Tween 20) containing 10 % powder milk,
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and were incubated for 1h. The membranes were incubated with primary mouse anti-Flag (Sigma F3165)
and anti-Tubulin (Sigma T5168) antibodies and secondary anti-Mouse IgG-Peroxidase conjugated
(Sigma A9044). Detection was made using the Chemidoc Imagina System (BioRad) with SuperSignal
West Pico Chemiluminescent Substrate (ThermoFisher Scientific).

PKR co-immunoprecipitation

Hela APKR cells were transfected with 1.25ug plenti6 HA-tagged M. myotis PKR1 plasmid per million
cells and 1.25ug of either plenti6 myc empty vector, myc-tagged M. myotis PKR1 or myc-tagged M.
myotis PKR2 plasmid using TransIT-LTI transfection reagent (Mirus Bio). The next day, some wells were
infected with Sindbis virus expressing GFP (SINV-GFP) at MOI 2 for 24 hours. Cells were then scraped
with cold PBS and pelleted. For the IP, cells were lysed in 500ul IP buffer (50mM Tris HCI pH7.5, 140mM
NaCl, 6 mM MgCl2, 0.1% NP40) supplemented with RNase (RiboLock, Fisher Scientific) and protease
(cOmplete EDTA-free protease inhibitor cocktail, Sigma) inhibitors for 10 minutes on ice, then centrifuged
at 12,000 xg for 10 min at 4°C. 5% of the volume was kept for input, while the rest was incubated with
40ul uMACS anti-c-myc MicroBeads (Miltenyi Biotec) for 1h at 4°C with constant rotation. Samples were
then loaded onto UMACS columns placed in the magnetic field of a UMACS Separator (Miltenyi Biotec),
washed 4 times with cold IP buffer, and eluted with the yMACS denaturing elution buffer. Proteins were
denatured in elution buffer for 5 min at 95°C, then loaded onto a 4-20% BioRad Criterion TGX Stain-Free
precast gel and transferred onto an Amersham Protran nitrocellulose membrane (Sigma) for 1h.
Membranes were blocked for 1h in 5% milk in PBS (Euromedex) supplemented with 0.2% tween (Fisher)
and incubated with mouse anti-myc monoclonal antibodies (Abcam 9E10, cat# ab32) then secondary
anti-mouse IgG antibodies conjugated with HRP (Sigma, cat# A4416), or with rat anti-HA antibodies
conjugated with HRP (Roche, Sigma, cat# 12013819001). Images were taken on a Fusion FX imager
(Vilber) with SuperSignal West Femto Chemiluminescent Substrate (ThermoFisher Scientific).

Cell viability assay

Hela PKR-KO cells were transfected 24h after plating in 96 well plates, with 100 or 200 ng of
pSG5 plasmid: empty or coding for M. myotis or M. velifer PKR1, PKR2 or PKR1+2 equal mix (50%-
50%). 24 hours post-transfection, positive control cells were treated with an apoptosis-inducing drug,
Etoposide, at different doses (250, 200 or 100 uM). 48 hours post transfection, cells were harvested and
lysed to quantify luminescent signal according to CellTiter-Glo® Luminescent Cell Viability Assay
(Promega) kit protocol.

VSV and SINV infections

VSV infections. Cells were transfected 24 h after plating with 350 ng of pSG5 plasmid: empty, or
encoding M. myotis or M. velifer PKR1, PKR2, or equal input of PKR1 and PKR2 (175 ng per plasmid),
or a plasmid encoding interferon-stimulated exonuclease gene 20 (1ISG20), due to its known antiviral
activity against VSV as positive control?*'. Cells were infected 24 h post transfection with replicative VSV-
GFP virus™? at a MOI of 3. Cells were fixed with 4% paraformaldehyde 16-18 hours post infection. VSV
infection was quantified by measuring the percentage of GFP positive cell populations with BD
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FACSCanto Il Flow Cytometer (SFR BioSciences). Fold change results were normalized to the empty
pSG5 condition across at least three independent experiments.

SINV infections. Hela APKR cells were transfected with 5ug pSG5 empty vector, M. myotis PKR1,
M. myotis PKR2 or 2.5ug M. myotis PKR1 + 2.5ug M. myotis PKR2 per million cells using TransIT-LTI
transfection reagent (Mirus Bio). The next day, some wells were infected with SINV-GFP at MOI 0.2.
Cells were then placed into a CellCyte X live cell imaging system (Cytena) and pictures of every well
were taken every 2h for 48h. The fraction of GFP+ cells over the total cell area was measured and
averaged from six photos of 2 individual wells per condition, and repeated for a total of three independent
experiments.

Luciferase reporter assays

Luciferase reporter assays were carried out to investigate whether the two PKR paralogs have
synergistic, additive or dominant negative effect in translation shutdown. Transfection was performed as
previously described with additional 50 ng of FFLuc firefly luciferase reporter plasmid per well. Sterile
alpha motif domain-containing proteins 9L (SAMD9L gain-of-function mutant) was used as a positive
control of translational repression?#°. 24 h post transfection, cells were briefly washed with PBS, lysed by
a 5x reporter lysis buffer (Promega) and incubated overnight at -20°C. Cells were then collected and 100
ul of the luciferase substrate (Promega) was added to 20 pl of the lysis supernatant. Alternatively, cells
were lysed using BrightGlow Lysis Reagent (Promega E2620). The relative luminescence units (RLUs)
were immediately quantified with LUMIstar Omega microplate reader optima (BMG Labtech). All
luciferase assays were conducted in technical duplicates in at least five independent experiments. Fold
change results were normalized to the empty pSG5 condition within each independent experiment.
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1882 Figures

1883  Figure 1: 8 near-complete reference assemblies for North American (Nearctic) Myotis.

1884 Figure 2: Evolution of body size, lifespan, and cancer risk in bats and mammals.

1885 Figure 3: Selection in Nearctic Myotis is enriched for pleiotropic cancer resistance pathways.
1886  Figure 4: Adaptation to DNA viruses, but not RNA viruses, is enriched in Myotis and other bats.
1887  Figure 5: A varied structural variation landscape across 9 nearctic Myotis species.

1888 Figure 6: Evolutionary history and function of an actively segregating copy number polymorphism
1889  of PKR in Myotis.
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1890  Figure 1: 8 near-complete reference assemblies for North American (Nearctic) Myotis. A) Phylogeny
1891 of 38 bat genomes with 3 outgroup species: cow (bosTau9), mouse (mm39); and human (T2T-CHM13v2.0).
1892  Bars at the tips of the phylogeny indicate the AUNG score of each genome (lower values equal more
1893 contiguous genomes); the dotted line represents the AuNG score for complete (T2T) genome assemblies
1894  asrepresented by T2T-CHM13v2.0. B) The time-calibrated phylogeny of 9 Nearctic and two representative
1895 Palaearctic Myotis species based on orthologous codon alignments. Blue bars represent age uncertainties.
1896 C) Map of capture sites with representative images (see “Acknowledgements” for attributions) for the
1897 individuals and species sequenced in this study; cell lines for M. evotis and M. thysanodes were provided
1898 by Richard Miller and were not collected for this study. D) Mammalian BUSCO scores for annotations
1899  generated for the 8 new Myotis genomes. E) Ideogram bar plot indicating completion status of each
1900 chromosome in assembly. Pie graphs indicate completion status of all chromosomes in assembly. All
1901 chromosomes were positively identified based on size, synteny, and homology to human chromosomes®’.
1902 “Complete (T2T)” status indicates that a chromosome is fully assembled telomere-to-telomere without gaps;
1903  “Draft (T2T, gaps)’ status indicates that a chromosome is fully scaffolded with both telomeres, but has one
1904  or more gaps in the assembly; “Incomplete” status indicates that a chromosome was positively identified,
1905  but was not scaffolded from telomere to telomere (only contains one telomere).
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Figure 2: Evolution of body size, lifespan, and cancer risk in bats and mammals. A, B) Cophylo plot
of the evolution of body size (A) and lifespan (B) across Eutheria. C, D) Cophylo plot of the evolution of
body size (C) and lifespan (D) in bats. Branch lengths in A-D are scaled proportional to the rate of change
of the trait over time, and tree scales are shown below their respective phylogenies. E) Diagram illustrating
the relationship between changes in body size and lifespan with changes in cancer risk and resistance. F)
Reduced Intrinsic Cancer Risk (RICR) for every node in Eutheria, ranked from greatest reduction in cancer
risk to greatest increase in cancer risk. RICR relative to the most recent ancestor of select nodes are
highlighted, as well as the average RICR across for all nodes within select clades.
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1914  Figure 3: Selection in Nearctic Myotis is enriched for pleiotropic cancer resistance pathways. A)
1915  Left: phylogeny of Nearctic Myotis; Right: raincloud plot of omega values for all genes in each species
1916  since its most recent ancestor. The distribution of omega (w) values for significant (p<0.05 after multiple
1917  testing correction) genes and all genes is shown in color above the line. The 95% confidence interval and
1918 median for significant w’s are represented by the black bar and circle, respectively; the overall 95%
1919 confidence interval and median are shown in grey below. Individual genes’ w’s are represented by colored
1920 points. Individual genes’ omega values and grey, respectively. Left inset: Proportion of cancer-associated
1921 Reactome pathways among the top 100 pathways overrepresented among genes under selection at each
1922  node. Below, pie chart indicates expected proportion of pathways out of 100 that are cancer-associated
1923  after 1000 random samples. Nodes with proportions greater than the expected value with p<0.05 using
1924 Fisher’s exact test are indicated with an asterisk. B) Proportion of cancer-associated Reactome pathways
1925  among the top 100 pathways overrepresented among genes under selection across all nodes in a species’
1926  evolutionary history. C) Volcano plot of overrepresented pathways in Reactome among the union set of
1927  genes under selection across all nodes in the evolutionary history for M. lucifugus. D) Viability and
1928  Apoptosis fold-change in 5 bat species in response to different doses of neocarzinostatin, a potent inducer
1929  of DNA double-strand breaks. Points represent individual replicates normalized to each species’ control,
1930  while bars represent mean + 95% confidence intervals.
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Figure 4: Adaptation to DNA viruses, but not RNA viruses, is enriched in Myotis and other bats. A)
Diagram of an example VIP, CD45: a host cell transmembrane receptor that interacts with the human
adenovirus protein sec49K. Previous work has shown that the amino acids of CD45 that participate in this
direct interaction are under strong positive selection, as indicated in the graph above the cartoon. B-F)
Enrichment plots showing the ratio of positive selection in VIPs versus matched sets of control genes at
different p-value thresholds. The solid line shows the median ratio; the color of the line, and the number
above each point, represents the number of VIPs with significant BUSTED-MH p-values at the given
threshold; the grey band represents the 95% confidence interval generated by bootstrapping sets of
matched control genes. Inset plots show the same for all bats in this study excluding Myofis.
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1940 Figure 5: A varied structural variation landscape across 9 nearctic Myotis species. A) Synteny
1941 between Myotis species on chromosome V15, showing syntenic regions (grey), inversions (orange),
1942 translocations (green), and duplications (blue). Regions with high proportions of telomeric repeats were
1943  masked prior to alignment. B) Distribution of transposable elements and segmental duplications (red
1944 heatmap) in mMyoVel1. Pie chart indicates overall genome proportions of TEs; histogram represents the
1945 size distribution of segmental duplications genome-wide. C) CAFE results among our Nearctic Myotis
1946 relative to single-copy human orthologs. Phylogeny is colored by the estimated birth/death rate (A) for all
1947  genes examined. Bar plot indicates the cumulative number of significant gain and loss events for each
1948  species. D) Per-genome copy numbers of all genes with over 6 copies in any Nearctic Myotis genome.
1949  Genes are classified into 5 categories (cancer, aging, immunity, VIP, translation, and “Other”) based on
1950 literature reviews on PubMed. E) Copy number estimates of FBXO31 across 536 mammalian genomes
1951 identified using Reciprocal Best-Hit BLAT. F) Gene-tree reconciliation of FBXO31 across mammals
1952  generated using GeneRax.
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1953 Figure 6: Evolutionary history and function of an actively segregating copy number polymorphism
1954  of PKR in Myotis. A) Structural comparison of the main PKR haplotypes in two species. Orthologous
1955 regions between the two haplotypes are indicated by grey bands, while syntenic duplications are indicated
1956 in green. Exons are annotated with black marks. B) Cartoon of the PKR locus in the two phased haplotype
1957  assemblies of each species. While PKR2 is present across all haplotypes, PKR1 and PKR copy 3 are
1958 polymorphic within and across species. Each number indicates the number of exons per gene. C)
1959 Reconciled gene tree for PKRs across all haplotypes and species shown in B. Haplotype corresponding to
1960 the reference (A) and alternate (B) haplotype for each species are represented by upper- and lower-
1961 diagonal triangles, respectively. D) Co-immunoprecipitation (IP) of PKR-KO HelLa cells transfected with M.
1962  myotis HA-PKR1 and either M. myotis myc-PKR1, M. myotis myc-PKR2 or a myc-empty vector control.
1963  Proteins were pulled down with anti-myc beads and lysates from 5% input or IP samples were run on a
1964  western blot and stained for HA and myc. Representative of 3 independent experiments. E-G) Effect of
1965 Myotis PKR copy numbers: E) On luciferase translation, measured in Relative Light Units (RLU) and
1966  normalized to the empty pSG5 control; xo-expression of PKR1 and PKR2 has an additive effect on cell
1967  translation shutdown (no synergy or dominant negative effects). Human SAMD9L-GoF is a positive control
1968  of translation inhibition?°. F) On viral VSV infectivity, measured via flow cytometry as VSV-GFP-positive
1969 cells normalized to the control. Although all conditions restrict VSV, the expression of both PKR1 and PKR2
1970 is not beneficial against VSV. ISG20 is a positive control of VSV-GFP restriction?*'. G) On cell viability,
1971 normalized to the control. While no effect was observed at a low total dose of PKRs, at higher doses PKRs
1972 significantly reduce cell viability. Etoposide treatments are positive controls of cell death. For E-G, error
1973 bars indicate the means + SEM for at least three independent experiments. Statistics, unpaired t-test of
1974  each condition versus control.
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