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Abstract 

Critically sized bone defects present a significant challenge to orthopedic surgeons due to the 

limited availability of autograft bone tissue, which is the current gold-standard treatment. As an 

alternative, 3D bioprinted porous scaffolds can be designed to mimic bone's mechanical and 

biochemical properties to support tissue regeneration. However, achieving high geometric 

accuracy and repeatability of these scaffolds can be challenging, especially when printing new 

composite materials and geometries. Therefore, the objective of this study was to optimize the 

extrusion-based 3D bioprinting process parameters for composite polymer-ceramic scaffolds. 

Bone scaffolds composed of a polylactic-co-glycolic acid (PLGA) and 5% nano-hydroxyapatite 

(nHA) composite were printed and analyzed to evaluate their dimensional accuracy, which is 

primarily determined by the process parameters. This empirical study investigated the effects of 

different process parameters, particularly, nozzle temperature, pressure, and printing speed, on the 

geometric accuracy (i.e., strut width) of the printed scaffolds. Starting with a full factorial design 

of experiments, in-situ layer-wise optical images were captured, which were then leveraged 

through image processing for strut width characterization. Subsequently, a new iterative process 
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optimization method was proposed that involves regression modeling and bound constraint-based 

minimization. A case study on printing a two-layer scaffold was used to demonstrate the 

effectiveness of the proposed method. Overall, the geometric accuracy of the printed scaffolds 

improved significantly, maintaining a range of ±5% from the nominal strut width as iterative 

experiments were conducted, which demonstrates the significant potential of the proposed method 

in bioprinting process parameter optimization. 

Keywords: 3D Bioprinting; Composite Material; Bone Scaffold; Process Parameter Optimization; 

Tissue Engineering. 

 

1 Introduction 

Bone tissue can self-heal only to a certain extent, and therefore bone grafts are often required 

for critically sized bone defects caused by trauma, tumor resection, osteoporosis, or congenital 

malformation [1,2]. Autografting is the gold standard for severe bone defects, but it is invasive 

and causes donor site morbidity [3]. Solid metal implants are an alternative treatment, but their 

higher Young's modulus than human bone can cause stress shielding-induced bone resorption that 

weakens and decreases bone density [4,5]. Moreover, grafts and metal implants are harder to 

customize due to the complex geometry of such defects. To alleviate the existing limitations, 

biodegradable composite scaffolds fabricated through 3D printing may serve as an effective 

alternative for bone tissue engineering [6]. The advantages of composite scaffold fabrication in 

bone tissue engineering include: a) geometric flexibility of 3D printing with controlled pore 

structure; b) customizable mechanical and biological properties by manipulating the material 

composition and geometry [7,8]. Specifically, composite scaffolds reportedly exhibit superior 

compressive strength and osteoconductivity compared to either polymer or ceramic alone [1,3,9].  
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Despite the unique flexibility and capabilities of composite scaffold 3D printing, the process 

involves significant challenges in quality control and process optimization. Basically, the intended 

pore structure and the necessary mechanical and biological properties can be obtained with 

carefully controlled geometric accuracy. The clinical effectiveness of a composite scaffold at 

facilitating bone in growth depends on geometric attributes like porosity and strut width, which 

must be highly customized and accurately characterized [10]. In order to achieve these long-term 

aims of tissue engineering, achieving the dimensional accuracy of 3D printed composite bone 

scaffolds is highly desirable [11,12]. However, the dimensional accuracy of 3D-printed scaffolds 

are determined by multiple factors, including raw material, binding agents, printing parameters, 

and post-processing treatments [13]. Scaffold geometric accuracy is enhanced by understanding 

the process variability and accordingly optimizing process parameters for the 3D printer [14]. 

Others have reported optimization of process parameters of various 3D printing or additive 

manufacturing (AM) processes (e.g., stereolithography [15], fused deposition modeling (FDM) 

[16], and selective laser sintering [17]). However, there are limited studies conducted to examine 

the impact of printing process parameters on the composite bone scaffold fabrication through 

extrusion-based printing. Therefore, this paper aims to establish a data-driven process parameter 

optimization method for customizable composite scaffold printing. 

The objective of this study is to examine the geometric accuracy of the composite bone scaffolds 

through process parameter optimization. The composite material is comprised of a combination of 

biodegradable and biocompatible polylactic-co-glycolic acid (PLGA) and ceramic particles of 

nano-hydroxyapatite (nHA) that enhance stiffness and osteoconductivity [18,19]. The technical 

contributions of this paper are summarized as follows. First, an image analysis method is proposed 

to characterize the strut width obtained from scaffold printing based on the layer-wise in-situ 
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optical images. Second, a new iterative regression-minimization model is established to find the 

optimum level of printing process parameters. Ultimately, this new scaffold printing process 

parameter optimization model can be applied to other scaffold printing systems with a different 

printer and/or material composition. This will enable the accelerated production of scaffolds with 

tailored properties, as well as reliable and repeatable geometric accuracy.  

The remainder of the paper is organized as follows: A literature review on state-of-the-art 

composite scaffold printing and data-driven machine learning methods for 3D scaffold printing 

quality control is summarized in Section 2. The proposed methodology of material preparation, 

the initial design of experiment, image processing, and modeling and optimization framework are 

introduced in Section 3. In Section 4, the results are discussed. Finally, Section 5 presents the 

conclusion and future research directions. 

2 Literature Review 

This section briefly summarizes the state-of-the-art methodologies relevant to parameter 

optimization of 3D printed composite bone scaffolds. The major composite scaffold printing 

technologies are first summarized. Subsequently, the data-driven machine learning-based methods 

for optimization and quality control of 3D bioprinting are summarized. Lastly, the research gaps 

on process parameter optimization for composite scaffold printing are briefly discussed. 

2.1 Composite Scaffold Printing 

Various manufacturing processes, such as electrospinning and salt leaching, have been used to 

produce composite scaffolds that are both porous and biocompatible. However, these methods do 

not provide the specific customization for fabricating bone tissue implants for patient-specific bone 

defect geometries [20]. Although the microarchitectures produced by these techniques are well 

characterized, their geometries are limited to molds or manual processing [21]. This has motivated 
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the exploration of a relatively modern method of scaffold fabrication: 3D printing. The primary 

motivation for using 3D printing techniques for scaffold fabrication is the control over strut or pore 

morphology, low cost, and relatively simple production process [20]. Of the many existing 

methods of 3D printing, FDM is highly compatible with thermoplastics, which can result in a 

stiffness value that is similar to human bone when mixed into a polymer-ceramic composite 

[19,20]. The unique ability to fine tune the polymer types and ratio of polymer to ceramic enables 

a wide range of stiffness values needed for fabricating a customizable bone tissue implant [7].  

Current literature primarily reports the mixing of polymers (such as polylactic acid (PLA), 

polyglycolide (PGA), PLGA, and polycaprolactone (PCL)) with a bioceramic (such as 

hydroxyapatite (HA) or β-tricalcium phosphate (β-TCP)) to obtain an appropriate composite 

material for use in 3D printing [3,22–24]. The degradation rate, acidic byproducts, and mechanical 

properties of the above polymers must be considered when selecting an appropriate polymer for 

composite preparation. Additionally, the addition of a bioceramic can alter the composite’s 

viscosity during processing [25,26]. HA, the crystalline form of calcium phosphate, is commonly 

used in orthopedic implant research due to its chemical similarity to the mineral component of 

human bone tissue [1,5,27]. The mineral is both bioactive and can improve a scaffold’s 

osteoconductive properties due to its hydrophilicity and capacity to increase polymer surface 

roughness. When bound to a polymer, it creates a more favorable surface topography for cell 

adhesion [22]. Nanohydroxyapatite (nHA)  is especially effective because its increased surface 

area creates an ideal nanotopography for promoting cell adhesion [28]. The percentage of ceramic 

dispersed in the polymer is also an area of interest. Literature reports a wide variety of HA 

concentrations ranging from 0%, 5%, and up to 50% HA in polymer scaffolds [22], [29,30]. Thus, 

optimizing the printing parameters for such a wide range of concentrations has become a highly 



6 
 

empirical process. Variations in the choice of polymer and brand of 3D printer have also 

contributed to the inconsistencies in printing. Therefore, there is an urgent need to establish an 

efficient process for parameter optimization for composite scaffold printing. 

2.2 Experimental Parameter Optimization for 3D Bioprinting Applications 

In the rapidly evolving field of bioprinting, the investigation of optimal printing parameters is 

very significant to achieving precise, reproducible, and biocompatible constructs. Numerous 

experimental studies [31–34]  are continuously explored, with the most relevant ones being 

discussed within this section. For instance, an experimental parameter optimization method is 

developed for 3D printing of hydrogels by evaluating multiple printing parameters in a 

standardized manner applicable to extrusion-based bioinks [35]. Similarly, optimization of starch 

and chitosan-based bio-inks in 3D bioprinting of scaffolds for neural cell growth was also 

performed [36], where the printability and biocompatibility of different starch-to-chitosan ratio 

bioinks were examined. In addition, an experimental study was conducted to use 3D printing in 

the fabrication of SA-GEL (sodium alginate and gelatin) porous cartilage scaffolds with optimal 

parameters [37]. Moreover, experimental analysis based on design of experiments (DOE) has been 

applied for process parameter optimization, leading to significantly improved geometric accuracy 

and compressive modulus of thermoplastic- and hydrogel-based tissue scaffolds [38]. 

Furthermore, it is reported that the fiber spreading ratio on simple serpentines and volumetric 

dispensing system play vital roles in determining optimal printing parameters in Martigel scaffolds 

printing [39]. A study on parameter optimization of 3D bioprinting using hybrid bioinks was 

performed, and it was demonstrated that the printing quality is affected by the combination of a 

large variety of parameters [40]. Moreover, research has explored the optimization and fabrication 

of customized scaffolds to match human bone properties, utilizing a numerical study validated by 
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experimental routines. This approach enables the optimization, fabrication, and automation of 

generating open porous polyamide scaffolds [41]. Based on a study of the literature, it is prominent 

that the pursuit of optimal printing parameters extends across various domains of bioprinting, each 

presenting unique challenges and considerations. 

2.3 Data-driven Machine Learning (ML)-Based Process Parameter Optimization of 

Composite Scaffold 3D Printing 

Data-driven ML-based methods have gained considerable attention in recent years for 

optimizing process parameters in the 3D printing of bone scaffolds [42]. By leveraging data-driven 

approaches, the optimal combination of process parameters can be identified which can enhance 

the mechanical properties, biocompatibility, and overall quality of the 3D printed scaffolds [43–

45]. Several studies have explored the use of data-driven algorithms, such as artificial neural 

networks (ANN), genetic algorithms, and response surface methodology, to analyze large datasets 

and uncover complex relationships between process parameters and scaffold properties. For 

instance, a multi-objective genetic algorithm is developed for printing parameter optimization of 

polycaprolactone/hydroxyapatite composite scaffolds, achieving improved mechanical strength 

and porosity [46]. Similarly, an ANN-based model was leveraged for printing parameter 

optimization of poly (lactic-co-glycolic acid)/β-tricalcium phosphate scaffolds. The ANN model 

successfully predicted the optimal parameter combinations, resulting in enhanced scaffold 

mechanical properties [47,48]. In addition, response surface methodology has been utilized to 

optimize the process parameters of a silk fibroin/calcium phosphate composite scaffold, achieving 

improved compressive strength and pore size distribution [49,50]. Furthermore, the deep neural 

network-based algorithm was applied in parameter optimization of multiple quality outputs. This 

method also allows user selection within the optimal process parameters for fabricated products 
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with conforming product properties [51]. Moreover, 3D printing and ML has been recently 

integrated to facilitate the selection of optimal printing parameters, which can reduce the number 

of error-and-trial experiments needed for printing parameter optimization [52]. Although data-

driven ML-based methods have shown significant potential for optimizing process parameters for 

scaffold 3D printing, further research is needed for the development of highly customized and 

functional composite bone scaffolds for tissue engineering applications. 

2.4 Data-driven Methods for Quality Control of Bioprinting  

Online sensors can provide data for the real-time quality control of the 3D printed scaffolds 

during fabrication. It can specifically monitor the printing fidelity and geometric morphology of 

the printed parts using an integrated machine vision system [53]. The sensing-based approaches 

can be categorized into two distinct groups: (i) real-time monitoring for anomaly detection only 

and (ii) real-time monitoring and process control. For instance, a recent study investigated the use 

of ML for anomaly detection in distinguishing between printing configurations that are likely to 

result in low-quality prints and printing configurations that are more promising as a first step 

towards the development of a recommendation system [54]. Similarly, a convolutional neural 

network (CNN) model is designed to achieve efficient defect classification of the FDM parts 

considering the surface data with high accuracy [55]. In addition, in many manufacturing 

applications, CNN-based classifiers are used for defect detection and can be employed in process 

monitoring and correction in 3D printing, where visual features can be learned to extract critical 

information from the raw images. This approach would enable the fabrication of 3D-printed 

structures with high accuracy and repeatability [56]. 

On the other hand, for real time monitoring and process control, sensors like temperature, CO2, 

and humidity are needed to monitor and accordingly adjust the printing environment by integrating 
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a closed-loop feedback mechanism and a computer vision-based control system [57,58]. 

Moreover, using optical coherence tomography (OCT), the 3D microstructure of melt 

electrowriting scaffolds was recently reported. The microstructural characteristics can be 

calculated from OCT data using a custom method that shows excellent agreement with scanning 

electron microscopy (SEM) results [59]. Another example is the development of a real-time 

monitoring and autonomous correction system, where a deep learning model and a feedback loop 

are integrated to adjust 3D-printing parameters of FDM in an iterative and adaptive manner [60].  

2.5 Research Gaps and Technical Contributions 

This section discusses the research gaps based on state-of-the-art experimental and data-driven 

methodologies relevant to process parameter optimization of 3D-printed composite bone scaffolds. 

The existing process parameter optimization techniques have made progress. However, there are 

still some limitations, which include limited exploration of (i) parameter interactions, (ii) novel 

composite material behavior based on process parameters in extrusion-based 3D printing, (iii) the 

time-consuming nature of iterative experimentation for parameter optimization, and (iv) difficulty 

in achieving consistent reproducibility across different bioprinting platforms and materials with a 

process-specific optimized parameter. Besides these, for ML-based methods, a larger dataset 

enables the development of robust ML algorithms. While most methods guide the determination 

of optimum printing parameters, real-time monitoring of the 3D printing process can enable live 

adjustment of printing parameters upon detection of any deficiencies during the printing process. 

Addressing these limitations will significantly advance the field of process optimization for 3D 

composite scaffold printing, leading to enhanced geometric accuracy of scaffold and more efficient 

production processes. Specifically, despite the growing body of literature on the optimization of 

process parameters in 3D scaffold printing, there is a notable research gap in the exploration of the 
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interaction effects of temperature, pressure, and speed in the context of novel composite material 

extrusion processes. Existing studies have largely focused on individual parameter optimization, 

overlooking the potential synergistic effects and their impact on scaffold geometric accuracy and 

fabrication repeatability.  

The technical contribution of this paper is summarized below. By applying regression 

minimization modeling, the proposed method explains the intricate relationships between various 

printing parameters and resulting strut width, offering insights into their impact on the 3D printing 

of composite scaffolds. Along with the enhancement of understanding of complex interactions, 

this study generates the optimal process parameters for achieving the desired strut width. 

Essentially, by leveraging empirical data and ML modeling, this study develops a structured 

approach for identifying optimal process parameters, enhancing reproducibility, and reducing the 

dependence on extensive trial-and-error experiments.  

 

3 Proposed Methodology 

This section is comprised of the materials and methods employed for the optimization of the 

composite material printing process, utilizing a combination of Design of Experiments (DOE), 

image analysis for strut width characterization, and a modeling and optimization framework. 

Basically, the DOE approach is utilized to systematically vary the process parameters and evaluate 

their effects on scaffold properties. Additionally, image analysis techniques were employed to 

characterize the strut width of the printed scaffolds, providing quantitative measurements for 

further analysis. Finally, a modeling and optimization framework was developed to establish 

predictive models and optimize the process parameters for scaffold printing. This comprehensive 

approach combining composite material printing process optimization, DOE, image analysis, and 
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modeling provides a structured methodology for enhancing the geometric accuracy and 

functionality of 3D printed composite bone scaffolds. 

3.1 Composite Material Preparation and Scaffold Printing 

The composite material for scaffold fabrication was prepared in a stepwise manner to ensure 

proper mixing, elimination of solvents, and loading into the printing cartridge for subsequent 3D 

printing. First, pellets of PLGA (CELLINK, Blacksburg, VA, USA) with a PLA-PGA ratio of 

50:50 and an inherent viscosity of 0.65 dL/g, and hydroxyapatite nanospheres (nHA) (Sigma-

Aldrich., St. Louis, MO, USA) with a molecular weight of 502.31 g/mol, a diameter <200 nm, and 

≥97% apatite purity were used to prepare the composite material. The composite material was 

prepared as 5% nHA and 95% PLGA by weight. Acetone was used as the solvent for mixing, and 

the ratio of acetone to PLGA-nHA composite was 3:1 (vol:mass). 

The material was prepared in 2 g batches in a 200 mL beaker to maximize the exposed surface 

area and promote acetone evaporation. The solution was covered and stirred at 70 rpm for 2 hours 

at room temperature. The material was then uncovered, and the solution was mixed uncovered at 

the same speed overnight at room temperature. The composite material was then incubated at 75°C 

for 12-15 hours to ensure solvent evaporation. The initial dry weight of PLGA and nHA was 

compared to the final composite material weight after acetone evaporation to ensure thorough 

elimination of solvent (<100mg solvent remaining). The composite material was stored in a 

desiccator until use for up to two weeks. Finally, to load the finished material into the printing 

cartridge, the composite was heated to 150°C for 5 minutes on a heating plate. Once softened, the 

composite was scooped into the printing cartridge and pressed to the bottom with a plunger. The 

handle of the plunger was then removed, and the plunger end remained in the cartridge to ensure 
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even force was applied to the material by the pressurized air. The material preparation process is 

outlined in Figure 1. 

 
Figure 1: Composite material preparation process 

The 3D model of the scaffold was designed using Tinkercad software with a strut width of 0.4 

mm, a layer height of 0.4 mm, and a pore size of 750 µm (Figure 2). Here, the pore size of 750 µm 

refers to the dimensions of the unprinted hollow square regions between the struts. These 

parameters were selected to achieve the desired structural design and pore size in the final printed 

scaffold.  



13 
 

 

Figure 2: (a) CAD design and (b) a printed scaffold  

The process of material extrusion consists of a pressure pump that delivers filtered air into the 

material cartridge and a heating element located just above a 0.4 mm diameter nozzle. This 

pressurized system forces the heated material through the nozzle to create a uniform, viscous flow. 

This printing setup provides control over the temperature, pressure, and printing speed of the 

material. The infill rate was set to 100%, and a rectilinear infill pattern was selected for printing. 

In 3D printing, the infill ratio is an important parameter that represents the fill rate of the part to 

be produced. It refers to the density of material used to fill the interior of the design object. In the 

study, an infill ratio of 100%, suggests that the interior of the printed object is completely filled 

with material, while the pore size of 750 μm is associated with the design of the scaffolds. More 

specifically, it refers to the spacing between the struts of the scaffold, as demonstrated in Figure 

2(a). Moreover, in Figure 2(a), to enhance clarity, the label information for both the strut and pore 

is also included, along with their respective dimensions. In this study, scaffolds were printed using 

the CELLINK BIO X printer’s thermoplastic printhead. An advantage of the BIO X is its ability 
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to capture layer-wise images of the scaffold during printing. Top-down images were taken after 

each layer for subsequent analyses. Furthermore, double sided tape was used to facilitate the image 

analysis process by providing high contrast between the struts and the background. We used a 

brightly colored tape on top of the baseplate of the printer to provide higher image contrast. 

Furthermore, we expect the tape had little to no effect on the second layer of the scaffolds, which 

was the layer that was analyzed. In the scenario of fabrication for real-world medical use, a heated 

baseplate would be used rather than the tape. However, only for the purpose of printing parameter 

optimization, we utilized the double-sided tape as a substitute. The printing setup is demonstrated 

in Figure 3.  

 
Figure 3: The setup for composite bone scaffold printing. 

3.2 Proposed Framework 

Figure 4 represents the proposed iterative method for optimizing the process parameters in 3D 

scaffold printing. The objective is to enhance the quality and performance of the printed scaffolds 

by systematically refining the parameters that govern the printing process. The method 

incorporates initial experimental designs, image analysis for strut width characterization, and a 
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modeling and optimization framework. Initially, a set of process parameters is selected, and 

scaffold samples are printed with layer-wise images collected and strut width characterized. Image 

analysis techniques are employed to characterize the strut width of the printed scaffolds, providing 

quantitative data for analysis. Subsequently, a mathematical model is developed to describe the 

relationship between the process parameters and the strut width. The model is calibrated and 

validated using the data obtained from the initial experiments. Optimization algorithms are then 

applied to explore the parameter space and identify the optimal combination of process parameters 

that optimizes the strut width. The process iterates, updating the model with new data, refining the 

process parameters, and repeating the printing and analysis steps until the optimization criteria are 

met. 

  
 

Figure 4: Flowchart of the proposed iterative method for process parameter optimization in 

composite scaffold printing. 

3.2.1 Initial Experimental Designs 

A full factorial experimental design is used as the initial experimental design for printing the 

composite scaffolds. The factorial design helps to study the effects caused by independent factors 

and interactions between those self-governing factors [61,62]. In this work, three independent 

factors (i.e., temperature (𝑋𝑡), pressure (𝑋𝑝), and speed (𝑋𝑠𝑝)) are used. In addition, three factorial 
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levels are leveraged for the experimentation in this study. The levels of these parameters are 

selected with the help of a machine manual and by performing the preliminary test on a 3D 

bioprinter. On the basis of preliminary experimentation, the ranges and, subsequently, the levels 

of the printing parameters are chosen as shown in Table 1. Moreover, based on a random full 

factorial DOE, a total of 27 experimental runs are generated for analyzing the interaction of each 

level on scaffold printing, and in this study, strut width is considered a response factor. 

Table 1: Independent factor levels of initial experiments 

Independent factors Levels 

Temperature (°C) 115 120 125 

Pressure (kPa) 225 250 275 

Speed (mm/s) 1 1.5 2 

3.2.2 Image Analysis for Strut Width Characterization  

An image processing approach is developed to measure the strut width from the layer-wise 

captured scaffold images during printing. The key concept was to distinguish the pixels of the strut 

region from other regions in the image and to derive the strut width based on the pixel data. 

Essentially, for image processing, four key steps are followed, as depicted in Figure 3. The key 

steps for image processing are as follows: 

Step 1: Extracting regions of interest (ROI) from RGB images: For each experiment, layer-wise 

images were acquired through an optical camera. Each image is not analyzed for all regions at 

once but divided into appropriate ROIs for analysis Regarding the selection of rows in the 

scaffolds, only the most recent layer was considered as the appropriate region for further analysis. 

Moreover, each scaffold was examined at specific locations or rows within the scaffolds, making 

sure that these regions were selected to be indicative of the scaffold’s overall strut. Specifically, in 

Equation (1), each cropped region is considered to be a combination of the number of rows of 
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pixels that are averaged and combined to get the strut width. It is noted that the brightness 

distributions of the strut and surrounding base can be different. Therefore, to obtain more accurate 

results, analysis was performed by dividing the image into several segments. 

Step 2: Image pre-processing by converting an RGB image into a grayscale image: As the 

original image of a segment was a combination of red, green, and blue colors, it contained a 

significant amount of data. Therefore, this image was simplified to a grayscale image with only 

brightness information, which changes the intensity values from 0 to 255. 

Step 3: Image binarization: After image simplification, an appropriate threshold was 

determined to filter out the pixels in the strut region. This threshold was determined by analyzing 

the histogram information of the image brightness. For generating binary images, the brightness 

of each pixel was compared to the threshold value, and it was converted to white or black 

depending on the brightness. Through this process, the grayscale image was converted into a 

binary image expressing strut regions and other regions. 

Step 4: Strut width quantification and pixel size unit conversion: The number of pixels in the 

strut region is leveraged for the quantification of strut width. The size of the pixels in the real-time 

images depends on the magnification during imaging. Therefore, it is necessary to convert the 

pixel to a metric unit (i.e., mm) in order to obtain the final measurements on a unified scale, 

independently from the scale factor of imaging. Basically, during the image capturing process, we 

ensured the presence of a millimeter scale within the field of view. This millimeter (mm) scale 

serves as a reference for establishing the conversion from pixels numbers to length in mm scale. 

Then, we counted the number of pixels corresponding to the known length on the mm scale within 

the image. After that, by dividing the number of pixels by the known length in millimeters, we 

derived the pixel-to-length ratio. Finally, the reciprocal of the pixel-to-length ratio gives us the 
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unit conversion factor, denoted as 𝑢 = 1 / (Number of pixels per millimeter). It's important to note 

that this width measurement is not based on a single row of pixels, but rather on data aggregated 

from all the rows in the ROI collectively. Each ROI provides a data point contributing to the 

average width measurement, thereby incorporating information from various sections of the 

scaffold. For clarity, the formulation of the width calculation is represented using equation (1) as 

follows: 

𝑌 = (
∑ ∑ 𝑁𝑏𝑟𝑖𝑔ℎ𝑡(𝑖)𝑟

𝑖=1

𝑟
) × 𝑢 (1) 

where 𝑌 denotes the strut width and (𝑖 = 1,2, … 𝑟) denotes the number of rows in the region of 

interest of a strut for width computation. 𝑁𝑏𝑟𝑖𝑔ℎ𝑡 denotes the bright pixel in the region of interests 

as shown in Figure 5 and  𝑢 denotes the unit conversion factor. 

  
Figure 5: Image processing flow chart for strut width quantification 

3.2.3 Modeling and Optimization Framework 

In this section, a comprehensive modeling and optimization framework is presented specifically 

tailored for optimizing strut width (Y), focusing on the scenario where three independent factors 

of temperature (𝑋𝑡), pressure (𝑋𝑝), and speed (𝑋𝑠) influence Y. Basically, after experimentation 
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and image processing, for capturing nonlinear effects and interactions between variables, 

polynomial regression can be well suited for this problem [63]. Therefore, a quadratic polynomial 

regression model was assumed for predicting individual Y variables. The regression model 

describing the functional relationships between independent variables (𝑋𝑡, 𝑋𝑝,𝑋𝑠) and a single 

dependent variable 𝑌, can be generalized as follows:  

𝑌 = 𝛽0 +  𝛽𝑡𝑋𝑡+𝛽𝑝𝑋𝑝 + 𝛽𝑠𝑋𝑠+… Intercept & first order terms 

(2) 
       𝛽𝑡𝑡𝑋𝑡

2 + 𝛽𝑝𝑝𝑋𝑝
2 + 𝛽𝑠𝑠𝑋𝑠

2+… Quadratic terms 

      𝛽𝑡𝑝𝑋𝑡𝑋𝑝 + 𝛽𝑡𝑠𝑋𝑡𝑋𝑠 + 𝛽𝑝𝑠𝑋𝑝𝑋𝑠+… Interactions terms 

      𝜀 Error term 

where 𝛽0, (𝛽𝑡,𝛽𝑝, 𝛽𝑠), (𝛽𝑡𝑡, 𝛽𝑝𝑝, 𝛽𝑠𝑠), (𝛽𝑡𝑝, 𝛽𝑡𝑠, 𝛽𝑝𝑠) are intercept, linear, quadratic, and interaction 

regression coefficients, respectively. The error term is represented by 𝜀, and based on the central 

limit theorem, it is usually assumed that the error term follows a Gaussian distribution with a mean 

of 0 and a standard deviation of 𝜎𝜀. Specifically, ten regression coefficients need to be estimated, 

as observed from equation 2. During analysis, among different statistical attributes, the adjusted R 

squared value can be quantified as a criterion of the fit between the data and the regression [63,64]. 

The predicted response values and the estimated regression coefficients can be obtained using 

quadratic polynomial regression with arbitrary input values. Usually, there should be a minimum 

difference between the nominal strut width and the predicted response. Therefore, to obtain the 

optimized process parameters, a loss function ℒ(𝑋𝑡, 𝑋𝑝, 𝑋𝑠) can be developed with the fitted model 

along with estimated coefficients and nominal strut width (𝑁𝑡 ) as follows: 

ℒ(𝑋𝑡, 𝑋𝑝, 𝑋𝑠) = (
𝛽̂0 +  𝛽̂𝑡𝑋𝑡 +  𝛽̂𝑝𝑋𝑝 + 𝛽̂𝑠𝑋𝑠 + 𝛽̂𝑡𝑡𝑋𝑡

2 + 𝛽̂𝑝𝑝𝑋𝑝
2 + 𝛽̂𝑠𝑠𝑋𝑠

2 + 𝛽̂𝑡𝑝𝑋𝑡𝑋𝑝 +

𝛽̂𝑡𝑠𝑋𝑡𝑋𝑠 + 𝛽̂𝑝𝑠𝑋𝑝𝑋𝑠 − 𝑁𝑡

)

2

 

 

(3) 

Furthermore, to obtain the optimized values of the independent variables for achieving nominal 

strut width, the minimization problem can be formulated with bounded constraints as follows: 

minimize:     ℒ(𝑋𝑡, 𝑋𝑝, 𝑋𝑠) (4) 
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         subject to:     𝑙𝑡 ≤ 𝑋𝑡 ≤ 𝑢𝑡  

                                𝑙𝑝 ≤ 𝑋𝑝 ≤ 𝑢𝑝  

                              𝑙𝑠 ≤ 𝑋𝑠 ≤ 𝑙𝑠  

 

where ℒ(𝑋𝑡, 𝑋𝑝, 𝑋𝑠) is the objective function that needs to be minimized, and 𝑙𝑡 ≤ 𝑋𝑡 ≤ 𝑢𝑡 denotes 

the lower (𝑙𝑡) and upper (𝑢𝑡) bounds for variable 𝑋𝑡 respectively. The goal is to find the values of 

𝑋𝑡, 𝑋𝑝, and 𝑋𝑠 that minimize the function ℒ(𝑋𝑡, 𝑋𝑝, 𝑋𝑠) , subject to the given constraints on the 

variables. The constraints on the variables are given by the inequalities to ensure that the values of 

the variables will be within the specified bounds during the optimization process. Bounded 

constraints are important because they define a feasible region within which the optimization 

algorithm can search for the optimal solution. By limiting the solution space to a specific range of 

values, bounded constraints help ensure that the optimization process remains practical and 

relevant to the real-world problem being solved. As the optimization problem is bounded 

constraints, therefore, the adopted technique to solve the problem should support the bounded 

constraints. Considering the specific problem and the properties of the objective function and 

constraints, the L-BFGS-B algorithm [65] is adopted, which is a limited-memory algorithm for 

solving large nonlinear optimization problems subject to simple bounds on the variables. Thus, by 

formulating and solving the minimization problem, a set of optimized parameters for independent 

variables can be obtained as: {𝑋𝑡
∗, 𝑋𝑝

∗ , 𝑋𝑠
∗}.  

To evaluate the regression-minimization model’s performance, with the optimized parameters, 

the printed strut width can be compared with the nominal strut width for observing deviations. 

Essentially, it is important to define the acceptable or satisfactory range around the target nominal 

strut width, providing a quantitative criterion for assessing the performance of the printed 

scaffolds. In this study, we aim to minimize the average printing error by optimizing the process 

parameters for scaffold printing. However, natural process variations can always occur during 
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printing, making it impossible to achieve the exact nominal values consistently. Therefore, we 

incorporated upper and lower limits to account for these variations and make them the stopping 

criteria of our proposed optimization framework. In this study, ±5% tolerance ensures that slight 

variations in the strut width are considered within a satisfactory or acceptable range [Upper Limit: 

Nominal Strut Width + (Nominal Strut Width × 0.05); Lower Limit: Nominal Strut Width - 

(Nominal Strut Width × 0.05)] while maintaining the desired design specifications. Thus, if the 

model's performance is not satisfactory, it can be updated to improve its performance, as depicted 

in Figure 4. The model update involves modifying the model structure by incorporating the 

iteratively generated sample data for evaluation. Specifically, the new measurements are 

incorporated into the modeling, and the regression model is updated using the combined dataset, 

including both the initial training data and the newly measured dimensions. This will iteratively 

adjust the model to improve its accuracy. Basically, the iteration is performed by printing 

additional samples with updated parameter combinations, measuring the strut width, and updating 

the dataset and regression-minimization model. The number of iterations depends on the desired 

level of accuracy and the convergence of the model. Once the model has converged to the desired 

accuracy level, it can be used to predict the nominal dimension for any given set of printing 

parameters. This prediction provides an estimate of the expected dimension based on the learned 

relationship from the training data. Thus, this approach can iteratively refine the model to improve 

its accuracy in predicting the geometric dimension in 3D bioprinting of composite bone scaffolds 

and also consider the variability and dependencies of the printing process parameters on the 

resulting dimensions. The proposed iterative process optimization flowchart is summarized in 

Figure 6. 
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Figure 6: Flowchart of the proposed iterative process parameter optimization method. 

4 Results and Discussion 

In this section, the experimental data are used to evaluate the process parameter optimization 

model. For predictive modeling, a set of 135 regions of interest (ROI) samples is generated from 

27 printed scaffolds based on a full factorial DOE. Specifically, each scaffold is measured at 5 

locations, and our methodology was designed to ensure that these locations were chosen to be 

representative of the overall structure of the scaffolds. Specifically, each ROI includes a collection of 

rows of pixels, which are averaged to obtain the average strut width in the ROI. Moreover, our 

iterative improvement of the initial model by printing more scaffolds highlights one of the 

strengths of our study: the ability to handle and derive meaningful insights from relatively small 

experimental datasets. It is worth noting that, prior to the experiment, the delay between image 

capture and the print resuming often caused small blockages in the nozzle, presumably due to 
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material cooling, resulting in layers with abnormally short first struts. Thus, a separate small 

cylinder was printed alongside each scaffold, allowing any blockages to be extruded prior to 

printing each new layer of the scaffold. Essentially, the generated samples are characterized by 

image processing for strut width quantification, as described in Section 3.3. The resulting strut 

width over the samples for 27 experimental arrangements is depicted in Figure 7. To construct 

each boxplot and interaction plot in the figure, 45 data points were utilized, enabling a 

comprehensive analysis of both dependent and independent variables. In this case, the nominal 

strut width is 0.4 mm, which needs to be obtained with optimized process parameters. The nominal 

strut width is defined as 0.4 mm as an arbitrary scaffold design. However, it's important to note 

that this value does not restrict the generality of the model. Rather, it can serve as a baseline for 

the iterative optimization process. In essence, the modeling approach described in the study 

remains applicable regardless of the specific nominal strut thickness chosen.  

The resulting boxplot visualizes the relationship between the independent variables (i.e., 

temperature, pressure, and speed) and the width of struts. For example, it is observed that there is 

a positive correlation between the two variables (i.e., as the temperature and pressure increase, the 

strut width also tends to increase), whereas a negative correlation is observed for the variable of 

speed because when speed increases, the strut width decreases. Moreover, in Figure 7 the 

interaction plots describe the effect of one independent variable on the strut width changes for 

different levels of the other independent variable and how this relates to the overall interaction 

pattern. Specifically, from Figure 7, some assumptions about the combined impact of the process 

parameters can be made for setting the printing process parameters. It is observed that when the 

temperature and pressure are closer to the lower bound as well as the speed is closer to the upper 

bound, there is a potential to obtain the nominal print width. 
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Figure 7: Plotting of strut width with different sets of independent process parameters. 

Based on the experimentation, for robust process parameter optimization, after characterizing 

the strut width, the regression model is leveraged, considering the input and response variables. 

Based on the modeling, regression coefficients, obtained by employing a least squares technique 

to predict a quadratic polynomial model for the response variable, are summarized in Table 2. 

Table 2: Regression results of predicted quadratic polynomial model. 

Variables Coefficients Std. err. p-value 

Intercept 31.0986 7.897 0.000 

𝑋𝑡 -0.4136 0.125 0.001 

𝑋𝑝 -0.0688 0.014 0.000 

𝑋𝑠 1.2307 0.511 0.018 

𝑋𝑡
2 0.0016 0.001 0.002 

𝑋𝑡𝑋𝑝 0.0003 7.34e-05 0.000 

𝑋𝑡𝑋𝑠 -0.0167 0.004 0.000 

𝑋𝑝
2 6.868e-05 2.13e-05 0.002 

𝑋𝑝𝑋𝑠 -0.0006 0.001 0.432 

𝑋𝑠
2 0.2114 0.052 0.000 

R-square 0.897 F-statistic 95.17 

Adj. R-squared 0.888 DF model 9 
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For the strut width prediction, the evaluation of these coefficients with the p-value indicated 

that linear and quadratic terms of the independent variables are highly significant. From Table 2, it 

is observed that most of the variables demonstrate almost zero p-values. In statistical hypothesis testing, a 

smaller p-value suggests stronger evidence against the null hypothesis, indicating that the observed results 

are unlikely to have occurred by chance [66,67]. Furthermore, a p-value less than a predetermined 

significance level (typically 0.05) indicates that we have sufficient evidence to reject the null hypothesis, 

suggesting that the corresponding term in the model is statistically significant. Therefore, having p-values 

close to zero signifies the significance of the variables included in the model [67–69]. In this case, there 

is no significant interaction between pressure and speed for the response variables. Therefore, 

generally, these results suggest that all linear, quadratic, and interaction effects (without interaction 

between pressure and speed) of the independent factors could potentially be the primary 

determining factors affecting the response variables. These results also denote that the regression 

models predicted for Y are significant with satisfactory coefficients of determination (R2) and (adj. 

R2), 0.897 and 0.888, respectively. Based on the determined coefficients, the objective function 

described in Section 3.4 can be formulated as follows. 

Minimize:  

(31.09 − 0.4136𝑋𝑡 − 0.0688𝑋𝑝 + 1.2307𝑋𝑠 + 0.0016𝑋𝑡
2 + 0.000068𝑋𝑝

2 + 0.2114𝑋𝑠
2

+ 0.0003𝑋𝑡𝑋𝑝 − 0.0167𝑋𝑡𝑋𝑠 − 0.4)2 

subject to:     115 ≤ 𝑋𝑡 ≤ 125 

                                  225 ≤ 𝑋𝑝 ≤ 275 

                               1 ≤ 𝑋𝑠 ≤ 2 

The minimization objective function with the bound constraints is leveraged as mentioned in 

the approach in Section 3.4. The L-BFGS-B algorithm [38] is adopted for solving the minimization 

problem, and thus a set of optimized parameters for temperature, pressure, and speed can be 

obtained as follows: {𝑋𝑡
∗, 𝑋𝑝

∗ , 𝑋𝑠
∗} following the proposed methodology. Based on the optimization 

results, the parameters are used for the corresponding experimental validation. This approach 

aligns with previous research demonstrating the importance of parameter optimization in achieving 
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desirable outcomes in 3D printing applications. For example, previous studies have underscored 

the importance of optimizing strut width to enhance the mechanical properties and structural 

integrity of 3D-printed scaffolds [70,71]. Similarly, the critical role of strut width in controlling 

porosity and pore size distribution within printed scaffolds is also emphasized, which directly 

impacts the biological performance of scaffolds [72]. Moreover, researchers have recognized the 

critical importance of precise control over strut width to attain uniformity and reproducibility in 

scaffold fabrication [73]. Despite differences in materials and designs, the studies mentioned are 

closely aligned with the objectives of this research, which aims to achieve consistent and precise 

scaffold printing with particular emphasis on controlling strut width. In this study, with the 

optimized parameter, the printed scaffold along with the quantified width of multiple samples can 

be depicted, as demonstrated in Figure 8. The boxplot with error bars (red color) in Figure 8 

displays the distribution of the width of the printed scaffold samples across different iterations. It 

provides a visual summary of key statistics, such as the mean (blue color line) and quartiles of the 

distribution for three different iterations. Basically, the error bars indicate the uncertainty 

associated with the data points. It is observed that, for iteration 2 with {𝑋𝑡
∗, 𝑋𝑝

∗ , 𝑋𝑠
∗} =

{115, 249, 2}, the mean line is close to the nominal width, and the error bars are also within the 

acceptable range. Ultimately, it is assumed that it is feasible and reasonable to guide the composite 

bone printing process with 3D bioprinting by using optimized process parameters. 
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 Figure 8: Box plotting of strut width with error bars for different iterations with optimized 

parameters {𝑋𝑡
∗, 𝑋𝑝

∗ , 𝑋𝑠
∗} to obtain nominal strut width. 

5 Conclusions and Future Work 

In this study, the parameter optimization of 3D-printed composite bone scaffolds using a new 

regression-minimization model offers a promising approach for achieving accurate and repeatable 

manufacturing. By leveraging data-driven techniques and optimization algorithms, this 

methodology enables the identification and fine-tuning of process parameters critical to scaffold 

fabrication. Through the utilization of DOE, image analysis for strut width characterization, and a 

modeling and optimization framework, the study successfully demonstrated the efficacy of the 

proposed approach. The regression-minimization model allowed for the efficient exploration of 

the parameter space, enabling the identification of optimal parameter combinations that resulted 

in the desired scaffold properties. By iteratively adjusting the parameters based on the feedback 

obtained from image analysis, the model guided the manufacturing process towards achieving the 

desired nominal strut width. The incorporation of a tolerance range around the target strut width 

further ensured that the final scaffolds met the required specifications. 
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This approach has significant implications for the field of bone tissue engineering as it enables 

the production of 3D printed composite bone scaffolds with improved accuracy and repeatability. 

The ability to precisely control the scaffold geometry and mechanical properties is crucial for 

successful bone regeneration applications. By optimizing the process parameters, it becomes 

possible to tailor the scaffold characteristics to meet specific patient needs and promote optimal 

tissue regeneration. Overall, the integration of data-driven methods, regression-minimization 

modeling, and parameter optimization techniques represents a significant step forward in the 

development of robust and reliable manufacturing processes for composite bone scaffolds. 

Continued research and advancements in this area hold great promise for further improving the 

quality, functionality, and clinical outcomes of 3D printed bone scaffolds, ultimately benefiting 

patients in need of bone tissue regeneration. 

There are several future research directions: (i) developing more sophisticated models that 

take into account a wider range of variables and factors, such as the specific characteristics of the 

bone scaffold material and the printing process; (ii) validating the accuracy of the model by 

printing scaffolds and evaluating their mechanical properties, biocompatibility, and ability to 

support cell growth; (iii) expanding the optimization framework to consider multiple objectives 

simultaneously; and (iv) developing in-situ monitoring and control strategies to ensure the 

consistency and quality of the 3D printing process. Moreover, the strut segments supported by the 

previous layer are wider, and those are not considered in this study. The basic reason is that the 

overhanging strut widths are more important for maintaining the porosity structure of the overall 

scaffold. However, it is definitely beneficial to have a more comprehensive characterization of the 

entire struts over their whole length. 
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