Parameter Optimization for Accurate and Repeatable Strut Width in the 3D

Printing of Composite Bone Scaffolds

Mahathir Mohammad Bappy ¢, Emma Van Epps °, Lauren B. Priddy °, and Wenmeng Tian **
® Department of Industrial and Systems Engineering, Mississippi State University, Mississippi State, MS
39762, United States
® Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State,

MS 39762, United States

Abstract
Critically sized bone defects present a significant challenge to orthopedic surgeons due to the
limited availability of autograft bone tissue, which is the current gold-standard treatment. As an
alternative, 3D bioprinted porous scaffolds can be designed to mimic bone's mechanical and
biochemical properties to support tissue regeneration. However, achieving high geometric
accuracy and repeatability of these scaffolds can be challenging, especially when printing new
composite materials and geometries. Therefore, the objective of this study was to optimize the
extrusion-based 3D bioprinting process parameters for composite polymer-ceramic scaffolds.
Bone scaffolds composed of a polylactic-co-glycolic acid (PLGA) and 5% nano-hydroxyapatite
(nHA) composite were printed and analyzed to evaluate their dimensional accuracy, which is
primarily determined by the process parameters. This empirical study investigated the effects of
different process parameters, particularly, nozzle temperature, pressure, and printing speed, on the
geometric accuracy (i.e., strut width) of the printed scaffolds. Starting with a full factorial design
of experiments, in-situ layer-wise optical images were captured, which were then leveraged

through image processing for strut width characterization. Subsequently, a new iterative process
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optimization method was proposed that involves regression modeling and bound constraint-based
minimization. A case study on printing a two-layer scaffold was used to demonstrate the
effectiveness of the proposed method. Overall, the geometric accuracy of the printed scaffolds
improved significantly, maintaining a range of 5% from the nominal strut width as iterative
experiments were conducted, which demonstrates the significant potential of the proposed method
in bioprinting process parameter optimization.

Keywords: 3D Bioprinting; Composite Material; Bone Scaffold; Process Parameter Optimization;

Tissue Engineering.

1 Introduction

Bone tissue can self-heal only to a certain extent, and therefore bone grafts are often required
for critically sized bone defects caused by trauma, tumor resection, osteoporosis, or congenital
malformation [1,2]. Autografting is the gold standard for severe bone defects, but it is invasive
and causes donor site morbidity [3]. Solid metal implants are an alternative treatment, but their
higher Young's modulus than human bone can cause stress shielding-induced bone resorption that
weakens and decreases bone density [4,5]. Moreover, grafts and metal implants are harder to
customize due to the complex geometry of such defects. To alleviate the existing limitations,
biodegradable composite scaffolds fabricated through 3D printing may serve as an effective
alternative for bone tissue engineering [6]. The advantages of composite scaffold fabrication in
bone tissue engineering include: a) geometric flexibility of 3D printing with controlled pore
structure; b) customizable mechanical and biological properties by manipulating the material
composition and geometry [7,8]. Specifically, composite scaffolds reportedly exhibit superior

compressive strength and osteoconductivity compared to either polymer or ceramic alone [1,3,9].



Despite the unique flexibility and capabilities of composite scaffold 3D printing, the process
involves significant challenges in quality control and process optimization. Basically, the intended
pore structure and the necessary mechanical and biological properties can be obtained with
carefully controlled geometric accuracy. The clinical effectiveness of a composite scaffold at
facilitating bone in growth depends on geometric attributes like porosity and strut width, which
must be highly customized and accurately characterized [10]. In order to achieve these long-term
aims of tissue engineering, achieving the dimensional accuracy of 3D printed composite bone
scaffolds is highly desirable [11,12]. However, the dimensional accuracy of 3D-printed scaffolds
are determined by multiple factors, including raw material, binding agents, printing parameters,
and post-processing treatments [13]. Scaffold geometric accuracy is enhanced by understanding
the process variability and accordingly optimizing process parameters for the 3D printer [14].
Others have reported optimization of process parameters of various 3D printing or additive
manufacturing (AM) processes (e.g., stereolithography [15], fused deposition modeling (FDM)
[16], and selective laser sintering [17]). However, there are limited studies conducted to examine
the impact of printing process parameters on the composite bone scaffold fabrication through
extrusion-based printing. Therefore, this paper aims to establish a data-driven process parameter
optimization method for customizable composite scaffold printing.

The objective of this study is to examine the geometric accuracy of the composite bone scaffolds
through process parameter optimization. The composite material is comprised of a combination of
biodegradable and biocompatible polylactic-co-glycolic acid (PLGA) and ceramic particles of
nano-hydroxyapatite (nHA) that enhance stiffness and osteoconductivity [18,19]. The technical
contributions of this paper are summarized as follows. First, an image analysis method is proposed

to characterize the strut width obtained from scaffold printing based on the layer-wise in-situ



optical images. Second, a new iterative regression-minimization model is established to find the
optimum level of printing process parameters. Ultimately, this new scaffold printing process
parameter optimization model can be applied to other scaffold printing systems with a different
printer and/or material composition. This will enable the accelerated production of scaffolds with
tailored properties, as well as reliable and repeatable geometric accuracy.

The remainder of the paper is organized as follows: A literature review on state-of-the-art
composite scaffold printing and data-driven machine learning methods for 3D scaffold printing
quality control is summarized in Section 2. The proposed methodology of material preparation,
the initial design of experiment, image processing, and modeling and optimization framework are
introduced in Section 3. In Section 4, the results are discussed. Finally, Section 5 presents the
conclusion and future research directions.

2 Literature Review

This section briefly summarizes the state-of-the-art methodologies relevant to parameter
optimization of 3D printed composite bone scaffolds. The major composite scaffold printing
technologies are first summarized. Subsequently, the data-driven machine learning-based methods
for optimization and quality control of 3D bioprinting are summarized. Lastly, the research gaps
on process parameter optimization for composite scaffold printing are briefly discussed.
2.1 Composite Scaffold Printing

Various manufacturing processes, such as electrospinning and salt leaching, have been used to
produce composite scaffolds that are both porous and biocompatible. However, these methods do
not provide the specific customization for fabricating bone tissue implants for patient-specific bone
defect geometries [20]. Although the microarchitectures produced by these techniques are well

characterized, their geometries are limited to molds or manual processing [21]. This has motivated



the exploration of a relatively modern method of scaffold fabrication: 3D printing. The primary
motivation for using 3D printing techniques for scaffold fabrication is the control over strut or pore
morphology, low cost, and relatively simple production process [20]. Of the many existing
methods of 3D printing, FDM is highly compatible with thermoplastics, which can result in a
stiffness value that is similar to human bone when mixed into a polymer-ceramic composite
[19,20]. The unique ability to fine tune the polymer types and ratio of polymer to ceramic enables
a wide range of stiffness values needed for fabricating a customizable bone tissue implant [7].
Current literature primarily reports the mixing of polymers (such as polylactic acid (PLA),
polyglycolide (PGA), PLGA, and polycaprolactone (PCL)) with a bioceramic (such as
hydroxyapatite (HA) or B-tricalcium phosphate (B-TCP)) to obtain an appropriate composite
material for use in 3D printing [3,22-24]. The degradation rate, acidic byproducts, and mechanical
properties of the above polymers must be considered when selecting an appropriate polymer for
composite preparation. Additionally, the addition of a bioceramic can alter the composite’s
viscosity during processing [25,26]. HA, the crystalline form of calcium phosphate, is commonly
used in orthopedic implant research due to its chemical similarity to the mineral component of
human bone tissue [1,5,27]. The mineral is both bioactive and can improve a scaffold’s
osteoconductive properties due to its hydrophilicity and capacity to increase polymer surface
roughness. When bound to a polymer, it creates a more favorable surface topography for cell
adhesion [22]. Nanohydroxyapatite (nHA) 1is especially effective because its increased surface
area creates an ideal nanotopography for promoting cell adhesion [28]. The percentage of ceramic
dispersed in the polymer is also an area of interest. Literature reports a wide variety of HA
concentrations ranging from 0%, 5%, and up to 50% HA in polymer scaffolds [22], [29,30]. Thus,

optimizing the printing parameters for such a wide range of concentrations has become a highly



empirical process. Variations in the choice of polymer and brand of 3D printer have also
contributed to the inconsistencies in printing. Therefore, there is an urgent need to establish an
efficient process for parameter optimization for composite scaffold printing.
2.2 Experimental Parameter Optimization for 3D Bioprinting Applications

In the rapidly evolving field of bioprinting, the investigation of optimal printing parameters is
very significant to achieving precise, reproducible, and biocompatible constructs. Numerous
experimental studies [31-34] are continuously explored, with the most relevant ones being
discussed within this section. For instance, an experimental parameter optimization method is
developed for 3D printing of hydrogels by evaluating multiple printing parameters in a
standardized manner applicable to extrusion-based bioinks [35]. Similarly, optimization of starch
and chitosan-based bio-inks in 3D bioprinting of scaffolds for neural cell growth was also
performed [36], where the printability and biocompatibility of different starch-to-chitosan ratio
bioinks were examined. In addition, an experimental study was conducted to use 3D printing in
the fabrication of SA-GEL (sodium alginate and gelatin) porous cartilage scaffolds with optimal
parameters [37]. Moreover, experimental analysis based on design of experiments (DOE) has been
applied for process parameter optimization, leading to significantly improved geometric accuracy
and compressive modulus of thermoplastic- and hydrogel-based tissue scaffolds [38].
Furthermore, it is reported that the fiber spreading ratio on simple serpentines and volumetric
dispensing system play vital roles in determining optimal printing parameters in Martigel scaffolds
printing [39]. A study on parameter optimization of 3D bioprinting using hybrid bioinks was
performed, and it was demonstrated that the printing quality is affected by the combination of a
large variety of parameters [40]. Moreover, research has explored the optimization and fabrication

of customized scaffolds to match human bone properties, utilizing a numerical study validated by



experimental routines. This approach enables the optimization, fabrication, and automation of
generating open porous polyamide scaffolds [41]. Based on a study of the literature, it is prominent
that the pursuit of optimal printing parameters extends across various domains of bioprinting, each
presenting unique challenges and considerations.
2.3 Data-driven Machine Learning (ML)-Based Process Parameter Optimization of
Composite Scaffold 3D Printing

Data-driven ML-based methods have gained considerable attention in recent years for
optimizing process parameters in the 3D printing of bone scaffolds [42]. By leveraging data-driven
approaches, the optimal combination of process parameters can be identified which can enhance
the mechanical properties, biocompatibility, and overall quality of the 3D printed scaffolds [43—
45]. Several studies have explored the use of data-driven algorithms, such as artificial neural
networks (ANN), genetic algorithms, and response surface methodology, to analyze large datasets
and uncover complex relationships between process parameters and scaffold properties. For
instance, a multi-objective genetic algorithm is developed for printing parameter optimization of
polycaprolactone/hydroxyapatite composite scaffolds, achieving improved mechanical strength
and porosity [46]. Similarly, an ANN-based model was leveraged for printing parameter
optimization of poly (lactic-co-glycolic acid)/B-tricalcium phosphate scaffolds. The ANN model
successfully predicted the optimal parameter combinations, resulting in enhanced scaffold
mechanical properties [47,48]. In addition, response surface methodology has been utilized to
optimize the process parameters of a silk fibroin/calcium phosphate composite scaffold, achieving
improved compressive strength and pore size distribution [49,50]. Furthermore, the deep neural
network-based algorithm was applied in parameter optimization of multiple quality outputs. This

method also allows user selection within the optimal process parameters for fabricated products



with conforming product properties [51]. Moreover, 3D printing and ML has been recently
integrated to facilitate the selection of optimal printing parameters, which can reduce the number
of error-and-trial experiments needed for printing parameter optimization [52]. Although data-
driven ML-based methods have shown significant potential for optimizing process parameters for
scaffold 3D printing, further research is needed for the development of highly customized and
functional composite bone scaffolds for tissue engineering applications.
2.4 Data-driven Methods for Quality Control of Bioprinting

Online sensors can provide data for the real-time quality control of the 3D printed scaffolds
during fabrication. It can specifically monitor the printing fidelity and geometric morphology of
the printed parts using an integrated machine vision system [53]. The sensing-based approaches
can be categorized into two distinct groups: (i) real-time monitoring for anomaly detection only
and (ii) real-time monitoring and process control. For instance, a recent study investigated the use
of ML for anomaly detection in distinguishing between printing configurations that are likely to
result in low-quality prints and printing configurations that are more promising as a first step
towards the development of a recommendation system [54]. Similarly, a convolutional neural
network (CNN) model is designed to achieve efficient defect classification of the FDM parts
considering the surface data with high accuracy [55]. In addition, in many manufacturing
applications, CNN-based classifiers are used for defect detection and can be employed in process
monitoring and correction in 3D printing, where visual features can be learned to extract critical
information from the raw images. This approach would enable the fabrication of 3D-printed
structures with high accuracy and repeatability [56].

On the other hand, for real time monitoring and process control, sensors like temperature, CO2,

and humidity are needed to monitor and accordingly adjust the printing environment by integrating



a closed-loop feedback mechanism and a computer vision-based control system [57,58].
Moreover, using optical coherence tomography (OCT), the 3D microstructure of melt
electrowriting scaffolds was recently reported. The microstructural characteristics can be
calculated from OCT data using a custom method that shows excellent agreement with scanning
electron microscopy (SEM) results [59]. Another example is the development of a real-time
monitoring and autonomous correction system, where a deep learning model and a feedback loop
are integrated to adjust 3D-printing parameters of FDM in an iterative and adaptive manner [60].
2.5 Research Gaps and Technical Contributions

This section discusses the research gaps based on state-of-the-art experimental and data-driven
methodologies relevant to process parameter optimization of 3D-printed composite bone scaffolds.
The existing process parameter optimization techniques have made progress. However, there are
still some limitations, which include limited exploration of (i) parameter interactions, (ii) novel
composite material behavior based on process parameters in extrusion-based 3D printing, (iii) the
time-consuming nature of iterative experimentation for parameter optimization, and (iv) difficulty
in achieving consistent reproducibility across different bioprinting platforms and materials with a
process-specific optimized parameter. Besides these, for ML-based methods, a larger dataset
enables the development of robust ML algorithms. While most methods guide the determination
of optimum printing parameters, real-time monitoring of the 3D printing process can enable live
adjustment of printing parameters upon detection of any deficiencies during the printing process.
Addressing these limitations will significantly advance the field of process optimization for 3D
composite scaffold printing, leading to enhanced geometric accuracy of scaffold and more efficient
production processes. Specifically, despite the growing body of literature on the optimization of

process parameters in 3D scaffold printing, there is a notable research gap in the exploration of the



interaction effects of temperature, pressure, and speed in the context of novel composite material
extrusion processes. Existing studies have largely focused on individual parameter optimization,
overlooking the potential synergistic effects and their impact on scaffold geometric accuracy and
fabrication repeatability.

The technical contribution of this paper is summarized below. By applying regression
minimization modeling, the proposed method explains the intricate relationships between various
printing parameters and resulting strut width, offering insights into their impact on the 3D printing
of composite scaffolds. Along with the enhancement of understanding of complex interactions,
this study generates the optimal process parameters for achieving the desired strut width.
Essentially, by leveraging empirical data and ML modeling, this study develops a structured
approach for identifying optimal process parameters, enhancing reproducibility, and reducing the

dependence on extensive trial-and-error experiments.

3 Proposed Methodology

This section is comprised of the materials and methods employed for the optimization of the
composite material printing process, utilizing a combination of Design of Experiments (DOE),
image analysis for strut width characterization, and a modeling and optimization framework.
Basically, the DOE approach is utilized to systematically vary the process parameters and evaluate
their effects on scaffold properties. Additionally, image analysis techniques were employed to
characterize the strut width of the printed scaffolds, providing quantitative measurements for
further analysis. Finally, a modeling and optimization framework was developed to establish
predictive models and optimize the process parameters for scaffold printing. This comprehensive

approach combining composite material printing process optimization, DOE, image analysis, and
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modeling provides a structured methodology for enhancing the geometric accuracy and

functionality of 3D printed composite bone scaffolds.

3.1 Composite Material Preparation and Scaffold Printing

The composite material for scaffold fabrication was prepared in a stepwise manner to ensure
proper mixing, elimination of solvents, and loading into the printing cartridge for subsequent 3D
printing. First, pellets of PLGA (CELLINK, Blacksburg, VA, USA) with a PLA-PGA ratio of
50:50 and an inherent viscosity of 0.65 dL/g, and hydroxyapatite nanospheres (nHA) (Sigma-
Aldrich., St. Louis, MO, USA) with a molecular weight of 502.31 g/mol, a diameter <200 nm, and
>97% apatite purity were used to prepare the composite material. The composite material was
prepared as 5% nHA and 95% PLGA by weight. Acetone was used as the solvent for mixing, and
the ratio of acetone to PLGA-nHA composite was 3:1 (vol:mass).

The material was prepared in 2 g batches in a 200 mL beaker to maximize the exposed surface
area and promote acetone evaporation. The solution was covered and stirred at 70 rpm for 2 hours
at room temperature. The material was then uncovered, and the solution was mixed uncovered at
the same speed overnight at room temperature. The composite material was then incubated at 75°C
for 12-15 hours to ensure solvent evaporation. The initial dry weight of PLGA and nHA was
compared to the final composite material weight after acetone evaporation to ensure thorough
elimination of solvent (<100mg solvent remaining). The composite material was stored in a
desiccator until use for up to two weeks. Finally, to load the finished material into the printing
cartridge, the composite was heated to 150°C for 5 minutes on a heating plate. Once softened, the
composite was scooped into the printing cartridge and pressed to the bottom with a plunger. The

handle of the plunger was then removed, and the plunger end remained in the cartridge to ensure
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even force was applied to the material by the pressurized air. The material preparation process is

outlined in Figure 1.

Stir covered Solvent evaporation:

2 hrs Stir uncovered 12 hrs
- Solvent Evaporation: Homogenous
rn Incubate 12-15 hrs at 45C mixture

Figure 1: Composite material preparation process
The 3D model of the scaffold was designed using Tinkercad software with a strut width of 0.4
mm, a layer height of 0.4 mm, and a pore size of 750 pm (Figure 2). Here, the pore size of 750 um
refers to the dimensions of the unprinted hollow square regions between the struts. These

parameters were selected to achieve the desired structural design and pore size in the final printed

scaffold.
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(a) CAD Design (b) Printed Scaffold

0.75 mm

Pore o~  0.4mm

Strut

5mm

Figure 2: (a) CAD design and (b) a printed scaffold

The process of material extrusion consists of a pressure pump that delivers filtered air into the
material cartridge and a heating element located just above a 0.4 mm diameter nozzle. This
pressurized system forces the heated material through the nozzle to create a uniform, viscous flow.
This printing setup provides control over the temperature, pressure, and printing speed of the
material. The infill rate was set to 100%, and a rectilinear infill pattern was selected for printing.
In 3D printing, the infill ratio is an important parameter that represents the fill rate of the part to
be produced. It refers to the density of material used to fill the interior of the design object. In the
study, an infill ratio of 100%, suggests that the interior of the printed object is completely filled
with material, while the pore size of 750 um is associated with the design of the scaffolds. More
specifically, it refers to the spacing between the struts of the scaffold, as demonstrated in Figure
2(a). Moreover, in Figure 2(a), to enhance clarity, the label information for both the strut and pore
is also included, along with their respective dimensions. In this study, scaffolds were printed using

the CELLINK BIO X printer’s thermoplastic printhead. An advantage of the BIO X is its ability
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to capture layer-wise images of the scaffold during printing. Top-down images were taken after
each layer for subsequent analyses. Furthermore, double sided tape was used to facilitate the image
analysis process by providing high contrast between the struts and the background. We used a
brightly colored tape on top of the baseplate of the printer to provide higher image contrast.
Furthermore, we expect the tape had little to no effect on the second layer of the scaffolds, which
was the layer that was analyzed. In the scenario of fabrication for real-world medical use, a heated
baseplate would be used rather than the tape. However, only for the purpose of printing parameter
optimization, we utilized the double-sided tape as a substitute. The printing setup is demonstrated

in Figure 3.
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Figure 3: The setup for composite bone scaffold printing.
3.2 Proposed Framework
Figure 4 represents the proposed iterative method for optimizing the process parameters in 3D
scaffold printing. The objective is to enhance the quality and performance of the printed scaffolds
by systematically refining the parameters that govern the printing process. The method

incorporates initial experimental designs, image analysis for strut width characterization, and a
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modeling and optimization framework. Initially, a set of process parameters is selected, and
scaffold samples are printed with layer-wise images collected and strut width characterized. Image
analysis techniques are employed to characterize the strut width of the printed scaffolds, providing
quantitative data for analysis. Subsequently, a mathematical model is developed to describe the
relationship between the process parameters and the strut width. The model is calibrated and
validated using the data obtained from the initial experiments. Optimization algorithms are then
applied to explore the parameter space and identify the optimal combination of process parameters
that optimizes the strut width. The process iterates, updating the model with new data, refining the
process parameters, and repeating the printing and analysis steps until the optimization criteria are

met.

Initial Experimental Design

Y

Print Scaffold Samples &

. = i
Data Collection -i Optimal
jParameters

A 4 1

Strut Width Modeling &

Quantification Optimization
T
Criteria NU_ A

Satisfied?

Yes

Optimal Parameters

Figure 4: Flowchart of the proposed iterative method for process parameter optimization in
composite scaffold printing.
3.2.1 [Initial Experimental Designs
A full factorial experimental design is used as the initial experimental design for printing the
composite scaffolds. The factorial design helps to study the effects caused by independent factors

and interactions between those self-governing factors [61,62]. In this work, three independent

factors (i.e., temperature (X;), pressure (X,), and speed (X)) are used. In addition, three factorial
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levels are leveraged for the experimentation in this study. The levels of these parameters are
selected with the help of a machine manual and by performing the preliminary test on a 3D
bioprinter. On the basis of preliminary experimentation, the ranges and, subsequently, the levels
of the printing parameters are chosen as shown in Table 1. Moreover, based on a random full
factorial DOE, a total of 27 experimental runs are generated for analyzing the interaction of each
level on scaffold printing, and in this study, strut width is considered a response factor.

Table 1: Independent factor levels of initial experiments

Independent factors Levels
Temperature (°C) 115 120 125
Pressure (kPa) 225 250 275
Speed (mm/s) 1 1.5 2

3.2.2 Image Analysis for Strut Width Characterization

An image processing approach is developed to measure the strut width from the layer-wise
captured scaffold images during printing. The key concept was to distinguish the pixels of the strut
region from other regions in the image and to derive the strut width based on the pixel data.
Essentially, for image processing, four key steps are followed, as depicted in Figure 3. The key
steps for image processing are as follows:

Step 1: Extracting regions of interest (ROI) from RGB images: For each experiment, layer-wise
images were acquired through an optical camera. Each image is not analyzed for all regions at
once but divided into appropriate ROIs for analysis Regarding the selection of rows in the
scaffolds, only the most recent layer was considered as the appropriate region for further analysis.
Moreover, each scaffold was examined at specific locations or rows within the scaffolds, making
sure that these regions were selected to be indicative of the scaffold’s overall strut. Specifically, in

Equation (1), each cropped region is considered to be a combination of the number of rows of
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pixels that are averaged and combined to get the strut width. It is noted that the brightness
distributions of the strut and surrounding base can be different. Therefore, to obtain more accurate
results, analysis was performed by dividing the image into several segments.

Step 2: Image pre-processing by converting an RGB image into a grayscale image: As the
original image of a segment was a combination of red, green, and blue colors, it contained a
significant amount of data. Therefore, this image was simplified to a grayscale image with only
brightness information, which changes the intensity values from 0 to 255.

Step 3: Image binarization: After image simplification, an appropriate threshold was
determined to filter out the pixels in the strut region. This threshold was determined by analyzing
the histogram information of the image brightness. For generating binary images, the brightness
of each pixel was compared to the threshold value, and it was converted to white or black
depending on the brightness. Through this process, the grayscale image was converted into a
binary image expressing strut regions and other regions.

Step 4: Strut width quantification and pixel size unit conversion: The number of pixels in the
strut region is leveraged for the quantification of strut width. The size of the pixels in the real-time
images depends on the magnification during imaging. Therefore, it is necessary to convert the
pixel to a metric unit (i.e., mm) in order to obtain the final measurements on a unified scale,
independently from the scale factor of imaging. Basically, during the image capturing process, we
ensured the presence of a millimeter scale within the field of view. This millimeter (mm) scale
serves as a reference for establishing the conversion from pixels numbers to length in mm scale.
Then, we counted the number of pixels corresponding to the known length on the mm scale within
the image. After that, by dividing the number of pixels by the known length in millimeters, we

derived the pixel-to-length ratio. Finally, the reciprocal of the pixel-to-length ratio gives us the
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unit conversion factor, denoted as u = 1 / (Number of pixels per millimeter). It's important to note
that this width measurement is not based on a single row of pixels, but rather on data aggregated
from all the rows in the ROI collectively. Each ROI provides a data point contributing to the
average width measurement, thereby incorporating information from various sections of the
scaffold. For clarity, the formulation of the width calculation is represented using equation (1) as

follows:

Y = ( §=12Nbright(i)> X U (1)

r

where Y denotes the strut width and (i = 1,2, ...7) denotes the number of rows in the region of
interest of a strut for width computation. N4, denotes the bright pixel in the region of interests

as shown in Figure 5 and u denotes the unit conversion factor.
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Figure 5: Image processing flow chart for strut width quantification
3.2.3 Modeling and Optimization Framework

In this section, a comprehensive modeling and optimization framework is presented specifically
tailored for optimizing strut width (Y), focusing on the scenario where three independent factors

of temperature (X;), pressure (X,), and speed (Xy) influence Y. Basically, after experimentation
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and image processing, for capturing nonlinear effects and interactions between variables,
polynomial regression can be well suited for this problem [63]. Therefore, a quadratic polynomial
regression model was assumed for predicting individual Y variables. The regression model

describing the functional relationships between independent variables (X;, X;, X5) and a single

dependent variable Y, can be generalized as follows:

Y =B+ BeXitBpXp + BsXst... Intercept & first order terms
BetXE + BppXp + BssX3+... Quadratic terms o
BepXtXp + BesXeXs + BpsXpXst... Interactions terms
£ Error term

where By, (Bt.Bp, Bs), (,Btt, Bpp Bss), (Btp, Bts) Bps) are intercept, linear, quadratic, and interaction
regression coefficients, respectively. The error term is represented by &, and based on the central
limit theorem, it is usually assumed that the error term follows a Gaussian distribution with a mean
of 0 and a standard deviation of a,. Specifically, ten regression coefficients need to be estimated,
as observed from equation 2. During analysis, among different statistical attributes, the adjusted R
squared value can be quantified as a criterion of the fit between the data and the regression [63,64].
The predicted response values and the estimated regression coefficients can be obtained using
quadratic polynomial regression with arbitrary input values. Usually, there should be a minimum
difference between the nominal strut width and the predicted response. Therefore, to obtain the

optimized process parameters, a loss function L(X;, X, X;) can be developed with the fitted model

along with estimated coefficients and nominal strut width (N; ) as follows:

PN ~ ~ A ~ ~ ~ ~ 2
.80 + .BtXt + .Bpo + .BSXS + ,Bttth + .Bprz% + .Bssst + .BthtXp +> (3)

L(X: Xy, Xg) = A A
( v S) < ﬁtthXs-l'ﬁstst_Nt

Furthermore, to obtain the optimized values of the independent variables for achieving nominal
strut width, the minimization problem can be formulated with bounded constraints as follows:

minimize: L£(X;, X,, Xs) 4)

19



subjectto: [ < X, < u
L, < X, < u,
Iy <X, <
where L(X tr Xp, X s) is the objective function that needs to be minimized, and [; < X; < u; denotes
the lower (l;) and upper (u;) bounds for variable X, respectively. The goal is to find the values of
Xt, Xp,and X that minimize the function L(Xt, Xp, X S) , subject to the given constraints on the
variables. The constraints on the variables are given by the inequalities to ensure that the values of
the variables will be within the specified bounds during the optimization process. Bounded
constraints are important because they define a feasible region within which the optimization
algorithm can search for the optimal solution. By limiting the solution space to a specific range of
values, bounded constraints help ensure that the optimization process remains practical and
relevant to the real-world problem being solved. As the optimization problem is bounded
constraints, therefore, the adopted technique to solve the problem should support the bounded
constraints. Considering the specific problem and the properties of the objective function and
constraints, the L-BFGS-B algorithm [65] is adopted, which is a limited-memory algorithm for
solving large nonlinear optimization problems subject to simple bounds on the variables. Thus, by
formulating and solving the minimization problem, a set of optimized parameters for independent

variables can be obtained as: {XE‘ , Xp, Xs }

To evaluate the regression-minimization model’s performance, with the optimized parameters,
the printed strut width can be compared with the nominal strut width for observing deviations.
Essentially, it is important to define the acceptable or satisfactory range around the target nominal
strut width, providing a quantitative criterion for assessing the performance of the printed
scaffolds. In this study, we aim to minimize the average printing error by optimizing the process

parameters for scaffold printing. However, natural process variations can always occur during
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printing, making it impossible to achieve the exact nominal values consistently. Therefore, we
incorporated upper and lower limits to account for these variations and make them the stopping
criteria of our proposed optimization framework. In this study, +5% tolerance ensures that slight
variations in the strut width are considered within a satisfactory or acceptable range [Upper Limit:
Nominal Strut Width + (Nominal Strut Width x 0.05); Lower Limit: Nominal Strut Width -
(Nominal Strut Width x 0.05)] while maintaining the desired design specifications. Thus, if the
model's performance is not satisfactory, it can be updated to improve its performance, as depicted
in Figure 4. The model update involves modifying the model structure by incorporating the
iteratively generated sample data for evaluation. Specifically, the new measurements are
incorporated into the modeling, and the regression model is updated using the combined dataset,
including both the initial training data and the newly measured dimensions. This will iteratively
adjust the model to improve its accuracy. Basically, the iteration is performed by printing
additional samples with updated parameter combinations, measuring the strut width, and updating
the dataset and regression-minimization model. The number of iterations depends on the desired
level of accuracy and the convergence of the model. Once the model has converged to the desired
accuracy level, it can be used to predict the nominal dimension for any given set of printing
parameters. This prediction provides an estimate of the expected dimension based on the learned
relationship from the training data. Thus, this approach can iteratively refine the model to improve
its accuracy in predicting the geometric dimension in 3D bioprinting of composite bone scaffolds
and also consider the variability and dependencies of the printing process parameters on the
resulting dimensions. The proposed iterative process optimization flowchart is summarized in

Figure 6.
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Perform initial DOE and data acquisition
v

Analyze data and fit regression model based on eqn. (1) & (2)

v

Create a minimization problem based on eqn. (3) & (4) to
obtain optimized parameters

v

Validate optimized parameter set

v

Satisfactory
strut width?

Refine the model with
iterative data points

Select final optimized parameter set

Figure 6: Flowchart of the proposed iterative process parameter optimization method.

4 Results and Discussion

In this section, the experimental data are used to evaluate the process parameter optimization
model. For predictive modeling, a set of 135 regions of interest (ROI) samples is generated from
27 printed scaffolds based on a full factorial DOE. Specifically, each scaffold is measured at 5
locations, and our methodology was designed to ensure that these locations were chosen to be
representative of the overall structure of the scaffolds. Specifically, each ROI includes a collection of
rows of pixels, which are averaged to obtain the average strut width in the ROI. Moreover, our
iterative improvement of the initial model by printing more scaffolds highlights one of the
strengths of our study: the ability to handle and derive meaningful insights from relatively small
experimental datasets. It is worth noting that, prior to the experiment, the delay between image

capture and the print resuming often caused small blockages in the nozzle, presumably due to
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material cooling, resulting in layers with abnormally short first struts. Thus, a separate small
cylinder was printed alongside each scaffold, allowing any blockages to be extruded prior to
printing each new layer of the scaffold. Essentially, the generated samples are characterized by
image processing for strut width quantification, as described in Section 3.3. The resulting strut
width over the samples for 27 experimental arrangements is depicted in Figure 7. To construct
each boxplot and interaction plot in the figure, 45 data points were utilized, enabling a
comprehensive analysis of both dependent and independent variables. In this case, the nominal
strut width is 0.4 mm, which needs to be obtained with optimized process parameters. The nominal
strut width is defined as 0.4 mm as an arbitrary scaffold design. However, it's important to note
that this value does not restrict the generality of the model. Rather, it can serve as a baseline for
the iterative optimization process. In essence, the modeling approach described in the study
remains applicable regardless of the specific nominal strut thickness chosen.

The resulting boxplot visualizes the relationship between the independent variables (i.e.,
temperature, pressure, and speed) and the width of struts. For example, it is observed that there is
a positive correlation between the two variables (i.e., as the temperature and pressure increase, the
strut width also tends to increase), whereas a negative correlation is observed for the variable of
speed because when speed increases, the strut width decreases. Moreover, in Figure 7 the
interaction plots describe the effect of one independent variable on the strut width changes for
different levels of the other independent variable and how this relates to the overall interaction
pattern. Specifically, from Figure 7, some assumptions about the combined impact of the process
parameters can be made for setting the printing process parameters. It is observed that when the
temperature and pressure are closer to the lower bound as well as the speed is closer to the upper

bound, there is a potential to obtain the nominal print width.
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Figure 7: Plotting of strut width with different sets of independent process parameters.

Based on the experimentation, for robust process parameter optimization, after characterizing

the strut width, the regression model is leveraged, considering the input and response variables.

Based on the modeling, regression coefficients, obtained by employing a least squares technique

to predict a quadratic polynomial model for the response variable, are summarized in Table 2.

Table 2: Regression results of predicted quadratic polynomial model.

Variables Coefficients | Std. err. | p-value
Intercept 31.0986 7.897 0.000
X -0.4136 0.125 0.001
Xy -0.0688 0.014 0.000

X 1.2307 0.511 0.018
X? 0.0016 0.001 0.002
XXy 0.0003 7.34e-05 | 0.000
XX -0.0167 0.004 0.000
Xz% 6.868e-05 | 2.13e-05 | 0.002
X, X -0.0006 0.001 0.432
X2 02114 0.052 0.000
R-square 0.897 F-statistic | 95.17

Adj. R-squared 0.888 DF model 9
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For the strut width prediction, the evaluation of these coefficients with the p-value indicated
that linear and quadratic terms of the independent variables are highly significant. From Table 2, it
is observed that most of the variables demonstrate almost zero p-values. In statistical hypothesis testing, a
smaller p-value suggests stronger evidence against the null hypothesis, indicating that the observed results
are unlikely to have occurred by chance [66,67]. Furthermore, a p-value less than a predetermined
significance level (typically 0.05) indicates that we have sufficient evidence to reject the null hypothesis,
suggesting that the corresponding term in the model is statistically significant. Therefore, having p-values

close to zero signifies the significance of the variables included in the model [67—69]. In this case, there
is no significant interaction between pressure and speed for the response variables. Therefore,
generally, these results suggest that all linear, quadratic, and interaction effects (without interaction
between pressure and speed) of the independent factors could potentially be the primary
determining factors affecting the response variables. These results also denote that the regression
models predicted for Y are significant with satisfactory coefficients of determination (R2) and (ad;.
R2), 0.897 and 0.888, respectively. Based on the determined coefficients, the objective function
described in Section 3.4 can be formulated as follows.
Minimize:
(31.09 — 0.4136X, — 0.0688X,, + 1.2307X, + 0.0016X¢ + 0.000068X; + 0.2114X?
+0.0003X,.X, — 0.0167X,X; — 0.4)?
subjectto: 115 < X, < 125
225 < X, <275
1<X,<2

The minimization objective function with the bound constraints is leveraged as mentioned in
the approach in Section 3.4. The L-BFGS-B algorithm [38] is adopted for solving the minimization
problem, and thus a set of optimized parameters for temperature, pressure, and speed can be

obtained as follows: {X £ Xp, Xs } following the proposed methodology. Based on the optimization

results, the parameters are used for the corresponding experimental validation. This approach

aligns with previous research demonstrating the importance of parameter optimization in achieving
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desirable outcomes in 3D printing applications. For example, previous studies have underscored
the importance of optimizing strut width to enhance the mechanical properties and structural
integrity of 3D-printed scaffolds [70,71]. Similarly, the critical role of strut width in controlling
porosity and pore size distribution within printed scaffolds is also emphasized, which directly
impacts the biological performance of scaffolds [72]. Moreover, researchers have recognized the
critical importance of precise control over strut width to attain uniformity and reproducibility in
scaffold fabrication [73]. Despite differences in materials and designs, the studies mentioned are
closely aligned with the objectives of this research, which aims to achieve consistent and precise
scaffold printing with particular emphasis on controlling strut width. In this study, with the
optimized parameter, the printed scaffold along with the quantified width of multiple samples can
be depicted, as demonstrated in Figure 8. The boxplot with error bars (red color) in Figure 8
displays the distribution of the width of the printed scaffold samples across different iterations. It
provides a visual summary of key statistics, such as the mean (blue color line) and quartiles of the
distribution for three different iterations. Basically, the error bars indicate the uncertainty

associated with the data points. It is observed that, for iteration 2 with {XZ‘,X;,X;‘} =

{115, 249, 2}, the mean line is close to the nominal width, and the error bars are also within the
acceptable range. Ultimately, it is assumed that it is feasible and reasonable to guide the composite

bone printing process with 3D bioprinting by using optimized process parameters.
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Figure 8: Box plotting of strut width with error bars for different iterations with optimized
parameters {X £ Xp, X ;‘} to obtain nominal strut width.

5 Conclusions and Future Work

In this study, the parameter optimization of 3D-printed composite bone scaffolds using a new
regression-minimization model offers a promising approach for achieving accurate and repeatable
manufacturing. By leveraging data-driven techniques and optimization algorithms, this
methodology enables the identification and fine-tuning of process parameters critical to scaffold
fabrication. Through the utilization of DOE, image analysis for strut width characterization, and a
modeling and optimization framework, the study successfully demonstrated the efficacy of the
proposed approach. The regression-minimization model allowed for the efficient exploration of
the parameter space, enabling the identification of optimal parameter combinations that resulted
in the desired scaffold properties. By iteratively adjusting the parameters based on the feedback
obtained from image analysis, the model guided the manufacturing process towards achieving the
desired nominal strut width. The incorporation of a tolerance range around the target strut width

further ensured that the final scaffolds met the required specifications.
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This approach has significant implications for the field of bone tissue engineering as it enables
the production of 3D printed composite bone scaffolds with improved accuracy and repeatability.
The ability to precisely control the scaffold geometry and mechanical properties is crucial for
successful bone regeneration applications. By optimizing the process parameters, it becomes
possible to tailor the scaffold characteristics to meet specific patient needs and promote optimal
tissue regeneration. Overall, the integration of data-driven methods, regression-minimization
modeling, and parameter optimization techniques represents a significant step forward in the
development of robust and reliable manufacturing processes for composite bone scaffolds.
Continued research and advancements in this area hold great promise for further improving the
quality, functionality, and clinical outcomes of 3D printed bone scaffolds, ultimately benefiting
patients in need of bone tissue regeneration.

There are several future research directions: (i) developing more sophisticated models that
take into account a wider range of variables and factors, such as the specific characteristics of the
bone scaffold material and the printing process; (ii) validating the accuracy of the model by
printing scaffolds and evaluating their mechanical properties, biocompatibility, and ability to
support cell growth; (iii) expanding the optimization framework to consider multiple objectives
simultaneously; and (iv) developing in-situ monitoring and control strategies to ensure the
consistency and quality of the 3D printing process. Moreover, the strut segments supported by the
previous layer are wider, and those are not considered in this study. The basic reason is that the
overhanging strut widths are more important for maintaining the porosity structure of the overall
scaffold. However, it is definitely beneficial to have a more comprehensive characterization of the

entire struts over their whole length.
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