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Abstract

Recent psycholinguistic studies have drawn

conflicting conclusions about the relationship

between the quality of a language model and

the ability of its surprisal estimates to predict

human reading times, which has been specu-

lated to be due to the large gap in both the

amount of training data and model capacity

across studies. The current work aims to consol-

idate these findings by evaluating surprisal esti-

mates from Transformer-based language model

variants that vary systematically in the amount

of training data and model capacity on their

ability to predict human reading times. The

results show that surprisal estimates from most

variants with contemporary model capacities

provide the best fit after seeing about two bil-

lion training tokens, after which they begin to

diverge from humanlike expectations. Addi-

tionally, newly-trained smaller model variants

reveal a ‘tipping point’ at convergence, after

which the decrease in language model perplex-

ity begins to result in poorer fits to human read-

ing times. These results suggest that the mas-

sive amount of training data is mainly respon-

sible for the poorer fit achieved by surprisal

from larger pre-trained language models, and

that a certain degree of model capacity is nec-

essary for Transformer-based language models

to capture humanlike expectations.

1 Introduction

The predictability of upcoming linguistic material

has long been considered a crucial factor underly-

ing difficulty in human sentence processing (Hale,

2001; Levy, 2008), and has received empirical

support from numerous studies showing surprisal

(Shannon, 1948) to be highly predictive of relevant

behavioral and neural measures (e.g. Demberg and

Keller, 2008; Smith and Levy, 2013; Hale et al.,

2018; Shain et al., 2020). Since language models

(LMs) are trained to estimate a conditional proba-

bility distribution of a word given its context, sur-

prisal estimates calculated from them have often

been evaluated on their ability to predict measures

of processing difficulty.

Recent studies in computational psycholinguis-

tics have provided conflicting evidence with regard

to the relationship between LM quality (i.e. next-

word prediction accuracy) and goodness-of-fit to

human reading times. Earlier work using newly-

trained LMs showed a negative relationship be-

tween LM perplexity and predictive power of sur-

prisal estimates (Goodkind and Bicknell, 2018;

Wilcox et al., 2020; Merkx and Frank, 2021),

but more recent work using large pre-trained

Transformer-based LMs (e.g. GPT-2; Radford et al.,

2019) show a robust positive relationship between

the two variables (Oh et al., 2022; Oh and Schuler,

2023). While Oh and Schuler (2023) conjecture

that these studies capture two distinct regimes, it

remains less clear where the reversal in this rela-

tionship happens. The main challenge in answering

this question lies in the massive difference in terms

of both the amount of training data and the model

capacity of LMs that were studied.

The current study aims to cover this conceptual

middle ground by evaluating, on their ability to pre-

dict human reading times, surprisal estimates from

Transformer-based LM variants that vary system-

atically in the amount of training data and model

capacity. Results from regression analyses show

that surprisal from most LM variants with contem-

porary model capacities make the biggest contri-

bution to regression model fit after seeing about

two billion tokens of training data, after which ad-

ditional training data result in surprisal estimates

that continue to diverge from humanlike expecta-

tions. Additionally, surprisal estimates from newly-

trained smaller LM variants reveal a ‘tipping point’

at convergence, after which the decrease in perplex-

ity begins to result in poorer fits to human read-

ing times. Taken together, these results suggest

that the vast amount of training data is mainly re-

sponsible for the poorer fit achieved by surprisal
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from larger Transformer-based pre-trained LMs

(Oh et al., 2022; Oh and Schuler, 2023), and that

a certain degree of model capacity is necessary

for Transformer-based LMs to capture humanlike

expectations that manifest in reading times.

2 Experiment 1: Influence of Training

Data Size

The first experiment examines the influence of

training data size on the predictive power of

Transformer-based LM surprisal by evaluating LM

variants at various points in training on self-paced

reading times from the Natural Stories Corpus

(Futrell et al., 2021) and go-past eye-gaze durations

from the Dundee Corpus (Kennedy et al., 2003).

2.1 Response Data

The Natural Stories Corpus contains reading times

from 181 subjects that read 10 naturalistic English

stories consisting a total of 10,245 tokens. The data

points were filtered to remove those for sentence-

initial and final words, those from subjects who

answered three or fewer comprehension questions

correctly, and those shorter than 100 ms or longer

than 3000 ms, which resulted in a total of 384,905

observations in the exploratory set. The Dundee

Corpus contains eye-gaze durations from 10 sub-

jects that read 67 newspaper editorials consisting

a total of 51,501 tokens. The data points were fil-

tered to exclude those for unfixated words, words

following saccades longer than four words, and

sentence-, screen-, document-, and line-initial and

final words, which resulted in a total of 98,115 ob-

servations in the exploratory set.1 All observations

were log-transformed prior to model fitting.

2.2 Predictors

This experiment evaluates surprisal estimates from

eight variants of Pythia LMs (Biderman et al.,

2023), whose intermediate parameters were saved

at various points during training. Pythia LMs

are decoder-only autoregressive Transformer-based

models2 whose variants differ primarily in their ca-

pacity. The model capacities of the Pythia variants

are summarized in Table 1.

1The held-out set of each corpus, which have a comparable
number of observations, is reserved for statistical significance
testing and therefore was not analyzed in this work.

2Technical details such as the parallelization of self-
attention/feedforward computations and the separation of em-
bedding/projection matrices differentiate Pythia LMs from
other large language model families.

Model #L #H dmodel #Parameters

Pythia 70M 6 8 512 ∼70M
Pythia 160M 12 12 768 ∼160M
Pythia 410M 24 16 1024 ∼410M
Pythia 1B 16 8 2048 ∼1B
Pythia 1.4B 24 16 2048 ∼1.4B
Pythia 2.8B 32 32 2560 ∼2.8B
Pythia 6.9B 32 32 4096 ∼6.9B
Pythia 12B 36 40 5120 ∼12B

Table 1: Model capacities of Pythia variants whose

surprisal estimates were examined in this work. #L, #H,

and dmodel refer to number of layers, number of attention

heads per layer, and embedding size, respectively.

Crucially for this experiment, all eight Pythia

variants were trained using identical batches of

training examples that were presented in the same

order. These training examples come from the Pile

(Gao et al., 2020), which is a collection of English

language datasets that consist of around 300 bil-

lion tokens. Batches of 1,024 examples with a

sequence length of 2,048 (i.e. 2,097,152 tokens)

were used to train the eight variants for 143,000

steps, which amounts to about one epoch of the

entire Pile dataset. Model parameters that were

saved during early training stages (i.e. after 1, 2,

4, ..., 256, 512 steps) as well as after every 1,000

steps are publicly available.

Each article of the Natural Stories Corpus and

each article of the Dundee Corpus was tokenized

by Pythia’s byte-pair encoding (BPE; Sennrich

et al., 2016) tokenizer and provided as input to each

model variant. For each model variant, all publicly

available intermediate model weights were used to

calculate surprisal estimates on the two corpora. In

cases where each story or article was longer than

a single context window of 2,048 tokens, surprisal

estimates for the remaining tokens were calculated

by using the second half of the previous context

window as the first half of a new context window.

2.3 Regression Modeling

Subsequently, following previous work (Oh et al.,

2022; Oh and Schuler, 2023), a ‘baseline’ linear

mixed-effects (LME) model that contains baseline

predictors for low-level cognitive processing, and

‘full’ LME models that additionally contain each

LM surprisal predictor, were fit to self-paced read-

ing times and go-past durations using lme4 (Bates

et al., 2015). These baseline predictors are word

length in characters and index of word position

in each sentence (Natural Stories and Dundee), as

well as saccade length and whether or not the pre-
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ants has the same model capacity as the smallest

Pythia 70M variant, and the smaller variants were

designed to have fewer layers and attention heads,

as well as smaller embeddings. These variants

were trained closely following the training proce-

dures of the Pythia variants, including the size and

order of training batches. For computational ef-

ficiency, these variants were trained for the first

10,000 training steps, based on the observation that

∆LL on both corpora did not change substantially

after 8,000 steps for the smallest Pythia variant.6

The predictive power of resulting surprisal esti-

mates was evaluated following identical procedures

as Experiment 1.

3.2 Results

The results in Figure 2 show that surprisal from the

two largest variants made the biggest contribution

to regression model fit after 1,000 training steps on

both corpora, replicating the results of Experiment

1. In contrast, the smaller variants such as the 2-

2-128 and 2-3-192 variants seem to peak later at

around 2,000 training steps and stabilize afterward.

After all 10,000 training steps, the model variants

show a reversal in the relationship between LM

perplexity and fit to reading times; the 2-3-192

variant seems to represent a ‘tipping point,’ after

which the decrease in perplexity starts to result in

poorer fits to human reading times. Additionally,

variants that are smaller than this yield surprisal

estimates that are less predictive of reading times

when sufficiently trained. These results suggest

that a certain degree of model capacity is necessary

for Transformer-based LMs to capture humanlike

expectations that manifest in reading times.

4 Discussion and Conclusion

This work aims to consolidate conflicting findings

about the relationship between LM quality and

the predictive power of its surprisal estimates by

systematically manipulating the amount of train-

ing data and model capacity. Experimental re-

sults show that surprisal from most contemporary

Transformer-based LM variants provide the best

fit to human reading times with about two billion

training tokens, after which they begin to diverge

from humanlike expectations. It is conjectured that

early training data up to about two billion tokens is

6Refer to Appendix A for the model capacities of these
variants as well as further details on their training procedures.
Code and trained weights are available at https://github.
com/byungdoh/slm_surprisal.

helpful for learning e.g. selectional preferences that

align well with humanlike prediction and process-

ing difficulty. However, as the models see more

training data, they are able to achieve ‘superhuman’

prediction, which makes their surprisal estimates

diverge more and more from human reading times

as training continues. The words for which predic-

tion by LMs improves with massive amounts of

training data are likely to be open-class words like

nouns and adjectives, whose reading times were

identifed as being most severely underpredicted by

their surprisal estimates (Oh and Schuler, 2023).

Moreover, at the end of training, these model

variants show a strictly monotonic and negative

relationship between perplexity and fit to human

reading times. This directly replicates the find-

ings of Oh et al. (2022) and adds to a growing

body of research reporting an inverse correlation be-

tween model size and regression model fit (Kurib-

ayashi et al., 2022; Shain et al., 2022; de Varda and

Marelli, 2023). The current results demonstrate

that this relationship emerges with large amounts

of training data and becomes stronger as training

continues. The bottleneck posed by the limited

model capacity of the smaller variants appears to

prevent them from learning to make excessively

accurate predictions that cause the divergence be-

tween surprisal and human reading times. How-

ever, newly-trained LM variants that are smaller

than those of contemporary standards reveal a ‘tip-

ping point’ at convergence, which indicates that a

certain amount of model capacity is necessary for

LMs to correctly learn humanlike expectations.

Finally, across both experiments, model capacity

does not seem to modulate the relationship between

perplexity and fit to human reading times, with data

points from different LM variants forming a con-

tinuous curve between log perplexity and ∆LL.

This suggests that Transformer-based LMs of dif-

ferent capacities share a similar inductive bias that

initially improves the fit of surprisal estimates to

human reading times but begins to have an adverse

effect on it with large amounts of training data.
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Limitations

The connection between conditional probabilities

of Transformer-based language models and human

sentence processing drawn in this work is based on

language model variants trained on English text and

data from human subjects that are native speakers

of English. Therefore, the connection made in this

work may not generalize to other languages.

Ethics Statement

Experiments presented in this work used datasets

from previously published research (Futrell et al.,

2021; Kennedy et al., 2003), in which the proce-

dures for data collection and validation are outlined.

As this work focuses on studying the connection

between conditional probabilities of language mod-

els and human sentence processing, its potential

negative impacts on society seem to be minimal.
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A Model Capacities and Training

Procedures of Smaller LM Variants

The eight LM variants that were trained as part

of Experiment 2 are decoder-only autoregressive

Transformer-based models that share the same ar-

chitecture as the Pythia LM variants (Biderman

et al., 2023). Their model capacities are summa-

rized in Table 2.

These variants were trained using the GPT-NeoX

library (Andonian et al., 2021) closely following

the training procedures of the Pythia LM variants.7

Identical training batches of 1,024 examples with a

sequence length of 2,048 from the Pile (Gao et al.,

7The only minor difference is that the FlashAttention (Dao
et al., 2022) implementation of scaled dot-product attention
could not be used during training due to a mismatch in GPU
hardware specifications.

Model #L #H dmodel #Parameters

Repro 1-1-64 1 1 64 ∼6M
Repro 1-2-128 1 2 128 ∼13M
Repro 2-2-128 2 2 128 ∼13M
Repro 2-3-192 2 3 192 ∼20M
Repro 2-4-256 2 4 256 ∼27M
Repro 3-4-256 3 4 256 ∼28M
Repro 4-6-384 4 6 384 ∼46M
Repro 6-8-512 6 8 512 ∼70M

Table 2: Model capacities of newly-trained LM variants

whose surprisal estimates were examined in this work.

#L, #H, and dmodel refer to number of layers, number of

attention heads, and embedding size, respectively.

2020) were provided to each variant in the same or-

der as the Pythia variants. The variants were trained

using the Zero Redundancy Optimizer (ZeRO; Ra-

jbhandari et al., 2020) implementation of Adam

(Kingma and Ba, 2015) with a learning rate of

0.001. The learning rate was warmed up linearly

over the first 1% of training steps (i.e. 1,430 steps)

and were subsequently lowered to a minimum of

0.0001 following a cosine annealing schedule over

the remainder of the 143,000 training steps. How-

ever, for computational efficiency, training was

stopped after the first 10,000 training steps. For

comparability with the Pythia variants, intermedi-

ate parameters were saved during early training

stages (i.e. after 1, 2, 4, ..., 256, 512 steps) as well

as after every 500 steps from step 1,000 onward.
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