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ABSTRACT: The mutual information characterizes correlations between spatially separated
regions of a system. Yet, in experiments we often measure dynamical correlations, which
involve probing operators that are also separated in time. Here, we introduce a space-time
generalization of mutual information which, by construction, satisfies several natural properties
of the mutual information and at the same time characterizes correlations across subsystems
that are separated in time. In particular, this quantity, that we call the space-time mutual
information, bounds all dynamical correlations. We construct this quantity based on the idea
of the quantum hypothesis testing. As a by-product, our definition provides a transparent
interpretation in terms of an experimentally accessible setup. We draw connections with other
notions in quantum information theory, such as quantum channel discrimination. Finally, we
study the behavior of the space-time mutual information in several settings and contrast its
long-time behavior in many-body localizing and thermalizing systems.
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Introduction

A prominent experimental diagnostic for the properties of physical systems are correlation

functions. These offer a window into the complex dependencies that exist among different

subregions in space and time of a given system, and provide an organized and transparent way

to characterize its fundamental properties. For example, the electric conductivity is determined

by the current-current response function. Angle-resolved photo emission experiments measure

the two-point function of the electron as a function of momentum and energy. Phases of

matter are also characterized by correlation functions: for example, spontaneously broken

symmetry phases, such as ferromagnetism and crystalline order, correspond to long-range

correlations in space. In general, a two-point correlation function is defined for two operators

each residing in a region of spacetime.



One question that naturally arises is whether there exists a quantum information measure
to quantify the amount of correlations between two space-time regions. For two spatial regions,
A and B, defined at the same time, mutual information I(A : B) = S4+Sp—Sap is a natural
measure, where Sy represents the von Neumann entropy of subsystem A. I(A: B) =0 if
and only if the states of AB factorize as pap = pa ® pp, which implies that there is no
connected correlation between the two regions. A non-zero I(A : B) provides a quantitative
measure of correlations that is independent of the specific operators that are correlated.
For instance, if we consider two ferromagnetic states, one with long-range correlations of
the spin-z component (S, (r)S.(r’)). and another with an equal amount of correlation in
S, then, keeping everything else fixed, both states will yield the same mutual information.
Importantly, the mutual information provides an upper bound on the connected correlation
functions between the two regions [1].

In physical experiments, dynamical correlation functions can be measured for regions
located at different times, just like equal-time correlators. However, using mutual information
to measure correlations between different times is not feasible. In quantum field theory, the
mutual information can typically be defined for algebras associated with space-like separated
regions A and B that are not adjacent, but it is likely undefined for time-like separated
regions, particularly when region B is inside the future lightcone of region A. For finite
dimensional quantum systems, the issue arises because the state pap is typically not defined
for time-like separated regions. Our study is motivated by the idea that a physical system
should be characterized by observables. Thus, we aim to generalize mutual information for a
pair of space-time regions A and B that is valid even when they are not space-like separated,
and hence when pap is not defined. This is the primary objective of our research.

In this paper, we introduce a novel quantity, called the space-time mutual information
(STMI) denoted as J(A : B), which generalizes the mutual information for two arbitrary
space-time regions A and B. Our approach is based on the idea of hypothesis testing where,
in a gedanken experiment, an experimentalist has access to a physical system at regions
A and B defined at separate times. For example, in a qubit chain with qubits labelled by
r=1,2,...,N, region A could be qubit x = 1 at time ¢ = ¢; and B could be the qubits
x = 2,3 at time ¢t = t2. The experimentalist is allowed to couple a general ancilla to regions A
and B of the system. This can include ordinary measurements as well as more sophisticated
quantum couplings with the ancilla, such as applying a quantum perturbation at A and
measure its consequence in region B. The goal of the experimentalist is to distinguish between
two situations. The first situation is where the experimentalist accesses regions A and B of
the same system, and therefore can measure correlations between them. The second situation
where the coupling at A and B occurs in two independent copies of the original system. By
construction, in the second situation there is no correlation between the two subsystems.
The difficulty of distinguishing the two situations measures the amount of correlation, which
can be characterized by a relative entropy. The STMI is defined by optimizing this relative
entropy over all possible system-ancilla coupling schemes. The advantage of our quantity
is that it directly describes an experimentally accessible setup.

The remainder of the paper is organized as follows. In section 2 we introduce the intuition
and the definition of the STMI, and explore some of its simple properties. We show that
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Figure 1. (a) System with initial state p;, undergoing evolution with unitary U. The upper cap

stands for tracing over the corresponding region. (b) Coupling between subsystem A and ancilla
W giving rise to the connected state ppw. (c) Disconnected state pp o ® pw, where pp o is the
unperturbed evolved state reduced to subsystem B.

the STMI reduces to the ordinary mutual information when regions A and B are spacelike
separated. We investigate various properties of STMI such as its monotonicity under local
operations at A and B separately. In section 3 we prove that the STMI is an upper-bound
of connected dynamical correlation functions, a direct generalization of the corresponding
inequality in ref. [1] for static correlations. In section 4 we show that, in certain cases,
when three subregions are considered, our quantity satisfies a space-time generalization of
the Markov property. In section 5 we draw a connection between the STMI and quantum
channel discrimination and use this to prove additivity of the STMI in a special setting.
Section 6 proposes a simplification of the definition of the STMI, which holds in a restricted
regime and which we apply to provide semi-analytic results when studying the examples
of section 7. Finally, we introduce a classical counterpart of the STMI in section 8 and
discuss conclusions and outlook in section 9.

2 Definition of space-time mutual information

2.1 General intuition

Before presenting the rigorous definition of STMI, we would like to provide some intuition by
presenting a simplified version of this quantity. Let us consider a system in an initial state
pin defined on a Hilbert space on region AA that evolves by time evolution U into an output
state pout = UpinUT, which can be partitioned into region B and B. Here, A and B denote
two subregions before and after the evolution, respectively, as in figure 1(a). We would like
to introduce a generalization of mutual information that is applicable to general subregions
A and B, in particular to when these are causally connected. In the latter case the standard
definition of mutual information does not apply, as there is no joint state on AB. To overcome
this issue we couple subsystem A to an ancilla W, which plays the role of an idler, allowing
us to “carry to the future” the information encoded in A, as in figure 1(b). We shall denote
the resulting state as ppy. The operator V' that couples ancilla and system, as well as the
dimension of W, are for now arbitrary. Without loss of generality, as we will see momentarily,



we can always assume V' to be unitary, and the initial state of W to be pure. Now, recall
that, when A and B are spatially separated and can be embedded in the same Hilbert space,
the standard mutual information is the relative entropy between the connected state reduced
on AB, pap, and the disconnected state p4 ® pp. By analogy with this, in the case when A
and B are causally connected, we consider the relative entropy between the connected state
ppw and an analog of the disconnected state p4 ® pp. This disconnected state should be
such that subregion B is unaffected by the presence of the perturbation V acting on A. The
natural choice for such state is then given in figure 1(c), which we write as pp o ® pw, where
pB,o denotes the unperturbed evolved state in B, and pw = trp (ppw ) is the state of W after
coupling with A, which is determined by pi, and coupling V' (which is therefore independent
from the time evolution U). Intuitively, the state ppo ® pw is the state that determines the
disconnected term (Op) (O4) in correlation functions, for any operators O 4,Op.

Finally, we define the space-time mutual information Jj(A : B) by maximizing the
relative entropy over the ancilla-system coupling V:

Ji(A:B) = s?/p S(pswlpBo ® pw) - (2.1)

We now see that it is sufficient to consider unitary coupling between system and ancilla.
Indeed, if we take V to be a generic quantum channel, this is equivalent to having a unitary
coupling to a bigger W followed by partial trace, which will only reduce the relative entropy,
so for the purpose of taking the supremum it is sufficient to consider unitaries. Since we
assume W is arbitrarily large, we can also take the initial state of W to be a pure state. If
the initial state is a mixed state, we can purify it by enlarging W.

As we will show below, this definition already satisfies two important requirements: it
reduces to the standard mutual information when A and B are spatially separated, and it
bounds all space-time correlation functions of operators supported on A and B, with any
normal (i.e., defined on the Schwinger-Keldysh time contour) time ordering.

The general definition of STMI is similar to eq. (2.1) except that it is defined for N
copies of the initial state. In the next subsection we shall introduce the general definition
based on a more rigorous setup of quantum hypothesis testing.

2.2 Definition

In this subsection we provide the rigorous reasoning behind our definition of STMI, and
present the general definition. We begin by reviewing the hypothesis testing interpretation of
relative entropy [2, 3]. To this aim, consider a black box that may contain either N copies
of quantum state p, or N copies of quantum state o. We are allowed to perform arbitrary
measurements on this N-copied system to tell whether it is p®V or ¢®V. Now, if we make

a hypothesis that the state is o®V

, and carry out some measurement, we can compute the
probability of a measurement output assuming the state is o®V. If our hypothesis is correct,
this probability will reach 1 in large N, but if our hypothesis is incorrect, i.e. if the state is
actually p, then the typical result has a smaller probability Py (p|o), which is lower bounded
by the relative entropy: Py (p|o) > e~ N9®lo) Here, S(p|o) = tr (plog p — plog o). A smaller
probability means that one can conclude the hypothesis is wrong with a higher confidence.

Therefore, the relative entropy provides the fastest rate at which one can identify a wrong
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Figure 2. Definition of Jy (A : B) in eq. (2.2) for the uncorrelated and correlated case.

hypothesis. If p and o are close to each other, S(p|o) is small and it will be difficult to
distinguish them. In contrast, if o is not full rank, there are states which never appear in o.
For example, in a qubit system with states |0), |1), if ¢ = |0)(0|, then the probability of seeing
|1) is zero. Thus if the probability of |1) is nonzero in p, if we perform a measurement in
this basis we are certain that the state is p the moment we observe |1), which means Py =0
for a finite N. This corresponds to a diverging relative entropy.

For two spacelike separated regions A, B, the mutual information I(A : B) is a relative
entropy I(A: B) = S (pap|pa @ pp). Thus mutual information determines the probability
that pap is mistaken to be the uncorrelated state pg ® pp. Inspired by this intepretation, as a
space-time generalization we consider the two situations illustrated in figure 2. In both cases,
the experimentalist controls the ancilla W and the gates V4, Vg which couple W with the
physical system L. This coupling characterizes the most general experiments that can occur,
which includes measurements of correlation functions in the original system, and also includes
more general quantum processes. For example, we can swap a qubit in A with a qubit in W
and later measure the swapped-out qubit together with B in an entangled basis. In situation
1, W is coupled with the same NN copies of L at the space-time region A and B. In situation
0, the coupling at B occurs with a new set of N copies of systems, such that there won’t be
any correlation between B and W. The experimentalist does not know whether it is situation
0 or 1. If they make a conjecture that it is situation 0, and actually it is situation 1, the rate
of finding out that the conjecture is wrong is determined by the relative entropy of the output
state of W, denoted as a‘(/[],vl) and a‘(,f,vo) respectively. Thus it is natural to define the space-time
mutual information J(A : B) by optimizing this relative entropy over the choice of V4, Vp:

1 .
(A B) = sup s(ggg;]agfgg), J(A:B)= lim Jy(A:B) (2.2)
ASVB

More formally, this setup is an example of quantum algorithmic measurement (QUALM)

)

defined in ref. [4]. The two situations in figure 2 are denoted as two “lab oracles,” where



the intrinsic dynamics U is given by nature, while the experimentalist has the option of
choosing the coupling V4, Vs between L and W. A QUALM refers to an algorithm, i.e.
a choice of gates V4, Vp for the purpose of achieving a particular task, similar to how a
quantum algorithm is chosen to achieve a certain classical computation. In our case, the
task is to distinguish the two lab oracles, with the optimal QUALM obtained by maximizing
the relative entropy between the two output states.

The definition (2.2) can be simplified by realizing that the supremum over Vg can be
achieved explicitly. Denote the state before applying Vp for B and W as ppnyy,, a =0, 1.
One can see that a%\j 3 is related to ppnyy, by a quantum channel induced by Vg followed
by a partial trace over B:

ofpa=C (pvwa) (2.3)

Due to the monotonicity of relative entropy under quantum channels, we have

S (Ux(/{/\,[1)|01(4]/\,[())) <5 (pBNW,1|pBNW,O) (2.4)

More explicitly, we can define W = W, Wp, and only W4 is acted upon by the coupling
V. Wp has an initial state that is in direct product with W4, and it has the same size as
B. 1In this situation, ppny, = ppyw,.« @ pwg- If we take Vg to be a swap between Wp
and B, aé‘],\f 3 is identical to ppnyy, 4, so that the relative entropy is the same. Therefore
the swap operator achieves the optimization over Vg, and we can directly define the STMI
using the state pgnyy,:

1 .
IN(A:B) = N Sup S(ppywlpBy @ pw)  J(A:B) = Jim Jn(A:B), o (2.5)

where from now on we shall drop the subscript 1 from the connected state pgny, for ease
of notation, and we shall also drop the subscript A from W and V. In the above equation
we have used the fact that pgnyy o is by design in a factorized form ppny o = p%fg  pw,
where py = trgn (pgnyy) is determined by pi, and V.

As a side remark, one special choice of the ancilla and its coupling to subsystem A is
to choose W = W1 Ws, in which W7 and W5 each has the same Hilbert space dimension as
that of A, and they are prepared in a maximally entangled state with each other. If we
choose V' to be a SWAP gate between A and W1y, ppw is equivalent to the superdensity
operator defined in ref. [5].

2.3 Properties of space-time mutual information

We now explore a few basic properties of J(A : B).

Maximal size of W. In our definition of STMI, there is no restriction on the size of
ancilla W. However, W does not need to be arbitrarily large. Without lost of generality,
we can assume the initial state of AA and that of W to be pure, |®,;) and |[®y). If
that is not the case, we can always enlarge the system and introduce its purification. For
simplicity of notation let us consider the case with one copy. After applying unitary V we



obtain a pure state |¥ A =V |P 47) @ |®w). Expand this state in an arbitrary basis
laa) of A, we can express

da
W g = Z ) 4 @ (aal @ 47) @ Voo |Pw) (2.6)
a,b=1

This expression makes it explicit that the rank of the reduced state of W is always bounded
by d124 with da the Hilbert space dimension of A. Therefore it is always sufficient to take
dw = d124. The discussion here easily generalizes to N copies, in which case it is sufficient
to take dy = d%". In other words, the size of W (number of qudits) can be taken as 2N
copies of A. Additionally, by arbitrariness of V', we can choose |®y) to be the EPR state
(or any other fixed reference state).

An alternative expression. We can decompose J(A : B) into two terms:

JN(A:B) = sgp]i] [—S (ppnw) — trppnyy (log p%fg + log ,ow)} (2.7)
- sgpjlv 1Y (B W)+ S (ppw|pBY )] (2.8)

The first term is the ordinary mutual information in state pgny;,, while the second term is
the relative entropy between the state of B with and without the coupling with W. Here
pSB,N) = tryw (pgnyy). The second term is a consequence of the causal influence of A on B,
which highlights the fact that even if we do not access the ancilla W, the coupling with W
still has nontrivial effect on the state of B. Physically, these two terms represent two ways to
distinguish the correlated state pgny and the uncorrelated state p%fg ® pw. The second term
is sensitive to how much the coupling can change the state of B, while the first term implies
that even if the state of B does not change, one can still measure the correlation between A
and B by measuring that between B and W. For example, let us consider a simple case when
the evolution operator is trivial, and A and B are the same spatial region. If initially A and
A are in a maximally entangled EPR pair state, and W is in a maximally entangled EPR
pair state of ancilla subregions W7 and Ws, each with the same dimension as A, then we can
take V' to be a SWAP gate between A and W1, after which pp = pp, so that the second
term vanishes, but the first term is nonzero. Alternatively, if we prepare W7 in a pure state
and still apply a SWAP gate, the second term will be nonzero, while the first term is smaller.
In general, the maximization over V is achieved by a compromise between these two terms.

Reduction to ordinary mutual information. If B and A are space-like separated so
that we can define a quantum state p4p, gates applied to A will never affect the state of
B, so that pgn = p%% . In this case the second term in (2.8) vanishes. In addition, the
mutual information I(™) (B : W) satisfies the monotonicity I(N) (B : W) < NI(A : B), where
I(A : B) is defined in the original system. Furthermore, the equal sign is achieved by choosing
V to be a swap gate, so that we obtain Jy(A : B) = I(A : B).

Monotonicity. The mutual information is monotonously non-increasing when a quantum
channel is applied to A or B separately. The same applies to STMI. For region B, this



follows directly from the monotonicity of relative entropy [6]. For a generic quantum channel
Np applied to B, we have

S (N?N (PBNW)‘NB (pB.0)*" ® PW) <S (PBNW‘P%% ® PW) (2.9)
so that J(A : B) is non-increasing.

For a quantum channel N4 applied to A, the proof is slightly more nontrivial. One can
consider the dilation of N4, i.e. an isometry K from A to a bigger system A @ W. Ny is
obtained by applying this isometry followed by tracing over W, i.e. Na (pa) = try, (K paK T).
Computing Jy(A : B) after applying the channel N4 requires to apply V (which couples
A and W) after applying K. Then we can merge W with W and view V - K as a coupling
between A and a bigger ancilla W @ W. Therefore for arbitrary V, we can apply the
monotonicity of relative entropy by tracing over W to obtain

S (pBNWI/T/‘(pB,O)@N @ pyiy) = S (pgww\p% @pw) - (2.10)
Taking the supremum over V' of the right-hand side yields the STMI Jy (A : B) after applying
quantum channel N4, while the left-hand side, upon optimization over V, yields the STMI
without applying A4. This implies monotonicity of Jy(A : B) with respect to the application
of a quantum channel in either A or B.
As a special case of the above, Jy(A : B) is non-increasing upon tracing over part of A
or B. In other words, for disjoint regions A, C' at the initial time, and disjoint regions B, D
at the final time, we have J(A : B) < J(AC : B), J(A: B) < J(A: BD).
For the ordinary mutual information, when the inequality above is saturated, i.e. I(AC :
B) = I(A: B), the state papc satisfies the Markov property and can be reconstructed from its
marginal on AB. We obtained similar results for the STMI, which we will discuss in section 4.

Absence of upper bound. Ineq. (2.8), the mutual information term is always finite, upper
bounded by 2log dp. The relative entropy term could diverge. The divergence occurs if pp ¢ is
not full rank, and pp~ has a nonzero probability to be in the null space of p%fg . For example,
if there is a conserved charge and the original state pp o is supported in a charge range [q1, g2],
then as long as we can tune V to change the charge of B to be beyond this range, J(A : B)

diverges. If pp is full rank, with a nonzero minimal eigenvalue pp,in, one can prove that
N
S (pBN\p%,O) <log—— — S5 (pp~) < log —
min pmln

Thus we obtain J(A : B) < 2logdp + log ﬁ.

(2.11)

Relation to Choi state mutual information. A related quantity to the STMI is the
mutual information of the Choi state corresponding to a given unitary evolution which, in terms
of figure 3, is given by I(B : W3) [7]. Such quantity can be viewed as the mutual information
term in (2.8) where we choose V' to be the SWAP between A and Wa, with W = W;W,. We
then infer that the Choi state mutual information cannot be larger than the STMI:

I(B:Wh)<J(A:B). (2.12)
Additionally, note that in figure 3 A is in the infinite-temperature state. The space-time

mutual information J(A : B), on the other hand, is applicable for any initial state, including
states where A and A are entangled.
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Figure 3. Mutual information of the Choi state corresponding to the unitary U.

Vanishing condition. The condition Jy(A : B) = 0 requires pgnyy = p%fg ® pw for all V.
This obviously requires all correlation functions in A and B to be disconnected. Conversely,
assume that all (Keldysh-ordered) correlation functions between A and B factorize, i.e.
(taking N = 1 for simplicity)

Tr (OpUOA1pin0a2U") = Tr (OpUpnUT) Tr (Oa1pinO.2) - (2.13)
Then, the BW correlation function in the system coupled with ancilla W is

Tr (OBOWUV,OinVTUT) - ZTr (OBUVipinvaUT> (9{},
%]

= Z Tr (OBU/OinUT) Tr (V;pinva) O%}J['/ Ty (OBUpinUT) Trp, O (2.14)
ij

also factorizes, where we decomposed the isometry V' = %", V;|i), with |i) a basis on W and
V; an operator acting on A, and (’){}/ = (j|Ow|é). This in turn implies that ppy necessarily
factorizes, ppw = pp ® pw, with pp = pp o, thus implying J;(A : B) = 0. Similarly, when
we couple N copies of A to W, we can also express the BW correlation as a sum over
Keldysh-contour ordered correlators of A and B, which in turn proves that Jy(A: B) =0
if all AB correlation functions factorize.

Thermodynamics. If U is a chaotic time evolution U = e *#* and B is smaller than half
of the system size, for long enough t the subregion B will reach thermal equilibrium, so that
the only dependence of pp on V' will by given by thermodynamic quantities. For simplicity let
us consider a system with energy conservation and no other conservation law. In this case, the
only possible change caused by the coupling V4 with the ancilla is the change of temperature.
Thus we have pgn = p?,N and p%fg = pgN are thermal states at temperatures 5’ and £,
respectively. Here we have assumed that V4 does not cause a large energy fluctuation in
the system, such that 8’ is well-defined. In this case, the mutual information I(BY : W) is
negligible, and the main contribution to STMI comes from the relative entropy term:

J(A:B) =~ S (pglps) = B ((H) s — (H)g) — (Spr — Sp) = BAF (2.15)

This is the change of thermal free energy Fslp] = (H), — 371S(p).



More generically, V4 can cause a large energy fluctuation. For example, consider a single
copy of the system coupled with W, and V4 can create a Schroedinger cat state in the system,
so that the reduced density matrix of BW is

PBW = pgr & ’0> <0| + ppr @ |1> <1| (2'16)

where 0 and 1 are states of W. If this happens, there will be a nontrivial classical mutual
information I(B : W). Since energy is the only variable that W can correlate with, and
quantum correlation cannot be preserved in B after a chaotic evolution, the mutual information
is limited by the energy uncertainty. If V4 has the ability of changing the energy of B by
AFE at most, then the mutual information is upper-bounded by

I(B:W) < log% (2.17)

with 0FE = \/(H?) 5 — (H )23 the intrinsic energy uncertainty. We expect this to be a small
contribution. If we consider the limit that B is a finite (smaller than half) portion of the

entire system, and consider the thermodynamic limit, then at most the mutual information
term will be proportional to log|B|, while the relative entropy term is proportional to |B|

as long as 3 # (.

3 Bound on space-time correlation functions

An important property satisfied by the STMI is that, as we will now show, it bounds any
two-point function between two possibly causally connected subregions. This generalizes the
bound of the standard mutual information of spatial correlation functions [1].

Theorem 1. The STMI bounds all two-point correlation functions between subsystems A
and B. Ezplicitly, for any N > 1, we have the following bounds on symmetric and retarded
correlation functions:

1 (=iTrpin[Op(t), O4] ?
JN(A:B) > = ( > (3.1)
8\ [|04llsl|OBlle
1 (Trpin{OB(t)7 OA}) ?
JN(A:B)> = < C) (3.2)
8\ [04lll|OB[s
where Op(t) is a (Heisenberg) operator supported in subregion B, and similarly for Oa, |||l

denotes the operator norm, (---). the connected component of a correlator, and O4,Op are
assumed to be Hermitian.

The numerators on the right-hand sides of the above inequalities correspond to retarded
and connected symmetric two-point functions; these two correlators are sufficient to linearly
generate any other Keldysh time ordering (such as Feynman, time-ordered correlators, etc.).

To prove the theorem, it is sufficient to consider the single-copy STMI J1(A : B). We
take a specific choice of ancilla-system coupling, defined by

pin @ ([0)(O))w — ZXipinX;r ® ([ Ghw , (3.3)

]

,10,



where 7,5 = 0,1,2, and the operators X; act on A and are defined as

Oy 0?2
Xo=+/11 X, =,/ 2 Xo =/ 01— 24 4
o=Vl X=igis =Vt gin (34

These operators satisfy ), XZT X; =1, thus guaranteeing that the coupling to the ancilla is an
isometry, and can thus be extended to a unitary operator. The coupling (3.3) can be thought
of as a control-O4 gate and was suitably chosen so that, as we will see, it will reproduce the
two-point function we want to bound. Now, to prove the bound for the retarded two-point
function (3.1), define the following operator acting on W:
0—20
Yw=1i 00]. (3.5)
000

We then find that the retarded two-point function can be viewed as the following expectation
value over the state ppw:

Tr(ppwYwOp) = > Tr [UXipwX;UT @ (i) ())w Y O | = —%Trpm[(’)B(t), Oal. (3.6)
ij

Now consider the following sequence of inequalities

(3.7)

1 1|Tr BW—B@WYWOB2
S(pawlpBo@pw) > SllpBWw —pRo©pw|[F > ‘ (p PBOR W)

2 HYWHOOHOBHOO ’
where in the first step we applied the quantum Pinsker’s inequality, and in the second step
we used Holder’s inequality. Comparing (3.7) with (3.6), we arrive at (3.1). Note that the
disconnected state does not contribute to the trace on the right-hand side of (3.7) due to the
form of Yy, which is equivalent to saying that the retarded two-point function does not have
a disconnected component. The vanishing of this trace also implies that only the mutual
information term in (2.8) contributes to the bound, i.e. we have a tighter bound given by

1 (—iTrpin[OB(t), O 4] ) 2
I(B:W)>— ( :
(B:W) 10Allool|O5]oc

— 8
Similar steps lead to the bound on the symmetric two-point function (3.2), this time using,

(3.8)

instead of Yy,

010
Xw=|100]. (3.9)
000

When A and B are causally disconnected, the symmetric two-point function reduces to the
spatial one 3 (Trpin{O5(t),0a})e = (TrpinOp0Oa). and we recover the standard bound of [1],
with the correct numerical prefactor.

We emphasize that taking the supremum over V in the definition of J; is crucial for
the above proof of the bounds (3.1), (3.2). Indeed, consider e.g. fixing V' = Saw, ® Ly,
where S, is the swap between A and W;. With this choice, ppy constitutes an example
of superdensity operator defined in [5]. In this case, as we show in appendix A, using similar
steps as above, one can prove weaker bounds than (3.1), (3.2), with an overall dimensional
suppression factor.
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Figure 4. Illustration of the two situations involving three regions ABC, for the discussion of
Markovian condition in section 4.

4 Markov property

In the case of ordinary mutual information, for three regions ABC one can define conditional
mutual information

I(A:C|B)=1I(A: BC)—I(A: B) (4.1)

which is non-negative due to monotonicity of relative entropy under the action of quantum
channels. I(A : C|B) is the decrease of relative entropy S(papc|pa ® ppc) under the partial
trace over C. If I(A : C|B) = 0, the state papc can be recovered from pap and ppco
using the Petz map [8, 9]:

N 1 _1 _1 1
pagc =Tpap = ppe (,OBQ;)AB/)B2 ® Idc> PhC - (4.2)

Since papc is determined by pap and ppc, correlation functions between A and BC can
be determined by that between A and B. More explicitly, for any operator O4 supported
on A and Opc supported on BC, we can define

- 11 11
OB = pp*ppcOBCPpcrE’ (4.3)
such that

tr (PABCOAOBC) =1tr (pABOAOB> . (4.4)

Now we consider the situation with spacetime mutual information. Consider three regions
A, B,C with B and C defined at the same future time, and A defined at an earlier time,
as is shown in figure 4(a). Assume that

JN(A:BC) = Jy(A: B). (4.5)

Naively, the unitary V; coupling A and W that optimize Jy (A : B) may be different from the
unitary V5, that optimize Jy(A : BC'). However, they must actually be the same, which can
be proven by contradiction. If V; # V5, we can take V = V; and compute the relative entropy

~ 1

In(A:BO) = 5 S (psvovwloto ® ow)],_, (46)
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If V1 does not maximize this quantity, then we have

JN(A:BC) < Jy(A:BC)=Jn(A: B) (4.7)

Since Jy(A : B) and Jy(A : BC) are computed for the same system (with the same gate
V1), eq. (4.7) contradicts with monotonicity of relative entropy under partial trace over C.
Therefore we have proven that for the same V' = V; = V5, the relative entropies

S (poverwlobio @ ow) = S (ppvwloil © pw) (4.8)

where both reach the maximum. Consequently, we can apply the Petz map and express
. 1 _1 _1\ 1
peew = Tppw = ppeo (Idc ® ppo PBWPBOQ) PBCo - (4.9)

Interestingly, the map acts trivially on W. For any operator Op. and Oy, there is
a corresponding operator Op = P;éP%COOBCP%;CQP;(% such that tr (ppewOpcOw) =
tr (pBWOBOW>. This inturn implies that any correlation function between A and BC
that one can measure indirectly through measuring correlation between BC and W can
actually be converted into a measurement that only involves A and B. In other words, C
does not directly correlate with A. The correlation between A and C are only generated
through BC correlation and AB correlation. This is exactly in parallel with the Markovian
condition in the ordinary spatial mutual information case.

The other situation is shown in figure 4(b), when regions A and B are at equal time
and C' is at a later time. In that case, if we have Jy(AB : C) = Jy(B : C), it simply
means that the optimal coupling between AB and W that maximizes the relative entropy
does not involve A. It is sufficient to couple the ancilla to B in our optimization in order
to find Jy(AB : C), and A remains untouched. In this case, A is not a system that is
traced out, and we cannot directly apply Petz map. A natural question is whether this
condition also implies a Markov property on the joint ancilla-system state. We leave the
exploration of this problem for future work.

5 Quantum channel discrimination and additivity

Quantum channel discrimination can be viewed as a natural extension of quantum hypothesis
testing, where the aim is to discriminate channels instead of states. The formulation of this
problem resembles that presented in section 2, although, as we now illustrate, it is applied
to a slightly different context. Consider two quantum channels A7 and N5, both with input
and output systems A and B, respectively. To discriminate whether the system measured
has evolved through Nj or N3, one implements adaptive strategies consisting of alternating
applications of the channel to discriminate and auxiliary channels. More explicitly, the
application of N or N5 is alternated with channels A% that map the output B, jointly with
an ancilla W, to the input A of the subsequent application of the channel, together with
the ancilla, as shown in figure 5(a). After N repetitions of this process, the final state is
measured. From the formulation of the quantum hypothesis testing reviewed in section 2.2 we

(A)) (A)
know that the probability of incorrectly concluding that the channel is Nj is e V(1137
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Figure 5. (a) Definition of Ny (paw). (b) By specifying the A% to suitable swaps, Ny (paw)
reduces to our (2.5).

[*F)

where pgA) and pgA) are the output states that use channel N7 and N>, respectively, and

the superscript (A) indicates that we applied a given sequence of system-ancilla channels
A(I), A(Q), ..., corresponding to a particular strategy. The best strategy is then characterized
by the optimization

A A
sup S(pi™[p5Y), (5.1)

P A

where p is the input state in figure 5(a). Due to the joint convexity of the relative entropy
and to the fact that pgA) and pgA) are linear in p, it is sufficient to restrict to pure states p.

Quantum channel discrimination has many applications, e.g.: quantum illumination, to
enhance the detection of targets in the presence of thermal noise through entangled photon
pairs [10]; quantum metrology, to estimate unknown parameters of quantum channels [11],
and quantum reading, which involves the use of nonclassical transmitters to read data from

classical digital memories [12].

5.1 Additivity of the STMI for initial pure states

Let us now come back to the setup of section 2.2. Assuming the initial state reduced on A is
pure, i.e. pin = p; ® pa, with p4 pure, the optimization problem (2.5) reduces to a special
case of quantum channel discrimination. To see the connection, note that both the system
A" and the ancilla W in eq. (2.5) are in a pure state, and optimizing over V' corresponds
to optimizing over the most general pure state of the joint system ANTW. One then writes
the connected state ppny as N tensor copies of channel N acting on the state p,ny, on
subregion A", where channel A is obtained by tracing the time evolution in (2.5) over B.
As shown in figure 5(b) this setup is then equivalent, for an appropriate choice of A’, to
the setup of figure 5(a), where A® simply swaps the i-th copy of A. For the disconnected
state p%fg ® pw we apply a similar reasoning, but instead of A/ we now have the replacer
channel: R(p) = pp,o for any state p of A. We then reduced (2.5) to an instance of quantum
channel discrimination, and can write

1
IN(A:B) = swp S (NN (o 4w ) IRN (panw)) (5.2)
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In particular, Ji (A : B) identifies with the channel relative entropy between N and R [13].
We will see in section 5.2 how, in the general case, the STMI (2.5) can be formulated as
a “constrained” quantum channel discrimination.

We now prove that the STMI Jy (A : B), when py4 is factorized, is independent of N, i.e.
it is additive. Additivity is a fundamental question in quantum channel discrimination and,
fortunately, this property was recently proven when the alternative hypothesis (i.e., the second
argument in the relative entropy) is a replacer channel [13], which precisely corresponds to
our setup. Theorem 1 of [13] essentially states that, for N — oo, (5.1) is equal to the channel
relative entropy sup, , . S(N1paw|N2paw) when N3 is a replacer channel. Using the setup
of the previous paragraph with N7 = A and Ny = R, we then have

1
sup S (Npaw|Rpaw) = lim - sup S (Npaw)|(Rpaw)?) > Jn(A: B)  (5.3)
PAW N N pa

where the equality comes from the theorem mentioned above, and the inequality comes from
that Jy(A : B) corresponds to a special choice of A, as shown in 5(b). Moreover, since
sup,,,, SN paw|Rpaw) = Ji(A : B) due to (5.2) and Jy > Ji, we conclude additivity
IN = J1.

We observe that, in quantum channel discrimination, there exist counterexamples to
additivity when the alternative hypothesis is a more general channel [14].

We currently do not know if additivity holds for general initial states. In appendix B
we show that the N-replicated optimization problem (2.5) admits a stationary point (i.e.,
V satisfies oy S(ppvw|ppywo) = 0) of the form Viy = VN where V; is a stationary point
for Ji. This is a necessary but not sufficient condition for additivity.

5.2 STMI as a constrained quantum channel discrimination

In the previous section we showed that when the initial state p4 is pure, the STMI can be
viewed as a quantum channel discrimination. In this section, we will discuss the situation
when A and A are entangled and in particular p4 is not pure. We shall see that it is most
natural to think of this case as a constrained quantum channel discrimination. First, we
can assume that the initial state of the system pj, is pure by extending A and tracing over
the extension. We can then rewrite the STMI as

(A B) = }ViggSwM(p)m@N(p)) L S={p Teanwe =2} (54)
where p5 = Trapin, and p is a state on ANANW . Also, N®N denotes N tensor copies of
channel N : AA — B, and R is the replacer channel introduced in section 5.1. Due to
the joint convexity of the relative entropy and to the convexity of S, it suffices to optimize
over pure states.

One might ask if the constraint S in (5.4) can be implemented as a quantum channel in
such a way that (5.4) can still be viewed as an unconstrained channel discrimination. More
explicitly, we ask if there is a quantum channel Q : DW — AN ANW, for some subsystem D,
whose image Q(DW) is exactly S and acts trivially on W. The latter condition is necessary
to maintain the structure of channel discrimination, i.e. W plays the role of an idler on which
no channel is applied. The answer to this question is negative. Indeed, any state of S can be
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Figure 6. Representation of the ansatz (6.2) for the N = 1 correlated (a) and uncorrelated (b) states
pew and ppo ® pw.

written as p = Vpi VT, where V : AA — AAW is an isometry acting trivially on A, pi, is
a pure state, and for simplicity we are assuming N = 1. This means that Tr 1p has a fixed
entanglement spectrum, independent of V. Assume that the quantum channel Q exists. Then,
considering two arbitrary initial states oy and op on DW, the states p; = Tr ;Q(o1) and
p2 = Tr Q(o1) should have the same entanglement spectrum. If their eigenstates are different,
then pp1 + (1 —p)p2 = Tr ;Q(po1 + (1 —p)o2) will not have the same eigenvalues for 0 < p < 1,
and we thus infer that p; = po. This implies that Trpo; = Trap; = Traps = Trpoo, which
contradicts the assumption that o; and o9 are arbitrary states.

6 An ansatz for factorized initial states

The optimization problem (2.5) can be very non-trivial, especially for large Hilbert space
dimension. In this section we propose an ansatz leading to a simplification that applies
when the initial state is factorized, i.e.

Pin = pz @ pa. (6.1)

We shall restrict to a single replica N = 1. Keeping into account the bound |W| < 2|A]|
from the discussion around eq. (2.6), it is sufficient to take W = W ® Wy, with both W;
and Wy isomorphic to A. The ansatz consists of replacing V' with a swap S between A and
W1, and optimize over a generic initial state |y ) of W:

1
JIN(A:B) = Niup S(ppvwlpBy @ pw) (6.2)
w

as in figure 6.

We shall see below that the optimization reduces to a self-consistent equation for the
reduced state of the ancilla Ws. This reduces the number of parameters to optimize from
2d% — d% (an isometry going from A — AW, W3) to d4 (number of independent mixed states
on Wy). In section 7 we show several numerical examples leveraging this ansatz, including
MBL and thermalizing systems.
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As a support of this ansatz note that, when p,4 is pure, following a similar reasoning
as that around (2.6), we find that |[W| < |A|. After applying the ancilla-system coupling
V', we then have a pure state jointly defined on AW, and the optimization (2.5) reduces to
optimizing over such state. This, in turn, is precisely the setup of figure 5(b), thus coinciding
with our ansatz and proving its validity for pure p4. As additional support for generic p4,
consider the relative entropy S(pg|ppo) as defined in eq. (2.8). One can easily see that, for
any ancilla-system coupling V', the corresponding value of S(pp|ppo) can be reproduced by a
suitable ansatz with ancilla state [iy). Of course, to prove that the ansatz leads to a global
maximum one would need to verify this statement for the entire expression in (2.8).

It is easy to see that (6.2) does not recover the optimum in (2.5) when A and A are
entangled. In appendix C we show an explicit counterexample.

We now show how the above ansatz leads to a self-consistent equation for the state
on the ancilla Ws. We shall restrict to the single-replica case N = 1 for simplicity. Below,
N : A — B will denote the quantum channel obtained from the evolution of the total system
after tracing out B and choosing p 1 as the initial state for A. Using the ansatz, the relative
entropy in (2.5) for N = 1 specifies to:

S(pawlpwo) = —SWN(paw)) + S(pw) — Tr(N (paw)(log N (pin) ® Idw)
= —SWN(1¥){¥])) + S(pw) — TrpwN T log N (pin)

where paw denotes the joint state of system-ancilla after the swap has been applied, py =

(6.3)

Ty, [Yw) (Yw|. The reduced state of Ws in |¢yy) is equivalent to py by unitary conjugation.
Since all quantities we discuss are invariant under applying a unitary operator to Ws, we
can assume the reduced density operator of Wi and W5 to be the same py without loss
of generality.

Writing the quantum channel N'(p) = Y ; K [pK}r, where K are the Kraus operators
satisfying 3 ; K}K ;7 = Id, it is useful to view the indices I as labeling states |I)p of an
auxiliary system F, and to introduce the unitary evolution operator

S Ki®)g:Ha—Hp@Hg (6.4)
I

Tracing over F leads to the channel N, and tracing over B leads to the complement channel
N, with

Nipw) = Trs1Dp(le,  Trs=Te(KrpwK)). (6.5)
1J

In this notation, the first term in (6.3) reduces to the entropy of the ancilla’s output state,
so that we can express eq. (6.3) in terms of only the reduced state py:

S(PBW‘pBW,O) = —S(N(pw)) + S(pw) — TI‘[)W/./\/Jr log/\f(pin) . (6.6)

The optimization problem (2.5) then reduces to optimizing over py,. The variation of (6.3)
with respect to py can be written as

0S =Tr (5,0W (/\7T log N (pw) — log pw — N7 logj\/pin)) (6.7)
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thus leading to a self-consistent equation for py:
pw = Cexp {J\Tf log N (pw) — N log./\/'(pm)} (6.8)

with C' a normalization constant. One needs to remember to verify if the restricted (to
V = SWAP) maximization is also a maximum (or at least a saddle point) for the unre-
stricted problem.

We now verify that the above ansatz is a stationary point of the optimization problem.
Keeping into account factorization of the initial state (6.1), the variation of the relative
entropy S(ppw|pBwo) that is inside the sup argument in eq. (2.5) with respect to an
infinitesimal change of the unitary V' — (Id + ¢T)V, with T an infinitesimal Hermitian
operator acting on AW, is

58 = iTr (T[pAW, ~NT(log N (paw)) + Id4 @ log pw + NT(log N (pin)) ® Idw]) ., (6.9)

where py = Trpppw. We now plug in the ansatz by taking W = W ® Ws, setting V to be
the swap operator between A and W7, and initializing the ancilla in a generic state [1). As
a consequence, py = pin ® pw, where py was defined around (6.3), paw = (|¢)(Y]) aw, ®
(pin)w,, and the above variation simplifies to

68 =iTr (T [T, @ [[9) (], N (log N ([) (¥])) +log pw @ Tdw, + A (log M (pin)) ©1du, | ),

(6.10)
where we used that [|¢) (¢], Id® pw| = [|¥) (¥], pw ®1d]. Assuming that N is unitary, the first
term in the commutator vanishes. Plugging in (6.13), we find that latter is a stationary point of
S with respect to the general variation (6.9). With generic N instead, we plug in (6.8) and find

55 = iTe T(Idw, ® [[) (], N (Qog M (19 (6]) + N log N(pw) @ 1d)) . (6.11)
Noting that

)Y NN ([9) ()™ = (T™) 1 ]9) (W KT K
NNy D)) (] = (O™ 1 KK ) (9]

we conclude that the commutator in (6.11) vanishes. We thus showed that for a generic

(6.12)

quantum channel A/, (6.8) is a stationary point. It would be interesting to prove whether
the ansatz is a local or global minimum in the general case.

Finally, we note that if the quantum channel N : A — B is unitary, the ansatz allows
us to analytically solve the optimization problem (2.5). In this case the ancilla’s entropy

is zero, S(N'(pw)) = 0, and eq. (6.8) reduces to

-1
Pin

Trpin1

PW
Plugging the solution in the relative entropy (6.3) leads to the space-time mutual information
Ji(A: B) =log Trp;!. (6.14)

This indicates that, when the initial state is pure, the state of the ancilla can be chosen so
that Ji(A : B) diverges, even when the Hilbert spaces of A and B are finite-dimensional. As
we commented around eq. (2.8), J; is unbounded, unlike the standard mutual information.
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7 Examples

In this section we shall study the behavior of the space-time mutual information in various
quantum systems. We will first study its behavior in single-qubit systems subject to two
different types of evolution and contrast the different behavior of the STMI in these two
situations. We will then focus on many-body systems in two extreme cases: fully thermalizing
and many-body localizing dynamics.

7.1 Single-qubit system

As a first example we consider the case where A is the entire system and is given by a single
qubit. The time evolution is defined by a quantum channel N which maps it to an output
state in B, also a single qubit. We will consider two types of quantum channel: depolarizing
channel Ngp1 and dephasing channel Ngpp, defined by

Nan(p) = (1=p)p+ D1d, Nagn(p) = (1-5) o+ Forapon, (7.1)
with 0 < p < 1. Here o; are the Pauli matrices. We will focus on the STMI (2.5) with a
single replica of the system N = 1, i.e. Ji(A : B).

To numerically optimize over V', we initialize the state of AQW1@W5 to be paw = VPinVT,
where V : A - A® W, ® Ws is a random isometry, and perform the following iterative
updates on paw:

—iMn iMn _ .08

PAW — € pawe M = ZV(SV , (7.2)
where 7 is a positive number that sets the increment. The explicit expression of V% can
be obtained from (6.9).! Figure 7 shows the plots of Ji1(A : B) for the depolarizing and
the dephasing channels as a function of p. Close to p = 0 the evolution approaches the
identity, and we recover (6.14). As p — 1, Ngp1 becomes a fully depolarizing channel; all the
information from the past is lost and the space-time mutual information approaches zero. On
the other hand, as p — 1 the dephasing channel Ny}, still preserves classical information of the
initial state, and therefore the space-time mutual information approaches a nonzero constant.

We shall now analytically evaluate the STMI J;(A : B) in a particular limit, using the
ansatz of section 6. We focus first on the dephasing channel ./\/dph. We write the initial state as

1 S
pin = 5 (Id+a- o) (7.3)
where @ € R? is a Bloch vector, with |@| = 1, and we take a; = ¢ and a3 = v/1 — €2 with ¢
small, i.e., the state is almost an eigenstate of the evolution. In this case, the dephasing
channel is close to the identity and we thus expect the space-time mutual information to
diverge with . Adopting the ansatz (6.2), we take expression (6.6) as our starting point and

we optimize it over the reduced state of the ancilla py,, which we parameterize using (7.3)

'The infinitesimal change §V = V' — V is related to T defined in (6.9) through V' = (Id + ¢T)V, so that

S _ _;8S
Vv = i
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Figure 7. Plot of the STMI as a function of p for the depolarizing channel Ny with initial state
pin = 0)(0] (left) and for the dephasing channel Ngpn with pi, = v/1 —€]0)(0] + /2|1)(1] and e < 1
(right). For the dephasing channel, the STMI asymptotes to a finite value meaning that some
information is preserved.

using the Bloch vector b. We shall be interested in obtaining only the divergent part and
it thus suffices to keep only the last term in (6.6):

S(pewlpBw,0) = —Tr Napn (pw ) log Napn (pin) - (7.4)

=BG

From Nph (pin) = &(Id+(1—p)ai01+azos), and from the identity & (Id+tanh 3ii-G) =

with 72 = 1, we find e
log N pin = 2loge|1)(1], (7.5)

which leads to
Ti(A: B) % —sup (2log (1Nagn(pw)|1)) = ~2loge. (7.6)

We then find that the space-time mutual information diverges as the initial state approaches
an eigenstate of the evolution, and the divergent contribution is independent of p. We will
see in the next subsection that a similar behavior happens for many-body localized systems.

For the depolarizing channel Ny, we consider a pure initial state, pin = [0)(0]. Using

again the ansatz (6.6) we can exploit the symmetry of the evolution and choose the ancilla state
Bos 1 1
e
=——— =—_Id+ = tanh 7.7
PW =5 o 20T g tanh o, (7.7)

and we expect eq. (6.8) to be solved by py o ¢;1d + c203. The complementary channel N
given in terms of matrix I' defined in (6.5) is?

r— o aoozjnj: tanh 3 7 (7.8)
agoynitanh B oya(d;; — i tanh Sejpny)

where n; = (0,0,1), ;5 is the totally antisymmetric tensor with €123 = 1, and

3
040:1/1—1177 a; = % (7.9)

*We are using the Kraus decomposition of the depolarizing channel: Napi(p) = adp + ZZ aloipo;.
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Figure 8. Plot of (6.3) as a function of 8 for a depolarizing channel with p = 0.5 (left) and with
p = 0.9 (right). The STMI J; (A : B) is given by the maximum value of the blue curve. The green line
represents the relative entropy using superdensity operator entanglement (8 = 0), while the orange
line represents the entropy obtained by substituting (6.13) in (6.3). Depending on p, one quantity can
be better than the other.

Using these expressions, we evaluate Ji(A : B) by extremizing (6.6) over 8. A plot showing
the relative entropy (6.3) as a function of § for various values of p is given in figure 8. The
plot also illustrates a comparison between the STMI, the superdensity operator mutual
information described at the end of section 2.2 (corresponding to f = 0), and the mutual
information obtained by choosing the ancilla state (6.13).

We now find the exact value of the STMI for the depolarizing channel in the limit
p — 1. Using (6.6),

S(pwlpBwo) = =SWN(pw)) + S(pw) — TeN (pw) log N (pin) - (7.10)

It is straightforward to evaluate each term in (7.10). As p — 1, we obtain

S(pewlpswo) = A(L —p)*> + B(1 —p)* + -+ (7.11)
where

A= e 2(1 + cothB)(1 + 8 + S cothB) tanh 8

(7.12)
B = —fcschfB sechf.

Numerically solving the optimization (2.5) for this relative entropy, we find that 8 ~ —0.72 —
(1—p)0.68, and we thus see that J1(A : B) — 0 linearly as 1 —p — 0. In the fully depolarizing
case p = 1 the optimization problem is trivial as A and B are disconnected, thus any ancilla
state py solves the optimization problem. However, what we find shows that the limit
p — 1 selects a unique ancilla state.

7.2 MBL and thermalization

We will now explore two extreme cases of many-body dynamics. The first example, a many-
body localized (MBL) system, preserves an extensive amount of local operators, while the
second example concerns a thermalizing system, and thus all local information is efficiently
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scrambled across the system. These two examples thus constitute contrasting cases where
the STMI should display very different phenomenology.

We shall start with MBL and study the single-replica STMI J;(A : B), with A a single
qubit at the initial time ¢t = 0 and B the same qubit at time t. As a model we consider a
truncation of the MBL fixed-point Hamiltonian [15-17]:

H = Z hio? + Z Jijafag’ + Z Jijkag’agag , (7.13)
i i<j i<j<k

where the Pauli matrix on each site o3 is a local conserved operator. Here, J;; = e~1"=3l/4 ],

and Jyj, = e—|i—k|/§jijk’ and h;, jij, jijk € [—w,w] are drawn from a uniform distribution.

Assuming the initial state is factorized between A and A, tracing over A gives a channel

N : A — B. We consider initial pure states on A of the form py, = |x) (x|, where

|x) = cosa|0) +sina|1). (7.14)

It is easy to see that states |0),|1) are preserved by the evolution. This means that, writing
in matrix form using the |0), |1) basis, N’ must act as

7.15
f*(t) cosasina sin? o (7.15)

2 .
COs“ t) cos o sin «v
N:Oin == ( f( ) )
where f(0) = 1 and, as t grows, we expect generically that f(t) vanishes, similarly to the
fully dephasing channel /\/dph discussed in the previous subsection. If o = 0, the state does
not evolve and remains pure, so that Ji(A : B) = oo for all times, consistently with the
discussion around (6.14). For general «, and because pi, is pure, we can decompose the

relative entropy S(psw|pBwo) as in (6.6):

S(pswlpBw) = —SWN(pw)) + S(pw) — Tr (N pw log N (pin)) - (7.16)

For small «, the first two terms in (7.16) are finite, while the last one diverges. Applying
the same manipulations as those around eq. (7.4), we find that

Ji(A: B)~ —2loga, (7.17)

showing that the closer the initial state (7.14) is to an eigenstate of the conserved operator
o3, the larger the STMI will be at late time, consistently with the intuition that the STMI
quantifies the information preserved by the system. Figure 9 shows the time-dependence
of J1(A : B) and confirms this behavior.

For the thermalizing case, we consider a Floquet system whose evolution is generated
by the unitary

U = o—i5Hep—iTH: ,—i5 Ho

L-1 L (7.18)
He=g) of,  H.=) ojoj, +h} oj.
j=1 i=1

For (g, h,7) = (0.9045,0.8090, 0.8), this system is known to thermalize efficiently and have
weak finite-size effects [18]. We consider the same STMI J;(A : B) as in the MBL case with

— 922 —



12

10 — Q=77/4-0.005

8 a=71/4-0.25

A a=11/4-0.5
—— Qq=71/4-0.75

4 — a=11/4

2 \

N e—
o5 10 15 20!

Figure 9. Plot of J;1(A : B) for various values of a with evolution given by the MBL fixed point
Hamiltonian (7.13). Each of these plots is obtained from a single disorder realization, with w = 10
and £ = 2.
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Figure 10. Plot of J1(A : B) for the Floquet evolution generated by (7.18). The initial state is
pin = (L—€)|x) (x| + £ Id, with [x) given in (7.14), and where ¢ = 1077 is used to regularize the initial
value of the STMI.

coincident location of input and output qubits. Since there are no conserved operators in
this case (including energy), we expect that Ji(A : B) will quickly drop to zero for any initial
state. Figure 10 shows J1(A : B) for various initial states, confirming our expectation. The
timescale characteristic of this drop is given by the rate of decoherence caused by the effective
channel describing the evolution of a single qubit.

8 Classical space-time mutual information

We now discuss how the STMI can be defined for classical systems, and make connection to
information-theoretic quantities discussed in earlier literature. Consider a classical system
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Figure 11. Representations of the probability Pgy for various ancilla-system couplings.

whose initial state is characterized by a probability over a state space S, which we denote by
Py (i), where i labels a state in S. This probability is then mapped to an output probability
through a stochastic map M : S — S acting as Py, (i) — Y., M(j]i) P (), where j labels
states of ', and M(j|i) denotes the transfer matrix associated to the map M that satisfies
normalization and positivity: >>; M(jli) = 1 and M(j|i) > 0. The notion of STMI also
applies to this classical setting with the important difference that the ancilla, as well as its
coupling to the system, are themselves restricted to be classical. With A C S and B C S’, we
introduce a classical ancilla W and a stochastic map K that acts jointly on AW. From this
we can define connected and disconnected ancilla-system probabilities, similarly to section 2.
Taking a single copy of the system N = 1, these probabilities are:

P (kp) = M(kl|qj)K(qpli) P (i)
ljqri (81)

Ppw,o(kp) = P o(k)Pw(p) ,

where Ppo(k) =3, M(kl|ij)Pyu(ij) is the unperturbed output state and Py (p) =3>_; Ppw (kp).
Here, k,1,p,i and j label states in B, B, W, A and A respectively. We represented the state
for generic N > 1 in figure 11(a). The classical counterpart of the STMI is then

1
IN(A:B) = S D(Ppnwa|Ppnw) » (8:2)

where D(:|-) denotes the Kullbeck-Leibler (KL) divergence, and we assume W to be suf-
ficiently large.

One can show that, similarly to the quantum STMI, (8.2) bounds correlation functions
as well as response functions. In fact, correlation functions can be already bounded by the
input-output mutual information,® which can be obtained from the KL divergence in (8.2) by
choosing K to be the copy channel: K(gp|i) =1 if ¢ = p =i and 0 otherwise, see figure 11(b).

3By intput-output mutual information, we simply mean the mutual information between A and B, where
these have joint probability distribution p(ki) = sz M(Kkl|ij) P (i5) [19].
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To see this, we write the correlation function of two observables O4 and Opg as

(OB(t)0a) =) M(Kl|ij)Pu(if)Op(k)Oa(d) . (8.3)
ijkl

> 1| 0o@0a) |*

0Bl [Oall

where ||O||0 = sup; |O(i)|. We then see that, in the classical case, correlatlons can be bound

Using similar steps as in section 3, one easily obtains the bound I(B : A) >

)

without adaptively optimizing over the system-ancilla coupling.

To bound response functions, on the other hand, the input-output mutual information is
not enough: we need an adaptive ancilla-system coupling, like in the quantum case. Consider
perturbing the evolution before applying channel M through a small perturbation from
the identity, which itself can be viewed as a channel. Its transfer matrix can be written as
Na(k|i) = 6g; + eNa(kli), with >, Na(k|i) = 0, Na(k|i) > 0 for k # i and € > 0 small. The
response function is then the leading order contribution in € to the one-point function of Op:

GRr(Op,Na) = 1im€ (OB(t))ny — (OB(t))Ny=1d)

= Z Op(3)M(jllkp)Na(kli) P (ip) -
jiklp

(8.4)

The input-output mutual information will not in general bound such two-point functions. For
example, take Py, (i) = ;o to be a pure state, then I(A : B) = 0. One can easily see that there
are choices of Op and N4 with a nonzero response function so that the bound is violated.
We shall now prove the bound using J1(A : B), adopting a similar approach as in
section 3. Introduce a 2-bit ancilla with states p = 0,1, and the ancilla-system coupling

K(j0]i) = % (&,» + ‘]’V]Gf‘ti) . K1) =

1

3 0ij (8.5)
where [[Nalloo = sup;>_; [Na(ilj)|. Note that K satisfies positivity and normalization.
Further introducing the observable Oy acting on the ancilla W, with Oy (p = 0) =1 =
—Ow(p = 1), we find

1GRr(Op,Na)

> 0p(j M(Gl|k)K(kpli) P (i) = 2 ([Nallw

ipkj

(8.6)

where for simplicity we left implicit the dependence on the indices in B and A. Applying
similar steps as in section 3 one then shows that the desired bound holds J;(A : B) >
1 (%)2, where the factor of % also appeared in Theorem 1. for the quantum case.

Finally, we note that the expression of the classical STMI can be slightly simplified.
Indeed, still taking to NV = 1 for simplicity, we now show that to find the optimal J; one

can restrict the state Ppy in (8.1) to the form

Ppw (kqi) = Y M(kl|qj)K(qli) P (ij) (8.7)

lj

as illustrated in figure 11(d). The key is that copying to the ancillas Wy and W5 the state
before and after applying K, as in figure 11(c), does not require introducing any additional
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probing of the system, i.e. W is not necessary. More precisely, the conditional mutual
information I(B : W1|WyWs) can be readily shown to vanish. Due to this fact, and using
the classical counterpart of (2.8), we have

D(Ppw |Ppw,) = 1(B : WoW3) + D(Pg|Ppy) , (8.8)

thus showing that marginalizing over W does not affect D(Pgw|Ppw,0), and the optimal K
in (8.2) can be achieved using (8.7). A consequence of this fact is that, if the initial state is
factorized, i.e. I(A: A) = 0, from figure 11(d) it is clear that maximization over X can be
replaced by a maximization over the state of A with I fixed to the identity.

While we are not aware of discussions of the STMI in the literature, a restricted version
of our implementation has been considered in the context of classical channel discrimination,
where one optimizes over the input state [20, 21].

9 Conclusions

In this paper, we introduced the space-time mutual information (STMI), a quantity that
generalizes mutual information to spatial subregions that can be separated in time. This was
achieved by demanding that the STMI satisfies some of the natural properties possessed by
the standard mutual information. The most stringent property leading to our definition (2.5)
is that the STMI should bound space-time correlation functions between the two subregions.

We then investigated several properties that descend from our proposal, such as the
Markov property and the relationship to quantum channel discrimination. We studied the
behavior of the STMI in MBL and thermalizing many-body systems and found very distinct
behaviors, thus, in a sense, providing a characterization of these two types of dynamics.
Finally, we discussed a classical counterpart of the STMI.

Our framework can be extended in several directions. First, in this work we studied the
time dependence of the STMI for two extreme cases in the context of many-body dynamics
(MBL and Floquet thermalization). A natural next step is to look at more intermediate
situations, e.g. thermalizing systems conserving a finite number of quantities such as energy or
charge, or kinematically constrained models [22-24]. For subregions small enough compared
to system size we expect the STMI to decay polynomially in time for these systems. When the
subregions considered become large, we saw around eq. (2.15) that the STMI asymptotes to
a finite value; it would be interesting to find how this asymptotic value is approached at late
times. Another intriguing avenue for investigation involves examining the time dependence of
the STMI as a diagnostic tool to differentiate between integrable and non-integrable systems,
as explored in recent studies such as those highlighted in [25, 26]. Additionally, it will also be
interesting to consider restrictions of the optimization over V' which may characterize the
type of information that the ancilla is able to extract from the system. For example, one can
restrict V' to be a one-way LOCC (local operations and classical communication) from A to
W, which corresponds to an experimentalist who can only carry out classical measurements.

On an information-theoretic level, it is still an open question whether the STMI satisfies
additivity. A positive answer to this would imply that it is sufficient to restrict to a single
replica N =1 in the definition of the STMI (2.5). We proved additivity in a restricted case
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where we could map our quantity to the channel relative entropy. While we could not find
counter-examples to additivity in more general settings, it is still possible that additivity
might not hold in full generality; we leave this question to future work.
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A Bound on correlations with superdensity operator

Here we obtain a bound on correlations similar to (3.1), (3.2) using the relative entropy
S (pew|pB,o ® pw), where V- = Saw, ® 1 is the swap between A and W7, and the ancilla
W1Ws is prepared in an EPR state (see also figure 2). Using the norm bound,

(00OwW),)?
2(|05|% |Ow I,

(A.1)

1
S (pewlpB0 @ pw) > = lpBWiWa1 — PEWAWS0||T >

for any Hermitian operators Op, Oy. The norm in the denominator is the operator norm,
i.e. absolute value of the maximal eigenvalue, and where (Op(f)Ow ). denotes any connected
Schwinger-Keldysh time ordered two-point function. For example, consider a traceless
Hermitian operator O4, and define an operator on W by

Ow =i (1) (1| Oa — O4|1) (1)) (A2)

with |I) the initial state of W, and O4 acts on Wi7. When Oy is traceless, (I|O4|I) = 0,
and the norm of Oy, satisfies

10wl < 2/1Oull (A.3)
On the other hand, inserting Oy into eq. (A.1) leads to

(OBOW), = d3*itr ([O5(t), 0a] pin) - (A.4)
Therefore we obtain an upper bound of response functions:

(i tr ([Op(t), 04] pin))*
8d4 | Op|% 110412

v

S (pBwlpBo @ pW) (A.5)

Note that the left-hand side can be replaced by the mutual information term I(B : W)
(the super-density operator mutual information [5]) because the disconnected part of the
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correlator vanishes, (Oy) = 0. The tighter bound is then
(i tr ([OB(t), 0] pin))*
84 [|05]1% 104115

Note that (A.5) and (A.6) come with an additional factor of d;* compared to (3.1) and (3.8),
as stated in the main text, thus the bound we just proved is weaker. Similarly, one can obtain

I(B:W) > (A.6)

a bound for the symmetric two-point function (3.2) suppressed by the same factor.
In concluding this appendix, we note that we can bound the causal influence CI(A :
B) [27] by inserting a unitary Ug in A. This corresponds to
Ow = Ua |I) (1| U}, (A7)
where in the above, Uy acts on W;. Note that ||Ow ||, = 1. The inequality (A.1) becomes

(O5() (Ua) = (O5(1)) (14))*
2d% || 05|12,

S (pewlpBo @ pw) > (A.8)

B Additivity for general initial states

QN
in,single copy’

For generic N the initial state is pi, = p and the state after coupling to the
ancilla is p g vy = Vipin ® [¢) (|)V1. Restricting to unitary evolution for simplicity,
and denoting the evolution of the replicated system by Uy = U®Y, the connected and

disconnected final states are

ppyw = Trgy UNp(AA)NWU]TV PBNWO = (TTBN UNPinUva) ® pw (B.1)

where pw = Tr44)v paayvy- Consider an infinitesimal variation of V', V' — (Id +T")V,
with T a Hermitian matrix acting on ANW. This gives Spcaayvw = iT, paayvwl, so that

5S(pervwlpeyvwo) = i Tr gayvw T [p(AA)vaMN} ; (B.2)
where
My = U} (Idgy ®log ppryy) Un — Ul (dgx @ log (TepnUnpinUL ) ) Un @ Tdyy

Restricting to factorized ancilla-system coupling V = V", we have paayNw = (P4 an)EN,

and thus My = M; @ 1d®WV =Y 4 1d @ My @ Id®W=2) 4 ... where M; is the single-copy
version of (B.3). We then find
38 (emiw o) = i Trgaav T ((aaws Ml © (o) ¥
(B.4)
+ oaaw @ [P aaws M1l ® (paan) N2 + - ) —0.

where in the last step we used that V; is a stationary point for S(ppw|pBwo), as this is
equivalent to [p g4, M1]. We thus showed that Vy = V1®N is a stationary point for the
N-replica optimization (2.5). This however does not imply that such Vy is a global minimum,
and thus we cannot conclude the additivity of Jy for general initial states. We leave this
as an open question for future work.
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Figure 12. The setup in (a) yields a larger relative entropy compared to the one in (b) when py, is
given by (C.1), thus providing a counterexample to the ansatz of section 6 when A and A are entangled.

C Entangled initial state

We here discuss a counterexample to the ansatz proposed in section 6 when A and A are
entangled. Suppose A and A are two qubits, with an entangled initial state

9
pia = (1= 9L 1) (Ll + 1, ()

where |I') denotes an EPR state. Let us take the evolution of the system to be trivial for
simplicity: ppo = pin, with B isomorphic to AA. We first evaluate J(A : B) by considering
V = X4 (i.e. the coupling to ancilla is the X Pauli matrix acting on A: coupling to the
ancilla W is trivial and we take W = (), i.e.

£
pp = Trwppw = XapinXa = (1 — ) Xall 14) (14 Xa + 7 1d, (C.2)
see figure 12(a). We have
J(A: B) > S(ppppo) = —loge + O(eloge) (C.3)

where in the last step we only kept the divergent part in €, and where we used

3 3 3 €
Trpplog pp = <1 — 45) log <1 - 45> + Zelog 1 (C.4)
3 € € 3 € €
—Trpplogppy = — <1 - 45) log 11 log (1 - 45) - 21 log 1 (C.5)

Let us now estimate J(A : B) using V = swap, and placing W in an arbitrary initial
state. Then (see figure 12(b))

. 1 .
pe=pi@pw, pi=3ld pw =Trw[w)({bw] (C.6)
3 € €
log ppo =log pin = (log (1 45) —log 4> T 1) (I 14| +1og ZId (C.7)
€ 3 € 3
Tupplogpm —log 5+ (1og (1= =) ~log 5 ) (TaalpalT ) = log=+0(e) (C.8)
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where we used
1 .. . 1
(CaaloslCaa) = 7D _(iilld; ® pwlis) = 7 (C.9)
ij
Then we have

3
Jswap(A : B) = —Zlog€+--~ (C.10)

where the dots stands for terms that are bounded as € — 0 and include contributions from
the mutual information Isyap(B : W). We see that the swap (C.10) leads to a smaller J
than V = X4 in (C.3).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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