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Abstract

While there is much recent interest in studying

why Transformer-based large language models

make predictions the way they do, the complex

computations performed within each layer have

made their behavior somewhat opaque. To mit-

igate this opacity, this work presents a linear

decomposition of final hidden states from au-

toregressive language models based on each ini-

tial input token, which is exact for virtually all

contemporary Transformer architectures. This

decomposition allows the definition of proba-

bility distributions that ablate the contribution

of specific input tokens, which can be used to

analyze their influence on model probabilities

over a sequence of upcoming words with only

one forward pass from the model. Using the

change in next-word probability as a measure

of importance, this work first examines which

context words make the biggest contribution

to language model predictions. Regression ex-

periments suggest that Transformer-based lan-

guage models rely primarily on collocational

associations, followed by linguistic factors such

as syntactic dependencies and coreference re-

lationships in making next-word predictions.

Additionally, analyses using these measures to

predict syntactic dependencies and coreferent

mention spans show that collocational associa-

tion and repetitions of the same token largely

explain the language models’ predictions on

these tasks.

1 Introduction

Much of contemporary natural language process-

ing (NLP) is driven by Transformer-based large

language models, which are trained to make predic-

tions about words in their context by aggregating

representations through their self-attention mecha-

nism. The breakthrough in many NLP tasks these

models have achieved has led to active research

into interpreting their predictions and probing the

knowledge embodied by these models (Manning

et al., 2020; Rogers et al., 2021; Belinkov, 2022).

Figure 1: Schematic of input and output representations

from Transformer-based autoregressive language mod-

els. Standard models (top) calculate one vector of final

hidden states at a given timestep (xL,i), which in this

work (bottom) is decomposed exactly into the sum of

output representations of each input token (xL,i,k) and a

cumulative bias term (bL,i).

One line of such research focuses on quantifying

the importance of each input token to the mod-

els’ final output, but due to the complexity of the

computations performed within the Transformer

layers, analysis has been limited to studying the

self-attention mechanism and the feedforward neu-

ral network independently (Kobayashi et al., 2020,

2021; Geva et al., 2021, 2022; Mickus et al., 2022)

or has relied on e.g. gradient-based attribution

methods (Sanyal and Ren, 2021; Zaman and Be-

linkov, 2022) that yield measures that are not inter-

pretable in terms of output model probabilities.

To address these limitations, this work presents

a linear decomposition of final language model
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hidden states into the sum of final output represen-

tations of each initial input token and a cumulative

bias term, which is schematized in Figure 1. This

work focuses on decomposing autoregressive lan-

guage models, in which the final hidden states are

used to calculate a probability distribution over the

next token. The decomposition allows the defi-

nition of probability distributions that ablate the

contribution of specific input tokens, which can be

used to study their impact on next-token probabil-

ities with only one forward pass from the model.

This decomposition is exact if the activation func-

tion of the feedforward neural network is differen-

tiable almost everywhere,1 and therefore it does

not require perturbing the original computations of

the language model (e.g. by using approximations)

to gauge the influence of input tokens for virtually

all contemporary Transformer architectures. Addi-

tionally, this work defines an intuitive importance

measure for each context token based on the change

in next-token log probability, which does not corre-

late strongly with layer-wise attention weights or

gradient norms. Since this measure is defined in

terms of log probabilities, they can also be summed

to quantify importance in predicting an arbitrary

sequence of tokens according to the chain rule of

conditional probabilities.

Using the proposed decomposition and associ-

ated importance measure, this work characterizes

which kinds of context words autoregressive lan-

guage models leverage most in order to make next-

word predictions. Results from stepwise regression

analyses suggest that Transformer-based language

models rely mainly on collocational associations,

followed by linguistic factors such as syntactic de-

pendencies and coreference relationships. Follow-

up analyses using these importance measures to

predict syntactic dependencies and coreferent men-

tion spans additionally show that collocational as-

sociation and repetitions of the same token largely

explain the language models’ predictions on these

tasks.

2 Background: Transformer Decoder of

Autoregressive Language Models

Transformer-based autoregressive language mod-

els (e.g. Radford et al., 2019; Brown et al., 2020;

Zhang et al., 2022) use a variant of the multi-layer

1That is, the function is differentiable at all real numbers
except a subset of Lebesgue measure zero, such as the rectified
linear unit (ReLU; Nair and Hinton, 2010), which has an
inflection point at x = 0.

Transformer decoder (Vaswani et al., 2017). Each

decoder layer consists of a masked self-attention

block and a feedforward neural network, which to-

gether calculate a vector xl,i ∈ R
d for token wi at

layer l:

xl,i = FFl(Nl,out(x
′
l,i + xl−1,i)) + (x′l,i + xl−1,i), (1)

where FFl is a two-layer feedforward neural net-

work, Nl,out is a vector-wise layer normalization

operation, and x′l,i ∈ R
d is the output representa-

tion from the multi-head self-attention mechanism,

in which H heads mix representations from the pre-

vious context. This output x′l,i can be decomposed

into the sum of representations resulting from each

attention head h and a bias vector vl:

x′l,i=

H
∑

h=1

Vl,h [Nl,in(xl−1,1) · · · Nl,in(xl−1,i)] al,h,i+vl,

(2)

where Vl,h ∈ R
d×d and vl ∈ R

d represent the

weights and biases of the composite value-output

transformation2 respectively, and al,h,i ∈ R
i is the

vector of self-attention weights from each head.

Nl,α, where α ∈ {in, out},3 is a vector-wise layer

normalization operation (Ba et al., 2016) that first

standardizes the vector and subsequently conducts

elementwise transformations using trainable param-

eters cl,α,bl,α ∈ R
d:

Nl,α(y) =
y − m(y)

s(y)
⊙ cl,α + bl,α, (3)

where m(y) and s(y) denote the elementwise mean

and standard deviation of y respectively, and ⊙

denotes a Hadamard product.

The output representation from the last decoder

layer L is layer-normalized and multiplied by the

projection matrix to yield logit scores for the prob-

ability distribution over token wi+1:

zi =W NL+1,in(xL,i), (4)

where zi ∈ R
V is the vector of logit scores, W ∈

R
V×d is the projection matrix, V is the size of the

vocabulary, and NL+1,in is the final layer normaliza-

tion operation with parameters cL+1,in and bL+1,in.

2For the simplicity of notation, multi-head self-attention
is formulated as a sum of ‘value-output’ transformed repre-
sentations from each attention head instead of the ‘output’
transformed concatenation of ‘value’ transformed represen-
tations from each attention head as in Vaswani et al. (2017).
To this end, the weights and biases of the ‘value’ and ‘output’
transformations are respectively composed into Vl,h and vl.
Refer to Appendix A for the derivation of Vl,h and vl.

3Nl,in is applied before the masked self-attention block,
and Nl,out is applied before the feedforward neural network.
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3 Token-wise Decomposition of Language

Model Hidden States

This section provides a mathematical definition of

the token-wise decomposition of language model

hidden states, which allows the quantification of the

contribution of each input token to the conditional

probability of the next token.

3.1 Mathematical Definition

In this section, we show that the vector of logits zi

in Equation 4 can be decomposed into the sum of

final output representations of each input token wk

and a ‘bias-like’ term that accumulates bias vectors

throughout the Transformer network, which is ex-

act if the activation function within the feedforward

neural network is differentiable almost everywhere:

zi =

i
∑

k=1

z′i,k + bi, (5)

where z′i,k ∈ R
V is the final transformed output

at timestep i of the input representation x0,k
4 at

timestep k. This z′i,k is calculated by aggregating

the output of all computations performed on x0,k

throughout the Transformer layers:

z′i,k =W nx,L+1,i,k, (6)

where nx,L+1,i,k is a layer-normalized version of

xL,i,k, explained below. Additionally, bi ∈ R
V is

the ‘bias-like’ term resulting from accumulating

computations performed on bias vectors that are

difficult to attribute to any specific source posi-

tion k:

bi =W nb,L+1,i, (7)

where nb,L+1,i is a layer-normalized version of bL,i,

also explained below.

This decomposition is in turn achieved by main-

taining input-specific vectors xl,i,k ∈ R
d and a ‘bias-

like’ vector bl,i ∈ R
d throughout the network. The

second index of both xl,i,k and bl,i represents each

target position i, and the third index of xl,i,k repre-

sents each source position k ∈ {1, ..., i}. Therefore,

when the third index of xl,i,k is reduced and the

result is added to bl,i, the undecomposed output

representation xl,i ∈ R
d is returned:

xl,i =

i
∑

k=1

xl,i,k + bl,i. (8)

These decomposed representations are updated by

4Throughout this paper, the input representation x0,k de-
notes the sum of the type-specific embedding for token wk and
the positional embedding for position k.

Figure 2: Alternative formulation of computations per-

formed within one decoder layer of a Transformer-based

autoregressive language model, which allows the con-

tribution of each input token wk to xl,i to be preserved

as xl,i,k.

each decoder layer (Eq. 1; Fig. 2) as follows:

xl,i,k = fx,l,i,k + (x′l,i,k + xl−1,i,k), (9)

bl,i = fb,l,i + (b′l,i + bl−1,i), (10)

where b0,i = 0 and x0,i,k is a position-sensitive

version of x0,k:

x0,i,k =















x0,k if i = k,

0 if i , k,
(11)

and fx,l,i,k and fb,l,i are decomposed versions of the

output from the feedforward network for xl,i,k and

bl,i, defined below.

The exact decomposition of hidden states ac-

cording to each source position is made possible

due to the linear nature of computations within the

masked self-attention block and a local linear ap-

proximation of the activation function within the

feedforward neural network. First, layer normaliza-

tion Nl,in (Eq. 3) is applied to xl−1,i,k to yield nx,l,i,k

by centering it, scaling it by the standard devia-

tion of the undecomposed representation s(xl−1,i),
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and obtaining a Hadamard product with trainable

vector cl,in:

nx,l,i,k =
xl−1,i,k − m(xl−1,i,k)

s(xl−1,i)
⊙ cl,in. (12)

Nl,in is also applied to bl−1,i to yield nb,l,i, except

that the bias vector bl,in is accumulated by this

term:

nb,l,i =
bl−1,i − m(bl−1,i)

s(xl−1,i)
⊙ cl,in + bl,in. (13)

Subsequently, the masked self-attention mech-

anism (Eq. 2) is applied to [nx,l,1,k · · · nx,l,i,k] to

yield x′l,i,k, which updates the total representation

from source position k to target position i using

self-attention weights al,h,i:

x′l,i,k =

H
∑

h=1

Vl,h [nx,l,1,k · · · nx,l,i,k] al,h,i. (14)

The self-attention mechanism is also applied to

[nb,l,1 · · · nb,l,i] to yield b′l,i. Similarly to layer nor-

malization, the bias vector vl is accumulated by

this term:

b′l,i =

H
∑

h=1

Vl,h [nb,l,1 · · · nb,l,i] al,h,i + vl. (15)

After adding the residual representations, layer

normalization Nl,out is applied to x′l,i,k + xl−1,i,k and

b′l,i +bl−1,i in a similar manner to Equations 12 and

13 to yield n′x,l,i,k and n′b,l,i respectively, by center-

ing each vector, scaling them by the standard devi-

ation of their corresponding undecomposed repre-

sentation s(x′l,i + xl−1,i), and applying the learned

parameters cl,out and bl,out:

n′x,l,i,k =
x′l,i,k + xl−1,i,k − m(x′l,i,k + xl−1,i,k)

s(x′l,i + xl−1,i)
⊙ cl,out,

(16)

n′b,l,i =
b′l,i + bl−1,i − m(b′l,i + bl−1,i)

s(x′l,i + xl−1,i)
⊙cl,out+bl,out.

(17)

Finally, if the activation function within the feed-

forward neural network from Equation 1 is differ-

entiable almost everywhere,5 local linear approxi-

mation can be used to calculate its output values:

FFl(y) = Fl,2 σ(Fl,1 y + fl,1) + fl,2 (18)

= Fl,2(s ⊙ (Fl,1 y + fl,1) + i) + fl,2, (19)

5Virtually all widely used activation functions such as the
rectified linear unit (ReLU; Nair and Hinton, 2010) and the
Gaussian error linear unit (GELU; Hendrycks and Gimpel,
2016) satisfy this property.

where Fl,1,Fl,2 and fl,1, fl,2 are the weights and

biases of the feedforward neural network, σ is

the activation function, and s and i are respec-

tively the vector of slopes and intercepts of tangent

lines specified by each element of the input vector

Fl,1 y + fl,1.6 This reformulation of the activation

function allows the feedforward neural network to

apply to each decomposed vector n′x,l,i,k and n′b,l,i
to yield fx,l,i,k and fb,l,i respectively:

fx,l,i,k = Fl,2 sl,i ⊙ Fl,1 n′x,l,i,k, (20)

fb,l,i = Fl,2(sl,i ⊙ (Fl,1 n′b,l,i + fl,1) + il,i) + fl,2, (21)

where sl,i and il,i are the vector of slopes and in-

tercepts of tangent lines specified by each element

of the undecomposed Fl,1 Nl,out(x
′
l,i + xl−1,i) + fl,1.

As with other operations, the bias vectors fl,1, fl,2,

and il,1 are accumulated by fb,l,i.

3.2 Proposed Importance Measure ∆LP:

Change in Next-Word Probabilities

Based on the decomposition outlined in Section

3.1, the importance of each input token w1..i to the

probability of the next token P(wi+1 | w1..i) can be

quantified. To this end, the probability distribution

over the next token that ablates the contribution of

wk is defined as follows:

P(wi+1 | w1..i\{k}) = SoftMax
wi+1

(zi − z′i,k). (22)

Subsequently, the importance measure of wk to the

prediction of wi+1 is calculated as the difference

between log probabilities of wi+1 given the full

context (w1..i) and the context without it (w1..i\{k}):

∆LP(wi+1 | w1..i,wk∈{1,...,i}) = (23)

log2 P(wi+1 | w1..i) − log2 P(wi+1 | w1..i\{k}).

This measure captures the intuition that an in-

put token that is more crucial to predicting the

next token wi+1 will result in larger decreases in

P(wi+1 | w1..i) when its contribution to the logit

scores is ablated out. It is also possible for ∆LP

to be negative, or in other words, P(wi+1 | w1..i)

can increase as a result of ablating an input token

wk. However, a preliminary analysis showed that

negative ∆LP values were much less commonly ob-

served than positive ∆LP values and input tokens

with negative ∆LP values were not in an easily in-

terpretable relationship with the predicted token.

Therefore, the experiments in this work focus on

6That is, s = σ′(Fl,1 y + fl,1), and i = σ(Fl,1 y + fl,1) −
σ′(Fl,1 y + fl,1) ⊙ (Fl,1 y + fl,1).
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characterizing input tokens with high ∆LP values,

which are the tokens that drive a large increase in

P(wi+1 | w1..i).

4 Experiment 1: Correlation with Other

Importance Measures

This work first compares the decomposition-based

∆LP defined in Section 3.2 with other measures of

importance that have been used in the literature to

examine the degree to which ∆LP may be redun-

dant with them. To this end, Pearson correlation

coefficients were calculated between the proposed

∆LP and attention weights and gradient norms at a

token level.

4.1 Procedures

The first experiment used the English section of the

Conference on Natural Language Learning shared

task corpus (CoNLL-2012; Pradhan et al., 2012)

as well as the Wall Street Journal corpus of the

Penn Treebank (WSJ; Marcus et al., 1993). Both

corpora include text from the newswire domain,

and the CoNLL-2012 corpus additionally includes

text from broadcasts, magazines, telephone conver-

sations, weblogs, and the Bible. The development

sets of the two corpora were used in this experi-

ment, which consist of 9,603 and 1,700 sentences

respectively.

To calculate importance measures on the two cor-

pora, the Open Pre-trained Transformer language

model (OPT; Zhang et al., 2022) with ∼125M pa-

rameters was used for efficiency. In addition to

∆LP defined in Section 3.2,7 the following impor-

tance measures were calculated for each context

token wk∈{1,...,i} at timestep i:

• Layer-wise attention weights (Vaswani et al.,

2017): Average attention weights over wk from

all heads within each layer, i.e. 1
H

∑H
h=1 δ

⊤
k

al,h,i,

where δk ∈ R
i is a Kronecker delta vector con-

sisting of a one at element k and zeros elsewhere,

and l ∈ {1, ..., L}.

• Gradient norms (Simonyan et al., 2014): Norm

of gradient of next-token log probability w.r.t. the

input x0,k, i.e. ||∇x0,k
log P(wi+1 | w1..i)||n, where

n ∈ {1, 2}.

• Input × gradient norms (Shrikumar et al., 2017):

||x0,k⊙∇x0,k
log P(wi+1 | w1..i)||n, where n ∈ {1, 2}.

7Code for calculating decomposed OPT representations
and their associated ∆LP is publicly available at https://
github.com/byungdoh/llm_decomposition.

Each article of the CoNLL-2012 and WSJ cor-

pora was tokenized according OPT’s byte-pair en-

coding (BPE; Sennrich et al., 2016) tokenizer and

was provided as input to the OPT model. In cases

where each article did not fit into a single context

window, the second half of the previous context

window served as the first half of a new context

window to calculate importance measures for the

remaining tokens.8 Finally, Pearson correlation co-

efficients were calculated between token-level ∆LP

and attention-/gradient-based importance measures

on each corpus (163,309,857 points in CoNLL-

2012; 25,900,924 points in WSJ).

4.2 Results

The results in Figure 3 show that across both cor-

pora, the proposed ∆LP shows weak correlation

with both attention weights and gradient norms,

which suggests that ∆LP does not capture a redun-

dant quantity from importance measures that have

been used in previous work to examine language

model predictions. The gradient norms are more

correlated with ∆LP, which is likely due to the

fact that the gradients calculated with respect to

the original input representation x0,k accumulate all

computations performed within the network like

the token-wise decomposition. However, one cru-

cial difference between ∆LP and gradient norms

is that gradient norms can ‘saturate’ and approach

zero when the model makes accurate predictions, as

∇zi
log P(wi+1 | w1..i) ≈ 0 when P(wi+1 | w1..i) ≈ 1.

This means that the importance measures of all con-

text tokens will be systematically underestimated

for high-probability target tokens, which may be es-

pecially problematic for analyzing large language

models that have been trained on billions of training

tokens. For average attention weights, they seem to

correlate with ∆LP most at layer 1, where they are

calculated over layer-normalized input represen-

tations [N1,in(x0,1) · · · N1,in(x0,i)]. In contrast, the

attention weights at higher layers seem to correlate

less with ∆LP, as they are calculated over represen-

tations that have been ‘mixed’ by the self-attention

mechanism.

5 Experiment 2: Characterizing

High-Importance Context Words

Having established that ∆LP provides a novel

method to quantify the importance of each context

8In practice, most articles fit within one context window
of 2,048 tokens.
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• Pointwise mutual information (PMI):

log2
P(wk ,wi+1)

P(wk)P(wi+1)
, which is calculated using uni-

gram and bigram probabilities estimated from

the Gigaword 4 corpus (Parker et al., 2009).

Two variants of PMI are explored in this work,

which capture associations of word pairs in con-

tiguous bigrams (PMIbigram) and document co-

occurrences (PMIdoc).10

• Syntactic dependency: A binary variable indi-

cating whether the context word and the pre-

dicted word form a syntactic dependency. The

CoreNLP toolkit (Manning et al., 2014) was used

to convert annotated constituency structures to

dependency representations.

• Coreference relationship: A binary variable in-

dicating whether the context word and the pre-

dicted word are in coreferent spans.

These predictors of interest were included in

a stepwise manner, by including the one predic-

tor that contributes most to regression model fit at

each iteration and testing its statistical significance

through a likelihood ratio test (LRT). All predictors

were centered and scaled prior to regression mod-

eling, so the regression coefficients β are defined

in units of standard deviation and are comparable

across predictors.

5.2 Results

The results in Table 1 show that among the pre-

dictors of interest, both variants of PMI made the

biggest contribution to regression model fit, fol-

lowed by syntactic dependency and coreference re-

lationship.11 This suggests that Transformer-based

autoregressive language models rely primarily on

collocational associations in making next-word pre-

dictions (e.g. wedding predicting groom, medical

predicting hospital). Linguistic factors like syn-

tactic dependencies and coreference relationships

explained additional variance in ∆LP values, al-

though their contribution was not as large.

The baseline predictors also shed light on the

characteristics of context words that have a large

influence on next-word probabilities. Most notably,

the linear distance between the predicted word and

the context word was a positive predictor of ∆LP,

10The corpus was tokenized following the Penn Treebank
conventions for consistency. PMI was defined to be 0 for word
pairs without unigram or bigram probability estimates.

11Refer to Appendix B for regression results from the first
iteration of the stepwise analysis, which evaluates each pre-
dictor independently on top of the baseline regression model.

Predictor β t-value ∆LL

Word index 0.034 1.919 -

Distance 1.126 62.755 -

Log prob. -0.083 -5.350 -

PMIbigram 1.220 70.857 6151.262∗

PMIdoc 1.286 73.952 3194.815∗

Dependency 1.055 63.720 1981.778∗

Coreference 0.123 7.195 25.883∗

Table 1: Regression coefficients from the final stepwise

regression model and increase in regression model like-

lihood (∆LL) from including each predictor of interest.

The predictors of interest are presented in the order they

were included during stepwise regression (i.e. strongest

predictor at each iteration). *: p < 0.001.

which indicates that language models can leverage

words far back in the context and that the contri-

bution of such context words is large when they

do. Moreover, ∆LP values were negatively corre-

lated with log probability, which indicates that the

contribution of context words generally decreases

when the model is making confident predictions

about the next word. Finally, although there was a

positive correlation between word index and ∆LP

values, its strength was too weak to draw conclu-

sive interpretations.

6 Experiment 3: Syntactic Dependency

and Coreference Prediction Using ∆LP

The previous experiment revealed that compared

to measures of collocational association, syntactic

dependency and coreference relationships were not

as strong predictors of ∆LP. Experiment 3 further

examines the connection between high-importance

context words and syntactic dependency and coref-

erence relationships by using ∆LP to predict them

independently and analyzing the extent to which

each relationship type aligns with ∆LP.

6.1 Procedures

This experiment used ∆LP to make predictions

about context words in syntactic dependency and

coreference relationships on the development sets

of the WSJ and CoNLL-2012 corpora respectively.

First, on the WSJ corpus, the precision scores

for syntactic dependency relations were calculated

by counting how many times context words with

high ∆LP match words in syntactic dependency

relations. While each word has exactly one incom-

ing typed edge from its head in a typical depen-
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Relation ∆LP Base. PMIb PMId

Nom. subj. 61.15 39.79 1.38 1.44

Direct obj. 70.43 22.01 0.91 1.57

Oblique 52.54 24.31 -0.68 1.54

Compound 80.44 39.56 4.97 2.93

Nom. mod. 53.84 26.09 -0.41 1.84

Adj. mod. 82.55 36.02 4.36 2.17

Determiner 52.03 36.52 1.51 1.08

Case marker 52.38 27.96 -0.29 1.08

Microavg. 56.20 29.22 1.11 1.58

Table 2: Precision scores calculated using ∆LP, random

word baseline, and average PMI of frequent syntactic de-

pendency relations in the WSJ corpus. The less frequent

relations are not presented separately but are included

in the microaverage. PMIb is average PMI based on

contiguous bigrams; PMId is average PMI based on

document co-occurrences.

dency syntax representation, since autoregressive

language models have no access to the forward con-

text, all edges between word pairs were treated as

undirected edges and were evaluated at the later

word in the pair. For each predicted word wi+1 that

is in n syntactic dependency relationships, the top-n

context words were selected based on ∆LP within

the same sentence and compared to the n words

that are in syntactic dependency relationships with

wi+1. The syntactic dependency representations

converted using the CoreNLP toolkit (Manning

et al., 2014) were used to evaluate the performance

on the WSJ corpus. As a baseline, the expected pre-

cision scores from randomly selecting n previous

words within the same sentence are also reported.

Similarly, antecedent selection precision scores

for coreference relations were calculated by count-

ing how many times the context word with the

highest ∆LP value matched words in spans denot-

ing the same entity. For each mention span, ∆LP

quantifying the impact of every context word on

the prediction of the entire span (Eq. 24) was cal-

culated. Subsequently, the context word with the

highest ∆LP was evaluated in terms of whether

it belonged to any antecedent spans denoting the

same entity. As a baseline, precision scores from

selecting the most recent word with the same part-

of-speech as the head word of the span are reported.

6.2 Results

The syntactic dependency results in Table 2 re-

veal a discrepancy in performance according to the

type of relation that is being predicted. Generally,

Mention head POS ∆LP Base. Rep.%

Personal pronoun 26.55 36.80 30.92

Possessive pronoun 23.29 36.45 30.59

Proper noun (sg.) 61.21 23.19 68.80

Proper noun (pl.) 70.67 57.33 68.00

Common noun (sg.) 43.39 12.55 48.75

Common noun (pl.) 47.01 24.73 55.03

Possessive ending 46.28 30.58 40.91

Microavg. 38.21 28.65 43.26

Table 3: Precision scores calculated using ∆LP, most

recent head POS baseline, and Rep. % of frequent types

of coreferent spans in the CoNLL-2012 corpus. The

less frequent types are not presented separately but are

included in the microaverage. Rep. % is the proportion

of mention spans whose head words are repeated from

previous coreferent spans.

context words with high ∆LP values corresponded

most closely to words in adjectival modifier and

compound relations, followed by those in subject

and direct object relations, which are core argu-

ments in English. Performance on adjunct nouns

such as nominal modifiers and oblique nouns, as

well as function words like determiners and case

markers was lower. This trend in turn seems to be

generally driven by the strength of collocational

associations, as can be seen by the correspond-

ing average PMI values in Table 2. This corrob-

orates the regression results of Experiment 2 and

further suggests that the seeming connection be-

tween language model predictions and syntactic

dependencies may underlyingly be the effects of

collocational association. One counterexample to

this trend seems to be the syntactic dependency

between the main verb and its direct object, which

shows close correspondence to ∆LP despite not

having high average PMI values.

The coreference results in Table 3 show an even

larger gap in performance according to the type

of entity mention. Generally, context words with

high ∆LP values corresponded most closely to

previous mentions of proper nouns and common

nouns. In contrast, they did not correspond well to

antecedents of personal and possessive pronouns,

showing lower precision scores than a simple base-

line that chooses the most recent pronoun. A

follow-up analysis of the ∆LP values showed that

when the language model has to predict a head

word that has already been observed in its context,

the earlier occurrence of that head word contributes

substantially to its prediction. The proportion of
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mention spans whose head words are repeated from

head words of previous coreferent spans in Table 3

shows that the close correspondence between ∆LP

and previous mentions of proper nouns is driven by

the fact that these proper nouns are often repeated

verbatim in the corpus. In contrast, the prediction

of pronouns does not seem to be mainly driven by

context words that denote their antecedents.

7 Discussion and Conclusion

This work advances recent efforts to interpret the

predictions of Transformer-based large language

models. To this end, a linear decomposition of

final language model hidden states into the sum

of final output representations of each initial input

token and a cumulative bias term was presented.

This decomposition is exact as long as the activa-

tion function of the feedforward neural network is

differentiable almost everywhere, and therefore it

is applicable to virtually all Transformer-based ar-

chitectures. Additionally, this decomposition does

not require perturbing any intermediate computa-

tions nor re-running the language model to exam-

ine the impact of each input token. The decom-

position in turn allows the definition of probabil-

ity distributions that ablate the influence of input

tokens, which was used to define the importance

measure ∆LP that quantifies the change in next-

token log probability. The first experiment in this

work demonstrated that ∆LP does not capture a

redundant quantity from importance measures that

have been used in previous work to examine lan-

guage model predictions such as layer-wise atten-

tion weights or gradient norms.

Subsequently, based on the proposed ∆LP, a

stepwise regression analysis was conducted to shed

light on the characteristics of context words that

autoregressive language models rely on most in

order to make next-word predictions. The regres-

sion results show that Transformer-based language

models mainly leverage context words that form

strong collocational associations with the predicted

word, followed by context words that are in syn-

tactic dependencies and coreference relationships

with the predicted word. The high reliance on col-

locational associations is consistent with the mathe-

matical analysis of Transformers that a layer of self-

attention effectively functions as a lookup table that

tracks bigram statistics of the input data (Elhage

et al., 2021), as well as empirical observations that

Transformer-based autoregressive language models

have a propensity to ‘memorize’ sequences from

the training data (Carlini et al., 2022).

Finally, as a follow-up analysis, ∆LP was used to

predict syntactic dependencies and coreferent men-

tions to further examine their relationship to high-

importance context words. The precision scores

on both tasks revealed a large discrepancy in per-

formance according to the type of syntactic depen-

dency relations and entity mentions. On syntactic

dependency prediction, ∆LP corresponded closer

to words in relations with high collocational associ-

ation such as compounds and adjectival modifiers,

providing further support for its importance in a

language model’s next-word prediction. Moreover,

on coreferent antecedent selection, ∆LP more accu-

rately identified previous mentions of proper nouns

and common nouns that were already observed

verbatim in context. This is consistent with the

tendency of Transformer-based language models to

predict identical tokens from its context (Sun et al.,

2021), which seems to be enabled by dedicated

‘induction heads’ (Elhage et al., 2021; Olsson et al.,

2022) that learn such in-context copying behavior.

Taken together, these results suggest that colloca-

tional association and verbatim repetitions strongly

drive the predictions of Transformer-based autore-

gressive language models. As such, the connection

drawn between a large language model’s computa-

tions and linguistic phenomena such as syntactic

dependencies and coreference observed in previous

work (e.g. Manning et al., 2020) may underlyingly

be the effects of these factors.
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dictions of Transformer-based autoregressive lan-

guage models and linguistic factors drawn in this

work is based on a model trained on English text

and annotated corpora of English text. Therefore,

this connection may not generalize to other lan-

guages with e.g. more flexible word order. Addi-

tionally, although the alternative formulations of

Transformer hidden states yielded insights about

language model predictions, they are more compu-

10113



tationally expensive to calculate as they rely on an

explicit decomposition of the matrix multiplication
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A Composition of ‘Value’ and ‘Output’

Transformations

In Vaswani et al.’s (2017) formulation of multi-

head attention, the ‘value’ transformation is defined

at the head level with weights WV
l,h
∈ R

(d/H)×d

and biases bV
l,h
∈ R(d/H), and the ‘output’ transfor-

mation is defined at the layer level with weights

WO
l
∈ R

d×d and biases bO
l
∈ R

d. Vl,h and vl de-

fined in Equation 2 are equal to:

Vl,h =WO
l (δh ⊗WV

l,h), (25)

vl =

H
∑

h=1

WO
l (δh ⊗ bV

l,h) + bO
l , (26)

where δh ∈ R
H is a Kronecker delta vector consist-

ing of a one at element h and zeros elsewhere, and

⊗ denotes a Kronecker product.

B Additional Regression Results

Regression results from the first iteration of the

stepwise analysis in Experiment 2, which evalu-

ates each predictor of interest independently on top

of the baseline regression model, are outlined in

Table 4.

Predictor β t-value ∆LL

PMIbigram 1.832 113.043 6151.262∗

PMIdoc 1.643 102.341 5075.541∗

Dependency 1.462 88.912 3859.854∗

Coreference 0.362 21.877 238.948∗

Table 4: Regression coefficients and increase in regres-

sion model likelihood (∆LL) from regression models

that include one predictor of interest on top of the base-

line regression model. *: p < 0.001.
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