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Abstract

Recent studies have shown that as Transformer-

based language models become larger and are

trained on very large amounts of data, the fit

of their surprisal estimates to naturalistic hu-

man reading times degrades. The current work

presents a series of analyses showing that word

frequency is a key explanatory factor under-

lying these two trends. First, residual errors

from four language model families on four

corpora show that the inverse correlation be-

tween model size and fit to reading times is the

strongest on the subset of least frequent words,

which is driven by excessively accurate predic-

tions of larger model variants. Additionally,

training dynamics reveal that during later train-

ing steps, all model variants learn to predict

rare words and that larger model variants do

so more accurately, which explains the detri-

mental effect of both training data amount and

model size on fit to reading times. Finally, a

feature attribution analysis demonstrates that

larger model variants are able to accurately pre-

dict rare words based on both an effectively

longer context window size as well as stronger

local associations compared to smaller model

variants. Taken together, these results indicate

that Transformer-based language models’ sur-

prisal estimates diverge from human-like expec-

tations due to the superhumanly complex asso-

ciations they learn for predicting rare words.

1 Introduction

The predictability of linguistic material in its con-

text has been shown to be an important factor of

real-time processing difficulty (Hale, 2001; Levy,

2008), with a large body of empirical work showing

surprisal (Shannon, 1948) to be a strong predictor

of relevant behavioral and neural measures (Dem-

berg and Keller, 2008; Smith and Levy, 2013; Hale

et al., 2018; Shain et al., 2020, i.a.). Therefore, a

core research goal of expectation-based theories of

sentence processing has been to characterize the

latent probability distribution of the human com-

prehender. Language models (LMs) that define a

conditional probability distribution are helpful for

exploring these questions, as they can be trained

to embody different predictive processes and yield

concrete surprisal estimates that can be evaluated

against measures of processing difficulty.

Recent work using surprisal estimates from

Transformer-based LMs has revealed a strong in-

verse correlation between the size of LMs and the

fit of their surprisal estimates to naturalistic human

reading times, where larger models yield surprisal

estimates that are less predictive of reading times

(Oh et al., 2022; Oh and Schuler, 2023b; Shain

et al., 2022; de Varda and Marelli, 2023). Large

amounts of training data have also been shown to

play a detrimental role, with fit to reading times

starting to degrade after LMs see about two billion

tokens (Oh and Schuler, 2023a). This robust in-

verse correlation is meaningful, as it shows that in-

creasingly larger LMs are less appropriate as mod-

els of human cognition, and that human sentence

processing is not driven by the predictions LMs

make with more model parameters and training

data. While open-class words like nouns and ad-

jectives have been identified as driving the adverse

effect of model size (Oh and Schuler, 2023b), how

model size and the training data interact during LM

training to give rise to such systematic divergence

from human-like expectations remains unclear.

Studies on the scaling behavior of large LMs

have recently shown that larger models learn ex-

amples faster by increasing their probabilities to

a greater extent given the same amount of expo-

sure (Tirumala et al., 2022). However, during early

training stages, models of all sizes exhibit similar

next-token predictions by learning to accurately

predict frequent function words (Xia et al., 2023).

This suggests that the difference in surprisal esti-

mates as a function of model size will be modulated

by frequency and will increase as models see larger
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amounts of training data.

Based on these observations, this work presents

a series of analyses showing that word frequency

is a key explanatory factor of the inverse correla-

tion between model size, training data amount, and

surprisal’s fit to reading times. First, residual er-

rors from four LM families on four corpora show

that the inverse correlation between model size and

fit to reading times is the strongest on the subset

of least frequent words, which is driven by exces-

sively accurate predictions of larger model variants.

Moreover, training dynamics reveal that all model

variants learn to predict rare words during later

training steps and larger model variants do so more

accurately, which explains the detrimental effect of

both training data amount and model size on fit to

reading times. Finally, a feature attribution analysis

demonstrates that larger model variants predict rare

words more accurately compared to smaller model

variants based on both an effectively longer con-

text window and stronger local associations. These

results provide evidence that Transformer-based

LMs’ surprisal estimates diverge from human-like

expectations due to the superhumanly complex as-

sociations they learn for predicting rare words.

2 Experiment 1: Effect of Frequency on

Strength of Inverse Correlation

The first experiment examines the influence of

word frequency on the strength of the inverse corre-

lation between model size and fit to reading times

by evaluating surprisal estimates from four LM

families on four corpora of naturalistic reading

times collected through both self-paced reading

and eye-tracking paradigms.

2.1 Response Data

The reading times analyzed in this experiment

come from the Natural Stories Corpus (Futrell et al.,

2021), the Dundee Corpus (Kennedy et al., 2003),

the Ghent Eye-Tracking Corpus (GECO; Cop et al.,

2017), and the Provo Corpus (Luke and Christian-

son, 2018). The Natural Stories Corpus contains

self-paced reading times from 181 subjects that

read 10 naturalistic English stories consisting a to-

tal of 10,245 words. The Dundee Corpus contains

eye-gaze durations from 10 subjects that read 67

English newspaper editorials consisting a total of

51,501 words. The GECO contains eye-gaze dura-

tions from 14 monolingual subjects that read the

English version of the novel The Mysterious Af-

fair at Styles (Christie, 1920), which consists of

13 chapters and 56,441 words. The Provo Corpus

contains eye-gaze durations from 84 subjects that

read 55 short English passages consisting a total of

2,746 words that range from news articles, science

magazines, and works of fiction.

For the Natural Stories Corpus, data points were

filtered to exclude those for sentence-initial and fi-

nal words, those from subjects who answered fewer

than four comprehension questions correctly, and

those shorter than 100 ms or longer than 3000 ms,

which resulted in 384,905 observations in the ex-

ploratory set. For the three eye-tracking corpora,

data points were filtered to remove those for unfix-

ated words, words following saccades longer than

four words, and words at starts and ends of sen-

tences, screens, documents, and lines. This resulted

in a total of 98,115, 144,850, and 52,960 observa-

tions in the exploratory sets of the Dundee Corpus,

GECO, and the Provo Corpus respectively.1 All ob-

servations were log-transformed before regression

modeling, following previous work (e.g. Oh and

Schuler, 2023b).2

2.2 Predictors

This experiment evaluates surprisal estimates from

variants of four LM families, namely the GPT-

2 (Radford et al., 2019), GPT-Neo (Black et al.,

2021, 2022; Wang and Komatsuzaki, 2021), OPT

(Zhang et al., 2022), and Pythia (Biderman et al.,

2023) families. All of these LMs are autoregressive

Transformer-based models whose variants differ

primarily in their size. The hyperparameters of all

examined variants are outlined in Appendix A.

Each chapter or article of the four corpora was

tokenized using each LM’s respective byte-pair en-

coding (BPE; Sennrich et al., 2016) tokenizer and

provided to all variants to calculate surprisal esti-

mates, i.e. − log2 P(wi+1 | w1..i). In cases where

each chapter or article did not fit completely into

one context window, surprisal estimates for the re-

maining tokens were calculated by conditioning on

the second half of the previous context window.

In addition to these surprisal predictors, a set

of baseline predictors that capture low-level pro-

1The exploratory set of each corpus consists of roughly
50% of all data points based on the sum of subject ID and
sentence number. The held-out set is reserved for statistical
significance testing and not analyzed in this work.

2The log-transform implicitly assumes a superlinear link-
ing function between surprisal and reading times, which has
been shown to produce tighter fits for surprisal from larger
LM variants (Shain et al., 2022; Hoover et al., 2023).
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The training dynamics of LMs also show a

strong interaction between frequency and model

size through the course of training. More specif-

ically, model variants of all sizes learn to accu-

rately predict frequent tokens and also show little

difference in surprisal values during early train-

ing steps. However, as they continue to see large

amounts of data, they start learning to predict rare

tokens accurately. It is at this later point in train-

ing where the difference between model variants

begins to manifest, with larger variants learning

to make more accurate predictions of these rare

tokens. These trends are consistent with prior work

on the scaling behavior of large LMs (Tirumala

et al., 2022; Xia et al., 2023), as well as observa-

tions that neural LMs first approximate unigram

and then bigram probabilities during early training

(Chang and Bergen, 2022; Chang et al., 2023).

Residual errors from regression models contain-

ing surprisal estimates at intermediate points dur-

ing LM training show that learning to predict rare

tokens initially improves fit to reading times by pri-

marily improving the prediction of reading times

of these rare words. Nonetheless, as the model vari-

ants continue learning to predict rare tokens, the er-

rors on these reading times begin to increase. Since

larger model variants learn to predict rare tokens

more accurately, the regression models contain-

ing their surprisal estimates also exhibit a steeper

increase in errors. This illustrates the detrimen-

tal effect of training data amount and model size

on fit to reading times, and also explains Oh and

Schuler’s (2023a) observation of the peak in fit to

reading times at around two billion training tokens.

The follow-up feature attribution analysis that

ablates the contribution of early context tokens sug-

gests that larger model variants utilize both an ef-

fectively longer context window and stronger local

associations to predict rare tokens more accurately

than their smaller counterparts. Limiting the num-

ber of tokens in the context window weakens these

associations for predicting rare words, which is

most likely the reason why this improves the fit of

LM surprisal to reading times, as demonstrated by

Kuribayashi et al. (2022).

Taken together, these results indicate that both

model size and large amounts of training data al-

low Transformer-based LMs to learn superhumanly

complex associations for predicting rare words,

which in turn adversely affects fit to human reading

times. In other words, surprisal from model vari-

ants that are smaller and trained on less data yield

a better fit to naturalistic reading times because

they implicitly capture word frequency. This has

important implications for research into whether

frequency effects are dissociable from predictabil-

ity effects in naturalistic reading (e.g. Goodkind

and Bicknell, 2021; Shain, 2019, 2023). One possi-

ble interpretation of the current results is that they

provide support for a strong and dissociable fre-

quency effect, as the subset of rare words is where

LM surprisal estimates diverge most from natural-

istic reading times as a whole. However, they may

also indicate that the excessive number of parame-

ters and training data result in surprisal estimates

that have washed out frequency effects which could

have been explained by predictability.

An interesting direction for future work is ex-

tending the current analyses to data collected in

other languages (e.g. Kuribayashi et al., 2021;

de Varda and Marelli, 2023; Wilcox et al., 2023).

Based on the training dynamics of LMs observed

in this work, to the extent that they are of sufficient

sizes and are trained on large amounts of data, the

explanation based on word frequency is expected

to robustly generalize to data from other languages.

6 Conclusion

This work proposes word frequency as an ex-

planation for the inverse correlation observed

between Transformer-based LMs’ size, training

data amount, and surprisal’s fit to human reading

times. Four LM families on four corpora show the

strongest inverse correlation between model size

and fit to reading times on the least frequent words,

which is driven by the more accurate predictions

of the larger variants. Training dynamics reveal

that all variants learn to predict rare words with

large amounts of data and larger variants do so

more accurately, which explains the detrimental

effect of both model size and training data amount.

These results indicate that the superhumanly com-

plex associations for predicting rare words make

Transformer-based LMs’ surprisal estimates di-

verge from human-like expectations.
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Limitations

The explanation for the dissociation between sur-

prisal estimates from Transformer-based language

models and real-time comprehension difficulty de-

veloped in this work is based on language model

variants trained on English text and data from sub-

jects that are native speakers of English. Therefore,

the proposed explanation may not generalize to

other languages. Other possible limitations include

the assumption of linear effects and the lack of

spillover predictors in regression modeling.

Ethics Statement

This work used data collected as part of previously

published research (Futrell et al., 2021; Kennedy

et al., 2003; Cop et al., 2017; Luke and Christian-

son, 2018). Readers are referred to the respective

publications for more information on the data col-

lection and validation procedures. As this work

focuses on studying the connection between condi-

tional probabilities of language models and human

sentence processing, its potential negative impacts

on society appear to be minimal.
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A Hyperparameters of LM Variants

The hyperparameters of model variants from the

four LM families evaluated in this work are out-

lined in Table 1.
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Model Variant #L #H dmodel #Parameters

GPT-2 Small 12 12 768 ∼124M
GPT-2 Medium 24 16 1024 ∼355M
GPT-2 Large 36 20 1280 ∼774M
GPT-2 XL 48 25 1600 ∼1.6B

GPT-Neo 125M 12 12 768 ∼125M
GPT-Neo 1.3B 24 16 2048 ∼1.3B
GPT-Neo 2.7B 32 20 2560 ∼2.7B
GPT-J 6B 28 16 4096 ∼6B
GPT-NeoX 20B 44 64 6144 ∼20B

OPT 125M 12 12 768 ∼125M
OPT 350M 24 16 1024 ∼350M
OPT 1.3B 24 32 2048 ∼1.3B
OPT 2.7B 32 32 2560 ∼2.7B
OPT 6.7B 32 32 4096 ∼6.7B
OPT 13B 40 40 5120 ∼13B
OPT 30B 48 56 7168 ∼30B
OPT 66B 64 72 9216 ∼66B

Pythia 70M 6 8 512 ∼70M
Pythia 160M 12 12 768 ∼160M
Pythia 410M 24 16 1024 ∼410M
Pythia 1B 16 8 2048 ∼1B
Pythia 1.4B 24 16 2048 ∼1.4B
Pythia 2.8B 32 32 2560 ∼2.8B
Pythia 6.9B 32 32 4096 ∼6.9B
Pythia 12B 36 40 5120 ∼12B

Table 1: Hyperparameters of model variants whose sur-

prisal estimates were examined in this work. #L, #H,

and dmodel respectively refer to number of layers, num-

ber of attention heads per layer, and embedding size.

B Surprisal Values as a Function of

Training Steps

The proportion of surprisal values from the Pythia

LM family as a function of training steps on each

quintile of the four corpora can be found in Figures

7 (Natural Stories), 8 (Dundee), 9 (GECO), and 10

(Provo).

C SSEs From Regression Models as a

Function of Training Steps

The SSEs from regression models containing sur-

prisal predictors from the Pythia LM family as a

function of training steps on each quintile of the

four corpora can be found in Figures 11 (Natural

Stories), 12 (Dundee), 13 (GECO), and 14 (Provo).

2655


















