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degradative effects are mediated by the
lysosome, and heat shock exposure
directs HSP-90 to lysosomes and
lysosome-related organelles, in a CUL-6-
dependent manner.
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SUMMARY

Heat shock can be a lethal stressor. Previously, we described a CUL-6/cullin-ring ubiquitin ligase complex in
the nematode Caenorhabditis elegans that is induced by intracellular intestinal infection and proteotoxic stress
and that promotes improved survival upon heat shock (thermotolerance). Here, we show that CUL-6 promotes
thermotolerance by targeting the heat shock protein HSP-90 for degradation. We show that CUL-6-mediated
lowering of HSP-90 protein levels, specifically in the intestine, improves thermotolerance. Furthermore, we
show that lysosomal function is required for CUL-6-mediated promotion of thermotolerance and that CUL-6
directs HSP-90 to lysosome-related organelles upon heat shock. Altogether, these results indicate that a
CUL-6 ubiquitin ligase promotes organismal survival upon heat shock by promoting HSP-90 degradation in
intestinal lysosomes. Thus, HSP-90, a protein commonly associated with protection against heat shock and
promoting degradation of other proteins, is itself degraded to protect against heat shock.

INTRODUCTION

Exposure to dangerously high temperatures, i.e., heat shock, can
lead to organismal sickness and death. These negative impacts
are due, at least in part, to heat-induced denaturation and aggre-
gation of proteins, which impair normal cellular function. To com-
bat these negative impacts, organisms have evolved dedicated
stress resistance pathways such as the heat shock response,
which upregulates and deploys heat shock proteins (chaperones)
to refold denatured proteins and restore protein homeostasis
(proteostasis) in response to acute increases in temperature.’™
A central regulator of the heat shock response and proteostasis
is the transcription factor heat shock factor 1 (HSF-1), which me-
diates the transcriptional upregulation of chaperones upon heat
shock to promote thermotolerance.”® HSF-1 is conserved across
organisms from yeast and the nematode C. elegans to humans.
In C. elegans, we recently described the intracellular pathogen
response (IPR) as a stress resistance pathway that appears to pro-
mote thermotolerance in a manner that is separate from the upre-
gulation of chaperones by HSF-1.”~"° The IPR comprises a com-
mon set of genes induced by natural intracellular pathogens of
the intestine, including microsporidia and the Orsay virus, as well
as by abiotic stressors like proteasome blockade and chronic
heat stress.'" A negative regulator of the IPR is pals-22, a protein
of unknown biochemical function but that nonetheless serves a
critical physiological function to repress IPR mRNA expression
in the absence of infection or stress. Constitutively upregulated

IPR gene expression in pals-22 mutants causes slowed develop-
ment but increased resistance to infection and heat shock.”'"'?
IPR genes are not enriched for chaperones and instead are en-
riched for transcriptionally upregulated E3 cullin-ring ubiquitin
ligase components, which we found are required for the
increased thermotolerance of pals-22 mutants.®'" E3 ubiquitin
ligases are enzymes that conjugate the small protein ubiquitin
onto lysine residues of substrate proteins, which then alters
the fate of these proteins.’® Skp-Cullin-F-box (SCF) ubiquitin i-
gases are a large class of cullin-ring ubiquitin ligases and are
multi-subunit enzymes composed of three core components:
(1) Cullins, (2) Skp proteins, and (3) RING proteins.'* These
core components assemble with F-box proteins that serve as
adaptors to recognize substrate proteins for ubiquitylation.
IPR-induced SCF genes include cul-6/cullin, as well as a previ-
ously uncharacterized RING protein (rcs-7), three Skp-related
proteins (skr-3, skr-4, skr-5), and two previously uncharacterized
F-box proteins (fbxa-75, fbxa-158). Using genetics and biochem-
istry, we demonstrated that the CUL-6 protein assembles with
these other SCF protein components into a multi-subunit ubiqui-
tin ligase complex that promotes thermotolerance in pals-22
mutants.’® Both pals-22 and cul-6 are normally expressed in
the intestine, among other tissues, and expression of pals-22
or cul-6 only in the intestine can regulate thermotolerance.”'®
The ubiquitin ligase activity of cullins can be increased by post-
translational modification of a conserved lysine by the ubiquitin-
like protein NEDDS8 in a process called neddylation.'® We found
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that the ability of CUL-6 to promote thermotolerance in C. elegans
depends on a conserved neddylation site,'® indicating that the
CUL-6 ubiquitin ligase complex likely promotes thermotolerance
through its ability to conjugate ubiquitin onto substrates, but it
was unclear what these substrates were. One hypothesis was
that a CUL-6 ubiquitin ligase could target misfolded proteins for
destruction, including pathogen proteins delivered into host cells
in the context of infection, and/or that it might target misfolded
cytosolic host proteins in the context of heat shock.? The ultimate
fate of CUL-6 target proteins was also not clear. The most com-
mon fate for ubiquitylated proteins is degradation by the protea-
some, but the lysosome can also degrade them, " or ubiquitylation
can result in non-degradative effects such as altered trafficking,
subcellular localization, or biochemical function.'®

Here, we provide evidence that the highly abundant heat
shock protein HSP-90 is a target for degradation by the CUL-6
ubiquitin ligase complex. Unlike other heat shock proteins,
HSP-90 is highly expressed in the absence of heat shock and
has many functions, including facilitating the proper folding of
hundreds of proteins under unstressed conditions.'®2" We
find that CUL-6 activity reduces HSP-90 protein levels in the
absence of heat shock and that decreased expression of
HSP-90, specifically in the intestine, leads to higher thermotoler-
ance. In contrast, overexpression of HSP-90 in the intestine
leads to lower thermotolerance. The current paradigm in the field
indicates that loss of HSP-90 activates HSF-1,2%° but here, we
find that CUL-6-mediated effects of lowering HSP-90 levels on
thermotolerance may be independent of HSF-1, as assessed
by RNAi and a partial-loss-of-function mutant. To investigate
where HSP-90 is degraded in the cell, we show that lysosomes
regulate the levels of HSP-90 protein, and we show that the
effects of HSP-90 and CUL-6 on thermotolerance depend on
lysosomal function. Furthermore, we show that CUL-6 directs
HSP-90 to lysosome-related organelles (LROs) in the intestine
upon heat shock. Altogether, our results support a model that
the CUL-6 ubiquitin ligase targets HSP-90 for ubiquitylation,
which leads to its subsequent degradation by the lysosome
and/or LROs to promote organismal survival upon heat shock.

RESULTS

The lysosome is specifically required for CUL-6-
mediated thermotolerance as part of the IPR
Ubiquitylated substrates can be degraded by the proteasome or
by the lysosome. To determine whether the proteasome or the
lysosome might degrade the substrate(s) of the IPR-induced
CUL-6 ubiquitin ligase, we blocked each pathway with pharma-
cological inhibitors while performing heat shock to assess the
changes in CUL-6-dependent thermotolerance. First, we treated
wild-type animals or pals-22 mutants (which have cul-6 upregu-
lated as part of the IPR and have increased thermotolerance)”
with the proteasome inhibitor bortezomib. Here, we found that
bortezomib treatment impaired thermotolerance in both a wild-
type and a pals-22 mutant background, indicating that protea-
some blockade negatively affects heat shock survival in a
CUL-6-independent manner (Figures 1A and S1A). In contrast,
we found that treatment with the lysosome inhibitor bafilomycin
impaired thermotolerance only in a pals-22 mutant background
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and not in a wild-type background, suggesting that the lysosome
is specifically important to promote CUL-6-mediated thermotol-
erance when the IPR is induced (Figure 1B).

Next, we tested the role of the lysosome in promoting thermo-
tolerance using genetic approaches. Here, we performed RNAI
against pals-22 in animals with a mutation in scav-3, a lysosomal
membrane protein important for lysosomal integrity.”* We found
that pals-22 RNAI, which increases thermotolerance in wild-type
animals, no longer increased thermotolerance in scav-3 mutants
(Figure 1C). Similarly, pals-22 scav-3 double mutants have a
thermotolerance phenotype similar to that of wild-type animals
(Figure 1D). Furthermore, pals-22 RNAi no longer increased ther-
motolerance in mutants defective in vha-12, which encodes a
vacuolar-ATPase subunit important for lysosomal function?®
(Figure 1E), again indicating that the lysosome is required for
the increased thermotolerance in pals-22-defective animals.

The increased thermotolerance of pals-22 mutants depends
on cul-6 expression in the intestine, and overexpression of
cul-6 specifically in the intestine, even in a wild-type back-
ground, promotes thermotolerance.'® Investigating the role of
the lysosome in this context, we saw that the increased thermo-
tolerance due to cul-6 overexpression depended on scav-3
(Figure 1F). As a control, we show that overexpression of a ned-
dylation-deficient CUL-6(K673R) that lacks the lysine used for
neddylation does not promote thermotolerance (Figure 1F),
consistent with prior results.'® Taken together, these findings
indicate that the lysosome is required for the increased thermo-
tolerance associated with transcriptional upregulation of cul-6.

RNAIi knockdown of hsp-90 specifically in the intestine
increases thermotolerance

Given the results above indicating that lysosomal degradation of
a CUL-6 ubiquitin ligase substrate promotes thermotolerance,
we searched for candidate proteins whose reduction might pro-
mote thermotolerance. Previously published studies have shown
that, in some cases, levels of the heat shock protein HSP-90
paradoxically appear to be negatively associated with thermotol-
erance.”®?%?" Therefore, we investigated the possible role of
HSP-90 in our heat shock paradigm and indeed found that
feeding animals hsp-90 double-stranded RNA (dsRNA) signifi-
cantly increased their thermotolerance (Figure 2A).

To examine the efficacy of hsp-90 RNA. in various tissues, we
next performed whole-animal hsp-90 RNAI by feeding dsRNA to
transgenic strains that express HSP-90::RFP specifically in the
intestine, the body wall muscle, or in neurons.”® Here, we only
observed a significant reduction of HSP-90::RFP levels in the in-
testine (Figure 2B). In C. elegans, the neurons are often refractory
to RNAI delivered by feeding, so the lack of knockdown there is
not surprising.”® However, the muscle is generally susceptible to
feeding RNAI. One potential explanation for this lack of effect is
the compensatory mechanisms that have been reported to upre-
gulate hsp-90 expression after hsp-90 RNAI in C. elegans®® or af-
ter deleting 3 of the 4 hsp-90 alleles found in mice.>® These
compensatory mechanisms may be responsible for maintaining
stable HSP-90::RFP protein levels in muscle after whole-animal
RNAi in C. elegans (Figure 2B).

To knock down HSP-90 in specific tissues, and to circum-
vent the issues with neurons being refractory to feeding
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Figure 1. The lysosome is required for CUL-
6-mediated thermotolerance as part of the
IPR

(A and B) Survival of wild-type or pals-22(jy 1) mutant
animals treated with bortezomib (A) or bafilomycin
(B) after 2 h of 37.5°C heat shock with a 15 min
gradual ramp-up, followed by a 24 h recovery period
at 20°C (hereafter referred to as heat shock treat-
ment). Bortezomib-treated animals (green dots)
were tested with eight plates over three experiments
with 30 animals per plate, and bafilomycin-treated
animals (red dots) were tested in triplicate experi-
ments with three plates per experiment and 30 an-
imals per plate. DMSO-treated animals (blue dots)
were tested as the vehicle control for both inhibitors.
Unpaired t tests for each genotype and concentra-
tion of inhibitor were used to calculate p values.

(C) Heat shock treatment of wild-type or scav-
3(0k1286) mutant animals fed E. coli OP50 ex-
pressing control or pals-22 double-stranded RNA
(dsRNA) to induce RNAI (see STAR Methods).

(D) Survival of wild-type, pals-22(jy1), scav-
3(0k1286), or pals-22(jy1) scav-3(ok1286) mutant
animals after heat shock treatment.

(E) Heat shock treatment of wild-type or vha-
12(0k821) mutant animals fed OP50 expressing
control or pals-22 dsRNA to induce RNA..

(F) Heat shock treatment of animals from (D) but also
including strains with transgenes overexpressing
CUL-6 in the intestine (superscript int-OE). CUL-
6(K673R) indicates a lysine-to-arginine mutation at
CUL-6’s neddylation site with reduced ubiquitylation
activity, which controls for CUL-6 overexpression in
the intestine.

For (C)-(F), animals were tested in triplicate exper-
iments with three plates per experiment and 30
animals per plate. A one-way ANOVA with Tukey’s
multiple comparisons test was used to determine
p values. For (A)—(F), the mean fraction of animals
alive for the pooled replicates is indicated by the
black bar with error bars as the standard deviation
(SD). Each dot represents a plate, and different
shapes represent the experimental replicates per-
formed on different days. *p < 0.05, **p < 0.001,
and ***p < 0.0001.

heat shock, at which point HSP-90 binds
to misfolded proteins and releases HSF-1
to activate the transcription of chaper-
ones.?? Therefore, we examined whether

RNAi, we next used strains that genetically encode short
hairpin RNA (shRNA) against hsp-90 specifically expressed
in different tissues.”” Here, we found that by targeting
hsp-90 for RNAIi specifically in the intestine, there was
increased thermotolerance (Figure 2C). In contrast, a strain
with hsp-90 shRNA expressed specifically in neurons did
not exhibit significantly increased thermotolerance (Fig-
ure 2C). Altogether, these results demonstrate that reducing
HSP-90 levels specifically in the intestine leads to increased
thermotolerance.

Prior studies have indicated that HSP-90 binds to the tran-
scription factor HSF-1 and holds it in an inactive state until

HSF-1 might be involved in the increased thermotolerance either
through the reduction of HSP-90 levels or the overexpression of
CUL-6. First, we performed hsp-90 RNAi in an hsf-1(sy441)
mutant background and saw increased thermotolerance similar
to hsp-90 RNAI in a wild-type background (Figure 2D). Of note, a
complete loss of hsf-1 is lethal, and hsf-1(sy441) is a non-null
allele that still retains basal activity of hsf-1, although it is defec-
tive in HSP induction.®*" Therefore, we cannot rule out a role for
hsf-1 based on these results. Also important to note is that while
the overexpression of hsf-1 in C. elegans consistently promotes
thermotolerance, there are varying results in the loss of hsf-1
function; some studies show reduced thermotolerance, and
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Figure 2. Knockdown of hsp-90 in the intestine increases thermotolerance

(A) Heat shock treatment of wild-type animals fed OP50 expressing control, pals-22, or hsp-90 dsRNA to induce RNAI.

(B) Top: representative fluorescent images of L4 animals with HSP-90::RFP overexpression under different tissue-specific promoters fed OP50 expressing
control or hsp-90 dsRNA to induce RNAI. Scale bar: 200 pm. Bottom: quantification of the RFP fluorescent signal for each condition. Each dot represents one
animal measured, and the data shown are the results of three experimental replicates. n = 36-47 worms quantified. A Mann-Whitney test was used to calculate
p values for all strains.

(C) Heat shock treatment of animals expressing tissue-specific short hairpin RNA (shRNA) against hsp-90 in the intestine and neurons relative to a control strain.
(D) Heat shock treatment of wild-type or hsf-1(sy441) mutant animals fed OP50 expressing control or hsp-90 dsRNA to induce RNAI.

(E) Heat shock treatment of wild-type and CUL-6™~CF animals fed OP50 expressing control or hsf-7 dsRNA to induce RNAI.

For (A), (C), (D), and (E), animals were tested in triplicate experiments with three plates per experiment and 30 animals per plate. The mean fraction of animals alive
for the pooled replicates is indicated by the black bar with error bars as the SD. Each dot represents a plate, and different shapes represent the experimental
replicates performed on different days. A one-way ANOVA with Tukey’s multiple comparisons test was used to calculate p values. For (A)—(E), **p < 0.01,
***p < 0.001, and ***p < 0.0001.

others show no reduction in thermotolerance, similar to our re- thermotolerance (Figure 2E). As a control, we ensured that
sults here.®?° Next, we performed hsf-1 RNAi in a cul-6 intesti-  hsf-1 RNAI significantly reduced hsp-16.2p::GFP induction, indi-
nal overexpression strain and saw no significant impairment on  cating that the RNAI clone was effective (Figures S2A and S2B).
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Figure 3. Overexpression of HSP-90 in the in-
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Altogether, these results suggest that the increased thermotoler-
ance due to the effects of CUL-6 overexpression and loss of
HSP-90 may be independent of the heat shock-inducible func-
tions of HSF-1 and the canonical heat shock response.

Overexpression of HSP-90 in the intestine decreases
thermotolerance

Next, we investigated whether elevating HSP-90 levels in the in-
testine would impair thermotolerance. We performed heat shock

test was used to calculate p values. *p < 0.01,
***p < 0.001, and ***p < 0.0001.

assays on transgenic strains where HSP-

90::RFP is overexpressed specifically in

the intestine, body wall muscle, or neu-

rons.?® Here, we found that HSP-90::RFP

overexpression in the intestine decreased

thermotolerance, while overexpression in

body wall muscle and neurons did not nega-

tively affect thermotolerance (Figure 3A).

These results are consistent with a prior

study that found HSP-90 overexpression in

the intestine impaired thermotolerance.?®

However, that study found that overexpres-

sion of HSP-90 in muscle and neurons also

impaired thermotolerance. Several differ-

ences may account for this discrepancy,

including the different copy numbers and fluorophores of the

strains used in that study. In addition, there were distinct thermo-

tolerance assay conditions used in that study, which notably did

not include a 24 h recovery step, whereas our assay did (Fig-

ure S1). Overall, because of our findings with the intestine, and

because CUL-6 is expressed in that tissue, but not in neurons
and muscle, ' we focused our efforts on the intestine.

To confirm that this intestinal-specific effect on thermotoler-

ance was due to HSP-90 levels, we treated these tissue-specific
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expression strains with hsp-90 RNAI that should knock down
hsp-90 systemically and found that all of them had thermotoler-
ance levels increased to the same level (Figure 3A). In fact, all of
the overexpression strains had greatly increased thermotoler-
ance after hsp-90 RNAI, comparable with the survival rates after
hsp-90 RNAI in wild-type animals mentioned above (Figure 2A).
Furthermore, intestinal HSP-90::RFP impairment of thermotoler-
ance was not exacerbated by an hsf-1(sy441) mutation, again
suggesting that these effects are independent of the heat
shock-inducible functions of HSF-1 (Figure S2C). To ensure
that the effects on thermotolerance were specific to overexpres-
sion of HSP-90 in the intestine and not overexpression of the
RFP tag, we tested thermotolerance of two other strains that
specifically express cytoplasmic RFP in the intestine. We did
not observe decreased thermotolerance in either of these strains
(Figure S2D). Therefore, we conclude that overexpression of
HSP-90 specifically in the intestine impairs thermotolerance.

CUL-6 ubiquitin ligase and lysosomal activity promote
thermotolerance when HSP-90 is overexpressed in the
intestine

Next, we investigated the role of CUL-6 in promoting thermotol-
erance in the context of HSP-90 overexpression. Our previous
studies found that loss of cul-6 in a pals-22 mutant background
impaired thermotolerance, but the loss of cul-6 in a wild-type
background did not, suggesting that only when cul-6 is upregu-
lated does it have a role in thermotolerance.””'®> However, we
reasoned that if a CUL-6 ubiquitin ligase targets the HSP-90 pro-
tein, then there would be increased potential for an interaction
between the HSP-90 protein with even low levels of the CUL-6
ubiquitin ligase complexes (i.e., in a wild-type background)
when HSP-90 is overexpressed. Therefore, we predicted we
might see a decrease in thermotolerance upon the loss of
cul-6 in wild-type animals when HSP-90 is overexpressed.
Indeed, we found that when HSP-90 is overexpressed in the in-
testine, the loss of cul-6 caused a decrease in thermotolerance
to a level below that caused by HSP-90 overexpression alone
(Figures 3B and S1B). Furthermore, we found that CUL-6 overex-
pression in the intestine increases thermotolerance in an HSP-90
overexpression background (Figures 3B and 3C). Importantly,
overexpression of CUL-6(K73R) did not have an impact on ther-
motolerance when HSP-90 was also overexpressed, indicating
that the effect of CUL-6 on thermotolerance is dependent on
the neddylation site of CUL-6, as would be expected if thermo-
tolerance were promoted by the activity of a CUL-6 ubiquitin
ligase (Figures 3B and 3C).

The findings in Figures 3A and 3B suggest that thermotoler-
ance is promoted by CUL-6-mediated degradation of HSP-90,
which the findings shown in Figure 1 suggested would occur in
the lysosome. Indeed, we found that treatment with the lyso-
some inhibitor bafilomycin in an HSP-90 overexpression back-
ground reduced thermotolerance even further, suggesting that
normally, lysosomal-mediated degradation of HSP-90 promotes
thermotolerance (Figure 3C). Furthermore, treatment with bafilo-
mycin suppressed the loss or overexpression of CUL-6, as
would be expected if the lysosome were downstream of
CUL-6 (Figure 3C). To further test the model that the lysosome
degrades HSP-90 to promote thermotolerance, we crossed a
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scav-3 mutation into the HSP-90 overexpression strain. Here,
we found that a scav-3 mutation causes reduced thermotoler-
ance in an HSP-90 overexpression background (Figure 3D),
while it does not affect thermotolerance in a wild-type back-
ground (Figure 1D). Furthermore, SCAV-3::GFP leads to
increased thermotolerance in an HSP-90 overexpression back-
ground (Figure S2E), perhaps due to increased lysosomal
function caused by the overexpression of SCAV-3. While
SCAV-3::GFP is not prominently visible in the intestine, possibly
due to autofluorescence in this tissue, we do note that scav-3
transcripts have been found in the intestine, indicating that it is
expressed there.>*%¢

Next, we examined whether lysosomal function was required
specifically in the intestine to regulate thermotolerance. Because
a scav-3 RNAI clone was not available and a vha-12 RNAi clone
was, we used this clone to investigate whether the lysosome was
required in the intestine for HSP-90 overexpression effects on
thermotolerance. First, we used this vha-72 RNAi clone in a sys-
temic RNAi strain, which confirmed our findings with vha-12 mu-
tants (Figure 1E) showing that this lysosomal component is
required for thermotolerance specifically in an HSP-90 overex-
pression background (Figure 3E). Next, we performed RNAI
against vha-12 in an intestinal-specific RNAi strain and again
found the suppression of thermotolerance specifically in an
HSP-90 overexpression background, indicating that the lyso-
some is required in the intestine for these effects (Figure 3E).
Altogether, these results support the model that a CUL-6 ubiqui-
tin ligase promotes the degradation of HSP-90 in the intestine by
the lysosomes to promote thermotolerance.

CUL-6 and lysosomal function regulate HSP-90 protein
levels in the intestine
If CUL-6 ubiquitin ligases target HSP-90 for ubiquitylation and
subsequent degradation by the lysosome, then the levels of
HSP-90 protein should be regulated by CUL-6 and lysosomal
function. To investigate this possibility, we quantified HSP-
90::RFP levels in strains with loss or overexpression of CUL-6.
Because endogenous CUL-6 is expressed more highly in the
anterior intestine compared to the rest of the intestine,’® we
focused our quantification on the anterior half of the intestine.
Here, we found that HSP-90::RFP levels varied inversely with
CUL-6 activity. In particular, we saw significantly higher HSP-
90::RFP levels in cul-6 mutants compared to wild-type animals
and significantly lower HSP-90::RFP levels in animals overex-
pressing wild-type CUL-6 specifically in the intestine but not in
those expressing neddylation-deficient CUL-6 (Figures 4A-4C).
To investigate the role of the lysosome in regulating HSP-
90::RFP levels in the intestine, we treated HSP-90 overexpres-
sion animals with bafilomycin and then quantified HSP-90::RFP
in the anterior intestine. Here, we saw higher levels of HSP-90
in animals treated with bafilomycin (Figure 4C). Furthermore,
we found that bafilomycin treatment suppressed the effects of
cul-6 mutation or overexpression on HSP-90::RFP levels,
consistent with the model that the lysosome acts downstream
of a CUL-6 ubiquitin ligase to regulate HSP-90::RFP protein
levels (Figure 4C). As a control for specificity, when we treated
HSP-90 overexpression animals with the proteasome inhibitor
bortezomib, we saw that cul/-6 mutation or overexpression still
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Figure 4. CUL-6 expression and lysosomal
function reduce HSP-90 protein levels in the
intestine

(A) Fluorescent images of L4 HSP-90™CF 4 ani-
mals with mutation or overexpression of cul-6. Scale
bar: 200 um.

(B) Quantification of RFP signal in the anterior in-
testine of strains shown in (A). n = 113-125 worms
quantified.

(C) Quantification of RFP fluorescent signal in the
anterior intestine of L4 HSP-90™°F animals with

CUL-6-0% CUL-6(K673R)nt-0E

mutation or overexpression of cul-6 and treated with
bafilomycin (red) or DMSO (blue) as a vehicle con-
trol. n = 141-166 worms quantified.

(D) Quantification of RFP fluorescent signal in the
anterior intestine of L4 HSP-90™°F animals with
mutation or overexpression of cul-6 and treated with

C D L bortezomib (green) or DMSO (blue) as a vehicle
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(F) Quantification of RFP signal in the anterior in-
testine of HSP-90™°F animals with mutation or
overexpression of cul-6 in the absence of heat
shock (blue) or 1 h after reduced heat shock treat-
ment (maroon). n = 145-162 worms quantified.
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HSP-90 levels. Indeed, we found that
overexpressing ubiquitin-GFP in intestinal
cells led to lower HSP-90::RFP levels in
the intestine (Figure S3). Ubiquitylation is
the process of directly conjugating ubiqui-
tin onto substrate proteins.'® Therefore,

L—— nsp.90:RFpintoE ———I
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had an effect on HSP-90 levels (Figure 4D). We also investigated
the role of the lysosome in regulating HSP-90::RFP levels by
analyzing the effects of a scav-3 mutation. Again, we saw that
loss of lysosomal function in scav-3 mutants led to increased
levels of HSP-90 (Figures 4E and 4F), comparable to the effect
of loss of cul-6 (Figure 4E). Furthermore, we found that cul-6
and scav-3 regulated the levels of HSP-90 both before and after
heat shock (Figure 4F). These results suggest that CUL-6 and ly-
sosomes degrade HSP-90 at normal growth temperatures, and
the effects are still apparent after heat shock.

If HSP-90 proteins were targeted for ubiquitylation and
degradation, then overexpression of ubiquitin might lower

—
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as a control for non-specific effects of

ubiquitin-GFP overexpression that are
o\j,ko\*;\,‘zf,ﬁ.,\o\‘ unrelated to ubiquitylation, we overex-
MR pressed a conjugation-deficient ubiqui-
tin-GFP, and here we saw no effect on
HSP-90::RFP levels (Figure S3). Alto-
gether, these findings support a model
whereby wild-type cul-6 promotes ubiqui-
tylation of HSP-90, which leads to its degradation in the lyso-
some to promote thermotolerance.

e HS

CUL-6 promotes HSP-90::RFP co-localization with LROs
upon heat shock

To investigate if HSP-90 is targeted to the lysosome in a manner
dependent on CUL-6, we imaged the subcellular localization of
HSP-90::RFP before and after heat shock. Here, we saw that af-
ter heat shock, HSP-90::RFP localized to spherical structures
in the intestine in a manner dependent on CUL-6; there were
fewer spherical structures in cul-6 mutants and more structures
upon wild-type CUL-6 intestinal overexpression but not upon
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Figure 5. CUL-6 promotes HSP-90::RFP co-
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(A) Representative confocal fluorescence images of
the anterior intestine in L4 animals with varying
levels of CUL-6 expression in strains in an HSP-
90™CF packground both 1 h after reduced heat
shock and in the absence of heat shock. Lysosome-
related organelles (LROs) were imaged using an
autofluorescence signal in the blue channel. A re-
gion of interest showing co-localization events in the
second ring of intestinal cells is highlighted in the
image 1 h after reduced heat shock. See Figure S4A
for individual channels of heat shocked animals.
Scale bar: 20 pm.

(B) Enlarged regions of interest identified in
(A) showing co-localization of HSP-90 to LROs.
Arrows depict ring-like aggregation pattern of
HSP-90::RFP upon heat shock around LROs. Scale
bar: 5 um.

(C) Quantification of the fraction of LROs with co-
localized HSP-90 events after reduced heat shock
ns treatment in the second ring of intestinal cells. n =10
worms quantified per condition across three inde-
pendent experiments. A one-way ANOVA with
Tukey’s multiple comparisons test was used to
calculate p values. ****p < 0.0001.

(D) Confocal fluorescence images of a representa-
% tive L4 animal expressing both LMP-1::GFP and
HSP-90::RFP™CF 1 h after reduced heat shock.
LROs were imaged using a blue autofluorescence
signal. Scale bar: 5 pm.
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neddylation-deficient CUL-6 intestinal overexpression (Figures
5A-5C and S4A). To determine whether this phenotype was spe-
cific to the overexpression of HSP-90 in the intestine and not a
consequence of the RFP tag, we also looked at transgenic
strains carrying an extrachromosomal array expressing intestinal
HSP-90::GFP and found a similar CUL-6-dependent formation of
ring-like structures after heat shock (Figures S4B and S4C).
Based on fluorescence in the blue channel, the spherical HSP-
90::RFP structures are localized to LROs, which are abundant
organelles in the intestine with autofluorescence prominently in
this wavelength.®”~*° LROs are multi-functional acidic compart-
ments that express many canonical lysosomal markers and
have degradative potential.”’ To further characterize these

Green

8 Cell Reports 43, 114279, June 25, 2024

-y
‘\5«“\ ‘\0‘0 (‘"0(9

0\3\;&& HSP-90::RFP structures, we imaged them
o in animals with a GFP tag on the lysosomal
protein LMP-1*? and found that, indeed,
LMP-1::GFP and HSP-90::RFP co-localize
after heat shock (Figure 5D). Thus, our re-
Merge sults indicate that the CUL-6 ubiquitin

ligase directs HSP-90::RFP to lysosomes
and/or LROs for degradation upon heat
shock in the intestine.

DISCUSSION

Previously, we identified the IPR-regulated
CUL-6 ubiquitin ligase as a novel proteo-
stasis pathway in C. elegans that is upre-
gulated by intracellular infection of the intestine and by proteo-
toxic stress, including chronic heat stress. In this study, we
identified HSP-90 as a target of the CUL-6 ubiquitin ligase in de-
fending the host from proteotoxic stress. In particular, we show
that CUL-6 promotes the degradation of the HSP-90 protein by
lysosomes and/or LROs in the intestine (Figure 6). Several other
studies have shown that HSP-90 can bind to and negatively
regulate HSF-1, a master regulator transcription factor of the
heat shock response.’”?**® Thus, we considered whether
CUL-6-mediated degradation of HSP-90 may increase thermo-
tolerance through the activation of HSF-1. However, we found
that CUL-6-mediated degradation of HSP-90 appears to
promote thermotolerance independent of HSF-1-inducible
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Figure 6. A model for CUL-6-mediated
degradation of HSP-90

The cullin CUL-6 is upregulated as part of the IPR, a
novel stress response pathway. HSP-90 is a sub-
strate of the CUL-6 ubiquitin ligase complex and is
degraded in the lysosome. The degradation of
HSP-90 improves survival after heat shock stress, or
thermotolerance. When the IPR is activated, upre-
gulated expression of CUL-6 leads to increased
trafficking of HSP-90 to the lysosome, resulting in
higher thermotolerance relative to an inactive IPR
state.
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A simple model for our results is that
degradation of HSP-90 in the intestine
alone can promote organismal thermotol-

IPR OFF

functions, a result consistent with our initial characterization of
the IPR being independent of the canonical heat shock response
mediated by HSF-1.”

Identifying the CUL-6-mediated reduction of HSP-90 protein
levels provides insights into the mechanisms by which the IPR pro-
motes thermotolerance. Degradation of a heat shock protein to
promote thermotolerance may seem counterintuitive because
heat shock proteins as a protein family canonically promote ther-
motolerance, but itisimportant to note that HSP-90 is distinct from
other heat shock proteins. HSP-90, together with its many co-
chaperones, is a central player in protein folding in the absence
of heat shock. Unlike other heat shock proteins, HSP-90 is highly
expressed in the absence of heat shock, and in fact, the HSP-90
protein itselfis thought to comprise 1%-2% of the entire proteome
under unstressed conditions.’® Due to the high basal level of
HSP-90 expression, even the modest ~25% increase or decrease
of HSP-90 levels caused by the loss or overexpression of CUL-6
(Figure 4) may actually be a substantial change in the absolute
amount of this highly abundant protein.

HSP-90 plays a broad role in facilitating folding and maturation
of the proteome and is estimated to be required for the activity of
up to 20% of all proteins and 60% of all kinases.***> Among its
varied roles, HSP-90 promotes the active conformation of onco-
genic kinases, aids the assembly of the multi-protein kineto-
chore complex, and promotes ligand binding to steroid hormone
receptors.'® All of these HSP-90 clients (proteins whose folding
is facilitated by HSP-90) are important for cellular growth in the
absence of heat shock. Therefore, one hypothesis to explain
our findings is that degradation of HSP-90 in the C. elegans in-
testine leads to increased thermotolerance because it prevents
maturation and/or degrades clients of HSP-90 that promote
growth in the intestine. In this way, a CUL-6 ubiquitin ligase could
promote the removal of multiple proteins at once after heat
shock and provide a “factory reset” away from a growth state
and toward a reparative state. However, altered levels of other
HSP-90-associated proteins, as well as other distinct mecha-
nisms, could explain our results showing that CUL-6-mediated
degradation of HSP-90 promotes thermotolerance.

IPR ON or CUL-6™"0E

erance, but other tissues may also be
involved. Studies of systemic signaling in
stress responses have shown that RNAI
knockdown of hsp-90 mRNA in either the intestine or in neurons
triggers the upregulation of hsp-70 mRNA expression in muscle
cells to promote thermotolerance, a phenomenon named “trans-
cellular chaperone signaling.”?%*¢%" These effects were recently
found to be independent of the inducible functions of HSF-1, as
are the effects we see here with CUL-6. Therefore, some of the
thermotolerance benefits from CUL-6-mediated loss of the
HSP-90 protein may be due to cell non-autonomous signaling
to muscle. In fact, the IPR may provide a physiologically relevant
stimulus to explain the activation of transcellular chaperone
signaling, which has previously been studied through RNAI
knockdown. Perhaps this form of systemic signaling is normally
triggered by natural intracellular infection of the intestine.

While HSP-90 functions to fold its client proteins, it also aids
in their degradation.”®>' To our knowledge, this study is the
first to show the degradation of HSP-90 itself by the lysosome.
Numerous drugs inhibit HSP-90, such as those developed to
treat cancer that lead to the degradation of oncogenic kinase
clients of HSP-90.°% Thus, if the pathway we have identified
for degradation of HSP-90 itself in C. elegans is conserved in
humans, then our findings may have relevance for the efficacy
of those drugs. Several studies in C. elegans have now shown
that a reduction of protein quality control factors can paradox-
ically promote organismal survival. In addition to the transcellu-
lar chaperone signaling described above, the repression of
hsp-70 mRNA by microRNA after heat shock has been shown
to aid in heat shock recovery.>® Another example is a recent
study showing that inhibition of HSF-1 causes decreased pro-
tein aggregation and better functioning specifically of the phar-
ynx.>* Interestingly, this protective benefit in the pharynx is
associated with the upregulation of IPR genes and relies on
the same lysosomal factors we found were important for the
thermotolerance benefit of CUL-6-mediated degradation of
HSP-90 in our study. In the future, it will be exciting to deter-
mine the connection among all these findings and to uncover
the downstream mechanism(s) by which degradation of the
central proteostasis factor HSP-90 promotes organismal sur-
vival after heat shock.
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Limitations of the study

While our model posits that a CUL-6 ubiquitin ligase ubiquity-
lates HSP-90 to send it to the lysosome for degradation, we
have not directly shown this ubiquitylation event. Demon-
strating this event will likely not be easy because of the modest
relative change in HSP-90 levels (Figure 4). In addition, there
are at least 7 subunits to the CUL-6 ubiquitin ligase com-
plex(es),’ making biochemical reconstitution of this ligase
together with candidate substrates difficult. Furthermore,
HSP-90 has 42 lysines that are predicted ubiquitylation sites
(as assessed by prediction software on this site: https://www.
biocuckoo.org/), making it challenging to determine which sites
are important for ubiquitylation. With these ideas in mind, a
direct investigation of HSP-90 ubiquitylation by a CUL-6 ubig-
uitin ligase will be part of future studies. Another limitation is
that we did not define the kinetics or other aspects of the
degradation mechanism of HSP-90::RFP in LROs. Furthermore,
all analyses were performed using HSP-90::RFP overexpres-
sion strains. While a similar C-terminally tagged HSP-90::GFP
transgene rescues HSP-90 function in yeast,”® the rescue of
either HSP-90::GFP or HSP-90::RFP has not been shown in
C. elegans, and we did not investigate endogenous HSP-90
levels. An analysis of the functionality of HSP-90::RFP in
C. elegans, as well as an analysis of endogenous HSP-90
levels, ubiquitylation status, and relocalization to LROs, can
be part of future studies.
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Software and algorithms
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RESOURCE AVAILABILITY

Lead contact
Further Information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Emily Troe-
mel (etroemel@ucsd.edu).

Materials availability
C. elegans strains generated in this study are available upon request.

Data and code availability
o All data reported in this paper will be shared by the lead contact upon request.
® This paper does not report original code.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The nematode Caenorhabditis elegans was used as the experimental model for this study. All experiments were performed with her-
maphroditic animals, and males were used only for crosses. All experiments were carried out with L4 animals. Strains were main-
tained at 20°C on Nematode Growth Media (NGM) seeded with Streptomycin-resistant E. coli OP50-1 bacteria according to standard
seeding methods. All strains were backcrossed a minimum of three times prior to analysis where applicable (see Table S2).

METHOD DETAILS

C. elegans maintenance and strain generation

Worms were maintained using standard methods at 20°C on Nematode Growth Media (NGM) agar plates top-plated with strepto-
mycin-resistant Escherichia coli OP50-1 unless stated otherwise.>>°® Worm strains used in this study are listed in Table S2.
Synchronization of C. elegans

To obtain synchronized populations of C. elegans for fluorescent imaging experiments described below, gravid adult animals were
collected from NGM+OP50-1 plates in M9 buffer into a 15 mL conical tube. The tubes were centrifuged, and the supernatant was
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removed, leaving animals in ~2 mL of M9. 800 pL of 5.65-6% sodium hypochlorite solution and 200 pL of 2M NaOH were added to
the tube, and the contents were vigorously shaken for approximately 1 min and 40 s. Embryos released after bleaching were resus-
pended in 15 mL of M9, centrifuged, and the supernatant was discarded. The embryos were washed with M9 in this manner a total of
5 times, resuspended in a final volume of 5 mL of M9, and then placed in a 20°C incubator under continuous rotation for 16-24 h until
L1s hatched.

Thermotolerance assays

Heat shock treatment: Gravid adults were picked to 6-cm NGM+OP50-1 plates and grown at 20°C. 30 F1 progeny from these adults
were picked at the L4 life stage to fresh NGM+OP50-1 plates and subjected to a heat shock of 37.5°C in a dry programmable incu-
bator for 2 h and 15 min with an initial gradual ramp-up to 37.5°C over a 15 min period (2 h stable at 37.5°C). Immediately following the
completion of the 2-h and 15 min heat shock program, the plates were removed from the incubator. The animals were allowed to
recover for 30 min at room temperature by placing the plates in a single layer on a benchtop, then incubated at 20°C for 24 h. Animals
were then scored for survival in a blinded manner; worms not responding to touch with a worm pick, defined by a single prod to the
body, were scored as dead. 3 replicate plates were scored for each condition per experiment, and the experiment was performed 3
independent times, except as noted for the DMSO and bortezomib treatment experiment performed in Figure 1A. A summary of the
heat shock treatment and experiments where it was applied in this study is provided in Figure S1A.

Reduced heat shock treatment: A modified version of the assay with a shorter duration was used to accommodate the increased
heat shock susceptibility of the HSP-90:RFP™~E strain. Following the standard protocol described above, most HSP-90:RFP™~CE
animals died. Therefore, to improve survival and allow for the analysis of HSP-90 intestinal overexpression on raising or lowering ther-
motolerance phenotypes in different contexts, the assay time was shortened to 2 h of 37.5°C heat shock with a 15 min gradual ramp-
up (1 h 45 min stable at 37.5°C). Immediately following the completion of the 2-h heat shock program, the plates were removed from
the incubator. Recovery, scoring, and experimental replicates were performed as described above. A summary of the reduced heat
shock treatment and experiments where it was applied in this study is provided in Figure S1B.

RNAi experiments

RNAI was performed by the feeding method.®” Overnight cultures of OP50 strain (R)YOP50, modified to enable RNAi°® were plated on
6-cm RNAI plates (NGM plates supplemented with 5mM B-D-1-thiogalactopyranoside [IPTG], 1 mM carbenicillin), and incubated at
20°C for 3 days. Gravid adults were transferred to these plates for growth. The F1 progeny at the L4 stage were transferred to new,
matching 6-cm RNAI plates before being tested for thermotolerance as previously described. OP50 RNAI strains were generated by
extracting the desired RNAI plasmid vector from HT115 E. coli in the existing Ahringer and Vidal RNAi libraries.® The plasmids were
then transformed into competent (R)OP50, and transformants were selected after ~24 h of growth based on carbenicillin resistance.
Overnight cultures of transformations were then mini-prepped, and the L4440 plasmid vector was sequenced with the T7 forward
primer to confirm that the insert matching the desired gene for knockdown studies was present in the vector.

Bortezomib treatment

The proteasome was inhibited with bortezomib (Selleckchem Chemicals LLC, Houston, TX) as previously described.'" For thermo-
tolerance assays, gravid adults were plated onto 10-cm NGM+OP50-1 plates and incubated at 20°C for 72 h. Before performing heat
shock treatment, a 10 mM stock solution of bortezomib in DMSO was suspended in enough M9 to cover the surface of a standard
6-cm plate and top-plated to 6-cmm NGM+OP50-1 plates to reach a final concentration of 2 uM, 10 uM, or 20 uM per plate after evap-
oration of M9. The same volume of DMSO in M9 was added to the control plates. The plates were dried, the drug was allowed to
equilibrate within plates for 1 h, and 30 L4 F1 animals were transferred onto each treatment or control plate. The plates were then
subjected to the standard heat shock treatment, recovery, and scoring regimen described above.

To quantify HSP-90:RFP fluorescence, synchronized L1s were plated on 10 cm NGM+OP50-1 plates and grown for 44 h at 20°C. A
10 mM stock solution of bortezomib in DMSO was top-plated to reach a final concentration of 20 uM per plate, and the same volume
of DMSO was added to control plates. Plates were dried, and worms were incubated for 4 h at 20°C. The animals were washed off the
treatment plates in M9+tween 20, pelleted, anesthetized with a final concentration of 10mM levamisole, and transferred into a 96-well
plate with fresh 10 mM levamisole in M9+tween 20. Imaging was performed using the ImageXpress Nano using a 4x objective
(Molecular Devices, LLC) and analyzed using the FIJI program. Quantification of fluorescent signal was restricted to the anterior in-
testine, defined for the purposes of this assay as the beginning of the intestine to the midpoint of the vulva region, since CUL-6 is
primarily expressed in the anterior intestine and we would expect that mutation of endogenous CUL-6 would have the greatest effect
on HSP-90 levels in this region. The background signal was collected from three adjacent regions and the mean subtracted from the
signal measured in the anterior intestines of animals.

Bafilomycin treatment

The lysosome was inhibited with bafilomycin A1 (AdipoGen Life Sciences, Liestal, Switzerland). For thermotolerance assays, a
25 mM stock solution of bafilomycin in DMSO was suspended in enough M9 to cover the surface of a standard 6-cm plate and
was added to 6-cmm NGM+OP50-1 plates to reach a final concentration of 1 uM or 3 uM per plate after evaporation of M9. The
same volume of DMSO in M9 was added to the control plates. Plates were dried, allowed to equilibrate for 1 h, gravid adults
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were added, and the plates were then incubated for 72 h at 20°C. 30 L4 F1 animals from each plate were then transferred onto freshly
prepared, equilibrated, and dried plates with matching treatments. The plates were then subjected to the standard heat shock treat-
ment, recovery, and scoring regimen described above.

To quantify HSP-90:RFP fluorescence, a 25 mM stock solution of bafilomycin in DMSO suspended in enough M9 to cover the sur-
face of a standard 10-cm plate was top-plated to a 10-cm NGM+OP50-1 plate to reach a final concentration of 3 uM per plate. The
same volume of DMSO in M9 was added to the control plates. Once the plates were dry and equilibrated for 1 h, synchronized L1s
were added, and the plates were incubated for 48 h at 20°C. The animals were washed off the treatment plates in M9+tween 20,
pelleted, anesthetized with a final concentration of 10mM levamisole, and transferred into a 96-well plate with fresh 10 mM levamisole
in M9+tween 20. Imaging was performed using the ImageXpress Nano using a 4x objective (Molecular Devices, LLC) and analyzed
using the FIJI program. Quantification was restricted to the anterior intestine and background-corrected as described above.

Microscopy

For HSP-90:RFP-expressing animals shown in Figures 4A and 4E, and hsp-16.2p::GFP animals shown in S2A, L4 animals were
picked from a mixed population grown on 6-cm NGM+OP50-1 plates incubated at 20°C, anesthetized with 10 mM levamisole in
M9 buffer, and mounted on 2% agarose pads for imaging on a Zeiss Axioimager M1 compound microscope with a 10X objective.
For S2A, whole animal fluorescent signal was quantified using the FIJI program, corrected by the mean background sampled
from three adjacent background regions.

For images of HSP-90:RFP in the absence of and 1 h after heat shock (Figure 5), animals were synchronized by bleaching as
described above, then cultured on 10 cm NGM+OP50-1 plates for 44 h at 20°C. While control (no heat shock) animals remained
at 20°C, animals assigned to heat shock treatment were subjected to a reduced heat shock exposure (2 h with a 15-min ramp up
to 37.5°C, 1 h and 45 min stable at 37.5°C), and allowed to recover for the standard 30 min at room temperature. Plates were
then incubated at 20°C for 1 h before all conditions were anesthetized with 10 mM levamisole in M9 buffer and mounted on 2%
agarose pads for imaging with a Zeiss LSM700 confocal microscope and Zen2010 software using a 63X objective. For quantification,
the fraction of LROs in the second ring of intestinal cells as labeled by autofluorescence in the blue channel with positive HSP-90:RFP
colocalization over total number of LROs in the region of interest was recorded for a total of four animals per condition.

QUANTIFICATION AND STATISTICAL ANALYSIS
All statistical analysis was performed with Prism 9 software (GraphPad). The D’Agostino & Pearson omnibus normality test was used
to assess the data distribution for all experiments. Standard parametric statistical tests were performed for normally distributed data,

and nonparametric tests were performed for non-normally distributed data. The corresponding figure legends describe the statistical
test used for each experiment, the number of data points analyzed, replicate information, and other relevant details.
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Figure S1. Heat shock treatments to assess thermotolerance
phenotypes. Related to All Figures (specified in panels A and B).

(A) Diagram of the workflow for the 2 h 15 min “heat shock treatment” and
experiments where it was applied (also see methods). (B) Diagram of the
workflow for the 2 h “reduced heat shock treatment” and experiments where it
was applied (also see methods). HSP-90ntCE strains survive poorly following
the longer heat shock treatment shown in A (example: Figure 3A, control
condition). When warranted, strains with HSP-90"-CE were instead subjected
to the less stressful reduced heat shock treatment to better assess CUL-6

and lysosome-mediated phenotypes.
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Figure S2. CUL-6 lowers HSP-90::RFP levels independent of HSF-1’s
heat shock-inducible functions, and overexpression of SCAV-3::GFP
promotes thermotolerance

(A) Fluorescent images of L4 animals showing induction of hsp-16.2p::GFP 1
h post heat shock after RNAi against hsf-1 relative to control RNAI. Scale bar
= 200 um. (B) Quantification of hsp-16.2p::GFP signal of animals shown in
panel A. An unpaired t-test was used to calculate the p-value. (C) Survival of
wild-type or hsf-1(sy441) mutants without or with HSP-90""-CE and HSP-90t
OE animals after reduced heat shock treatment. (D) Survival of wild-type,
HSP-90"-CE animals, and two additional strains that overexpress RFP in the
cytosol of the intestine after reduced heat shock treatment. (E) Survival of
wild-type and HSP-90MOE agnimals with or without SCAV-3::GFP
overexpression after heat shock treatment. For C-E, animals were tested in
triplicate experiments with three plates per experiment and 30 animals per
plate. The mean fraction of animals alive for the pooled replicates is indicated
by the black bar with error bars as the SD. Each dot represents a plate, and
different shapes represent the experimental replicates performed on different
days. A one-way ANOVA with Tukey’s multiple comparisons test was used to

calculate p-values.; ****p <0.0001; **p < 0.01; *p < 0.05.
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Figure S3. Ubiquitin overexpression in the intestine reduces HSP-
90::RFP expression

(A) Representative fluorescent images of L4 animals carrying an
extrachromosomal array that intestinally overexpresses either functional
GFP::UBQ or a conjugation-deficient version, GFP::UBQAGG, in an HSP-
90ntOE  background. Sibling transgenic animals carrying both the
GFP::UBQ/GFP::UBQAGG array and HSP-90"tOE or just HSP-90"-OE glone
are shown. Scale bar = 200 ym. (B) Quantification of the RFP fluorescent
signal for each condition. (C) Quantification of the GFP fluorescent signal for
the same animals measured in B. For B and C, each dot represents one
animal measured, and the data shown are the results of three experimental
replicates. n = 44 — 47 worms quantified. The black bar indicates the mean
fluorescence intensity with error bars as SD. For each, a Kruskal-Wallis test

was used to calculate p-values; ****p <0.0001.
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Figure S4. Ring-like structures formed after heat shock appear to be
HSP-90-specific

(A) Confocal fluorescence images split by channel of the anterior intestine in
L4 animals with varying levels of CUL-6 expression in strains in an HSP-90"*
OFE background 1 h after reduced heat shock. LROs are visualized using
autofluorescence in blue channel. Scale bar = 20 pm. (B) Confocal
fluorescence images of worms carrying an extrachromosomal array
expressing HSP-90::GFP"OE both in a wild-type and cul-6(ok1614) mutant
background 1 h after reduced heat shock (left column), presented with an
area of interest outlined in white (magnified in right column). Left scale bar =
20 pm, right scale bar = 5 ym. (C) Quantification of the fraction of worms
showing intestinal ring-like HSP-90::GFP structures 1 hour after reduced heat
shock in a wild-type and cul-6(ok1614) mutant background. n = 137 per strain

across three independent experiments.



Application Sequence(s)

pals-22(jy1) genotyping (Taql Digest) [CCACACCTGGCACATAAAATC, GGTCTGACATAAGCCTACAAG

scav-3(ok1286) genotyping GACAAGACTAGTCCGCCAGC, TGTGCGGCACCTTGCAAACTCA, GGTCATTGTGACCCGTAAGC
cul-6(ok1216) genotyping GCACCATCGAATGGGACAAC, CTCACTACGGCATCAGGTGG, GGATCCCAAGTTGTACGGCA
hsf-1(sy441) genotyping GTACCGGCACATCAAATCCA, GTGGCTTCATGCCTTCAGAT

hsf-1(sy441) sequencing GTACCGGCACATCAAATCCA

rde-1(ne300) genotyping AATTGCTCAGAGAATTCGCAGAA, ACAATTCCAGTTTCTTTGCTTTCTT

rde-1(ne300) sequencing AGCGACATCTGTTTCAGCAG

Table S1. Primers used in this study. Related to STAR methods.




Strain Name ype (tr or mutant allele details) Source Notes Figure Appearance
N2 wild-type Caenorhabditis Genetics Center 1-5,82
ERT356 pals-22(jy1) Il Reddy etal., 2017 1+D3
ERT571 jySi42[pET499(vha-6p=GFP=cul-6::unc-54 3' UTR, unc-119(+))] ll: unc-119(ed3) il (Panek etal., 2020) 35,54
ERT740 jySi46[pET688(vha-6p=-GFP:cul-6(K673R)-unc-54 3' UTR, unc-119(+))] Il unc-119(ed3) il (Panek etal., 2020) 35,54
RB938 vha-12(0k821) X Caenorhabditis Genetics Center 1
AM994 hsp-90control sid-1(pk3321); rmis288(myo-2p.::CFP;hsp-70p.:mCherry) van Oosten-Hawle etal., 2013 2
PVH1 sid-1(pk3321) V;rmis288[myo-2p::CFP;hsp-70p::mCherry];pcls001[rgef-1p::hsp-90RNAi::unc-54 3'UTR] _|van Oosten-Hawle etal., 2013 2
PVH2 sid-1(pk3321) V;rmis288,pcls002[vha-6p::hsp-90RNAi::unc-54 3'UTR] van Oosten-Hawle etal ., 2013 2
PS3551 hsf-1(sy441) | Caenorhabditis Genetics Center 2,82
ERT1006 scav-3(ok1286) Il Caenorhabditis Genetics Center backcrossed into N2 from RB1227 1
ERT1236 rmls346[vha-6p::HSP-90::RFP] van Oosten-Hawle et al., 2013 backcrossed into N2 from AM986 2-5,82,84
ERT1226 rmls345[F25B3.3p::HSP-90::RFP] van Oosten-Hawle etal., 2013 backcrossed into N2 from AM987 2
ERT1227 rmls347[unc-54p::HSP-90::RFP] van Oosten-Hawle et al., 2013 backcrossed into N2 from AM988 2
ERT1166 njls11[glr-3; FP + ges-1p::RFP] Caenorhabditis Genetics Center backcrossed into N2 from IK716 S2
ERT1167 njls12[glr-3p::gir-1::GFP + glr-3p::RFP + ges-1p::RFP] Caenorhabditis Genetics Center backcrossed into N2 from IK718 S2
ERT1004 pals-22(jy1) scav-3(ok1286) Il This paper cross between ERT356 and ERT1006 |1
ERT1152 jySi42 Il; unc-119(ed3) scav-3(ok1286) Il This paper cross between ERT571 and ERT1006 |1
ERT1046 cul-6(ok1614) IV;rmIs346 This paper cross between ERT540 and ERT1236 [3-5, S4
ERT1104 jySi42 Il; unc-119(ed3) Ill; rmls346 This paper cross between ERT571 and ERT1236 [3-5, S4
ERT1136 jySi46 Il; rmls346 This paper cross between ERT740 and ERT1236 [3-5, S4
ERT1212 scav-3(ok1286) Ill; rmls346 This paper cross between ERT1006 and ERT1236 (3, 4
ERT1265 frSi17[mtl-2p::rde-1 3'UTR] II; rde-1(ne300) V Caenorhabditis Genetics Center backcrossed into N2 from 1G1839 3]
ERT1295 frSi17[mtl-2p::rde-1 3'UTR] Il; rde-1(ne300) V; rmis346[vha-6p::HSP-90::RFP] This paper cross between ERT1265 and ERT1236 (3
ERT1297 LMP-1:GFP;HSP-90::RFP This paper cross between ERT1296 and ERT 1236 |5
CL2070 dvIs70[hsp-16-2p::GFP + pRF4 rol-6(su1006)] Caenorhabditis Genetics Center S2
ERT1191 hsf-1(sy4410) I, rmis346 This paper cross between PS3551 and ERT1236  [S2
ERT1210 qxIs430 [scav-3::GFP + unc-76(+)] Caenorhabditis Genetics Center backcrossed into N2 from XW8056 S2
ERT1237 qxIs430,rmls346 This paper cross between ERT1210 and ERT1236 [S2
ERT1238 jyEx128 [vha-6 FP::UBQ, cb-unc-119(+)]; unc-119(ed3)lll; rmls346 This paper cross between ERT261 and ERT1236 [S3
ERT1239 jyEx131 [vha-6j FP::UBQdeltaGG, ch-unc-119(+)]; unc-119(ed3)lll; rmls346 This paper cross between ERT264 and ERT1236 [S3
ERT1298 rmEx315[vha-6p::HSP-90::GFP; myo-2p::mCherry] van Oosten-Hawle etal., 2013 backcrossed into N2 from PVH301 S4
ERT1299 cul-6(ok1614) IV;vha-6p::HSP-90::GFP This paper cross between ERT540 and ERT1298 |S4

Table S2. Strains of C. elegans used in this study and their appearance
in figures. Related to STAR methods.
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