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Resolvent analysis provides a framework to predict coherent spatio-temporal structures of
the largest linear energy amplification, through a singular value decomposition (SVD) of
the resolvent operator, obtained by linearising the Navier–Stokes equations about a known
turbulent mean velocity profile. Resolvent analysis utilizes a Fourier decomposition in
time, which has thus far limited its application to statistically stationary or time-periodic
flows. This work develops a variant of resolvent analysis applicable to time-evolving
flows, and proposes a variant that identifies spatio-temporally sparse structures, applicable
to either stationary or time-varying mean velocity profiles. Spatio-temporal resolvent
analysis is formulated through the incorporation of the temporal dimension to the
numerical domain via a discrete time-differentiation operator. Sparsity (which manifests
in localisation) is achieved through the addition of an l1-norm penalisation term to
the optimisation associated with the SVD. This modified optimisation problem can be
formulated as a nonlinear eigenproblem and solved via an inverse power method. We first
showcase the implementation of the sparse analysis on a statistically stationary turbulent
channel flow, and demonstrate that the sparse variant can identify aspects of the physics
not directly evident from standard resolvent analysis. This is followed by applying the
sparse space–time formulation on systems that are time varying: a time-periodic turbulent
Stokes boundary layer and then a turbulent channel flow with a sudden imposition of a
lateral pressure gradient, with the original streamwise pressure gradient unchanged. We
present results demonstrating how the sparsity-promoting variant can either change the
quantitative structure of the leading space–time modes to increase their sparsity, or identify
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entirely different linear amplification mechanisms compared with non-sparse resolvent
analysis.

Key words: turbulence theory, turbulent boundary layers

1. Introduction
Despite the highly nonlinear nature of turbulent fluid flows, linearised analyses of the
governing Navier–Stokes equations have proven to be effective at capturing several
pertinent properties of such systems. Resolvent analysis, first applied as a model
for turbulent pipe flows (McKeon & Sharma 2010), has been informative in other
problems that involve wall-bounded turbulence, spatio-temporal flow statistics (Towne,
Lozano-Durán & Yang 2020) and the identification of coherent structures in turbulent
jets (Lesshafft et al. 2019; Pickering et al. 2021), airfoils (Yeh & Taira 2019) supersonic
boundary layers (Bae, Dawson & McKeon 2020a,b) and turbulent rectangular duct flows
(Lopez-Doriga, Dawson & Vinuesa 2022). Combining a set of triadically consistent
resolvent modes has also been used for the representation of hairpin structures in Sharma
& McKeon (2013) and, more generally, for the reconstruction of phenomena observed in
wall-bounded turbulence (McKeon 2017). This framework has further been applied for the
estimation of flow states (Gómez et al. 2016; Beneddine et al. 2017; Illingworth, Monty
& Marusic 2018; Symon et al. 2020), the prediction of coherent structures (Abreu et al.
2020; Tissot, Cavalieri & Mémin 2021) and statistical quantities and scalings (Hwang
& Cossu 2010; Zare, Jovanović & Georgiou 2017; Towne et al. 2020), designing control
strategies for drag reduction (Luhar, Sharma & McKeon 2014b; Toedtli, Luhar & McKeon
2019) and modelling the effect of complex surfaces (Luhar, Sharma & McKeon 2015;
Chavarin & Luhar 2019). The broad applicability of such linearised analysis relies on (and
can be seen as evidence to infer) the importance of linear amplification mechanisms in
the generation and evolution of empirically observed coherent structures within turbulent
flows, such as near-wall streaks (Kline et al. 1967), hairpin vortices (Theodorsen 1952;
Head & Bandyopadhyay 1981), superstructures (Kim & Adrian 1999) and a range of other
coherent features described in Jiménez (2018).

The linearised analyses discussed thus far assume that the linear system under
investigation is time invariant, as is the case when the underlying flow is statistically
stationary. The recently developed harmonic resolvent analysis (Padovan, Otto & Rowley
2020; Padovan & Rowley 2022) enables the resolvent framework to extend to statistically
time-periodic flows, enabling cross-frequency analysis capturing triadic interactions
between a time-periodic base flow and fluctuations about this mean state at other
frequencies. In the context of flow control over a periodically plunging cylinder,
Lin, Tsai & Tsai (2023) utilizes a Lyapunouv–Floquet transformation to map the
corresponding linear time-periodic system to a time-invariant equivalent, enabling the
application of standard resolvent analysis methods. Other noteworthy contributions to
the study of time-varying linear systems include the linear stability analyses compiled
in Blennerhassett & Bassom (2002, 2006, 2007), for flat and high-frequency oscillatory
Stokes boundary layers, as well as an oscillating cylinder.

Whether considering a statistically stationary or a time-periodic mean state, the methods
discussed thus far consider a Fourier decomposition in time. Typically, this involves
identifying the forcing (input) and response (output) structures corresponding to the largest
energy amplification by the linearised system (represented by the resolvent operator).
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Sparse space–time resolvent analysis

While this decomposition arises naturally for such methods, it can potentially obscure
the intermittent nature of velocity fluctuations present in turbulent flows. Alternative
linear analyses methods can be similarly restrictive, with asymptotic stability analysis
also identifying eigenmodes each associated with a single (possibly complex) frequency.
Conversely, transient growth analysis (Böberg & Brösa 1988; Butler & Farrell 1992; Reddy
& Henningson 1993; Schmid 2007) considers the unforced response to a specific initial
condition, corresponding to maximal energy growth over a specified time horizon. This
again is unrealistic for systems subject to continuous perturbations (Jovanović & Bamieh
2005), though such analysis has been used in turbulent flows, such as to predict the
emergence of near-wall streamwise streaks (Del Alamo & Jimenez 2006) and vortices
(Schoppa & Hussain 2002) in wall-bounded turbulence. To overcome these limitations,
here we introduce a space–time formulation of the resolvent operator that is firstly
applicable to non-statistically stationary systems with an arbitrarily time-varying mean
profile, and secondly allows for the identification of optimal input and output trajectories
that can have arbitrary time dependence. This builds upon preliminary work first reported
in Lopez-Doriga et al. (2023). While not explored here, related work also considers
explicitly replacing the Fourier transform used in standard resolvent analysis with a wavelet
transform (Ballouz et al. 2023, 2024).

This generalization of operator-based decompositions to enable non-Fourier temporal
modes is somewhat analogous to efforts to similarly generalize data-driven proper
orthogonal decomposition (POD) methodology to identify intermittent behaviour in
turbulent flows, such as the conditional POD formulated in Schmidt & Schmid
(2019) and time-windowed space–time POD described in Frame & Towne (2022).
Note that spectral POD (Towne, Schmidt & Colonius 2018) has also been recently
generalized for time-periodic systems using cyclostationary analysis (Heidt & Colonius
2024).

Methods to identify non-modal linear energy amplification such as resolvent or
transient growth analysis involve computing the leading singular values and vectors of an
appropriately defined linear operator. The singular value decomposition (SVD), by design,
is defined as an optimisation problem that involves an l2-energy norm. In the context of
resolvent analysis, this optimisation problem relates to the energy ratio between input and
output flow states, and naturally yields spatio-temporal structures that are Fourier modes
in time. Here, we consider modifications to the standard optimisation problem that yield
alternative temporal functions, which are inclined to be localised in time. This is achieved
by incorporating an l1-norm term into the optimisation problem. The use of l1 norms to
promote localisation and/or sparsity has origins in compressive sensing (Candès & Wakin
2008).

In the context of fluid mechanics, sparsity-promoting methods have been utilized for
developing reduced-complexity models across a number of contexts. These include the
identification of sparse nonlinear reduced-order models (Brunton, Proctor & Kutz 2016;
Loiseau & Brunton 2018; Rubini, Lasagna & Da Ronch 2020), the selection of a sparse set
of active dynamic modes (Jovanović, Schmid & Nichols 2014) and in the reconstruction
of temporal spectral content from data that is under-resolved in time (Tu et al. 2014).
Recently, sparsity-promoting methods have also been incorporated in the resolvent analysis
framework in Skene et al. (2022), where they are used to identify spatially localised
forcing modes, which can be more directly useful for actuator placement in flow control
applications. In Skene et al. (2022) a Riemannian optimisation process is used to solve an
l1-based optimisation problem, following a similar approach used by Foures, Caulfield &
Schmid (2013) to identify spatially localised structures in transient growth analysis. The
present work is similarly motivated, though we focus here on achieving localisation in time
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as well as space. We also use a different formulation of the optimisation problem, which
allows for a balance between l1- and l2-norm contributions.

The structure of the paper is as follows. A discussion of the fundamentals of
pseudospectral analysis and the wall-normal derivation of the governing equations, along
with the space–time form of the resolvent operator, and a description of the algorithm
that promotes sparsity on the resolvent modes are presented in § 2. The main results of
our investigation are discussed in § 3: the sparse formulation of the standard resolvent
operator is applied in the streamwise and spanwise directions of a turbulent channel flow
in § 3.2; and the space–time and sparse space–time formulations of the resolvent operator
are applied on a turbulent channel flow in § 3.3; a turbulent Stokes boundary layer in § 3.4;
and a channel flow with a sudden lateral pressure gradient in § 3.5. Finally, we discuss the
main findings and future prospects of our investigation in § 4.

2. Methodology
This section begins with a brief overview of the fundamentals of pseudospectral analysis of
linear operators in § 2.1. This is followed by a derivation of the resolvent formulation of the
incompressible Navier–Stokes equations in wall-normal velocity and vorticity variables in
§ 2.2, assuming homogeneity in both the spatial and temporal dimensions. This is followed
by the development of a space–time resolvent operator where homogeneity is not assumed
in the temporal dimension in § 2.3, also in wall-normal velocity and vorticity variables.
Following this, § 2.4 introduces a formulation of resolvent analysis that promotes sparsity
on the optimal resolvent modes.

2.1. Pseudospectral analysis of linear operators
Let us consider a dynamical system governed by

q̇(x, t) + Lq(x, t) = f (x, t), (2.1)

where q denotes the state of the system with respect to a reference state q0, L is a linear
operator and f represents an exogenous input or forcing. The space and time dimensions
are denoted by x and t, respectively. Assuming that the system is homogeneous in the
temporal dimension, we propose solutions of the form (Schmid & Henningson 2001)
q(x, t) = q̂(x) exp (−iωt) with ω ∈ C, and substituting in (2.1) gives

(−iωI + L)q̂(x) = f̂ (x). (2.2)

In the case the forcing term is non-zero, the elements can be rearranged so that the
governing equation represents the following system:

q̂(x) = (−iωI + L)−1f̂ (x) := Hω f̂ (x). (2.3)

We refer to Hω as the resolvent operator. Note that the subscript ω is retained to highlight
the dependence on the temporal frequency. The original dynamical system in (2.1) has
been recast as a linear mapping between a forcing f̂ and the state q̂.

According to (2.3), the properties of the state q̂ will be affected by both the nature of the
forcing f̂ and the properties of the resolvent Hω. In this work we focus in particular on
the pairs of forcing and response modes that produce the largest amplification through the
action of Hω. That is, a forcing of small magnitude yields a response of large magnitude.
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Sparse space–time resolvent analysis

Such structures can be identified via a SVD of the resolvent operator Hω as

Hω =
N∑

j=1

ψ jσjφ
∗
j , (2.4)

where σj ! σj+1 ! 0 for all j, and (·∗) denotes the adjoint. Note that here the resolvent
operator will take the form of a discretised operator, therefore, the summation in (2.4) is
truncated to N terms.

In particular, we seek f̂ = φ1 that maximises the largest singular value σ1, where

σ1 = max
φ

‖Hωφ‖2

‖φ‖2
= min

ψ

‖ψ‖2

‖H∗
ωψ‖2

, (2.5)

where the l2 norm is taken over the spatial domain Ωx, so that, for example,

‖ψ(x)‖2 =
(∫

x∈Ωx

|ψ(x)|2 dx
)1/2

. (2.6)

Alternatively, we can write this optimisation problem in terms of the leading forcing mode
φ1 as

φ1 = arg max
φ

‖Hωφ‖2

‖φ‖2
, (2.7)

or the leading response mode ψ1,

ψ1 = arg min
ψ

‖ψ‖2

‖H∗
ωψ‖2

. (2.8)

2.2. Resolvent formulation of the mean-linearised incompressible Navier–Stokes
equations

The incompressible Navier–Stokes equations enforce conservation of momentum and
mass, respectively, and are written in a Cartesian coordinate system as follows:

∂tu = −u · ∇u − ∇p + 1
Re
&u, (2.9)

∇ · u = 0. (2.10)

Here, the instantaneous velocity field has three components: u = [u(x, t), v(x, t), w(x, t)]T

with x = [x, y, z]T and p = p(x, t) representing the instantaneous pressure field. In
this reference frame, x and z correspond to the streamwise and spanwise directions,
respectively, and are nominally considered to be infinite in extent. The other variable,
y, represents the wall-normal dimension. Here ∂t denotes a time (partial) derivative,
the spatial gradient operator is given by ∇ = [∂x, ∂y, ∂z]T, and the Laplacian operator is
defined as ∆ = ∇ · ∇.
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We can write a given instantaneous velocity state u as the sum of the temporal mean U
and a fluctuating component u′, such that

u(x, t) = U(x) + u′(x, t). (2.11)

Applying this decomposition in (2.9)–(2.10) and subtracting the temporal average gives
the governing equations used in this work,

∂tu′ + U · ∇u′ + u′ · ∇U + ∇p′ − 1
Re
&u′ = −u′ · ∇u′ − u′ · ∇u′ = f ′, (2.12)

∇ · u′ = 0, (2.13)

that is, conservation of momentum and continuity of the fluctuating components. Note
that here the right-hand side of (2.12) has been condensed into a forcing term f ′ that
represents the effect of the fluctuations about the mean state of the nonlinear terms, and
can be regarded in this context as an exogenous input to a linear system comprising of the
remaining terms. Wall-bounded parallel flows with a mean/base flow in the streamwise
and spanwise dimensions U( y) = [U( y), 0, W( y)]T, admit a transformation of variables
from a primitive reference {u′, v′, w′, p′} towards a reference in terms of the wall-normal
velocity v′ and vorticity η′ (where η′ = ∂u′/∂z − ∂w′/∂x), without loss of generality
(i.e. resulting in the Orr–Sommerfeld and Squire equations). This formulation is proven
to be equally informative (Moarref et al. 2013; Rosenberg & McKeon 2019; McMullen,
Rosenberg & McKeon 2020) for resolvent analysis of planar flows. In this reference,
the no-slip and no-penetration conditions translate into v′( y = 0) = v′( y = 2h) = 0,
∂yv

′( y = 0) = ∂yv
′( y = 2h) = 0 and η′( y = 0) = η′( y = 2h) = 0, where h represents

the semi-height of the domain in the wall-normal dimension. Throughout this paper, the
location of the no-slip walls will coincide with y = 0 and y = 2h. This transformation
is achieved according to the process described in Schmid & Henningson (2001), while
including a spanwise component of the mean/base flow, W. Note that while this spanwise
mean component is included in the derivation, it will only be non-zero for the configuration
presented in § 3.5. The resulting wall-normal formulation of the conservation laws shown
in (2.12)–(2.13) is formed by the following two equations:

[
(∂t + U∂x + W∂z) ∇2 − ∂2

y U∂x − ∂2
y W∂z − 1

Re
∇4

]
v′ = f ′

v, (2.14)
(
∂t + U∂x + W∂z − 1

Re
∇2

)
η′ +

(
∂yU∂z − ∂yW∂x

)
v′ = f ′

η. (2.15)

Assuming that the system is homogeneous in the temporal dimension and the streamwise
and spanwise directions, we introduce assumed solutions of the form

v′(x, t) = v̂( y) exp [i(kxx + kzz − ωt)], (2.16a)

η′(x, t) = η̂( y) exp [i(kxx + kzz − ωt)], (2.16b)

f ′(x, t) = f̂ ( y) exp [i(kxx + kzz − ωt)], (2.16c)

where kx and kz denote the streamwise and spanwise wavenumbers, respectively, and ω
denotes temporal frequency. Substituting these assumed solutions in (2.14)–(2.15) gives
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Sparse space–time resolvent analysis

the following system of equations:

(−iωM + L)

(
v̂
η̂

)
=

(
f̂v
f̂η

)
. (2.17)

Here

M =
(
∆̂ 0
0 I

)
and L =

(
Los 0

ikz∂yU − ikx∂yW Lsq

)
. (2.18a,b)

The modified Laplacian operator ∆̂ = ∂yy − (k2
x + k2

z ) is introduced for simplicity, and

Los = (ikxU + ikzW) ∆̂− 1
Re
∆̂2 − ikx∂

2
y U − ikz∂

2
y W, (2.19)

Lsq = ikxU + ikzW − 1
Re
∆̂ (2.20)

represent the Orr–Sommerfeld and Squire operators, respectively. Premultiplying both
sides of (2.17) by M−1 and solving for the state [v̂( y), η̂( y)]T gives

(
v̂
η̂

)
= (−iωI + L)−1

(
ĝv

ĝη

)
:= Hω

(
ĝv

ĝη

)
, (2.21)

where

L = M−1L and
(

ĝv

ĝη

)
= M−1

(
f̂v
f̂η

)
. (2.22a,b)

This transfer function Hω is denoted as the resolvent operator, in analogy to the definition
introduced for a general linear system in (2.3) when z becomes z = −iω. Note that the
resolvent operator is dependent on the triad {ω, kx, kz} but, for the sake of readability, this
dependence is indicated by the subscript ω. Expanding the terms in accordance with the
derivation described in Rosenberg & McKeon (2019) gives

(
v̂
η̂

)
= Hω

(
ĝv

ĝη

)
:=

(
Hvv 0

−Hηη(ikz∂yU − ikx∂yW)Hvv Hηη

) (
ĝv

ĝη

)
, (2.23)

where the scalar operators are defined as

Hvv = (−iω + ∆̂−1Los)
−1, (2.24)

Hηη = (−iω + Lsq)
−1. (2.25)

Note that the formulation in wall-normal variables enables the study of the dynamical
properties of each of the variables independently. Nevertheless, it is possible to define
a direct transformation of the resolvent operator, as well as the resolvent modes, from
wall-normal velocity and vorticity {v, η} to primitive velocity variables {u, v, w} (and vice
versa), according to the mapping that was introduced in Meseguer & Trefethen (2003) and
further developed and applied in Jovanović & Bamieh (2005), McKeon & Sharma (2010),
Moarref et al. (2013) and Sharma, Moarref & McKeon (2017). The cited transformation
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recasts the response and forcing modes in primitive variables as

Ψ (u,v,w) = CΨ (v,η) (2.26)

and
Φ(u,v,w) = (M−1B)−1Φ(v,η). (2.27)

Here

C = 1
k2
⊥




ikx∂y −ikz
k2
⊥ 0

ikz∂y ikx



 (2.28)

and

B =
(

−ikx∂y −(k2
x + k2

z ) −ikz∂y
ikz 0 −ikx

)
, (2.29)

represent the input and output matrices, respectively.

2.3. Space–time resolvent analysis
Here we present a form of resolvent analysis that is applicable to time-varying systems.
This generalization is achieved by limiting the assumed directions of homogeneity to the
streamwise and spanwise spatial dimensions. Thus, in this formulation, both components
of the mean state U = [U, 0, W]T are also assumed to be temporally dependent, and we
write a generalized instantaneous state u as

u(x, t) = U(x, t) + u′(x, t). (2.30)

In analogy to the trajectories presented in (2.16) we let the solutions take the following
form:

v′(x, t) = v̂( y, t) exp [i(kxx + kzz)], (2.31a)

η′(x, t) = η̂( y, t) exp [i(kxx + kzz)], (2.31b)

f ′(x, t) = f̂ ( y, t) exp [i(kxx + kzz)]. (2.31c)

Note the more general dependence of these trajectories on both y and t, allowing the
solutions to adopt any sort of temporal function. Substituting these spatio-temporal
solutions in the governing equations in wall-normal formulation in (2.14)–(2.15), and
solving for the current state [ṽ( y, t), η̃( y, t)]T provides the following definition of the
space–time resolvent operator Ht:

(
v̂
η̂

)
= Ht

(
ĝv

ĝη

)
:=

(
H̃vv 0

−H̃ηη(ikz∂yU − ikx∂yW)H̃vv H̃ηη

) (
ĝv

ĝη

)
. (2.32)

The modified scalar operators are given by

H̃vv = (Dt + ∆̂−1Los)
−1, (2.33)

H̃ηη = (Dt + Lsq)
−1. (2.34)

Here, Dt represents a generalized discrete time-differentiation operator, and the subscript
in Ht represents the triad t = {t, kx, kz}. Note that definitions (2.33) and (2.34) have
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Sparse space–time resolvent analysis

the symbol (·̃) to emphasise on the temporal dependence and disambiguate from (2.24)
and (2.25). As before, resolvent analysis proceeds by taking an SVD of the associated
resolvent operator, Ht. The leading resolvent forcing and response modes satisfy the same
optimisation problems described in (2.5), (2.7)–(2.8), though now the norm is computed
over both space and time, so that

‖ψ(x, t)‖2 =
(∫

t∈Ωt

∫

x∈Ωx

|ψ(x, t)|2 dx dt
)1/2

, (2.35)

where Ωt denotes the temporal domain under consideration.
While the theory of this generalization of resolvent analysis is straightforward, it does

come with a potential increase in the computational cost. Upon discretization, the size
of the matrix representation of the resolvent operator is increased by a factor of the
number of time steps, Nt, in both the row and column dimensions with respect to the
space-only resolvent operator defined in (2.21). For a case where one spatial dimension (y)
is discretised, this means that the total size is (2NyNt × 2NyNt) and each of the block
elements is (NyNt × NyNt), where Ny and Nt are the number of discretisation points
in the space and time dimensions, respectively. Note that the space-only formulation is
constituted by a resolvent operator of total size (2Ny × 2Ny) and with block elements of
size (Ny × Ny). This increase is due to the fact that each of the entries of the operator Dt
corresponds to a temporal instance of a given spatial location in the wall-normal axis. For
the purposes of this study, however, this computational cost remains feasible.

Note that in order to disambiguate between the space-only modes and the space–time
modes, the symbol (·̂) will be used to denote the space-only modes in § 3.

2.4. Sparse resolvent analysis
The theory presented in § 2.1 formulates finding the leading resolvent modes and
corresponding gain as an optimisation problem (e.g. (2.5)) in terms of the spatial l2 norm
of forcing and response modes (defined in (2.6)). Similarly, the leading resolvent modes
for the space–time resolvent formulation described in § 2.3 is formulated using the norms
computed over both the spatial and temporal domains (2.35).

Such optimisation problems involving the l2 norm are ubiquitous across a broad range
of methods, and arise naturally for methods based on the SVD. However, it is possible
to modify such optimisation problems such that their solution has different characteristic
features.

Here, we introduce a variant of resolvent analysis that seeks to achieve localisation
or sparsity, while also desiring the large energy-amplification levels that are obtained in
the standard resolvent formulation. This is achieved by incorporation of the variant of
sparse principal component analysis (PCA) described in Hein & Bühler (2010). Similar
approaches are discussed in Jolliffe, Trendafilov & Uddin (2003), Zou, Hastie & Tibshirani
(2006), Sigg & Buhmann (2008), Journée et al. (2010) and Zou & Xue (2018).

Sparsity is promoted through the incorporation of an additional term in the form of the
l1 norm, which produces the following minimization problem:

ψ1 = arg min
ψ

(1 − α)‖ψ‖2 + α‖ψ‖1

‖H∗ψ‖2
. (2.36)

Here, the sparsity parameter α ∈ [0, 1] determines the number of non-zero elements in
ψ1. Moreover, the sparsest solution will be retrieved when α = 1; while the case where
α = 0 will give the least sparse outcome and will in fact match the result given by (2.5).
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Algorithm 1 Simplified sparse resolvent analysis

Input: Resolvent operator H and sparsity parameter α.
1: Compute raw sparse response modes ψ raw

1 by solving (2.36).
2: Compute corresponding forcing modes via

φ1 =
H∗ψ raw

1
‖H∗ψ raw

1 ‖2
. (2.37)

3: Compute updated (regularised) response modes ψ1 via

ψ1 = Hφ1
‖Hφ1‖2

. (2.38)

4: Compute corresponding singular values via

σ1 = ‖Hφ1‖2. (2.39)

Output: Regularised sparse response mode ψ1, sparse forcing mode φ1, singular
value σ1.

Note that the numerator in (2.36) is a convex function. The solution to this optimisation
problem is achieved by reformulating it as a nonlinear eigenproblem that enables the
use of an inverse power method to find its optimum (Hein & Bühler 2010). In practice,
this method often produces solutions with sharp gradients, where some of the entries
change drastically from zero to non-zero values. In order to produce coherent structures
that resemble observable mechanisms, these solutions are regularised using the resolvent
operator while maintaining sparsity. Here, we refer to the response modes computed on
the first step as ‘raw’ modes, and use a superscript to disambiguate from the regularised
or updated modes. The full collection of steps that produces the sparse leading forcing φ1
and response ψ1 resolvent modes are described in algorithm 1.

The forcing modes could potentially be updated by substituting the updated response
modes in (2.37), although in practice there is not a significant difference between the
updated and the first forcing modes. In addition, it is possible to compute higher-order
resolvent modes within this framework using the deflation scheme described in Bühler
(2014). According to this, the components that have already been identified are removed
from the optimisation space before following the steps presented above. Moreover, observe
that the method described here promotes sparsity on the response modes ψ , although
exchanging ψ with φ and H with H∗ would yield sparsity promotion in the forcing modes.
Lastly, the subscript in the resolvent operator was removed in this section in order to
indicate that this methodology can be applied to both the spatial and space–time resolvent
operators. For an explicit and expanded form of this algorithm describing how the solution
to (2.36) is obtained, refer to Appendix A.

Note that to preserve consistency in the cases presented here, we prescribe the value of
the sparsity ratio γ , instead of the sparsity parameter α, as an input to the algorithm. This
value is defined as the number of non-zero entries divided by the number of total entries
in ψ . The relationship between the sparsity parameter α and the sparsity ratio γ is further
described in Appendix A. The advantage of prescribing an input value of the sparsity ratio
γ instead of the sparsity parameter α directly is the fact that the algorithm gives control
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Sparse space–time resolvent analysis

to the user in terms of the desired non-zero elements contained in the computed sparse
modes. To some extent, it also allows the user to have control over the number of key
features of the flow that are captured by the sparse mode. Note prescribing a set value of
α instead requires careful adjustment to achieve the desired sparsity, since it could yield
modes with a varying number of non-zero elements.

3. Results
In this section we present the application of the proposed framework on four different
systems. After describing numerical details associated with the resolvent calculations in
§ 3.1, in § 3.2 we showcase the implementation of sparse resolvent analysis on a statistically
stationary turbulent channel flow. Here, we consider conventional resolvent analysis with
a Fourier transform in time, but enable sparsity promotion in the spanwise direction.
We then consider the space–time resolvent operator for this problem in § 3.3, and show
that the proposed method can produce temporally localised modes for a statistically
stationary flow. We next apply sparse and non-sparse space–time resolvent analysis to two
non-statistically stationary systems: a periodic turbulent Stokes boundary layer in § 3.4
and a turbulent channel flow with a sudden lateral pressure gradient in § 3.5.

3.1. Numerical methods
The mean velocity profiles used for resolvent analysis are all obtained from direct
numerical simulations (DNS). These simulations use a staggered second-order finite
difference scheme (Orlandi 2000), with a fractional step method (Kim & Moin 1985) and
third-order Runge–Kutta time-advancing scheme (Wray 1990). Further details regarding
the use and validations of these methods, and their application to the specific cases
considered here, can be found in Bae et al. (2018, 2019) and Lozano-Durán & Bae (2019).

For resolvent analysis, the wall-normal direction is discretised using a Chebyshev
collocation method. In the cases where the spanwise dimension is explicitly discretised, we
use a Fourier discretisation scheme with periodic boundary conditions along the spanwise
domain. Moreover, if homogeneity is not assumed in the temporal dimension, we adopt
a Fourier discretisation scheme when the system is assumed to be statistically stationary
or time periodic (i.e. §§ 3.2–3.4), and an explicit Euler finite-differentiation scheme in the
temporal dimension with Neumann boundary conditions at the boundaries in § 3.5. The
corresponding differentiation operators for both Chebyshev and Fourier discretisations are
defined according to the specifications given in Weideman & Reddy (2000). The number of
collocation points used for each of the examples considered in this work will be indicated
in the corresponding section. In each case, we verify that the numerical resolution gives
converged results, with details of these convergence studies given in Appendix B.

In the space–time implementations of the analysis showcased in this paper
(i.e. §§ 3.3–3.5), no-slip and no-penetration conditions are enforced at y = 0 (lower
wall), while free-slip and no-penetration conditions are enforced at y = h (the channel
centreline). The space–time analysis identifies modes that are sufficiently localised away
from the mid-plane using the chosen set of parameters, allowing us to reduce the size of
the numerical domain to the area below y/h = 1.

3.2. Spatially sparse resolvent analysis of turbulent channel flow
Here, we apply the sparse resolvent analysis methodology on a fully developed turbulent
channel flow, where we consider spatial (rather than temporal) sparsity. The mean velocity
profile is obtained from DNS at a friction Reynolds number of Reτ = 186, defined as
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Reτ = uτh/ν and the friction velocity, expressed as uτ =
√
τw/ρ. The variables ν and

ρ represent the kinematic viscosity and density of the flow, respectively, the shear stress
at the wall boundary is denoted as τw, and h is the channel half-height. Hereafter, the
superscript (·)+ denotes viscous (inner) units. In this reference, the velocities are scaled
by the friction velocity uτ and the length scale is given by ν/uτ . In order to showcase the
application of the sparse formulation of resolvent analysis introduced in § 2.4, we consider
two configurations, both of which assume homogeneity in the streamwise direction and
the temporal dimension: a first case where the spanwise dimension is assumed to have an
infinite extent, followed by a second implementation in which the spanwise dimension is
limited to a finite periodic domain.

The first configuration represents a one-dimensional analysis, where the chosen
wavelengths in the streamwise λ+x = 1000 and spanwise λ+z = 100 directions correspond
to the average size of the streaks and vortices that arise in the near-wall cycle (Jiménez
& Pinelli 1999). The temporal frequency is fixed at ω = 17.14, where the temporal
scale is normalised by the friction velocity (uτ ) and the half-height of the channel (h).
The frequency is chosen to be that which yields the maximum resolvent gain at these
wavelengths, which will best enable direct comparison with the following space–time
resolvent results. Note that this frequency gives a critical layer at a location y+ ≈ 40
inner units from the wall, which is further from the wall than typical near-wall streaks
(which are characteristically found at y+ ≈ 15). To avoid any misinterpretation, henceforth
we will generally refer to the resulting structures coming from resolvent response modes
(which tend to have amplitude peaks near the critical layer) simply as streamwise (rather
than near-wall) streaks and vortices. Note also that the location of these structures could
be moved closer to the wall either by reducing the choice of ω (which we find yields
qualitatively similar results) or by introducing an eddy viscosity term to the resolvent
formulation (Symon et al. 2023). In this application, the number of collocation points in
the wall-normal direction is Ny = 101. No-slip and no-penetration conditions are enforced
for the velocity at the upper and lower boundaries.

Results obtained from applying both standard and sparsity-promoting (in the
wall-normal direction) resolvent analysis are shown in figure 1, where we show the
amplitude of the streamwise velocity component of the leading two resolvent response
modes. For standard resolvent analysis, the chosen wavenumbers and frequency produces
modes with two peaks, each centred near one of the two critical layer locations (where
U( y) = ω/kx). The leading two singular values are essentially identical and represent the
fact that the two peaks are separated from each other, and can each represent structures
that have an arbitrary phase shift between them. Mathematically, these modes are basis
vectors for a subspace of dimension two, and thus, an equally valid choice of basis for this
subspace would be given by localised modes with one peak each.

To compare to the results of sparse resolvent analysis, several solutions are computed
for different sparsity ratios γ via the optimisation problem posed in (2.36). The obtained
raw sparse resolvent modes shown in figures 1(a) and 1(c) seem to be highly dependent
on the corresponding value of γ , although they are again all located near one of the
two critical layer locations. This dependence on the sparsity parameter subsides after
regularising the modes following algorithm 1, as shown in figures 1(b) and 1(d). We
observe that these regularised modes each recover one of the two peaks identified by
regular resolvent analysis, indicating that the sparse variant is finding basis elements for the
leading resolvent subspace that are spatially sparse. The sparse singular values (computed
via (2.39)) are also consistent with the standard resolvent case, with σ1 being about 1 %
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(a) (b)

(c) (d)

Figure 1. Streamwise components (u) of the first (a,b) and second (c,d) standard and sparse resolvent response
modes computed for a turbulent channel flow with Reτ = 186, λ+x = 1000, λ+z = 100 and temporal frequency
ω = 17.14. Note that the standard modes (black) have been computed using (2.8), while (2.36) produced the
raw sparse modes ψ̂ raw (a,c) from which we extract the adjusted modes ψ̂ (b,d). The streamwise mean flow U
is added to all plots for reference. The black dashed lines denote critical layer locations.

lower for the sparse case with γ = 0.1 (α = 0.0486) in comparison with the non-sparse
equivalent.

As the regularisation step appears to both remove the dependence on the sparsity
parameter and recover the results for regular resolvent analysis for this example, we will
exclusively use this regularised version for the remaining cases.

We now consider the same turbulent channel flow, but instead of assuming a Fourier
decomposition in the spanwise direction, we instead explicitly discretise this dimension,
applying periodic boundary conditions with a spanwise extent Lz twice the channel height
(that is, Lz/h = 4). We use a Fourier basis in this spanwise dimension, with Nz = 92
collocation points (with Ny = 101 as before). We keep the same frequency and streamwise
wavelength that was used in the one-dimensional analysis. This configuration is motivated
by the fact that structures and correlations that are observed in wall-bounded turbulent
flows typically exist only over a finite spanwise extent (Kim, Moin & Moser 1987; Hutchins
& Marusic 2007; Dennis & Nickels 2011; Sillero, Jimenez & Moser 2014; Jiménez 2018).
While such localised structures could be represented by an appropriate combination of
spanwise Fourier modes, this would be less efficient than a single-mode representation.
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Figure 2. Real component of leading response modes ψ̂1 (a,b) and forcing modes φ̂1 (c,d), for standard
(a,c) and sparse (b,d) resolvent analysis with γ = 0.001 (α = 0.953) resolvent analysis, applied to a turbulent
channel flow at Reτ = 186, with a finite periodic domain in the spanwise direction defined by z/h ∈ {−2, 2}
and a frequency ω = 17.14. Contours of streamwise velocity are shown, with arrows indicating the velocity
in the spanwise (z) and wall-normal (y) directions. Green dashed lines indicate critical layer locations. The
streamwise wavelength is λ+x = 1000.

Figure 2 shows the leading resolvent forcing and response modes obtained from standard
and sparse resolvent analyses, visualised in the y–z plane. Note that the contours represent
the streamwise component (u) of the modes, which correspond to streamwise streaks
of fast- and slow-moving regions. The vector fields represent the wall-normal (v) and
spanwise (w) velocity components of the modes, which here form streamwise-aligned
vortical structures. Since the system is homogeneous in the spanwise dimension, the
standard resolvent modes (figure 2a,c) give Fourier modes in this direction. The response
mode consists of alternating slow- and fast-moving streamwise streaks, with streamwise
vortices located between each streak. The wall-normal profile of these modes is close to
matching those from the one-dimensional analysis shown in figure 1, where the identified
spanwise wavelength for the leading mode is slightly different from that selected in the
one-dimensional analysis shown in figure 1. The configuration of these streamwise streaks
is consistent with the lift-up mechanism (Landahl 1975, 1980), through which streamwise
vortices lead to the formation of streamwise streaks by transporting slow-moving fluid
away from the wall and vice-versa.

The sparse resolvent modes shown in figures 2(b) and 2(d) contain a spatially localised
unit of the periodic structures identified by standard resolvent analysis in figures 2(a)
and 2(c). In particular, the sparse response mode consists of a primary central vortex
surrounded by a fast and slow streak, flanked by lower-amplitude secondary vortices and
streaks. Note that while we are only showing the lower half of the domain, on the upper
half the same structure is present for standard resolvent analysis, but not for the sparse
equivalent (again consistent with figure 1) with γ = 0.001 (α = 0.953). While not shown
here, higher-order sparse resolvent modes consist of repetitions of this localised structure
both on the upper wall and translated in the spanwise direction (with the spanwise location
of the leading mode being arbitrary). Note also that the relative phase of the forcing and
response modes is consistent between the regular and sparse modes. In terms of the energy
content of these structures, the first non-sparse singular value is about 1.178 times larger
than its sparse counterpart.

To further explore the relationship between the sparse and non-sparse modes for this
configuration, we show in figure 3 modes computed using the standard version of resolvent
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Figure 3. Real component of leading response modes ψ̂1 for standard resolvent analysis, applied to a
turbulent channel flow at Reτ = 186, with a finite periodic domain in the spanwise direction restricted to
Lz/h ∈ {0.42, 0.83, 1.17, 1.58, 2} with ω = 17.14 and λ+x = 1000. Contours of streamwise velocity are shown,
with arrows indicating the velocity in the spanwise (z) and wall-normal (y) directions.

analysis, but the region where amplification is measured is restricted in the spatial domain
along the z axis (while maintaining a domain of infinite extent in the streamwise direction).
This is achieved by modifying the weight function associated with the resolvent operator
to only consider amplification at spatial locations within the indicated regions. Note that in
this case, the spanwise domain is defined over a larger region −4 " z/h " +4 to further
emphasise this localisation. As in the previous results for both sparse and non-sparse
analyses, the identified modes consist of alternating slow- and fast-moving streamwise
streaks, with streamwise vortices between each pair of streaks. The size of these structures
is approximately the same once the window reaches a width Lz # h, with the number of
such structures present dependent on the width of the window. Restricting the spanwise
domain also reduces energy amplification associated with these structures, in comparison
with the Fourier mode extending across the entire domain width.
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Plotted cases
Sparse, γ = 0.001
Sparse, γ = 0.0078

Figure 4. Leading singular values of the resolvent operator for a restricted spanwise domain of length 0.08 "
Lz/h " 8. The values corresponding to the modes compiled in figure 3 are indicated with red markers. Note that
the leading singular value of the non-sparse and sparse resolvent modes depicted in figure 2 are also indicated
with dashed black and blue dotted lines, respectively, for reference. In addition, the leading singular value of
the sparse mode retrieved for γ = 0.0078 (α = 0.625) is indicated with a green dotted line.

Figure 4 shows the leading singular value of the resolvent modes as a function of
the mode width (Lz/h), along with the singular values associated with the sparse and
non-sparse modes depicted in figure 2 (blue dotted line). As the mode width increases,
we observe that the singular value increases rapidly for small Lz, and then becomes
more gradual as the singular value approaches that obtained using the full domain.
When Lz = 0.83h (figure 3b), we observe a mode structure similar to that found for the
sparse mode, with a pair of central positive and negative streamwise streaks and a central
streamwise vortex sitting between the streak pair. In figure 4 it is observed that this case is
located near the elbow of the amplification against the mode width curve, with a singular
value approximately matching that obtained for the sparse mode (blue dotted line). This
suggests that the sparse mode is identifying a structure that finds an appropriate trade-off
between amplification and sparsity, by identifying a structure that is much more localised
that the original spanwise Fourier mode, while still having a comparable singular value.
To show the effect that the choice of sparsity parameter has on this trade-off between
amplification and localisation, we also show in figure 4 (green dotted line) the sparse
singular value for a larger sparsity ratio of γ = 0.0078 (α = 0.625). This amplification
level intersects the σ1 vs mode width curve at a larger mode width. The associated sparse
resolvent response mode, while not plotted, was found to be similar to the configuration
of streamwise streaks and vortices identified in figure 3(d), which is near this intersection
point.

3.3. Space–time resolvent analysis of a turbulent channel flow
In this section we demonstrate the implementation of the non-sparse and sparse space–time
variants of resolvent analysis on the statistically stationary turbulent channel flow
considered in § 3.2. Here, we do not perform a Fourier transform in the temporal dimension
but instead implement the space–time formulation of resolvent analysis introduced in
(2.32). All the parameters adopted in the analysis conducted in § 3.2 are also adopted here
(except for the frequency, which is no longer specified), and time is non-dimensionalised
by the friction velocity, uτ , and the half-height of the channel, h.
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Figure 5. Real component of space–time leading responseψ1 (a,b) and forcing φ1 (c,d) modes of the resolvent
operator in a turbulent channel flow with Reτ = 186, and λ+x = 1000, λ+z = 100 for a time horizon τtot = 20τ =
20(2π/ω). Horizontal dotted lines in (a–d) indicate the y location where each mode component achieves its
maximum amplitude (y0/h). Panels (a,c) show the streamwise velocity component (u), while (b,d) give the
wall-normal component (v).

First, the streamwise (u) and wall-normal velocity (v) components of the resolvent
modes obtained from the non-sparse space–time analysis are shown in figure 5 with a
time horizon τtot = 20τ that spans over 20 cycles of length τ = 2π/ω = 0.3659, where
ω = 17.14 is the same frequency used in §§ 3.2–3.3. The number of collocation points
is Ny = 101 in the wall-normal direction and Nt = 551 in the temporal dimension. The
location of maximum mode amplitude along the y axis is indicated with a horizontal
dotted line, and the value is indicated for each subplot with the symbol with y0/h and
its equivalent in inner units y+

0 for reference.
As expected, we observe that the leading space–time resolvent modes are Fourier modes

in time, with a frequency that matches that used in the previous analyses (i.e. the mode
exhibits twenty periods over the time domain of length 20τ ).

To further demonstrate that the space–time variant gives equivalent results to standard
resolvent analysis, in figure 6 we compare the leading 30 singular values from both
versions, where in the standard resolvent analysis we compile the results across all
frequencies that are permissible when using this temporal domain (i.e. ω = 2πn/τtot with
n ∈ Z).

We now consider the spatio-temporally sparse variant of this analysis. The total time
horizon is again set to τtot = 20τ , which allows for the potential growth and decay of
temporally localised modes without the influence of the periodic boundary conditions.
Here Ny = 101 collocation points are used in the wall-normal direction and Nt = 501 in
the time dimension. Figure 7 contains the streamwise and wall-normal components of
the updated response and forcing modes with a sparsity ratio γ = 0.001 (α = 0.883).
The location of the maximum mode amplitude along the y axis is again indicated
with a horizontal dotted line. Notice how the analysis identifies structures that are
sparse both in the spatial and temporal dimensions. Observe that the forcing modes in
figures 7(c) and 7(d) precede the response in figures 7(a) and 7(b). The phase variation
in time (corresponding to the temporal frequency) and wall-normal location of the modes
approximately match those identified from the leading non-sparse space–time resolvent
mode shown in figure 5. The sparse mode, however, identifies aspects of the physics that
cannot be directly observed without sparsity promotion (and thus localisation), such as the
change in inclination angle and wall-normal location of the mode components with time.
In particular, the inclination angle of structures tend to lean further backwards in the y–t
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Figure 6. Leading 30 singular values of the space–time resolvent (black) and singular values of the space
(standard) resolvent computed at ωn = n(2π/τtot) with −100 " n " 100 sorted in descending order (red) for a
turbulent channel flow with Reτ = 186, λ+x = 1000, λ+z = 100 with a time horizon (for the space–time variant)
τtot = 20τ = 20(2π/ω), where ω = 17.14.
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Figure 7. Real component of space–time sparse leading response ψ1 (a,b) and forcing φ1 (c,d) modes of the
resolvent operator in a turbulent channel flow with Reτ = 186, and λ+x = 1000, λ+z = 100, computed with a
sparsity parameter γ = 0.001 (α = 0.094), for a time horizon τtot = 20τ = 20(2π/ω). Horizontal dotted lines
in (a–d) indicate the y location where each mode component achieves its maximum amplitude (y0/h). Panels
(e, f ) show contour levels of the absolute value of leading forcing (red) and response (blue) modes.

plane as time increases, which would correspond to an increased downstream tilt over time
in the x–y plane, consistent with the Orr mechanism (Orr 1907).

We also note that the temporal locations of these time-localised resolvent mode
components are consistent with the inherent causal structure of the time domain, in
which the forcing precedes the response in the same way that an input to a dynamical
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Figure 8. Absolute (solid) and real (dashed) components of the temporal evolution of the sparse modes
shown in figures 7(a)–7(d), at the y locations of maximum amplitude (y0).

system precedes an output. This temporal structure is also consistent with known physical
mechanisms as well, with forcing in v proceeding the response in v (figure 7f ) that in turn
proceeds the (energetically dominant) response in u (figure 7e), consistent with the lift-up
mechanism. In terms of the energy content, for a fixed time horizon of 20τ , the leading
non-sparse singular value is larger than the leading sparse one by a factor of 5.60.

To explore the temporal profiles of the components of these sparse space–time modes,
figure 8 shows the cross-sections along the t axis of the sparse modes in figure 7 at the
locations in y where the amplitude of the signal finds its maximum. The temporal evolution
of the forcing mode components seems to be more localised in these cross-sections, as they
abruptly drop to zero near where the amplitude of the response modes finds its maximum
value. The locations of the temporal peaks of these mode components is consistent with
the discussion above related to figure 7, with the peak amplitude φv preceding that of ψv ,
which itself comes prior to the maximum in ψu. Quantitatively, the time duration between
the peaks is of the same order of magnitude as τ , with a time lag of approximately 0.41τ
between the peaks in the v components of the forcing and response modes, and a further
time lag of 0.68τ between the peak amplitude of the responses in v and u. This suggests
that the energy transfer between these mode components occurs over a single oscillatory
cycle. Note also that the phase lag in between the ψv and ψu peaks approximately matches
the phase difference between the oscillating component of these signals, as both are
entirely real near their peak amplitudes. The shape of the streamwise and wall-normal
components of the modes (first row in figure 8) displays a Gaussian envelope with a
nearly constant phase gradient and a uniform phase variation across all mode components.
This could potentially suggest a natural choice of wavelet basis functions for a low-order
temporally localised analysis of this flow (Ballouz et al. 2023, 2024; Madhusudanan &
Kerswell 2024). Moreover, the particular shape of the response modes could enable the
implementation of wavepacket pseudomode theory to approximate these response modes
(Obrist & Schmid 2010, 2011; Mao & Sherwin 2011; Edstrand et al. 2018; Dawson &
McKeon 2019, 2020).
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Figure 9. (a) Streamwise mean flow U( y, t) (colourmap) and streamwise turbulence intensity urms (grey
dashed) of a turbulent Stokes boundary layer, with levels indicating {20 %, 30 %, 50 %, 75 %, 95 %} of its
maximum value, over a full oscillating cycle; (b) time instances of the turbulent mean at tΩ = π (black)
and tΩ = 3π/2 (red).

3.4. Space-time resolvent analysis of a turbulent Stokes boundary layer
In this section we apply non-sparse and sparse space–time resolvent analysis to a turbulent
Stokes boundary layer, with a time-periodic mean velocity field as shown in figure 9. This
flow sits between two plates that oscillate synchronously with a velocity given by

Uw(t) = U0 cos (Ωt), (3.1)

with Uw denoting the velocity of the oscillating walls and U0 representing a constant.
There is no external pressure gradient, so the flow is entirely driven by the motion of
the walls. The Reynolds number for this flow is defined as a function of the frequency
of the oscillations Ω , such that ReΩ = U0δΩ/ν, and δΩ =

√
2ν/Ω is a length parameter

denoting the boundary layer thickness. For the ensuing analysis, we choose ReΩ = 1500 to
ensure that the flow lies in the intermittently turbulent regime (Hino, Sawamoto & Takasu
1976; Akhavan, Kamm & Shapiro 1991; Verzicco & Vittori 1996; Vittori & Verzicco
1998; Costamagna, Vittori & Blondeaux 2003). Note that while there appears to be little
prior work performing linear analyses of this configuration in the turbulent regime, linear
analysis of laminar pulsatile channel flow has been considered using Floquet analysis (Pier
& Schmid 2017) and optimally time-dependent modes (Kern et al. 2021).

The mean velocity profile and the root mean square of the fluctuating turbulent velocity
components are obtained through DNS as described in § 3.1. The size of the domain for the
DNS is 6πδΩ × 80δΩ × 3πδΩ (in the streamwise, wall-normal and spanwise directions,
respectively) and contains 64, 385 and 64 grid points in each of the corresponding
dimensions. To collect mean data, the DNS was run for 100 eddy turnover times after
the decay of transient startup effects, where here we define this time scale as δΩ/uτ , with
δΩ = 0.025h. The time-periodic mean velocity profile is obtained through averaging in
the dimensions of spatial homogeneity (i.e. the streamwise and spanwise directions) for
each phase of wall motion. For resolvent analysis, the size of the numerical domain is
[0, h] × [0, τtot] with h = 1 and τtot being the length of the time horizon.

For performing both sparse and non-sparse space–time resolvent analysis, we
consider wavelengths corresponding to the extent of the DNS computational domain,
i.e. λx = 6πδΩ ≈ 0.471h and λz = 3πδΩ ≈ 0.236h. That is, we look at the largest
three-dimensional structure that the DNS would be capable of resolving. The reason for
focusing on such large structures in x and z is that we expect that they will correspond
to space–time resolvent modes that also have a large extent in t and y, allowing for the
distinction between the sparse and non-sparse variants to be clearly observed.
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Figure 10. Real component of leading space–time resolvent (a,b) response ψ1 and (c,d) forcing φ1 modes
of the resolvent operator in a turbulent Stokes boundary layer with λx/h = 0.471 and λz/h = 0.236 during a
full oscillating cycle. The grey dashed lines represent the (a,c) streamwise and (b,d) wall-normal turbulence
intensity, with contours at {15 %, 20 %30 %, 40 %, 60 %} and {22 %, 30 %, 45 %, 55 %, 70 %} of the maximum
value of urms and vrms, respectively.

For the non-sparse implementation of resolvent analysis, the domain is discretised using
Ny = 105 collocation points in the wall-normal axis and Nt = 651 collocation points in
the temporal dimension over a time window comprised of one oscillating cycle. The
streamwise and wall-normal velocity components of the leading forcing and response
modes obtained from this analysis are shown in figure 10, along with the corresponding
streamwise and wall-normal turbulence intensity computed from the DNS. Observe that
the identified coherent structures do not correspond to a single temporal Fourier mode.
Instead, they are concentrated over approximately half of the full oscillation period.
Although not shown here, the second leading resolvent mode depicts a coherent structure
of almost identical energy content that is similar to the leading modes in figure 10, with a
relative temporal shift of a half-period.

The location of the modes along the y axis shifts away from the wall as the mean flow
evolves over time. This angle in the y–t plane appears to be similar to that observed for
the turbulence intensities, suggesting that the mode depicts an energy transfer mechanism
away from the wall that is present in the full nonlinear system. These modes are not
concentrated in the near-wall region where the mean shear and turbulence intensity is
largest. In this region the turbulent energy content is likely dominated by structures at
smaller length scales than the wavelengths considered here. We do observe, however,
in figure 10(a) that the streamwise velocity response is amplified as the mode enters a
region of higher streamwise turbulence intensity at (tΩ, y/h) ≈ (π, 0.2). In addition, the
disturbance streamfunctions identified in Blennerhassett & Bassom (2002) for a flat Stokes
boundary layer are similar to the behaviour of the space–time modes presented in figure 10
in two ways: first, the spatial shift of the structures along the wall-normal direction; second,
the time-dependent oscillation frequency of these structures. The latter property will be
addressed in more depth later in this section.

For the sparse implementation of space–time resolvent analysis at the same wavelengths,
we adopt the same time horizon as in the non-sparse case, and a numerical domain with
Ny = 101 collocation points in the wall-normal axis and Nt = 631 collocation points in
the temporal dimension, with a sparsity ratio γ = 0.001 (α = 0.625). The location of
maximum mode amplitude along the y axis is indicated with a horizontal dotted line,
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Figure 11. Real component of sparse space–time leading (a,b) response ψ1 and (c,d) forcing φ1 modes of
the resolvent operator for a turbulent Stokes boundary layer with λx/h = 0.471 and λz/h = 0.236, computed
with a sparsity ratio γ = 0.001, across a full oscillation cycle. Panels (e, f ) show contour levels of the absolute
value of leading forcing (red) and response (blue) modes. The grey dashed lines represent the corresponding
streamwise and wall-normal turbulence intensity, with contour levels at {23 %, 32 %40 %, 50 %, 70 %} and
{35 %, 45 %, 60 %, 75 %} of the maximum value of urms and vrms, respectively. Horizontal dotted lines in (a–d)
indicate the y location where each mode component achieves its maximum amplitude (y0/h).

and the value is indicated for each subplot with the symbol with y0/h and its equivalent in
inner units y+

0 for reference.
The leading sparse resolvent modes are shown in figure 11, again overlaid with contour

levels of the streamwise and wall-normal turbulence intensity. We observe that at these
streamwise and spanwise wavelengths, the structure of the leading resolvent modes differs
substantially between the non-sparse and sparse analyses. In figure 11 the sparse analysis
identifies localised structures for which the streamwise and wall-normal components are
concentrated within one quarter of the total temporal domain, and within a small spatial
region near y/h = 0.2 (note that the vertical range shown in figure 11 is smaller than in
figure 10). Moreover, both forcing mode components precede their corresponding response
modes (shown directly in figure 11e, f ), with a peak response in v preceding that for u,
which was also observed in the sparse modes computed for statistically stationary channel
flow in § 3.3. Comparing the sparse modes with the non-sparse counterparts in figure 10,
the sparse analysis favours structures that are closer to the peak of the turbulence intensity.

Figure 12 shows cross-sections of these sparse modes along the temporal axis at the y
locations where they achieve their maximum amplitude (see the dotted lines indicated
in figure 11). Comparing figures 7 and 12, we observe greater variation in the phase
both within and across each mode component for the time-varying Stokes boundary layer
configuration. For example, the streamwise velocity response in figure 12(a) shows that
the rate of phase variation increases over time. The phase variation in the streamwise
component of the sparse forcing mode is much slower, which figure 11(c) shows is due
to the almost horizontal inclination of this component. As was the case in figure 7, we
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Figure 12. Absolute (solid) and real (dashed) components of the temporal evolution of the sparse modes
shown in figures 11(a)–11(d), at the y locations of maximum amplitude (y0).

observe that the forcing mode components have envelopes that are less symmetric in time,
abruptly decaying to zero at a given cutoff time.

Figure 13 presents the spectral power of the non-sparse (a,b) and sparse (c,d) response
modes shown in figures 10 and 11, respectively. Each plot is generated via a temporal
Fourier transform at each spatial location along the wall-normal axis (y). On the one hand,
the regions of higher spectral power corresponding to the sparse modes in figures 13(c)
and 13( f ) are localised in y, but consist of a relatively broad frequency range. Conversely,
the regions corresponding to the location of maximum spectral power of the non-sparse
modes do not show the same degree of localisation in y, and also exhibit several distinct
peaks in the (ω, y/h) plane. Furthermore, both the non-sparse and sparse spatio-temporal
analyses identify continuous regions of active frequencies. Indeed, the identified modes
in figures 10 and 11 depict structures with time-varying frequencies. This evolution of the
frequency within a single space–time mode would not be directly captured via harmonic
resolvent analysis, where each component mode is associated with a single (discrete)
temporal frequency (though triadic interactions between different frequencies could be
isolated with this approach). Instead, the superposition of a considerable amount of
temporal frequencies would be required to capture the dominant spatio-temporal modes
identified by the direct space–time analysis. This suggests that the present approach could
be more insightful when applied to flows that do not necessarily possess sparse frequency
content, such as the configuration considered in this section.

3.5. Space–time resolvent analysis of a turbulent channel flow with sudden lateral
pressure gradient

The last case considered in this work is a fully developed turbulent channel flow at Reτ =
186 that is subjected to a sudden lateral pressure gradient at t = 0. The spanwise pressure
gradient is related to the fixed streamwise gradient by ∂p/∂z = Π(∂p/∂x), where here we
use Π = 30. Additional information about this configuration can be found in Moin et al.

999 A87-23

2�
�9

��
  

.�
���

:1
 �

��
��

�	
 40

�
��

��
��


�
��


 
�5

��
2/

.�
�7

5�7
/�

�"
��

��
�:

�.
1/

��
7�

!/
:�

��"
�


:/
��

https://doi.org/10.1017/jfm.2024.955


B. Lopez-Doriga, E. Ballouz, H.J. Bae and S.T.M. Dawson

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0

1.0

0.5

0

1.0

0.5

0

150

100

250
200
150
100
50

30

20

10

50

50
40
30
20
10

y/h

y/h

ω ω

(a) (b)

(c) (d)

Figure 13. Spectral power of the streamwise (u) (a,c) and wall-normal (v) (b,d) components of the non-sparse
(a,b) and sparse (c,d) spatio-temporal resolvent modes presented in figures 10 and 11, respectively. A discrete
Fourier transform is computed during one oscillating period at each of the locations of the y axis in the
numerical domain.

(1990) and Lozano-Durán et al. (2020). The turbulent mean flow therefore contains both
streamwise U( y, t) and spanwise W( y, t) non-zero components, which evolve over time
until the system reaches its new statistically stationary state. These velocity components
are shown in figure 14.

To form the resolvent operator, the temporal domain is implicitly non-dimensionalised
by the initial friction velocity uτ,0 at t = 0 and h, and it is determined in two steps
to achieve numerical accuracy. It is first defined as the interval [−0.58, 2.34]h/uτ to
extend the numerical domain before the initial condition to include time prior to the
application of the spanwise pressure gradient. Thus, for t < 0, the base flow is constant,
with U(t < 0, y) = U(T = 0, y) and W(t < 0, y) = 0, and ∂p/∂z(t < 0) = 0. After a first
analysis is conducted, the time domain is restricted to a smaller temporal window near the
observed temporal location of the leading modes that is large enough to produce unaltered
results with a larger temporal resolution. Note that here we implement an explicit Euler
finite-differentiation scheme in the temporal dimension. Thus, the final numerical domain
used in this analysis is given by [0, h] × [0.4, 2]h/uτ .

As was the case for the statistically stationary channel flow studied in §§ 3.2–3.3, we
concentrate our analysis on streamwise and spanwise wavenumbers corresponding to the
typical size of near-wall streaks. After the pressure gradient is applied, the magnitude
and direction of the mean flow changes, meaning that the wavelengths associated with
near-wall streaks is also expected to change. Assuming that near-wall streaks adjust their
size and orientation with the mean, we can select wavelengths corresponding to the typical
size of near-wall streaks at a certain point in time (Ballouz et al. 2024) (though as before,
we are not guaranteed that the wall-normal location of the resulting modes will match
those typical of such streaks). Here, we select λ+x = 189 and λ+z = 1890, which correspond
to the typical length of the near-wall streaks at a time instance tuτ/h = 1.38.

For the non-sparse space–time resolvent analysis, the domain is discretised using
Ny = 132 and Nt = 500 collocation points. The location of the maximum mode amplitude
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Figure 14. Temporal evolution of the streamwise U(t, y) (black) and spanwise W(t, y) (red) mean velocity
profiles obtained by DNS of a turbulent channel flow at Reτ = 186 with a sudden lateral pressure gradient at
t = 0 with ∂p/∂z = Π(∂p/∂x) and Π = 30 at tuτ /h ∈ {0, 0.58, 1.17, 1.38, 1.76, 2.34} (Lozano-Durán et al.
2020).

along the y axis is indicated with a horizontal dotted line, and the value is indicated for
each subplot with the symbol with y0/h and its equivalent in inner units y+

0 for reference.
Leading resolvent mode components for this analysis are shown in figure 15. We observe
that the modes are localised in time, centred near to the nominal time (tuτ/h = 1.38)
where the streamwise and spanwise length scales of the modes coincide with near-wall
streaks. The structure of the modes share some similarities with those observed for both
the non-sparse and sparse analyses of stationary channel flow (figures 5 and 7). In all
cases, the wall-normal response consists of vertically aligned structures, while the forcing
is inclined upstream in the y–t plane. The u component of the response appears to incline
further backwards as time progresses in both figures 7(a) and 15(a), though the latter does
appear to move towards and move away from the wall as observed in the former. Note
that the u component plotted in figure 15 no longer entirely corresponds to the streamwise
direction, due to the spanwise pressure gradient.

Figures 15(e)–15( f ) show that the forcing and response mode components are all located
over approximately the same time interval for this case. This is different from the sparse
analysis of statistically stationary channel flow (see figure 7e, f ), where the forcing mode
components decayed before their responses did, and the wall-normal forcing and response
components started before the streamwise components. These differences can likely be
attributed to the differences in how localised modes are obtained; for the three-dimensional
channel configuration we are not explicitly promoting sparse modes, but rather the modes
are aligning with a region of time corresponding to a mean flow with maximum linear
energy amplification for structures at the specified spatial scales. This can be further
explored by applying the sparse variant to this configuration.

For the sparse implementation of space–time resolvent analysis, we adopt the same
wavelengths and a sparsity ratio γ = 0.001 (α = 0.781). The domain is discretised using
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Figure 15. Real component of space–time u and v velocity components of the leading (a,b) response ψ1 and
(c,d) forcing φ1 modes of the space–time resolvent operator for a channel flow with a sudden lateral pressure
gradient with Reτ = 186, and λ+x = 189, λ+z = 1890. (e, f ) Contour levels of the absolute value of the leading
forcing (red) and response (blue) modes. Horizontal dotted lines in (a–d) indicate the y location where each
mode component achieves its maximum amplitude (y0/h). The grey dashed lines represent the boundaries of
the temporal numerical domain.

Ny = 130 and Nt = 500 collocation points. The leading sparse modes are shown in
figure 16, where both the u and v components display a similar structure, but with more
temporal localisation, to those shown for the non-sparse analysis in figure 15. The location
of the maximum mode amplitude along the y axis is indicated with a horizontal dotted line,
and the value is indicated for each subplot with the symbol with y0/h and its equivalent in
inner units y+

0 for reference.
The sparse analysis thus appears to identify the same mechanism, localised around the

same region in time. Unlike the non-sparse version, here we observe in figures 16(e)–16( f )
differences in the temporal footprints of each mode component, with the decay in
amplitude of both components of the forcing preceding the decay of the response.

The cross-sections along the time axis of the modes contained in figures 15 and 16 are
shown in figure 17 in red and black, respectively. The amplitudes of both the non-sparse
and sparse modes adopt qualitatively similar envelopes, with the sparse variant being
narrower, and centred at a slightly later time. We emphasise that unlike the profiles shown
in figure 8, here the time location of these modes is not arbitrary and corresponds to a
region of time where the mean profile enables the largest linear amplification. The phase
variation is similar across all mode components, indicating a characteristic frequency
maximising amplification. Here, we thus find that both sparse and non-sparse space–time
resolvent analyses appear to identify the same amplification mechanism, with the addition
of the l1-norm term in the objective function restricting the sparse modes to a smaller
temporal window.

Lastly, to demonstrate the numerical convergence of the results presented in this section,
figure 18 presents the first 10 singular values of the non-sparse and sparse space–time
resolvent operators with γ ∈ {0.001, 0.15} space–time resolvent operators against the
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Figure 16. Real component of sparse space–time u and v velocity components of the leading (a,b) response
ψ1 and (c,d) forcing φ1 modes of the space–time resolvent for a channel flow with a sudden lateral pressure
gradient with Reτ = 186, and λ+x = 189, λ+z = 1890 with a sparsity ratio γ = 0.001 (α = 0.781). (e, f ) Contour
levels of the absolute value of the leading forcing (red) and response (blue) modes. Horizontal dotted lines in
(a–d) indicate the y location where each mode component achieves its maximum amplitude (y0/h). The grey
dashed lines represent the boundaries of the temporal numerical domain.
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shown in figures 15(a)–15(d) (red) and sparse modes shown in figures 16(a)–16(d) (black), at the y locations of
maximum amplitude.
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Figure 18. Leading 10 singular values of the non-sparse and sparse (with γ ∈ {0.001, 0.15}) space–time
resolvent operator for a channel flow with a sudden lateral pressure gradient with Reτ = 186, and λ+x = 189,
λ+z = 1890. The reference values correspond to the analysis described in Ballouz et al. (2024).

leading singular values obtained in the study described in Ballouz et al. (2024), where
the numerical methods utilize a wavelet transform in time. The corresponding leading
modes coincide with figure 15 and figure 16 in the non-sparse and sparse with γ =
0.001 (α = 0.781) implementation of the space–time analysis, respectively. First, observe
that the singular values of the non-sparse analysis closely match the reference values.
Second, a sparsity ratio of γ = 0.15 (α = 0.004) is sufficiently large to obtain similar
amplification levels to these reference values (note that the corresponding modes are
not shown in this paper). This agreement also confirms the convergence of the sparse
analysis. However, the singular values retrieved from the sparse analysis with γ = 0.001
(α = 0.781) and γ = 0.005 (α = 0.258) retrieve only a portion of the reference values.
In particular, the leading reference value is larger than the leading sparse singular value
with γ = 0.001 by a factor of 2.0958, and we observe that this ratio decreases for
higher-order singular values. The fact that the sparse and non-sparse analyses yield
similar results for this case is likely due to the highly transient nature of the flow, where
the leading resolvent modes are naturally localised even without explicitly promoting
sparsity.

4. Discussion and conclusions
In this work we have proposed a sparse space–time variant of resolvent analysis that can
identify time-localised coherent structures. These spatio-temporal structures correspond to
the inputs and outputs that optimise an objective function that promotes large linear energy
amplification, while also promoting the localisation in space and time of these structures.
Localisation is achieved through the addition of a sparsity-promoting l1-norm term to the
standard optimisation problem used for resolvent-type analyses. The new optimisation
problem takes the form of a nonlinear eigenproblem, for which the optimal solution is
achieved through an inverse power method.

We have demonstrated the implementation of this sparse variant of resolvent analysis
on several different configurations, demonstrating that we obtain sparse modes first in the
spatial domain, and also in the spatial and temporal domains when using a generalized
space–time formulation of resolvent analysis. The first case studied was a statistically
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stationary turbulent channel flow, a canonical configuration that has received substantial
prior study in the context of resolvent analysis (and for many other forms of analysis).
When using the standard Fourier transform in time, the proposed sparse resolvent analysis
identified spatially sparse modes, in either the wall-normal or wall-normal and spanwise
dimensions, depending on the problem set-up. This provides a means for identifying
localised spatial structures corresponding to similar amplification as the non-localised
structures identified in standard resolvent analysis. For the one-dimensional channel
flow analysis, this sparsity simply resulted in modes concentrated about one of the
two critical layers. In this case, the symmetry of the configuration means that leading
resolvent modes come with a multiplicity of two, and sparse resolvent analysis found
a basis for this subspace where each basis vector was as sparse as possible. For the
two-dimensional analysis where the spanwise direction was explicitly discretised, sparse
resolvent analysis found a leading resolvent mode that consisted of a primary streamwise
vortex, surrounded by a pair of streamwise streaks, with comparable total amplification
to the Fourier mode identified from standard resolvent analysis. This suggests that the
ordered, spanwise repetition of such structures are not essential for their appearance
in turbulent flows (under the assumption that linear mechanisms are at least partially
responsible for their emergence). Indeed, this is consistent with analysis from turbulent
flow data, where spanwise correlations are observed to decay. Indeed, correlations at a
wall-normal location corresponding to near-wall streaks are observed to decay (Kim et al.
1987) over a spanwise length scale similar to the streak width itself (λ+z ≈ 100), which is
consistent with the spanwise localisation observed for the leading resolvent response mode
in figure 2(b).

Next, a space–time generalization of resolvent analysis was applied to the same channel
flow configuration. Being a statistically stationary system, each of the space–time modes
converged to a single temporal Fourier mode in the absence of sparsity promotion.
Therefore, the space–time resolvent modes are equivalent to the standard resolvent
modes compiled across all frequencies permissible by the prescribed time horizon. The
sparsity-promoting variant of this space–time resolvent analysis yielded structures that
displayed localisation in both the spatial and temporal dimensions. These modes again
reflect the fact that linear energy amplification can arise from forcing that is limited to
a localised region in time. These time-localised structures exhibit features that cannot be
seen in Fourier modes, such as the time evolution of inclination angles and wall-normal
locations of structures within resolvent modes. Note that the change in the inclination
angles of the modes can also be interpreted as regions of the modes with different
wall-normal locations evolving with different wave speeds, consistent with the distribution
of the mean velocity across the wall-normal extent of the modes. This phenomena is
again not observable in standard Fourier-based resolvent analysis. It was noted in § 3.3
that when streamwise and spanwise wavelengths are chosen to be typical of near-wall
streaks, the resulting resolvent modes are centred much further from the wall than where
such structures are typically found. However, the corresponding sparse space–time mode
components exhibited peak amplitudes much closer to the wall, with the streamwise
component of the leading response mode having a peak at y+ ≈ 17.5, which is more
consistent with the location of near-wall streaks. Future work could explore in more detail
the quantitative extent to which sparse modes predict phenomena present in turbulent
channel flow data.

Beyond statistically stationary systems, we next explored the application of our
proposed methodology to systems with a time-varying mean. The first such system that
was considered was a time-periodic turbulent Stokes boundary layer. In this case, the
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non-sparse and sparse variants identified leading resolvent modes that were qualitatively
different, with the sparse models being significantly more localised in both space and
time. Our analysis focused on relatively large-scale structures by specifying streamwise
and spanwise wavelengths corresponding to the size of the domain used for DNS. While
not shown here, we found that this difference was less apparent for smaller wavelengths,
where even the non-sparse variant identified structures that were localised in time, such
as the case considered in Ballouz et al. (2024). For the case considered here, the sparse
mode components identified were also localised near the peak in turbulence intensity at the
wall-normal location where they were situated, suggesting that they identify a mechanism
relevant to the generation and amplification of turbulent features at this temporal phase of
the system.

The final set of results considered a non-periodic, time-evolving turbulent channel
flow subjected to a sudden lateral pressure gradient. This flow was studied during a
temporal window in which the flow transitions between two statistically stationary states.
It was found that both the non-sparse and sparse modes showed temporal localisation,
presumably due to the choice of wavelengths permitting largest energy amplification in a
certain time window corresponding to a given orientation of the mean. Overall, we have
demonstrated that spatio-temporally sparse resolvent analysis can identify features that can
either be qualitatively similar or distinct from the non-sparse equivalent.

Across all of the examples considered, there are several common observations that
can be made. First, across all configurations, the streamwise velocity component of
the response modes are larger than the wall-normal component. Furthermore, for the
time-localised modes, the peak in the amplitude of the streamwise velocity typically
occurs slightly after the peak in the wall-normal component. This is consistent with the
lift-up mechanism that transfers momentum between these components for cases with
non-zero spanwise wavenumbers. For cases where sparsity is promoted in time, we observe
that response mode shapes are typically localised within temporal envelopes that are
approximately Gaussian in shape, with modes exhibiting several periods of oscillation
within such envelopes. For all but the Stokes boundary layer case, the frequency of these
oscillations remains approximately constant in time throughout the mode evolution. For
the Stokes boundary layer, the sparse response mode oscillation frequency is found to
increase continuously with time, approximately doubling throughout the time evolution of
the mode. This suggests that for systems with large, rapid variations in the mean velocity
field, analysis of linear amplification mechanisms could be more difficult to capture in
the frequency (rather than time) domain, given the observed continual transfer of energy
across frequencies.

To conclude, the contributions provided by both of the frameworks introduced in this
paper, in terms of improved physical insight, deserve a separate discussion. Firstly, the
main advantage of the space–time analysis with respect to traditional resolvent analysis
resides in its applicability to not only statistically stationary systems, but also time-varying
mean flows of any nature. This aspect enables the identification and characterisation
of the relevant spatio-temporal coherent structures that are most highly amplified by
the linearised governing equations. Secondly, the analysis also recognises the physically
relevant temporal instance at which coherent structures of a targeted length scale naturally
arises. This was observed in the cases presented in §§ 3.4 and 3.5. Thirdly, considering the
application of the space–time framework to time-periodic systems, its capabilities surpass
those of harmonic resolvent analysis, as it is able to infer triadic interactions between
modes in which each of them can be associated with several temporal frequencies (see the
cases presented in § 3.4 for a turbulent Stokes boundary layer). Lastly, even the application

999 A87-30

2�
�9

��
  

.�
���

:1
 �

��
��

�	
 40

�
��

��
��


�
��


 
�5

��
2/

.�
�7

5�7
/�

�"
��

��
�:

�.
1/

��
7�

!/
:�

��"
�


:/
��

https://doi.org/10.1017/jfm.2024.955


Sparse space–time resolvent analysis

of the space–time analysis provides additional physical insight for time-invariant mean
flows, as it highlights not only the coherent structures of maximal amplification, but also
the associated temporal frequency within a prescribed temporal period (see figure 7 for a
turbulent channel flow).

In addition, the incorporation of the sparsity-promoting term to the space–time analysis
further expands its potential in a number of ways. For instance, by promoting localisation,
it is possible to break down a given spatio-temporal coherent structure formed by an
aggregate of temporal frequencies into smaller units (see case presented in figure 11 for
a turbulent Stokes boundary layer). This presumably allows for the study of complex
linear energy-amplification mechanisms through the examination and characterisation of
localised coherent structures of a reduced frequency content. Moreover, the exploitation of
the sparsity-promoting space–time analysis could assist in the design of control strategies
of targeted length and temporal scales. Note that this analysis not only provides a localised
structure that is optimal in terms of the energy gain (this was investigated in more depth in
figures 3–4 in the study of the turbulent channel flow with discretisation in the spanwise
dimension), but will also be identified in a physically relevant temporal instance. Thus,
this technique could be advantageous in the determination of the most optimal location for
actuator and/or sensor placement.

The focus of this work has been the development and demonstration of this method
across a range of flow configurations. Additional investigations into each of these (and
other) configurations are required to quantify the extent to which these methods can be
used to predict and understand structures and statistics of such turbulent flows, over a
wider range of spatial scales. There are several possible approaches towards assessing
the capacity of sparse-resolvent-based models in predicting turbulent flow features.
One approach involves a direct comparison between predicted mode structures from
sparse resolvent analysis with a data-driven equivalent. This could involve modifying
the optimisation problem associated with standard (space-only or space–time) POD
methods to include a sparsity-promoting term, or through comparison with previously
developed conditional (Schmidt & Schmid 2019) or windowed (Frame & Towne 2022)
space–time POD. Beyond this, sparse resolvent modes could also be used to develop
simplified ‘turbulence kernels’, which may facilitate modelling similar structures to those
captured using sets of standard resolvent modes (Sharma & McKeon 2013; Luhar, Sharma
& McKeon 2014a; McKeon 2017), but while also capturing the decay in two-point
correlations with increasing spatio-temporal separation that are typically observed in
turbulent flows, a property not readily captured with a small number of Fourier modes.
Additionally, bases of sparse resolvent modes could also be utilized for real-time flow
estimation tasks (Arun, Bae & McKeon 2023), which may be particularly useful if
needing to estimate localised features within large domains. The numerical methods
employed in the present work have required the explicit formation and decomposition of
linear operators discretised in both space and time. Future work could also investigate
time-stepping approaches to perform such analyses. Such methods, which have been
applied for resolvent (Martini et al. 2020; Farghadan, Martini & Towne 2023) and
other linear analyses (Barkley, Blackburn & Sherwin 2008), would likely be particularly
computationally advantageous for our methodology.
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Appendix A. Notes on the inverse power method for nonlinear eigenproblem used in
sparse resolvent analysis
This appendix contains a detailed description of the inverse power method proposed by
Hein & Bühler (2010) that is employed to solve the constrained optimisation problem
posed by the sparse PCA algorithm, adapted to perform sparse resolvent analysis in § 2.4.
We start by considering a general nonlinear eigenproblem of the form

r( f ) − λs( f ) = 0, (A1)

where f represents the eigenfunction associated to the eigenvalue λ, and r and s are
nonlinear operators. In order for f to be a solution to the nonlinear eigenproblem, f has
to be a critical point of a functional, F. In this problem, the functional F is expressed as

F( f ) = R( f )

S( f )
, (A2)

where both S and R represent convex, non-negative, Lipschitz continuous functionals that
satisfy the positive homogeneity property R(γ f ) = γR( f ) for γ ! 0. The critical points
of F( f ) are found at the locations f c in which ∇F( f c) = 0. We can write this condition
in terms of R and S as

∇F( f c) = S( f c)∇R( f c) − R( f c)∇S( f c)

S2( f c)
= 0. (A3)

Rearranging the terms in (A3) yields a form that assimilates the eigenproblem in (A1) as

∇R( f c) − R( f c)

S( f c)
∇S( f c) = 0, (A4)

where we have adopted r( f c) = ∇R( f c), s( f c) = ∇S( f c) and λ = R( f c)/S( f c). Note
that in order for this definition to hold, S must be continuously differentiable. In addition,
in the case where R( f ) and S( f ) represent second-order functionals, (A4) becomes a
linear eigenproblem.

The nonlinear eigenproblem in (A4) is solved using an inverse iteration, also referred to
as inverse power method. For a linear operator A, this scheme takes the form A f k+1 = f k,
which is equivalent to the solution to the optimisation problem

f k+1 = arg min
‖ f ‖2!1

(
1
2 〈 f , Au〉 − 〈 f , f k〉

)
. (A5)

Considering the general eigenproblem presented in (A1), the iterative scheme utilized in
this work is written as

f k+1 = arg min
‖ f ‖2!1

(
R( f ) − 〈 f , s( f k)〉

)
. (A6)

According to the form of the eigenproblem shown in (A4), the corresponding eigenvalue is
computed as λk+1 = R( f k+1)/S( f k+1). Note that in our problem, the function F( f ) takes
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Algorithm 2 Inverse power method for sparse resolvent analysis

Input: Resolvent operator H, sparsity controlling parameter α, accuracy ε
1: Initialization: f 0 = random, with ‖ f 0‖2 = 1 and λ0 = F( f k)

2: while |λk+1 − λk|/λk > ε do
3: gk+1

i = sign(µk
i )(λ

k|µk
i | − α)+

4: f k+1 = gk+1/‖H∗gk+1‖2

5: λk+1 = (1 − α)‖ f k+1‖2 + α‖ f k+1‖1

6: µk+1 = Σf k+1/‖H∗f k+1‖2

7: end while
Output: raw sparse resolvent response modes ψ raw = f k+1

the form

F( f ) = (1 − α)‖ f ‖2 + α‖ f ‖1

‖H∗f ‖2
, (A7)

for which the optimisation problem in (A6) is rewritten as the following convex
optimisation problem:

gk+1 = arg min
‖ f ‖2!1

[
(1 − α)‖ f ‖2 + α‖ f ‖1 − λk〈 f , µk〉

]
. (A8)

Here

µk = Σf k
√

〈 f k,Σf k〉
, (A9)

where, for our problem, Σ = HH∗. This optimisation problem has the closed solution

gk+1
i =

sign(µk
i )(λ

k|µk
i | − α)+

s
, (A10)

with s =
√∑n

i=1(λ
k|µk

i | − α)2
+ and a+ = max(0, a). Note that s now represents a scaling

factor and is excluded from the method for simplicity. The algorithm that computes the
optimal solution to the nonlinear eigenproblem in (A4) using an inverse power method
with the closed solution indicated in (A10) for sparse resolvent analysis is presented in
algorithm 2.

Lastly, as was indicated in § 2.4, for the cases presented in this paper, the authors have
prescribed a set value of the sparsity ratio γ instead of the sparsity ratio α. In particular,
the optimal value of α for a given value of the sparsity ratio γ is determined by the
process described in algorithm 3, following Hein & Bühler (2010). According to this, the
sparse analysis identifies modes with a prescribed number of non-zero entries, for which
the algorithm determines the optimal value of the sparsity parameter α that maximises
the sparsity above a pre-determined threshold β while simultaneously maximising the
variance of the projection of a candidate eigenvector f onto H∗. On the one hand, note
that a larger α corresponds to more sparsity, and therefore, a smaller number of non-zero
terms (smaller γ ). On the other hand, the variance of H∗ f is used as a measure of how
well the relevant dynamics is captured with a chosen value of α.
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Algorithm 3 Inverse power method for sparse resolvent analysis

Input: Resolvent operator H∗, sparsity ratio γ , candidate eigenvector f
1: Initialization: α0

2: while {‖w‖1 > β and Var(H∗f ) < ν} do
3: Optimise: w = arg max{Var(H∗w) − α‖ f ‖1}
4: Evaluate: is Var(H∗f ) > ν and ‖ f ‖1 < β ?
5: Update: Find next α using a grid search
6: end while

Output: optimal sparsity parameter α
Note that sparsity threshold β and variance threshold ν are pre-set parameters
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Figure 19. Evolution of σ 2
1 (black) and

∑10
i σ 2

i (red) as a function of (a) Ny for a constant total grid size
N = NyNt = 5.7 × 104, and (b) as a function of Nt for a constant spatial grid size Ny = 81 in the non-sparse
implementation of space–time resolvent analysis for a turbulent channel flow Reτ = 186, and λ+x = 1000, λ+z =
100 for a time horizon τtot = 20τ = 20(2π/ω). Circles indicate the resolution used in the rest of the paper.

Appendix B. Convergence study of space–time resolvent analysis
This appendix contains convergence studies related to the results presented in this paper.
In particular, a sweep was performed in a subset of the parameters Ny and Nt. The
convergence of the methods was assessed in terms of the energy contained by the
leading mode σ 2

1 , as well as the sum of the energy
∑n

i σ
2
i of the first n = 10 modes.

Figures 19–20 show the convergence of the results for the statistically stationary channel
flow configuration, while figures 21–22 provide analogous results for the Stokes boundary
layer. For the channel flow with a lateral pressure gradient, convergence was studied
through comparison with results of Ballouz et al. (2024), as discussed in § 3.5. Our
available computational power (1500 GB RAM) provided a threshold in terms of the
total grid size N = NyNt for each configuration. Note that the computational cost of the
sparse formulation of the analysis is slightly higher, and therefore, the maximum N is
slightly lower in these cases. In all cases, as indicated by circles on the plots, we choose
the resolution Ny and Nt such that adding additional resolution in either dimension has
minimal effect on both the leading and the sum of the squares of the first 10 singular
values.
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Figure 20. Evolution of σ 2
1 (black) and

∑10
i σ 2

i (red) as a function of (a) Ny for a constant total grid size
N = NyNt = 5.4 × 104 and (b) as a function of Nt for a constant spatial grid size Ny = 101, in the sparse
implementation of space–time resolvent analysis for a turbulent channel flow Reτ = 186, and λ+x = 1000, λ+z =
100 with γ = 0.001 for a time horizon τtot = 20τ = 20(2π/ω). Circles indicate the resolution used in the rest
of the paper.
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Figure 21. Evolution of σ 2
1 (black) and

∑10
i σ 2

i (red) as a function of (a) Ny for a constant total grid size
N = NyNt = 7.3 × 104, and (b) as a function of Nt for a constant spatial grid size Ny = 81, in the non-sparse
implementation of space–time resolvent analysis for a turbulent Stokes boundary layer with λx/h = 0.471 and
λz/h = 0.236 during a full oscillating cycle. Circles indicate the resolution used in the rest of the paper.
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Figure 22. Evolution of σ 2
1 (black) and

∑10
i σ 2

i (red) as a function of (a) Ny for a constant total grid size
N = NyNt = 6.33 × 104, and (b) as a function of Nt for a constant spatial grid size Ny = 81, in the sparse
implementation of space–time resolvent analysis for a turbulent Stokes boundary layer with λx/h = 0.471 and
λz/h = 0.236 for γ = 0.001 during a full oscillating cycle. Circles indicate the resolution used in the rest of
the paper.
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