
Learning Joint Policies for Human-Robot Dialog and Co-Navigation

Yohei Hayamizu1, Zhou Yu2, and Shiqi Zhang1

Abstract— Service robots need language capabilities for com-
municating with people, and navigation skills for beyond-
proximity interaction in the real world. When the robot explores
the real world with people side by side, there is the compound
problem of human-robot dialog and co-navigation. The human-
robot team uses dialog to decide where to go, and their shared
spatial awareness affects the dialog state. In this paper, we
develop a framework that learns a joint policy for human-
robot dialog and co-navigation toward efficiently and accurately
completing tour guide and information delivery tasks. We show
that our approach outperforms baselines from the literature in
task completion rate and execution time, and demonstrate our
approach in the real world.

I. INTRODUCTION

Robots are increasingly tasked with services that require
dialog and navigation in human-inhabited environments [1].
While there is rich literature on mobile robot navigation [2]
and dialog systems [3], there is relatively little research on
the joint management of human-robot dialog and their co-
navigation. Considering a robot that moves around while
conversing with a human side by side, e.g., a robot realtor,
the robot needs the capability of “dialog navigation” [4],
[5]. The dialog navigation task requires the robot to navigate
and interact with a human at the same time, while fulfilling
service requests.

When a robot talks to and navigates with people at the
same time, there are new challenges caused by the interplay
between the two types of actions. For instance, when a real
estate robot wants to tell a customer that a bedroom is large
and cozy, which requires human-robot dialog, it is better
for the robot to first guide the customer to that bedroom,
which requires human-robot co-navigation. Dialog capabil-
ities enable the robot to estimate the human’s belief state,
and accordingly select the next navigation goal; navigation
capabilities help change the human-robot system’s location
to facilitate the next few turns of the ongoing dialog. Many
studies on dialog navigation allow remote communication
between a user and a robot, e.g., the user is from a call
center [6], [7], where the complexity of social navigation is
avoided. By comparison, we consider scenarios where the
human and robot talk to and navigate with each other at the
same time.

In this paper, we focus on dialog navigation tasks where
the human and robot are not always co-located. In such tasks,
tracking the positional information and dialog states is crucial
for the robot. For instance, the robot might want to navigate

1 SUNY Binghamton
Email: {yhayami1; zhangs}@binghamton.edu

2 Columbia University
Email: zy2461@columbia.edu

Dialog Action:
[inform, kitchen,
view, beautiful]

Confused

Bedroom

Kitchen

Dialog Action:
[inform, kitchen,
view, beautiful]

Feedback: Positive

To Kitchen

No Feedback

Navigation Action:
[goto, kitchen]

Kitchen

Dialog Action:
[inform, kitchen,
view, beautiful]

No Feedback

Fig. 1: When the robot receives positive feedback from the
human, the robot believes it is likely that the information (the
room being beautiful and with view) has been success-
fully delivered (top-left). In the absence of the human, it is
unlikely the robot is able to deliver the room features (top-
right). When the human does not give any verbal feedback to
the robot, the likelihood that the robot successfully delivers
the information is medium (bottom-left). When the robot
talks about another room instead of the current one, there
is a lower chance that the human accepts such information
(bottom-right).

to the human, and then verbally encourage the human to walk
together to a room before discussing the room features. We
develop a mobile robot system that leverages the locations of
the human and itself for selecting its dialogue and navigation
behaviors. In order to deal with the uncertainty and partial
observability in dialog and navigation actions, we use Deep
Recurrent Reinforcement Learning for computing joint poli-
cies for selecting both dialog and navigation actions [8], [9].
Our framework enables the robot to reason about the history
of observations from dialog and navigation actions toward
the long-term goal of efficiently and accurately conveying a
few location-dependent statements.

We have evaluated our framework in a real estate agent
domain where a mobile robot is tasked with fulfilling user
requirements of house features via dialog and navigation
actions. Our system has been compared with three baselines
that alternatively take dialog and navigation actions. One has
a rule-based dialog-navigation planner, and another relies on
a dialog policy and a planner for navigation. Our experiments
show that our framework can learn a joint policy and
outperform the baselines regarding task completion rate and
execution time.

2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 1-5, 2023. Detroit, USA

978-1-6654-9190-7/23/$31.00 ©2023 IEEE 7893

20
23

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

91
90

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IR

O
S5

55
52

.2
02

3.
10

34
16

63

Authorized licensed use limited to: Stanford University. Downloaded on November 30,2024 at 22:21:55 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

This section discusses three research areas that are related
to dialog navigation systems: (1) instruction-following navi-
gation systems, (2) systems where navigation follows dialog,
and (3) systems where navigation and dialog are interleaved.
Instruction Following: Instruction-following navigation sys-
tems have been studied, where a robot communicates with a
user to complete a navigation task based on user instructions.
Kollar et al. developed a system that can generate action
plans from a given directional instruction by parsing the
natural language [10]. Other works introduced parser learn-
ing for indoor navigation instruction that translates natural
language commands to actions [11], [12]. In recent years,
researchers developed a benchmark, ALFRED, for learning
to ground both language instructions and robot perceptions
into sequences of actions [13], realizing complex robot tasks
such as household tasks [14], [15]. Those works assumed the
human and robot share the same observability over the world
and focused on understanding human instructions instead of
managing multi-turn conversations.
Navigation Goal Specification via Dialog: One way of
integrating dialog and navigation is to specify navigation
goals via human-robot dialog, where the dialog occurs be-
fore navigation. Some efforts enabled a robot to conduct a
service task after identifying user requests through dialog
with probabilistic inference [16], [17], [18]. Other works
learned dialog behaviors, such as asking clarification ques-
tions from human-robot conversations, to improve the task
performance [5], [19]. Another work focused on spoken
language understanding to retrieve navigation-associated in-
formation and improve a navigation task that follows the
language understanding step [20]. Although such systems
improved the performance in task completion by introducing
a dialog system into navigation tasks, the robot cannot handle
dynamic changes in user requests since the conversation
happens only before navigation in their systems. In addition,
those works assume that conversations happen in a single
location, whereas the multiple turns of our human-robot
dialog might occur in different locations.
Interleaved Dialog Navigation: Recent research has pro-
duced dialog navigation systems that alternate between dia-
log and navigation actions. Thomason et al. presented Co-
operative Vision-and-Dialog Navigation (CVDN) that trains
language-teleoperated home and office robots that ask tar-
geted questions about where to go next [21]. DIALF-
READ [22] is an extension of ALFRED that learns to
ask for instructions to handle unexpected situations. Studies
on such dialog navigation systems have developed some
datasets to study navigation and spatial reasoning with real-
life observations, learning to ground language to percep-
tion and behavior, and realizing a cooperative localization
task [23], [7], [24], [6]. These studies can be seen as inter-
active instruction-following systems and allow instructions
always to be available no matter where two agents are. By
comparison, our robot can co-navigate with a human to fulfill
service requests. Our work considers the robot as a guide and

the human as a customer to study how the robot acquires
complementary behaviors of dialog and navigation, being
aware of the human’s locations.

III. DEEP RECURRENT REINFORCEMENT LEARNING

This section briefly describes deep recurrent RL. RL
is an algorithm or a problem based on Markov Decision
Process (MDP). An MDP is a tuple of ⟨S,A, T,R, γ⟩, where
S is a set of states; A is a set of actions; T (s, a, s′) ∈ [0, 1]
is a transition probability; R(s, a) ∈ R is an immediate
reward; and γ ∈ [0, 1) is the discount factor. RL algorithms
aim to learn an optimal policy π∗ : S → A by maximizing
the expected cumulative return [25]. A policy is calculated
by the Q-value function Q(s, a) that estimates the expected
cumulative return. While MDPs assume full observability
of the states, the Partially Observable MDP (POMDP) can
handle the uncertainty in the state space. A POMDP is a tuple
of ⟨S,A,O, T,R, γ, Z⟩, where O is a set of observations, and
Z(s, a, o) ∈ [0, 1] is an observation probability. The objective
of a POMDP problem is to find π∗ : B → A. B forms a
belief space where a belief state b(s) is calculated with the
probability distribution of all possible states [26].

The deep Q-Network (DQN) developed by Mnih et al. [27]
uses a deep neural network (DNN) to approximate the Q-
value function. To learn the Q-value function Q(s, a; θ),
DQN samples K experience tuples of (s, a, r, s′) from the
experience replay buffer memory and updates θ with the
gradient of the following loss function L(θ).

L(θ) = ((r + γmaxa′Q(s′, a′; θ−))−Q(s, a; θ))2,

where θ is a behavior network used for the action selection,
and θ− is a target network treated as the ground truth for
the behavior network. Proximal Policy Optimization (PPO)
is a method that can directly learn an optimal policy by
estimating a policy gradient using DNN [28]. After sampling
K experience tuples through trial-and-error experiences, PPO
updates θ with the gradient. A general form of the loss
function for PPO is as follows.

L(θ) = min(∇(θ)A, clip(∇(θ), 1− ϵ, 1 + ϵ)A),

where ∇ = π(a; s, θ))/π(a; s, θold) is a ratio of the prob-
ability under the new policy π and old policy πold; A is
the advantage function that estimates the current policy in
the same manner as the Q-value function above; and ϵ is a
hyperparameter of the clipping function which restrict drastic
change in a policy. Those algorithms achieve human-level
performance in many domains.

Deep Recurrent Reinforcement Learning algorithms are
extensions of deep RL, introducing a Long Short-Term
Memory (LSTM) [29] layer at the output layer. The LSTM
can be regarded as an approximator of the belief state
that can track historical information from observations to
solve POMDP problems. This architecture was proposed by
Hausknecht et al. [8] and extended to various derivatives.
Pleines et al. described how a recurrent neural network could
be incorporated into deep RL by applying an LSTM layer to

7894

Authorized licensed use limited to: Stanford University. Downloaded on November 30,2024 at 22:21:55 UTC from IEEE Xplore. Restrictions apply.

Dialog-Act:
inform-kitchen-type-open

positional-info:
Environment

User Feedback:
positive

User Goal:
kitchen-type-open,
entrance-flooring-stone,
…,
bedroom-scenery-nature

informed-slot:
[kitchen-type-open,]

reward,

feature-slot:
[kitchen-type-unknown, …]

feature-slot:
[kitchen-type-unknown, …]

Dialog State Tracker

Joint Policy Learner

feature-slot:
[kitchen-type-positive, …]

obs-action pair

● Robot: Kitchen,
● User: Co-located

Fig. 2: An overview of our joint policy learning framework.

PPO (RecurrentPPO) and examined the limitations of deep
recurrent reinforcement learning algorithms [9].

IV. PROBLEM STATEMENT

We design a real estate agent domain for a mobile dialog
task where a robot guides users physically and performs
dialog at the same time. Fig. 1 shows how a user and a robot
interact with each other in our proposed domain. We define a
domain description and problem for the mobile dialog task.

A. Real Estate Agent Domain

A domain description is defined as a tuple ⟨E, e,Q, q⟩,
where E = [E0, E1, · · ·] is a finite set of entities of
which a system can inform. For instance, Ei ∈ E can be
“livingroom-view.” e = [e0, e1, · · ·] is a full assignment of E,
which specifies the feature values of a particular house. For
instance, ei = “beautiful” means the living room of the house
has a beautiful view. Q = [Q0, Q1, · · ·] is a set of entities
in which a user is interested, and Q ⊆ E. For instance,
Qj ∈ Q can be “bedroom-size.” q is a full assignment of
Q, which specifies the requirement values of a particular
user. For instance, if the user looks for a large bedroom,
qj = “large”.

B. Real Estate Agent Problem

The goal in the real estate agent domain is to estimate the
user’s requirements and introduce property features within
a maximum number of timesteps. We define the real estate
agent problem as a POMDP. S := N × N × C |E| × C |Q|

is defined as a set of states factored in a robot location, a
user location, entities to be informed to a user, and the user’s
requirements, where N is the number of rooms in real estate.
The state space includes an entity slot and a requirement
slot of which sizes are |E| and |Q|, each with cardinality
C. A := AD ∪ AN is a union of dialog actions AD and
navigation actions AN . The types of actions are “guidance,”
“inform,” and “report” for AD and “goto” for AN . When
taking an inform action, the robot assigns a slot-value of an
entity to the dialog action to inform the user about the entity,
e.g., “inform-livingroom-view-beautiful”. When taking other
types of actions, the robot assigns a room to the action for
navigation, e.g., “guidance-bedroom-none-none” and “goto-
bedroom-none-none.” Thus, the total number of actions is

proportional to the number of rooms and entities. O is a set
of observations the robot receives from the environment with
a user. The observation contains the robot’s and the user’s
locations and feedback from the user. The user gives positive
feedback if the informed value ei ∈ e meets the user’s
requirements qi ∈ q, negative feedback if not, and none
otherwise. T := S ×A× S → [0, 1] is a transition function.
At the time-step t, the environment is in some state st.
The robot takes an action at, which causes the environment
to transition to state st+1 with probability T (st, at, st+1).
Z := A × S × O → [0, 1] is a observation function. The
robot receives an observation ot ∈ O, which depends on
st+1 and at, with probability Z(ot+1|at, st+1) at the time-
step t. R := S×A → R is a reward function. When the robot
terminates the task, the reward function returns a reward
according to the evaluation function y(e, q) = |{ei|ei ∈
qi, 0 ≤ i < |q|}|. The more requirements of the user are
satisfied, the higher rewards the robot receives. The robot
receives a negative reward at each time-step as a living cost.

V. PROPOSED APPROACH

In this section, we present the key contribution of this
work, an RL-based framework for learning a joint dialog-
navigation policy.

Framework Description: In a dialog navigation task where
the conversation and the positional relationship between a
robot and a user strongly relate to their locations, optimiza-
tion of navigation and dialog actions becomes more complex.
We develop a framework that can learn a joint policy of
dialog and navigation considering the spatial context and the
course of dialogues. Joint policy learning refers to a model
that maps a state that includes spatial and dialogue historical
information to either a navigation or a dialog action. Thus,
we propose unifying the spatial information with dialog state
tracking so that the tracker can handle location changes
during the dialogues. This formulation enables a robot to
traverse different locations that bring new spatial contexts
while tracking a dialog objective. We aim to compute a joint
policy that guides the robot in the dialog and navigation
actions toward maximizing the expected cumulative utility
to achieve a mobile dialog task.

7895

Authorized licensed use limited to: Stanford University. Downloaded on November 30,2024 at 22:21:55 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Examples of slot-value pairs for all domains

Domain |E| Examples of {slot}-{value} pairs
livingroom 4 {view}-{beautiful}, {size}-{200}, · · ·
kitchen 4 {view}-{open}, {roomrel}-{livingroom}, · · ·
bedroom 4 {size}-{100}, {roomrel}-{livingroom}, · · ·

Fig. 2 shows an overview of our framework. The frame-
work consists of a joint policy learner and an environment.
The joint policy learner has a dialog state tracker that tracks a
course of dialogue and a dialog navigation policy that takes
action based on the positional information and the dialog
history. The environment includes a house instance and a
user. The robot can take a verbal or navigation action, and
the environment gives the robot feedback from the user and
rewards based on the user’s requirements.

Dialog State Tracking: In order for a robot to follow the
course of dialogue over a task, we use a dialog state tracker.
We utilize the slot-filling approach to modify the input to the
dialog navigation policy instead of using raw observations
so that the robot can be aware of entities to be informed.
This allows the robot to store the current task completion
rate over domains. The slots are updated by the dialog state
tracker that takes user feedback and performs slot-filling. The
dialog state tracker fills a corresponding slot with feedback
from the user based on the observation.

We then use a robot’s and user’s locations, the feature
slots, and the previous action as an observation ot and input
them to the dialog navigation policy network πθ. Since the
user’s location is partially observable, the policy network
needs to have a memory for the course of navigation. It
is also important for the joint policy to deal with the user’s
feedback fluctuation due to uncertainty as a natural language
understanding module propagates the feedback error to the
dialog state tracking. According to the aforementioned rea-
sons, we implement a policy network with a Deep Recurrent
Reinforcement Learning model.

Implementation: Given the observation ot, rt, the dialog
navigation policy network learns a joint policy that can
output either a dialog or navigation action. Since navigation
actions do not induce user feedback, the model requires
a long memory for tracking an entire course of dialogue.
Therefore, the policy network has an LSTM layer to ag-
gregate observations over the turns. The policy network πθ

is updated every M time-step after collecting experiences
from the environment. This process varies depending on
the algorithm of choice. RecurrentPPO is an extension of
PPO and has LSTM at the output layer [9]. RecurrentPPO
collects M samples in its rollout buffer and calculates a
policy gradient using the samples to update a network that
selects the next action, an actor-network.

VI. EXPERIMENT

This section presents experimental results in simulation
and a demonstration of our system in the real world. We
develop a simulator for the evaluation of algorithms for

TABLE II: Dialog acts and navigation actions

User’s actions posans / negans / none
User’s navigation actions stay / goto
Robot’s dialog actions inform / guidance / report
Robot’s navigation actions stay / goto

dialog navigation tasks. We have compared our approach to
three baselines and analyze the results.

A. Simulator Design

We develop a simulated environment for the real es-
tate agent problem. The simulator consists of 10 house
instances. Each house instance has three domains (“livin-
groom”, “kitchen”, and “bedroom”), each with 4 feature slots.
We manually created the slot-value pairs for each house
instance. TABLE I shows examples of entities and those
values for the three domains. Slot-value pairs are randomly
assigned to the user’s requirement slots when an environment
is instantiated. At every time step, the robot can only receive
its location, the user’s existence, and the user feedback if
available. Note that the user’s location and the feedback from
the user are available only when the robot and the user are
co-located.

User simulators have been widely applied to training
dialog policies using RL methods. In line with previous
research, we simulate user behaviors, including responding
to the robot’s dialog actions and moving in the environment.
During a mobile dialog task, the robot and the user act
alternatively. TABLE II shows the robot and user actions
used in the experiments. We use an action representation
that is similar to the MultiWOZ-2.1 dataset for both dialog
and navigation actions [30]. We consider different locations
as domains as we consider an embodied system and address
changes derived from the spatial context. The action repre-
sentation contains 4 different pieces of information. The first
piece is an intent which can be treated as an action. The
second is a domain. Each domain has entities with values,
and actions should include a slot and a value for an entity.
For instance, the robot action, [inform-kitchen-view-open],
represents that the robot informs of a kitchen view, which
is an open view. This action representation enables the
joint policy learner to take both a dialog and navigation
action as a part of observation in the same manner and
simplifies the observation space representation and action
space representation. An example of a course of dialog and
location transitions is as follows:
An example of our human-robot dialog:

Robot: [inform-livingroom-size-large]
User: [positive-livingroom-size-large]
Robot: [guidance-kitchen-none-none]
User: [stay-kitchen-none-none]
Robot: [goto-kitchen-none-none]
User: [goto-kitchen-none-none]
· · ·
User: [positive-bedroom-roomrel-kitchen]
Robot: [report-none-none-none]

7896

Authorized licensed use limited to: Stanford University. Downloaded on November 30,2024 at 22:21:55 UTC from IEEE Xplore. Restrictions apply.

RD+P
(episode length)

RD+P
(success rate)

DP+P Joint Policy (Ours)
0.0

0.2

0.4

0.6

0.8

1.0

S
u

cc
es

s
ra

te

(a) Success rate.

RD+P
(episode length)

RD+P
(success rate)

DP+P Joint Policy (Ours)

20

40

60

80

E
p

is
od

e
le

n
gt

h

(b) Episode length.

RD+P
(episode length)

RD+P
(success rate)

DP+P Joint Policy (Ours)

0.6

0.7

0.8

0.9

1.0

P
ro

xi
m

it
y

ra
te

(c) Proximity rate

Fig. 3: Average success rate, the episode length, and proximity rate over 100 runs, while the robot works on completing the
task for different users. The agent with the joint policy outperforms the baselines.

An example of trajectories of a robot and a user:
Robot: “livingroom” → “kitchen” → “bedroom”
User: “livingroom” → “kitchen” → “bedroom”

The environment returns a positive reward Rmax = 1.0
when all user requirements are satisfied and a negative
reward R = −0.01 otherwise. User feedback has noise with a
0.1 probability of being opposite. Robot and user movements
are controlled with transition probabilities. The robot can
successfully navigate to its goal location in 0.9 probability.
The user follows the robot in presence of a 0.05 probability
noise, i.e., there is a small probability that the user moves to
a location that is different from the robot’s goal location.

B. Experiment Settings

The robot spends 5, 000, 000 timesteps for each run to
learn a joint policy. The actor-network and the critic network
have the same network architectures. The first two layers
have an MLP layer of 64 units with tanh activation as a
hidden layer. The output of the second layer is fed into
the LSTM layer with 256 units. For hyper-parameters of
RecurrentPPO, we vectorize the environment with the size
of 32 to collect enough samples and use the samples with
a batch size of 4096. The discounting factor γ is 0.99, the
learning rate α is 0.002, and clip size ϵ is 0.1.

We compare the agent with a joint policy, Joint Policy, to
three baselines: the agent with a dialog policy and navigation
planner, DP+P, and the two agents with a rule-based dialog
system and navigation planner. For DP+P, we use the same
dialog state tracker and a RecurrentPPO model as our joint
policy. The difference from our model is that the model
takes only the dialog state and outputs a dialog action and
does not consider the user location. We evaluate the agent’s
performance of those policies for 100 independent episodes
every 100, 000 timestep by using a deterministic policy and
select the best policy model to compare the performance in
the success rate and the episode length. For the rule-based
dialog systems, we designed two different strategies. One is
to try to finish a task as soon as possible, RD+P (episode
length). The other is to try to achieve a higher success rate,
RD+P (success rate). Baseline agents have isolated dialog
and navigation systems and conduct the task by executing
dialog and navigation actions interleaved. The navigation

planner of the baselines always takes the shortest plan from
the current position to the destination.

C. Results

Fig. 3a and 3b show the results of the agent’s success rate
and episode length over 100 runs. Both figures demonstrate
that our approach outperforms the baselines. Joint Policy
could achieve the highest success rate and a shorter episode
length. Although RD+P (episode length) has a lower episode
length than RD+P (success rate) and DP+P, the success rate
is the lowest among the four methods. DP+P produced a
lower episode length than RD+P (success rate), whereas it
has similar performance in the success rate. This observation
shows that rule-based dialog systems need to spend a longer
episode length to identify the user’s requirements and that the
dialog policy can track the dialog state properly The result
also implies that DP+P could not achieve a higher success
rate than RD+P (success rate) because of fewer co-located
cases. In order to investigate how the robots handled both
dialog and co-navigation, we define the proximity rate PR
as follows:

PR =
The number of turns when they are co-located

Total number of turns

The proximity rate presents how frequently the robot and the
user are co-located. A higher proximity rate indicates that the
robot can perceive the absence of the user and correctly select
a navigation action so that they are co-located. Joint Policy
has the highest proximity rate, and DP+P and RD+Ps have
a lower proximity rate. This indicates that the DP+P tries
to inform entities without considering the user’s location to
minimize the episode length, resulting in a lower success rate
than Joint Policy. On the other hand, a higher proximity rate
of Joint Policy indicates that our model could handle the
positional information and dialog simultaneously, resulting
in the highest success rate and the shortest episode length.

D. Demonstration in the Real World

We have demonstrated our approach using a real robot. We
deployed our joint policy model on a segway-based mobile
robot. The robot interacts with a human while traversing
an environment where three rooms exist. We use YOLO
V3 for ROS to realize real-time object detection [31] and

7897

Authorized licensed use limited to: Stanford University. Downloaded on November 30,2024 at 22:21:55 UTC from IEEE Xplore. Restrictions apply.

Google Dialogflow for a natural language understanding
component [32].

VII. CONCLUSION AND FUTURE WORK

In this paper, focusing on efficient and accurate human-
robot dialog and co-navigation that consider the positional in-
formation and a course of dialogue, we develop a framework
that learns a joint policy that maps an observation to either
a dialog or navigation action. We evaluate our framework in
a real estate agent domain. The goal is to guide a user while
informing possible requirements of users that are not ever
accessible. The experimental results show that our framework
can learn a joint policy that outperforms the baselines in
task completion rate and execution time. In the future, the
low sample efficiency issue can be addressed to increase the
cardinality of slots. Another direction is to enable end-to-end
learning by further incorporating language understanding and
perception into the loop.

ACKNOWLEDGMENTS

A portion of this work has taken place at the Autonomous
Intelligent Robotics (AIR) Group, SUNY Binghamton. AIR
research is supported in part by grants from the National
Science Foundation (NRI-1925044), Ford Motor Company
(URP Award 2019-2023), OPPO (Faculty Research Award
2020), and SUNY Research Foundation.

REFERENCES

[1] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, “Robots that
use language,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, pp. 25–55, 2020.

[2] F. Gul, W. Rahiman, and S. S. Nazli Alhady, “A comprehensive study
for robot navigation techniques,” Cogent Engineering, vol. 6, no. 1, p.
1632046, 2019.

[3] S. J. Young, “Probabilistic methods in spoken–dialogue systems,”
Philosophical Transactions of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, vol. 358, no. 1769,
pp. 1389–1402, 2000.

[4] H. Asoh, Y. Motomura, I. Hara, S. Akaho, S. Hayamizu, and T. Matsui,
“Combining probabilistic map and dialog for robust life-long office
navigation,” in 1996 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), vol. 2, 1996, pp. 807–812 vol.2.

[5] J. Thomason, S. Zhang, R. J. Mooney, and P. Stone, “Learning to
interpret natural language commands through human-robot dialog,” in
24th International Joint Conference on Artificial Intelligence, 2015.

[6] H. Chen, A. Suhr, D. Misra, N. Snavely, and Y. Artzi, “Touchdown:
Natural language navigation and spatial reasoning in visual street envi-
ronments,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 538–12 547.

[7] M. Hahn, J. Krantz, D. Batra, D. Parikh, J. M. Rehg, S. Lee, and
P. Anderson, “Where are you? localization from embodied dialog,”
2020.

[8] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” in 2015 aaai fall symposium series, 2015.

[9] M. Pleines, M. Pallasch, F. Zimmer, and M. Preuss, “Generalization,
mayhems and limits in recurrent proximal policy optimization,” arXiv
preprint arXiv:2205.11104, 2022.

[10] T. Kollar, S. Tellex, D. Roy, and N. Roy, “Toward understanding
natural language directions,” in 2010 5th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). IEEE, 2010, pp.
259–266.

[11] D. Chen and R. Mooney, “Learning to interpret natural language
navigation instructions from observations,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 25, no. 1, 2011, pp. 859–
865.

[12] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox, “Learning to
parse natural language commands to a robot control system,” in Ex-
perimental robotics: the 13th international symposium on experimental
robotics. Springer, 2013, pp. 403–415.

[13] M. Shridhar, J. Thomason, D. Gordon, Y. Bisk, W. Han, R. Mottaghi,
L. Zettlemoyer, and D. Fox, “Alfred: A benchmark for interpreting
grounded instructions for everyday tasks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 10 740–10 749.

[14] S. Y. Min, D. S. Chaplot, P. Ravikumar, Y. Bisk, and R. Salakhutdinov,
“Film: Following instructions in language with modular methods,”
arXiv preprint arXiv:2110.07342, 2021.

[15] V.-Q. Nguyen, M. Suganuma, and T. Okatani, “Look wide and inter-
pret twice: Improving performance on interactive instruction-following
tasks,” arXiv preprint arXiv:2106.00596, 2021.

[16] S. Zhang and P. Stone, “Corpp: Commonsense reasoning and prob-
abilistic planning, as applied to dialog with a mobile robot,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29,
no. 1, 2015.

[17] D. Lu, S. Zhang, P. Stone, and X. Chen, “Leveraging commonsense
reasoning and multimodal perception for robot spoken dialog systems,”
in 2017 IEEE/RSJ international conference on intelligent robots and
systems (IROS). IEEE, 2017, pp. 6582–6588.

[18] Y. Chen, F. Wu, W. Shuai, and X. Chen, “Robots serve humans in pub-
lic places—kejia robot as a shopping assistant,” International Journal
of Advanced Robotic Systems, vol. 14, no. 3, p. 1729881417703569,
2017.

[19] S. Amiri, S. Bajracharya, C. Goktolgal, J. Thomason, and S. Zhang,
“Augmenting knowledge through statistical, goal-oriented human-
robot dialog,” in 2019 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2019, pp. 744–750.

[20] Y. Zheng, Y. Liu, and J. H. Hansen, “Navigation-orientated natural
spoken language understanding for intelligent vehicle dialogue,” in
2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp.
559–564.

[21] J. Thomason, M. Murray, M. Cakmak, and L. Zettlemoyer, “Vision-
and-dialog navigation,” in Conference on Robot Learning. PMLR,
2020, pp. 394–406.

[22] X. Gao, Q. Gao, R. Gong, K. Lin, G. Thattai, and G. S. Sukhatme,
“Dialfred: Dialogue-enabled agents for embodied instruction follow-
ing,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 10 049–
10 056, 2022.

[23] A. Padmakumar, J. Thomason, A. Shrivastava, P. Lange, A. Narayan-
Chen, S. Gella, R. Piramuthu, G. Tur, and D. Hakkani-Tur, “Teach:
Task-driven embodied agents that chat,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, no. 2, 2022, pp. 2017–
2025.

[24] H. De Vries, K. Shuster, D. Batra, D. Parikh, J. Weston, and D. Kiela,
“Talk the walk: Navigating new york city through grounded dialogue,”
arXiv preprint arXiv:1807.03367, 2018.

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[26] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1-2, pp. 99–134, 1998.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[28] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] M. Eric, R. Goel, S. Paul, A. Kumar, A. Sethi, P. Ku, A. K.
Goyal, S. Agarwal, S. Gao, and D. Hakkani-Tur, “Multiwoz 2.1: A
consolidated multi-domain dialogue dataset with state corrections and
state tracking baselines,” arXiv preprint arXiv:1907.01669, 2019.

[31] M. Bjelonic, “YOLO ROS: Real-time object detection for ROS,”
https://github.com/leggedrobotics/darknet_ros, 2016–2018.

[32] N. Sabharwal, A. Agrawal, N. Sabharwal, and A. Agrawal, “In-
troduction to google dialogflow,” Cognitive virtual assistants using
google dialogflow: develop complex cognitive bots using the google
dialogflow platform, pp. 13–54, 2020.

7898

Authorized licensed use limited to: Stanford University. Downloaded on November 30,2024 at 22:21:55 UTC from IEEE Xplore. Restrictions apply.

