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Highlights  

 Social-environmental systems (SES) are complex adaptive systems (CAS). 

 CAS Handles the high dimensionality and complexity challenges in SES. 

 CAS helps evaluate alternative pathways or theories in sustainability. 

 Agent-based models help mechanistic modeling of SES with sustainability challenges. 

 Agents’ behaviors can be better derived by artificial intelligence and data science tools. 
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Abstract: A significant number and range of challenges besetting sustainability can be traced to 

the actions and interactions of multiple autonomous agents (people mostly) and the entities 

they create (e.g., institutions, policies, social network) in the corresponding social-

environmental systems (SES). To address these challenges, we need to understand decisions 

made and actions taken by agents, the outcomes of their actions, including the feedbacks on the 

corresponding agents and environment. The science of complex adaptive systems—CAS 

science—has a significant potential to handle such challenges. We address the advantages of 

CAS science for sustainability by identifying the key elements and challenges in sustainability 

science, the generic features of CAS, and the key advances and challenges in modeling CAS. 

Artificial intelligence and data science combined with agent-based modeling promise to 

improve understanding of agents’ behaviors, detect SES structures, and formulate SES 

mechanisms. 
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1. Introduction 

The Anthropocene witnesses unprecedented conditions and challenges about human-

environment relationships (Steffen et al., 2015; Turner, 2022).  These conditions are created by 

the escalating demands placed on the global environment by the largest population with the 

highest level of material consumption in the history of humankind.  They generate challenges 

that range from equitable consumption (Costanza et al., 2014; United Nations, 2016) to the 

consequences of consumption on the functioning of the Earth system (Lade et al., 2020).  

Together, these challenges have emboldened the search for sustainability—meeting the material 

needs of the humankind more equitably and for future generations, while not threatening the 

capacity of Earth system functioning and delivering the ecosystem services (Board on 

Sustainable Development, National Research Council, 1999; Kates et al., 2001; The World 

Commission on Environment and Development, 1987). This search, in turn, has given rise to 

sustainability science, a use-inspired research field seeking to advance understanding about 

critical elements that promote sustainable development (Bettencourt and Kaur, 2011; Clark and 

Harley, 2020; Kates, 2011). It constitutes “a new social contract for science” (Lubchenco, 1998), 

akin to agricultural or medical research (Kates, 2011), in which the approach to problem solving 

remains within the explanatory structure and methods of science but maintains a normative 

element—the goal of sustainability (Clark and Harley, 2020).  

Human-environment interactions reside at the core of the sustainability science, and are 

addressed as social-environmental systems (SESs: aka social-ecological systems, coupled human 

and natural systems, or nature–society systems (Liu et al., 2007a, 2007b; Schlüter et al., 2023a)), 

which behave as complex adaptive systems (CAS) (Preiser et al., 2018; Section 3) in many, if not 

most, instances. Comprehensive synthesis articles (Bettencourt and Kaur, 2011; Clark and 

Harley, 2020; Kates, 2011; Liu et al., 2015, 2018) and online repertoires (Harley and Clark, 2020; 

SDSN Association, 2019) indicate that SES maintain at least three overarching elements: actors, 

environment, and outcome (detail in Supplemental file A) (Kates, 2011). These three elements 

correspond to agents, environment, and emergence in CAS, although these elements are more 

restrictive than those to which CAS at large has addressed (detail in Supplemental file B). In SES 

science agents/actors must be people-based (i.e., from individuals to states), environment must 

include biophysical and built systems, and the outcome need not be emergent. Understanding 

the interactions in question and their outcomes could be enhanced for many of the problems 

addressed in sustainability science by improved engagement with the concepts of CAS and its 

tools and methods: agent-based modeling (ABM), artificial intelligence (AI), and data science. 

This article is structured as follows. The theoretical background, Section 2, is comprised of 

three parts. Section 2.1 identifies four major challenges in sustainability science, namely high 

dimensionality/complexity, the need for systems integration, choosing from alternative theories, and the 

need to have temporal progression. CAS science and its major method, ABM, provide unique 
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strengths to tackle these challenges. Section 2.2 demonstrates that despite substantial efforts 

over the last two decades, CAS/ABM is quite underrepresented as a means to address research 

problems in sustainability science. As such, an articulation of the synergies to be gained by 

more attention to the linkages in question constitutes Section 2.3. This articulation, Section 3, 

identifies what CAS and ABM are and why/how they can contribute to the four challenges of 

sustainability (Sections 3.1 through 3.4).  These contributions notwithstanding, three major 

constraints of CAS and ABM, are identified and discussed (Section 4): difficulties in dealing 

with system structure and cross-scale influences, detecting causality, and using qualitative data. 

AI offers a means to elegantly handle these constraints. Finally, Section 5 points to future 

directions of CAS/ABM in sustainability science. 

 

2. Theoretical background 

 

2.1 Central challenges in sustainability science 

Several central challenges emerge in sustainability science, pursuant to its goal of 

sustainable development (Clark and Harley, 2020), that are prevalent in the synthesis articles  

and online repertoires noted above. It is difficult, if not impossible, to present a full spectrum of 

theories, approaches, advances, findings, and potential development pathways pertaining to the 

challenges in question.  Here, we focus on several broad challenges to sustainability science in 

which CAS (similar to agent-based complex systems as labeled by Grimm and colleagues, 

Grimm et al., 2005) science and ABM may provide potentials to resolve, especially in light of AI. 

CAS science examines “dynamic networks of many interacting agents” (Grimm et al., 2005) 

with an emphasis on information about entities at a lower level(s) of the system, theories about 

their behavior, and the emergence of system-level properties related to particular questions 

(Axelrod and Cohen, 1999; Holland, 1992).  Such attention dates back to at least 1970s (details in 

Section 3.1). As the process of perceiving, synthesizing, and inferring information by machines 

(Nilsson, 2009), AI may substantially empower CAS science to address sustainability challenges 

as noted below. In particular, we highlight the usefulness of machine learning, a branch of AI, 

which focuses on developing, understanding, and using methods that leverage data to improve 

the performance on some set of tasks. 

The first challenge is a need to address the high dimensionality and complexity of SES that 

sustainability science examines. Such systems are highly complex given the dimensions of 

factors and relationships comprising them (Clark and Harley, 2020; Kates, 2011; Kates et al., 

2001). Following Clark and Harley (2020), the generic SES of sustainability science includes the 

interactions of institutions (governance), actors, and resources (biophysical world at large) 

regarding consumption and production goals. These elements maintain high heterogeneity at 

the lower (micro or local) and focal (meso) spatial levels, although persistent or macro-level 

factors, such as climate zones or political boundaries, influence the interactions. These 

interactions may vary over time, affected by past conditions and leading to different outcomes, 

some of which may be emergent patterns, especially surprises that may come from unknown 

factors or causal relationships (Scheffer et al., 2012).  Despite this complexity, SES are, for 
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practical reasons, often examined by focusing on specific systems at local scales, and on lower 

levels of system organization. This way of handling complexity tends to draw attention to 

place-based or context specific outcomes, from which SES-specific strategies for achieving 

certain sustainability goals are derived. It is understood, however, that the overall internal 

organization of SES is based on more general and overarching principles (Clark and Harley, 

2020; Kates et al., 2001). Focusing on the lower levels and local scales limits insights into general 

dynamics and principles that could enhance understanding and broader strategies. Given the 

high dimensionality and complexity of sustainability challenges, “silo approaches” (Grimm, 

2023; Liu et al., 2018) alone may solve one problem while exacerbating others, or relieve the 

problem in one dimension or moment but worsen it in others.   

Hence, and second, there comes the need for integrative approaches. Several frameworks 

for this integration have been proposed or advanced within sustainability science, foremost cast 

for specific problem sets common to sustainability (Ostrom, 2009; Turner, et al., 2020) such as 

human-nature nexus and telecoupling (e.g., Kapsar et al., 2019). At the same time, sets of 

metrics capturing the dimensionalities involved have been proposed, such as inclusive wealth—

the “… aggregate value of all capital assets [including ecosystem services], where the value of a 

unit of a capital asset is measured by the contribution it makes to increasing current and future 

human well-being (Polasky et al., 2015, p. 446).  In perhaps the broadest framing, Clark and 

Harley (2020) propose that the spatial dynamics of human-environmental interactions at the 

mesoscale can serve as the integrator of the heterogeneity of lower-level dynamics and the 

relatively persistent, macro-scale patterns and processes operating on the SES. 

Third, choosing among alternative theories or mechanisms to explain or project human 

decision-making or actions is a serious challenge (An et al., 2023; Wijermans et al., 2023). For 

example, alternative theories of resource uses may yield highly divergent outcomes at the 

system level, with none outperforming the others in terms of robustness and validity (Janssen 

and Baggio, 2017). It is increasingly acknowledged that no single model of decision making will 

be able to cover all possible contexts, hence frameworks exist that help to find the most suitable 

decision model for a given context (Wijermans et al., 2023). Still, even for a given context, 

seemingly minor details of how a theory is implemented can have large effects on the system-

level outcomes (Muelder and Filatova, 2018). 

Fourth and last, sustainability research and applications must enable and evaluate 

processes and temporal progression (Clark and Harley, 2020). This temporal dimension, 

including depicting and predicting pathways of development affected by hysteresis and 

legacies effects (i.e., lag-times between cause and effect and past outcomes constraining future 

ones, respectively) as well as future tipping points and adaptations in human-environmental 

conditions (Bürgi et al., 2017), becomes a must. 

 

2.2 Underrepresentation of CAS/ABM in sustainability science 

CAS and ABM have been increasingly used to handle sustainability problems in human-

environmental arenas, particularly in land use/change analysis, human-wildlife interaction, and 

agricultural systems (An et al., 2020a; Brown and Robinson, 2006; Müller et al., 2007; Robinson 
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et al., 2007). We can see such popularity also from a set of review papers (An, 2012; An et al., 

2021, 2023; Elsawah et al., 2020; Parker et al., 2003; Rounsevell et al., 2012; Schlüter et al., 2012). 

However, we believe CAS and ABM are still quite underrepresented in sustainability science 

literature. As pointed out in a review paper (Ioan et al., 2021), a search on the Web of Science 

under the key “TS=((“sustainability” OR “sustainable development”) AND (“agent-based 

modeling” OR “agent-based simulation”)) AND Language=”English” returned 170 publications 

from January 2005 to July 2019. In comparison, a search also on the Web of Science for 

“sustainability” OR “sustainable development” (as topic) for 2018 alone returned 27,608 

publications (also in English). Out of the above total number (170), the authors kept 87 

publications that were meaningful (Ioan et al., 2021). Among the 87 publications, the top three 

domains were agriculture (24), transportation (13), and energy (10). This underrepresentation of 

CAS and ABM in sustainability science may arise from the relative unfamiliarity with CAS 

science and its ABM methodology (An et al., 2017, 2021). 

The underrepresentation of CAS and ABM in sustainability science is also supported by 

our own literature search (See the endnote i ). For example, CAS applied to addressing 

sustainability problems have significantly increased of late, but they comprised only about 1.24% 

of all sustainability science publications as late as 2021 (Fig. 1). In addition, among the 22 

generic sustainability science cases examined here, only 15 of them could benefit from using 

ABMs but failed to do so (Table S1 in Supplemental file C).  

[Figure 1 approximately here] 

 

 

2.3 Problem Statement 

The literature reviewed above suggests that advances in linking CAS/ABM with 

sustainability science problems at large could improve understanding of sustainability 

problems and, perhaps, promote synergies between the two research communities. Focusing on 

the improvement goal, we identify the basic concepts in CAS and its major methodology of 

ABM, illustrate the usefulness of CAS/ABM in addressing sustainability science challenges, and 

point out a new opportunity arising from AI to address sustainability problems, while also 

advancing CAS/ABM. We envision that CAS and sustainability sciences can be integrated, with 

strong possibilities of leading to breakthroughs in understanding and for application of 

sustainability problems.   

 

3. Contribution of CAS science to addressing sustainability challenges  

 

3.1. Handling the high dimensionality and complexity challenges 
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Dating back to open systems in the mid-20th century (Von Bertalanffy, 1950) and explicit 

studies of complexity in the 1970s (Vemuri, 1978) and arguably in late 1940s (Weaver, 1948), 

CAS science has advanced to a comprehensive, complex systems framework that can address 

the high dimensionality and complexity problems addressed in sustainability science. 

Compared to Complex Systems (Holland, 1992) or Agent Societies (Conte and Paolucci, 2014) to 

which CAS are similar, the latter emphasizes the pivotal role of individual agents or entities 

(objects) that make choices, commonly to pursue a certain goal (Abar et al., 2017). Agents in 

CAS interact with one another (Fig. 2, dashed arrows) and the environment. Agents can possess 

different degrees of autonomy, proactivity, and intellectual capabilities, such as memory, 

knowledge, reasoning, learning, social capital, and adaptative capacity. Computationally, 

agents are represented as software abstractions that bundle a particular set of attributes (or 

traits) and methods (or actions). Algorithmically, agents follow rules ranging from very simple 

“if-then” (reactive decision) rules to sophisticated ones based on evaluating the future 

consequences of alternative decisions (Rounsevell et al., 2012). This representation builds on a 

unique ontology (Fig. 2) in which real-world agents are represented as heterogeneous 

individuals that generate the interactions in question (An, 2012; Brown and Robinson, 2006). 

This ontology of methodological individualism represents a shift from understanding aggregate 

agent features and/or relationships to the individuals and micro-level processes that constitute 

and explain the aggregate features (detail in Supplemental file B). At the same time, we show 

that non-traditional data can help unfold dynamic patterns (detail in Supplemental file D). 

Given the features in this ontology (Fig. 2), CAS science offers a comprehensive, complex 

systems framework applicable for the problem sets, interactions, and outcomes addressed in 

sustainability science.  This applicability is illustrated by way of a literature survey of empirical 

studies in both CAS and sustainability sciences (Supplemental file C). The qualities of the CAS 

framework that can guide sustainability scientists and practitioners follow.  

[Figure 2 approximately here]  

First, SES in sustainability problems can be examined in a hierarchical structure, where 

actors (i.e., CAS agents) at one level or location may affect and be affected by actors at other 

levels or locations. The sustainability literature is replete with cross-scale (lower to upper levels) 

interactions (detail in Supplemental file C). For example, individual migrants (lower-level actors) 

affect their households (focal or meso-level actors) through remittances (Dou et al., 2017; Mena 

et al., 2011); or wastepaper markets (upper-level actors) affect decisions of their suppliers and 

recyclers (focal-level actors) (Sauvageau and Frayret, 2015).ii Also, An et al. show that individual 

monkeys and monkey groups may jointly affect their movement and habitat use patterns 

(Supplemental file E) 

Second, CAS can be employed to track the behavior of autonomous, heterogeneous, and 

decision-making agents that SES entertain. For instance, it can track the movement of prey and 

predator animals and hunters in realistic simulations, accounting for encounters, hunts, or 

predates on the heterogenous landscape at certain times. The resulting simulation gives rise to 

meaningful results when alternative behavioral models are applied to ABM, testing the 

reliability of various theories of social behavior of hunter–gatherers (Supplemental file F).     
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Third, sustainability problems commonly involve assessment of temporal dynamics. 

Environmental conditions at earlier times, for example, may constrain those at the current time, 

which may in turn further constrain those at future times. A plethora of SES case studies, for 

instance, examine the impacts of historic precipitation, disasters, fires, local weather conditions, 

and land use on the current environment (Table S2). Similarly, adjacent or distant environments 

may affect and be affected by the immediate environment in question at the same level through 

various mechanisms, such as the telecoupling effect (Dou et al., 2020) (Table S2). CAS has the 

capacity to account for these dynamics in models. 

Fourth, decisions or actions of actors at one time or location may influence their own and 

other actors’ decisions or actions, which may translate to system-level events or emerging 

outcomes at later times or other locations. Abundant SES examples exist regarding how agents 

affect one another through crop choice, land abandonment, social norm changes, coastal 

defensive buildings, trading of goods, and other interactions in SES (see Table S2).  

Fifth, at the system level, attention is paid to the mutual influences between SES across 

different levels, between parallel SES, or among different times. For instance, to project future 

human migrations and changes in the environment, the interactions between parallel SES in the 

future can be assessed by the exchange of information of migration destinations within a social 

network, which can be viewed as interconnection between the local system of migration origin 

and outside systems of migration destinations (Kniveton et al., 2011).iii  

Finally—as a result of the above points—the CAS ontology provides a framework that 

captures the essence of many other SES processes and dynamics, such as adaptive decision-

making and the co-evolutionary aspect of SES. It guides sustainability interests in the 

formulation of goals, data collection, and analysis and modeling. 

 

3.2. Providing an effective platform for systems integration 

The modeling advances of CAS science point to its potential in addressing the 

aforementioned high dimensionality, complexity, and other problems of SES and sustainability 

given the following considerations:  

 Agents: what agents (or actors; Supplemental file A), attributes and/or traits, and 

behaviors of the agents should be included at each level of the corresponding CAS or SES? 

 Environment: what attributes and processes should be included (especially those 

affected by and feed back to affect agents) at each level? In CAS, the environment can be 

broadly defined to be the context other than the agent under consideration, such as the space 

(land) and/or other agents. 

 Agent-agent and agent-environment interactions: what relationships (expressed as rules, 

influences, or actions) among or between agents and the environment govern system dynamics 

at each level? What cross-level (e.g., from upper- to focal level) relationships are needed to 

account for systems dynamics and complexity?  

 Systems-level complexity (e.g., emergence): what emerging patterns may arise from the 
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interactions? Such patterns, often not the sum of the system’s parts, cannot be analytically 

solved by examination of the system’s parts aloneiv. This complexity includes surprises, path 

dependence, nonlinearity, self-organization, contingency, emergence, multifinality, and 

equifinality (for definitions see Liu et al. (2007a) and An (2022). 

 

Sustainability science examines human-environment relationships in which actors/agents 

are people or various organizations of them and the environment is the biophysical world as 

modified-to-transformed by human action. It seeks to understand the interactions within and 

between the two subsystems. It is also open to applications of various methods and models, 

especially those that can handle integration among the components of SES (Turner et al., 2020).  

CAS science, in contrast, examines any kind of relationships, agents, and subsystem interactions 

(e.g., bacteria and their hosts) and has heavily leveraged the use of ABMs, although cellular 

automata (Taleb et al., 2004),  partial differential equations (Chaplain and Anderson, 2004; 

Hornberg et al., 2006; Lindsay et al., 2020), cell-based stochastic modeling (Roeder and Loeffler, 

2002), and structural equation modeling (Folmer et al., 2012) are not uncommon ( see Table S2).  

Regardless of the range of agents entertained, CAS science provides a platform for systems 

integration applicable for sustainability science topics, including integration of data, 

information, and knowledge gained from case studies, stylized facts, role-playing games, and 

laboratory experiments (e.g., the four empirical approaches for social science research by Jansen 

and Ostrom (Janssen and Ostrom, 2006)).  Significantly, agent-based modeling, as a prime CAS 

method and tool (e.g., credited to do “a new kind of science” (Wolfram, 2002)), provides a way 

to fuse the deductive-mechanistic and the inductive-empirical approaches that pervade 

different pathways toward understanding and envisioning CAS. v 

Perhaps the most advantageous feature of ABM is its capacity to provide a platform and 

tool for systems integration, a major goal of sustainability science (Liu et al., 2015; Rounsevell et 

al., 2012).  Mimicking the realistic (though tailored and simplified) structure and processes of 

the system under investigation (Fig. 2), ABM seeks to translate real-world actors, environment 

(e.g., forestland), and constraints (e.g., land use regulations; Fig. 2) into virtual agents, virtual 

environment (e.g., land pixels), and computerized rules (e.g., if A then B else C), offering 

opportunities for integrating heterogenous data,  knowledge, models/methods that cross spatial, 

temporal, and organizational scales, disciplines, and borders (e.g., political) (An et al., 2005; 

Parker and Robinson, 2017) (see Supplemental file E). ABMs are powerful when modeling 

learning and adapting processes (An, 2012; Cumming, 2008; Milner-Gulland, 2012), accounting 

for heterogeneity, bounded rationality and incomplete knowledge/information, and 

nonlinearities (An et al., 2020b; National Research Council, 2014; Rounsevell et al., 2012), and 

exploring many complexity features such as path-dependence, abrupt changes, and critical 

thresholds, among others (An, 2022; Liu et al., 2007). 

ABMs have been widely developed and used in CAS studies to address problems 

confronting social, environmental, and social-environmental systems since the 1990s (An et al., 

2021; Vincenot, 2018). These endeavors have generated a rich legacy of ABM methodology, such 

as the Overview, Design concepts, Details (ODD) protocol and variants for model 

documentation (Grimm et al., 2020; Müller et al., 2013) and the Pattern-oriented Modeling 
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(POM) approach (Grimm et al., 2005) for model validation. At the same time, ABM endeavors 

have enriched the literature in sustainability science in terms of modeling human behavior (An, 

2012; Janssen and Baggio, 2017): for example, the frameworks for Belief-Desire-Intentions and 

physical, emotional, cognitive, and social factors (Conte and Paolucci, 2014; Schmidt, 2002); 

exploring how adaptive behavior, abrupt changes, crises or disasters, and critical transitions 

may generate surprising patterns in the corresponding SES (An et al., 2014; Liu et al., 2007a; 

National Research Council, 2014); life cycle assessment (Davis et al., 2009; Marvuglia et al., 2018);  

and modeling emergent macro-level outcomes and pathways under various policies or 

interventions (An et al., 2005; DeAngelis and Grimm, 2014; Gimblett, 2002; National Research 

Council, 2014). 

A 2006 special issue of Ecology and Society (Janssen and Ostrom, 2006) constitutes a 

milestone in the sustainability science and ABM nexus, providing various empirical methods by 

which ABMs were empirically tested for SES. Aside from a variety of challenges in developing 

and employing ABMs such as sharp learning curve, high data demand, programming 

difficulties (An, 2012; An et al., 2021; An et al., 2020b; Schulze et al., 2017), the relative 

unfamiliarity of CAS science and ABMs in the sustainability science community (Section 2.2) 

highlights the timeliness and importance of this article.  

 

3.3. Handling alternative pathways or theories in sustainability 

CAS science has been wrestling with equi/multifinality (or finality) issues, which also 

abound in sustainability science. Equifinality—a macro-level pattern can be generated through 

different pathways from micro-level processes (von Bertalanffy, 1968)—makes the search for 

mechanistic explanations challenging. In CAS science, for instance, cooperation or betrayal in 

the Prisoner’s Dilemma can emerge from tit-for-tat retaliation (Axelrod, 1997), strong 

reciprocity (Boyd et al., 2003), and group selection (Di Tosto et al., 2007), among other strategies 

(Conte and Paolucci, 2014). As a double-edged sword, equifinality may offer more explanatory 

pathways, but also question the validity of explanations because different theories can 

reproduce very similar or even the same macro-patterns. In contrast, multifinality—the same 

causes and/or starting conditions lead to very different outcomes—also poses challenges to our 

understanding for mechanistic approaches (An et al., 2021). For other issues related to 

CAS/ABM model verification and validation, we refer to An et al. (2021). 

The POM approach (Grimm et al., 2005; Grimm and Railsback, 2012), overlapping with 

Approximate Bayesian Computing (Hartig et al., 2011) in CAS, offers a possible means to 

address the finality issues. It is based on the multi-criteria design, selection, and calibration of 

models by requiring that models can simultaneously reproduce an entire set of patterns 

characterizing an CAS. Often a set of broad, general patterns can more effectively reduce 

finality issues than trying to force a model to reproduce a single pattern, such as a time series of 

a single variable. Given the synergy between CAS and sustainability sciences hitherto discussed, 

we posit that despite the paucity of application in sustainability science, POM may prove useful 

to uncovering many sustainability related mechanisms, such as testing theories of certain 

foraging behaviors using ABM (Supplemental file F). 
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Given the reflexivity of human agents, the social sciences tend to approach the dynamics of 

the social subsystem in multiple, probabilistic ways, commonly applying both quantitative and 

qualitative methods. Empirical models use evidence to explore outcomes and plausible, 

inductively derived explanations (Robinson et al., 2007). These “top-down” models reproduce 

macro-level patterns that lend themselves to explanatory interpretations.  For example, 

empirical models can accurately reproduce flight patterns of birds, even emergent ones, in the 

absence of theory explaining the patterns (but offering insights about the outcome to be 

explored). Mechanistic or “bottom-up” models, common in the biophysical sciences and some 

parts of the social science (e.g., economics), rely on theory-based deductive approaches. CAS 

science supports both approaches because its ontology explicitly represents the behavior of 

agents, for which theory exists and can be tested, while also providing environmental responses 

to that behavior and agents’ responses to the changes in the environment (Fig. 2).  This 

mechanistic and empirical blend opens opportunities to identify and explore integrated human-

environment theory (Turner et al., 2020). CAS science has empowered computational social 

science, allowing researchers to explore social phenomena and test hypotheses by virtue of 

computer-based simulations of agents and their interactions (Bankes et al., 2002), nurturing a 

generative social science in which the dynamics are “grown” in the assessment stages (Epstein, 

1999).  

 

3.4. Enabling and evaluating processes and temporal progression 

Revealing the temporal progression in a variable of interest (e.g., amount and spatial 

distribution of a certain resource or wildlife habitat) is important as projected patterns, if 

reliable, providing insights about the system’s sustainability. For instance, dynamic habitat 

maps (e.g., Fig. S2, Supplemental file E) may inform the effectiveness of conservation policies.  

A “byproduct” of such temporal progression information is its usefulness for model evaluation. 

Many investigations evaluate models (mostly statistical models) based on their goodness of fit 

or the maximum likelihood. Modelers strike a balance between fitting the data (e.g., by adding 

more parameters or equations) and keeping the explanation as simple as possible (Rich, 1995), 

reflecting the long-time trade-off between generalizability and context (Janssen and Ostrom, 

2006). Evaluation of CAS models, however, does not depend extensively on statistical 

performance. Rather, the CAS may provide insights into the viability of the mechanistic (e.g., 

cognitive, institutional, and/or social) processes accounting for CAS dynamics. In this case, the 

CAS informs us if the processes are justifiable or not—whether the system bears self-

organization, becomes dissipative, or shows self-organized criticality (Manson, 2001). 

CAS science assists in assessing outcomes, which represent states of agents and the 

environment at a certain level or temporal stage, and evaluate processes and temporal 

progression (Liu et al., 2015),  asking whether the direction, magnitude, and significance of 

certain parameters are supported by existing theories. In essence, all the elements and arrows in 

Fig. 2 and Table S2 can be check points for SES documentation, assessment, or model evaluation.  

As a “new kind of science”, CAS science can leverage the patterns or trajectories (“data”) 

generated by ABM simulations, evaluating whether and how much such “data” qualitatively 
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and quantitively agree with empirical observations or theory. For instance, sustainability 

researchers may consider whether the univariate and bivariate statistics or regression 

coefficients based on such “data” are reasonable and supported by existing theory. Furthermore, 

the POM approach can escalate our confidence about our understanding of the CAS and its 

behaviors. Finally, the CAS ontology (Fig. 2) facilitates the development of new tools, platforms, 

or models, a high-priority research area in sustainability research (Liu et al., 2015). For instance, 

An and colleagues (An et al., 2020a) followed this ontology and developed a model to explain 

space-time dynamics among monkey behavior, habitat degradation, human resource collection 

activities, and nature reserve management policies in a Chinese nature reserve (Supplemental 

file E). 

 

4. Leveraging AI to better understand SES 

 

The four advantages identified for adopting CAS science and ABMs are built on prior 

knowledge about 1) the structure and scales, often hierarchical, at which agents are located, 

identified, and connected to one another and/or to the environment (Fig. 2), and 2) the causal 

relationships among the agents, the environment, and their behavior. Such knowledge is 

important in causal reasoning (Schlüter et al., 2023b). Yet from time to time, inadequacy of such 

knowledge exists, posing a problem for CAS modelers and sustainability scientists. AI, 

particularly its subfield of machine learning, can substantially empower CAS to address this 

problem (Cartwright, 2019; CSLI, 2020). The links between AI and CAS as well as their obvious 

implications for sustainability problems (e.g., elements in Fig. 2) warrant brief discussion, 

focusing on the benefits to detect mechanism(s) behind CAS and/or SES subject to sustainability 

challenges. 

Through a process of data-based “training”, machine learning can help derive CAS (or SES, 

the CAS equivalent in sustainability science) structures or processes (Section 4.1), or verify or 

rebut some hypothetical causal relationships or processes behind observed acro-patterns in the 

relevant CAS (Section 4.2). Many machine-learning methods allow for the training of complex 

models based on some high dimensional datasets. Such machine learning methods may range 

from the relatively basic linear models (e.g., standard linear regression) to more advanced 

models that can capture non-linear behavior (e.g., neural networks, especially deep learning). 

On the other hand, machine learning can be used to detect patterns in model output, which may 

help to evaluate the robustness of the model. 

 

4.1 Use of AI to unveil system structure and scale(s) 

Dealing with spatial, temporal, and organizational scales, including related scaling issues, 

remains a “grand challenge” for CAS modelers, requiring clear representation and matching of 

scales in relevant subsystems or individuals, variables, and processes (Elsawah et al., 2020). Just 

as in the Coleman’s bathtub  or boat framework (Coleman, 1990), a CAS modeler needs to know 

some “social facts” (e.g., institutions, social norms), a macro-level context corresponding to 
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upper-level CAS (Fig. 2), which can regulate or affect the conditions or boundaries of individual 

actions, corresponding to focal CAS agents (Fig. 2). Such conditions or boundaries, once formed 

or changed, will lead to heterogeneous individual actions, which may finally form and reshape 

the starting macro-level context. Yet knowledge about the structure and this kind of macro-

micro-macro interactions between agents and the environment may be a luxury in many 

instances. What if CAS modelers only possess data at specified spatial (e.g., focal and/or upper 

CAS), temporal (e.g., historic or current CAS), or organizational scale(s)? 

Our answer is that AI, among many other alternative approaches, can help unveil—at least 

offer hints about—such structure, interactions, and scales. Advances in data science have 

yielded a wide variety of scientific methods, programming tools, and appropriate data 

infrastructures, facilitating analysis of new forms of data (including bigdata) in a scalable, 

efficient, and robust fashion. This advantage boosts AI’s power to understand human 

intelligence and simulate how agents perceive, act, and react to other agents and/or changes in 

the environment(s) around them (Gil and Selman, 2019). One prominent aspect of AI features 

neural networks, which are comprised of nodes in different layers and their links to one another 

mimicking human and animal brain structures. Nodes can be understood as agents in CAS or 

actors in SES, while links are agent-agent or agent-environment relationships in CAS or SES 

(Cranmer et al., 2020; Kipf and Welling, 2016), which can be referred to the actors and arrows in 

Fig. 2. 

[Figure 3 approximately here] 

Once sufficient data are provided and an appropriate model structure is chosen, the trained 

models, often with high predictive power, help to calibrate and/or validate CAS structure or 

processes better. Each agent or actor can be assigned with its own unique regression equation or 

neural network links (Zhang et al., 2016). Understanding and envisioning agent behavior or 

mechanistic processes becomes a process of optimizing the neural networks for the agents. vi 

Recently, machine learning has advanced dramatically, helping to uncover mechanistic 

processes. In a successful instance (Cranmer et al., 2020), a graph neural network model has 

been trained to derive the closed-form, symbolic expression of Newton’s law of motion based 

on experimental data  The Newton’s law of motion can be derived through machine learning 

based on the mass, charge, geographic positioning information, and other information of all 

particles (corresponding to agents in Fig. 3) in the experiments. Put another way, the machine 

learning approach ultimately produced a learned mathematical function that exactly “recovers” 

Newton’s formula: 

   
    

  
          (1) 

where F, G, m1, m2, and r represent the force between Particles 1 and 2, the gravitational constant, 

the mass of Particle 1, the mass of Particle 2, and the distance between the two particles, 

respectively. Nothing is required as to prior knowledge regarding its form (Fig. 3). This 

example suggests AI’s major potential to uncover laws or mechanisms in other domains, 

nourishing an AI-informed CAS and sustainability sciences. Expanding from the above example, 

A, B, C, D, and so on could be users (agents) of a “commons” resource (e.g., water resource), 

and arrows represent the power, interactions, and governance rules of these users in a certain 
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SES. If we know some data of these agents (users) and the environment (e.g., the amount of 

renewable water, and the uses of the water), we are likely to derive the possible rules or 

mechanisms that are hidden but generate such data.  

 

4.2 Use of AI to understand causality 

One barrier that besets both sustainability and CAS sciences is the difficulty of detecting the 

most reasonable mechanism(s) behind the data or patterns observed, and particularly, 

identifying a set of justifiable rules applied to them (An, 2012; An et al., 2021; Cumming, 2008). 

The causal relationships behind the patterns or data can vary across studies and approaches 

(Schlüter et al., 2023b). Various AI methods, which contribute to better integrating “empirical 

analyses and process- or agent-based modeling”, will enhance sustainability modelers’ capacity 

to unravel “complex causal processes that affect sustainability” (Schlüter et al., 2023a). Below 

we use an example to show how AI can help detect causal relationships.   

How will Mikania, an invasive vine species that may smoother and kill canopy trees affect 

the habitat use of deer in Chitwan National Park and its buffer zone (Bhatta et al., 2021; 

Shrestha, 2016)? The literature is unclear on whether plant invasions are a consequence of deer 

browsing or occur independent of deer browsing (Blossey and Gorchov, 2017). Observational 

evidence for ungulate herbivory, however, indicates that browsing is a strong facilitator of 

exotic plant invasion. Suppose Mikania data, including GPS collar data of deer, exist over time. 

How can we derive deer behavioral rules with reference to Mikania? 

[Figure 4 approximately here] 

Reinforcement learning (RL, an artificial intelligence algorithm) method from An et al. 

(2023) is used to figure out animal “decision” rules (Fig. 3), despite zero pre-knowledge 

regarding the causal relationship (or independence) between deer herbivory and Mikania 

invasion. Telemetry data (Panel A, Fig. 4) will be used as input to train the RL neural network 

(Panel B); the RL neural network, once trained, can then learn and establish a set of nodes and 

links, which can maximize a reward function with compliance to the state (largely data; Panel 

B). The established nodes and links are hidden, however. How can the modeler know these 

nodes and links? A regression tree (Panel C) can be leveraged, which translates the findings into 

a set of visible decision tree links (arrows in Panel C) and nodes (e.g., C1, C2, C3, d1, d2, d3 in 

Panel C). In turn, these nodes and links, with the aid of some fundamental domain knowledge, 

can be used and interpreted as meaningful and understandable mechanisms (Panel D). The 

node “if Mikania < 15%” (within the blue box in Panel D) comes from the multiple nodes and 

links in the blue area of Panel C (modified from Fig. 2 in An et al. (2023)). Knowledge obtained 

this way, e.g., those “if…then…else if…then” statements that are translated from the hidden 

nodes and links, will likely represent the decision rules that deer use when roaming on the 

landscape. 

 

4.3 Use of AI to process and use qualitative data 
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As pointed out by Clark and Harley (2020), “actors’ behavior and decisions, especially with 

respect to choices about the future, are motivated less by accurate anticipations of the future 

than by collectively held narratives”. Leveraging text narratives in whatever media in CAS / 

sustainability models can increase their potential to inform agent behaviors and/or verify 

outcomes in CAS (Chattoe-Brown, 2020) or trajectories related to sustainability. In 

Supplemental file D, if some “sadness” data can be collected from related tweets, ABM’s rules 

or predictions can be better verified or falsified about disaster or rescue dynamics. For 

challenges and weaknesses in ABM verification and validation, we refer to (An, 2012; An et al., 

2021; Manson, 2002; Wilensky and Rand, 2007; Zhang and Robinson, 2021). 

Recent advances in natural language processing and mining qualitative data (e.g., 

ethnography input, social media texts, and other textual sources) have shown promise to reveal 

the underlying reasons or explanations for a human agent’s behavior, or their stance towards a 

debatable issue or policy. Owing to rapid advances and the successful application of deep 

neural networks in natural language processing (Bahdanau et al., 2015) and software 

engineering (Nguyen et al., 2018), it is now possible to accurately and effectively translate 

English text (e.g., in social media)—through developing an interactive deep learning-based 

system—into a list of relevant and sequential Application Programming Interfaces, which can 

be used to derive ABM rules or verify ABM predictions as noted in Supplemental file D. Table 1 

below shows the major elements in the Supplemental file, which is uploaded as a supplement 

document.   

Table 1 

Overview of the elements in the supplemental file to this article. 

Element Purpose and content Page #* 

A. The three essential 

elements in social-

environmental systems 

Introduction of the three common elements in social-

environmental systems: actors, environment, and 

outcomes, their relationships, and exemplar references 

 

1 

B. The representation 

and ontology of 

complex adaptive 

systems 

The ontology of agents and environment that is 

represented as a hierarchical CAS structure (Fig. 2 of main 

text) with time progression; the consistency between the 

ontology and sustainability science’s dimensions 

 

1-2 

C. Literature search 

and review 

 

The way, including search keyword and time frame, under 

which all the case studies in the realms of complex 

adaptive systems (CAS) science and sustainability science 

(SS) are selected (all cases shown in Tables S1 and S2) 

 

2-4 

D. Use of non-

traditional data to 

unfold dynamic 

patterns 

An example of social-sensing analysis, which shows how 

Twitter (X) data can be used to unfold the dynamic 

patterns of emotions (e.g., anger, disgust, fear, joy, sadness, 

and surprise) in different topics related to a hurricane 

 

4 

E. ABM for Systems An exemplar ABM that shows how human resource  
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integration, scenario 

test, and space-time 

trajectories 

extraction and migration activities, affected by 

conservation payments, may interact with the Guizhou 

golden monkey (Rhinopithecus brelichi) habitat use in a 

Chinese Nature Reserve (An et al., 2020a) 

4-5 

F. Foraging behavior 

model for theory 

testing using ABM 

Another exemplar ABM that explores what hunting 

outcomes emerge under different conditions in the 

Mbaracayu Forest Reserve of Paraguay, including hunting 

strategies, group sizes, and mobility patterns (Janssen and 

Hill, 2016) 

 

5-6 

* Page numbers refer to those in the supplemental file. 

 

5. Concluding Remarks 

Humanity is facing a range of unprecedented sustainability challenges. Sustainability 

science addresses these challenges through examinations that integrate the human and 

biophysical subsystems that give rise to them. It blends mechanistic and empirical modeling 

approaches to understand the dynamics of the social-environmental systems. CAS science 

affords significant opportunities in these efforts, as demonstrated by those engaged in CAS and 

ABM research to date (Anderies et al., 2019; Elsawah et al., 2020; Schlüter et al., 2023a). It offers 

sustainability researchers a unique perspective and the related means to consider relevant 

agents, environment, and their relationships at hierarchical levels, various locations, or times.   

While not the first assessment of the power of CAS and ABM to contribute to sustainability 

science (e.g., Elsawah et al., 2020; Lindsay et al., 2020; Schlüter et al., 2023a), three aspects of the 

possible synergy are identified here. First, CAS science’s attention to mechanistic processes 

could substantially benefit sustainability science. For instance, the POM approach may help 

address many finality-challenges embedded in sustainability science. Second, the ABM 

approach offers a powerful tool for systems integration, for use of cross-scale and cross-

disciplinary data and models, for model evaluation, and for providing an ontology and 

structure to examine SES sustainability challenges. Third and last, these positives are likely to 

be enhanced by AI of the digital revolution (with input from data science), providing the 

potential to advance understanding of the social-environment systems and posit the means to 

make them more sustainable.  

This paper focuses on how CAS and ABM may contribute to sustainability science beyond 

their current uses. In addition, our take on these potential uses is influenced by our research 

interests, which include CAS and ABM for sustainability themes (human-environmental science 

more broadly), land system science, landscape ecology, and geography as well as our shared 

methods residing in mainstream science. Other sustainability researchers engaged in this 

science or following different topical interests and explanatory perspectives may have different 

views than those expressed here. 

Our focus does not negate or downplay the benefits that sustainability researchers may 

contribute to CAS and ABM. The challenges existing in sustainability science (see Section 2.1), 
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such as those identified by Clark and Harley (2020), potentially serve as opportunities for CAS 

and ABM. For instance, the progress made on governance and institutions of environmental 

resources, “deep” causes of land-use change, or biophysical feedbacks on community justice 

will surely help CAS researchers to comprehend and interpret emergent, even surprising, 

patterns that arise among agents in different human-environmental conditions. Consideration 

of this sustainability-to-CAS/ABM orientation resides beyond the scope of this article, deserves 

attention, and may improve the linkages among different sustainability research communities. 
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i We used a combination of (sustainability science) OR (sustainability) OR (sustainable development) for 

searches under “Topic” in Web of Knowledge. For the  agent-based modeling related search, we use 

(agent-based model*) OR (agent-based model*) OR (individual-based model*) OR (individual based 

model*) also under Topic. The two searches are connected with an AND operator. The Queries were sent 

on 31 December 2021 to retrieve the entire set of papers from 2000 to December 31, 2021 
ii More examples are available in Table S2, Supplemental file C and Supplemental file E, where individual 

monkey and monkey group agents affect each other across focal- and upper-levels.  

iii More examples about system-level SES/CAS interactions are presented in Table S2 (under various CAS-

CAS interaction subcategories). 

iv In CAS science, common processes leading to emerging patterns are distilled and generalized from 

specific case studies or experiments, paving the way to develop, test, and refine falsifiable, generative 

theories that reproduce observed system dynamics (Epstein, 2014). 
v Axelrod (1997) calls CAS type simulations a third way of doing science in contrast to inductive and 

deductive approaches, the two primary ways of doing science. Accounting for abductive approaches 

(Flach and Kakas, 2014) or plausible outcomes confined to particular observations, common in the social 

sciences, perhaps CAS science might be seen as a “fourth” way of doing science. 
vi Models trained in this way are not many, and one reason might be the difficulty of training neural 

networks for so many agents. Another challenge hinges on the difficulty of interpretation: such “trained” 

models provide little or no understanding of the mechanisms governing the processes, like a “black box”. 

 
 
 
 

Table captions 
 

Table 1. Overview of the elements in the supplemental file to this article. 
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        Table S1. References used under the Sustainability Science (SS) category, Complex 

Adaptive Systems (CAS) category, and both. 

Table S2. Examples of components in complex adaptive systems (CAS) science and 

sustainability science (SS) and cases (examples) in literature. Note: a. See Fig. 2 for symbol 

representations. b. For agents (actors) and environment, their identities (e.g., persons, 

households, and villages at lower, focal, and upper levels) attributes, and/or behaviors are 

described; for interactions (e.g., 1a up to 4e), the established relationships (e.g., for 1a, regression 

results for how agents affect other agents’ decisions or actions through social norm at an earlier 

time) are described. c. Integrated Model to Assess the Global Environment (IMAGE), 

Computable General Equilibrium (CGE), Conversion of Land Use, and its Effects model (CLUE-

s). d. Characteristic trajectories of ecosystem services (InVEST), proxy indices, Hierarchical 

Divisive Estimation, Kolmogorov-Smirnov tests, general additive models (GAMs). 
 

Figure caption 
 

 
Fig. 1. The publications addressing sustainability science (# of publications under the search 

for the sustainability science topic; left Y-axis) vs. those using ABMs (# of publications under the 

search for both sustainability science AND ABM topic; right Y-axis) to address sustainability 

problems since 2000 (S. Science = sustainability science; for data search detail, see the endnote). 

 

Fig. 2. The ontology of complex adaptive systems (CAS). Circles and ovals represent agents 

and the environment, respectively, while arrows of different colors and shapes represent 
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heterogeneous interactions or influences between various CAS elements. The numbers and 

letters represent interactions among agents and those among CAS, respectively. 

 

Fig. 3. Derivation of the Newtonian law of gravitational force. The process is based on data 

on particles (represented as circles of different colors) over time using a machine learning 

approach (Cranmer et al., 2020). F, G, m1, m2, and r represent the force between Particles 1 and 2, 

gravitational constant, the mass of Particle 1, the mass of Particle 2, and the distance between 

the two particles. The double arrows represent forces between particles. GNN represents graph 

neural network. 

 

Fig. 4. Use of AI (reinforcement learning in particular) to decipher deer-environment 

relationships based on agent and environmental data (modified from Fig. 2 of An et al. (2023). 

 


