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ABSTRACT. We introduce a policy model coupled with the susceptible—infected—
recovered (SIR) epidemic model to study interactions between policy-making
and the dynamics of epidemics. We consider both single-region policies, as well
as game-theoretic models involving interactions among several regions, and hi-
erarchical interactions among policy-makers modeled as multi-layer games. We
assume that the policy functions are piece-wise constant with a minimum time
interval for each policy stage, considering policies cannot change frequently in
time or they cannot be easily followed. The optimal policy is obtained by min-
imizing a cost function which consists of an implementation cost, an impact
cost, and, in the case of multi-layer games, a non-compliance cost. We show
in a case study of COVID-19 in France that when the cost function is reduced
to the impact cost and is parameterized as the final epidemic size, the solution
approximates that of the optimal control in Bliman et al, J. Optim. Theory
Appl., 189, 2021, for sufficiently small minimum policy time interval. For a
larger time interval however the optimal policy is a step down function, quite
different from the step up structure typically deployed during the COVID-19
pandemic. In addition, we present a counterfactual study of how the pandemic
would have evolved if herd immunity was reached during the second wave in the
county of Los Angeles, California. Lastly, we study a case of three interacting
counties with and without a governing state.
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2 OPTIMAL POLICY FOR CONTROL OF EPIDEMICS

1. Introduction. In the course of battling COVID-19, public health policies sought
to enforce non-pharmaceutical interventions to slow or halt the spread of the pan-
demic. Common policies included ‘safer-at-home’; ‘social distancing’ and ‘mask
wearing’ mandates, which were seen as crucial during the early stages of the pan-
demic prior to the availability of vaccines. The timeline of COVID-19 globally and
locally ([7, 26]) indicates that the evolution of policy affected the evolution of the
pandemic and vice versa. For example, in the county of Los Angeles, social dis-
tancing was first mandated [9] on March 21, 2020, about a month after the first
reported COVID-19 case in LA. Around that time, the Los Angeles Mayor’s Office
released the ‘safer-at-home’ policy [1]. One week later, beaches, hiking trails, dog
parks, skate parks, and other public sites and facilities were temporarily closed. On
April 15th, as infected cases continued to increase, facial coverings were mandated
in many indoor places [19]. In hindsight, it is important to ask: Were policies that
were enforced done so in an optimal way? What can we learn by using mathematical
modeling to understand the interplay between policy and spread of disease? This
paper introduces a policy model coupled to a susceptible-infected-recovered (SIR)
epidemic model to study interactions between policy-making and the dynamics of
epidemics. There have been several studies on the relationship between policies and
epidemics [4, 5, 21, 6, 18]. In a study analyzing data from 16 US cities during the
1918 pandemic [5], Bootsma and Ferguson analyzed specific outcomes related to
the impact of the delay of lockdown policies on the total deaths and also on the
appearance of second waves of outbreaks due to reopening too early. The analysis
was done fitting available data to an SEIR model. They also considered optimal
control for the simpler SIR and the end-state of the pandemic, noting that there
exists an optimal control level with fewer deaths and no second wave. More re-
cently, Bliman et al. [3] developed a theoretical study of the optimal control of a
classical SIR outbreak. Bliman et al. do not consider the possible of vaccines or
pharmaceutical interventions. Rather, focusing exclusively on non-pharmaceutical
interventions, they design an optimal policy that achieves an end state as close
to the herd immunity threshold as possible. This is the same problem considered
briefly in a section of [5]. Bliman et al. prove the existence and the uniqueness
of their solution and showed the optimal social distancing polity is a bang-bang
controller [2], generalizing the results of [3] by modeling without prescribing the
starting date of the policy.

The substantial theoretical insights of Bliman et al.’s model are limited in their
practical implications by a few assumptions. First, Bliman et al. assume that policy
that can change continuously in time, which would imply, for example, the ability
to shift in three successive instants between no restrictions, perfect “lockdown”,
and back to no restrictions. As observed during the COVID-19 pandemic, policies
that change frequently in time cannot be easily followed. Moreover, policies must
be relatively easy to interpret, with a small number of different intensity levels (see
Fig. 3b). A practical implementation also requires a minimum time duration for a
particular stage of the policy. These practical constraints can be modeled together
as a piece-wise constant function of time with a minimum time interval for each
well-defined policy level (i.e., not continuous). With this idea in mind, we aim
to re-examine the optimal practical policy among all possible piece-wise constant
policies with minimal time duration.

Second, Bliman et al. assume that that the only outcome to manage is the
final epidemic size. This so-called “impact cost” is clearly a central concern (see
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OPTIMAL POLICY FOR CONTROL OF EPIDEMICS 3

below). However, as also seen during the pandemic, there are real trade-offs between
decreased infections and the negative impact of strict policies on other aspects
of society such as remote learning for young students, employment curtailment
in certain job sectors, and lack of key services provided to the public. In the
present work, we modify Bliman et al.’s model to take into account these other
practical “implementation costs.” Specifying a short minimal time interval during
which policies must remain constant (e.g., one week), we find our results resemble
Bliman et al.’s bang-bang controller [3] despite the more complex cost structure
that includes both impact and implementation costs. With a larger minimal time
interval during which time policies must remain constant (e.g., 28 days), optimal
policies depart from the bang-bang solution.

Finally, Bliman et al. also assume a pandemic spreading in an single popula-
tion pool overseen by a single policy-making entity. The reality of the COVID-19
pandemic is that there are policy makers at several (nested) hierarchical scales that
oversee different population pools. For example, within the United States, policies
may be set at Federal, State, County and local levels, not to mention finer-grained
institutional and family scales. And populations at any one scale (e.g., counties)
may interact to varying degrees. Inspired by the work of Jia et al. [14], we intro-
duce a hierarchical version of Bliman et al.’s model with sequential (Stackleberg)
policy-making. Specifically, levels higher in a jurisdictional hierarchy make policy
decisions, while levels lower in the hierarchy make their decisions with full knowledge
of the policy recommendations from above. We find that a hierarchical structure can
make the policies converge in all regions using the right weight for a non-compliance
cost.

The remainder of this paper is organized as follows. We first introduce the
work in [3] and reproduce the results using our methods. We discuss how different
optimal policies result from different parameter choices for model constraints and
costs. Next, we discuss an empirical case study of the so-called “second wave” of the
pandemic (November 6th 2020-May 12th 2021) in Los Angeles County, California.
Last, we use simulation to study optimal control of the pandemic in three counties
with and without a governing state as an example of the multi-layer multi-regional
model.

2. Policy model using optimal control. A policy function is a continuous func-
tion that has a range of [0, 1]. As the numerical value increases, the strictness of the
policy decreases. The Numerical value 0 denotes a total lockdown and 1 denotes no
control. We assume a policy u(t) directly influences the level of a lockdown, which
affects the rate of the population transport from compartment S to I. We use the
following policy-incorporated SIR:

df%” = —u(r)s 80,

T — w5 — 1), "
R (t)

o VI(2),

S(0) =Sy, I(0)=1Iy, R(0)=Ro.

Like the traditional SIR model, the reproduction number Ry = g Herd immu-
nity occurs when a large proportion of the population has become immune to the
infection. Mathematically, it is defined as the value of S below which the number
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4 OPTIMAL POLICY FOR CONTROL OF EPIDEMICS

of infected decrease and can be calculated as Shera = % In [3], a policy wu(t) is
assumed to belong to the admissible set U,, defined by

mavaO
{u € L]0, +00)]), amax < u(t) < 1if ¢t € [0,Tp],u(t) =1if t > Tp}.

The constant Ty characterizes the duration of the policy, and .y its maximal
intensity. In [3], Theorem 2.1 states that no finite time intervention is able to
stop the epidemics before or exactly at the herd immunity. However, one may
stop arbitrarily close to herd immunity by having a sufficiently long intervention of
sufficient intensity. To determine the closest state S to this threshold attainable by
control of maximal intensity aumax on the interval [0, 7p], one is led to consider the
following optimal control problem:

sup  Seo(u). (2)

UEU 0%, T

Furthermore, Bliman et al. prove the existence and uniqueness of the optimal
solution to problem 2 and that the solution is a bang-bang controller (a control
that switches from one extreme to the other). More specifically, they have the
following theorem:

Theorem 2.1. (Theorem 2.1 in [3]) Let amax € [0,1) and Ty > 0. Problem 2
admits a unique solution u*. Furthermore,

(i) the mazimal value S5, , 7 = {maxSoc(u) : u € Un,,,,,
with respect to amax and non-decreasing with respect to Tg .
(ii) there exists a unique Ty € [0,Ty) such that u* = ury = Lo, 1) + Omax Lz 1) +
L7y, 400y (in particular, the optimal control is bang-bang).

T, }18 mon-increasing

3. Single region case. We use the same policy-incorporated SIR model for the
epidemic dynamic as in [3]. Instead of minimizing the final epidemic size alone, we
adopt a similar policy-making process as in [14] by using a cost function that takes
into account the cost of implementing the policy, the impact of the infection and a
penalty for being non-compliant. The latter cost only applies in hierarchical models
where a lower-level unit can choose to not follow the policy recommendation of a
higher-level unit.

We also consider practical implementation constraints, namely that the policy
can only be implemented using a finite number of discrete levels of control and
with a minimal time interval during which a policy must remain constant. As an
example, consider the policy implementation in France during the year 2020 and
2021 shown in Fig. 1 ([27]). Implemented policies were discrete both in terms of the
small number of intervention types and the fixed time intervals of enforcement, the
shortest of which was approximately 15 days in duration, with the longest lasting
more than a year. A discrete policy model is realistic given the empirical pattern
of real-world interventions. Such a model also simplifies the computation problem
of optimal policy discovery by searching through a discrete set of potential policies
rather than a continuum of policies.

3.1. The policy-incorporated SIR model. To model the evolution of the pan-
demic, we discretize the system of ODE using forward Euler’s method with a time
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Timeline of measures

National restrictions (within metropolitan France) relating to the COVID-19 Pandemic
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2020 2021 2022
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Legend

1. [l School closures

2. Closure of restaurants and museums

3. Travel restrictions: il full stay-at-home order, [l part-time curfew,  beyond 100 km
4. Legal regime : [l] sanitary state of emergency, | lifting of state of emergency

5. [l Health pass restrictions

FIGURE 1. Timeline of COVID-19 restrictions in France.

step of 1:

S(t) = S(t — 1) — ap =S

(t) = I(t = 1) + ap BT — a1 — 1),
R(t)=R(t—1)+~I(t—1),

(0) = So, 1(0)=1Io, R(0)=Ry.

~

(3)

W

Where o = u(t — 1). Equation (3) can be seen as a first order approximation of the
system of ODE in (1).

3.2. The policy model.

Policy function. Instead of assuming continuous policy functions, we consider a more
realistic set of policies with a discrete number of different stages and intensity levels.
Therefore, policy functions form a subset of the admissible set U, 1, in [3].

We define the minimal policy time interval (MPTI) as the minimal duration
time during which a policy remains constant or unchanged. This notion assumes
that there is a minimal duration time of different stages of a policy. In addition to
u € Uy, 1,, We assume that every policy u has a minimal policy time interval At
and in our simulations, the duration of each stage is a multiple of the MPTI. We
denote this subset of policy functions as Ll(ﬁfm,TO. In the past, many public health
agencies enforced policies for time periods that corresponded to the work week (e.g.
seven days) or multiples of this (e.g. one month). For the purpose of this paper,
we assume the MPTI is an integer multiple of seven days.

We additionally assume that policy functions take values from a finite number
of intensity levels A C [@max, 1], corresponding to different stages of the policy. In
the simulations, we use A = {amax, am"g‘“ ,1}. As a result, the policies we consider
are piece-wise functions.

Cost function. At time ¢, let u(t) = . The cost at time ¢ is defined by:

C(Oé) _ Kcimplementation(a> + ncimpact (Oé) 4 (1 — k= n)cnon—compliance(a) (4)

The cost function is a linear combination of three parts:
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6 OPTIMAL POLICY FOR CONTROL OF EPIDEMICS

(i) the implementation cost, which represents the consequences of policies meant
to curtail the pandemic on individuals and the broader economic and social
systems.

(ii) the impact cost, which represents the consequences of people getting sick both
on individuals and the broader economic and social systems.

(iii) the non-compliance cost, which is a penalty imposed by a policy-maker upon
an agent within its jurisdiction for deviating from its recommendation (e.g., a
fine or litigation costs).

The implementation cost is a non-increasing function of « and the impact cost
function is a non-decreasing function of «. The coeflicients x, 7,k +n € [0,1]. The
cost from time ¢; to s is defined as the averaged integral of the cost function over
a total time period T .
2
cninl) = 7 [ eato). (5)
t1
There are different ways to parameterize the cost function. In this paper, the cost
function is parameterized in the following way:

2 u(t)dt 1 [t ,
enial) = 1= 25 ) Ry )+ 1=k -n) g [ ()= w(u(e)dr, (6)
t1
where Ry, (u) is the fraction of the recovered population at time to if policy u is
adopted during [t1,t2] and m(u) is the policy of the agent one level above. The pa-
rameterization of the implementation cost and the non-compliance cost are adopted
from [14]. The impact cost is parameterized as the recovered population at time ¢o
to approximate the impact on the medical system since a fraction of the recovered
represents the hospitalized population. If the cost function w is fixed at constant
value o over time interval [t1,ts] , the cost can be written as:
ty — 1 ty — by
— (1= a) + Ry (0) + (1 -k —n) 2 (@ = n(@) (7

An example of cost functions with different weights using the above parameteriza-
tion is shown in Fig. 6. In our simulation for a single region, we use a averaged
total cost over a time period T as the following:

Crotal (U) = %/0 c(u(t))dt

Ctytn (W) = K

TU T
. <1 - f;”“) +nRr(a) + (1 - —7) / (u(t) — m(u(t)))?dt.
(®)

If at time T, the SIR model has reached the equilibrium, we can use Rr(«) to
approximate R, the fraction of the final size of the recovered population. To find
the optimal policy, we solve for the following optimization problem:

u(t) = arg Hvlll/n Crotal (1) (9)

3.3. Algorithm. We discretize time by MPTI At and the policy intensity into
multiple levels. Let T be the total time and A be the set of possible policy intensities
(e.g., A =1{0,0.5,1}). We search for all the policies that lead to Sgnal being close to
Sherd, 1-€. Sfinal > Sherd — €, for some sufficiently small € using a depth-first search
algorithm [23]. The depth-first search algorithm stores the cost up to the current
time interval and reuses this result to obtain the total cost for each policy function
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through backtracking. Let N = Alt and N denote the number of stages of a policy.
In total, there are |A\N policies. We initialize the minimal cost ¢, to be 9999.
Assume the initial susceptible and infected population are Sy, Iy, respectively. For
n-th time interval (n < N), we choose a value from the set intensity levels A that
has not been used before, calculate the cost for the policy intensity, add it to the
previous cost, and calculate the susceptible and the infected at the end of n-th time
interval using the chosen intensity. Then we move to (n + 1)-th time interval. If
the end time interval is reached, we check if Sgpal > Shera — €. If yes, we calculate
the cost for the final time interval and add it to the previous cost to get the current
total cost c. If the total cost ¢ is smaller than cn;,, we update cnin with the total
cost ¢, and the optimal policy uepe with u. Next, we go back to the previous time
interval and repeat the same procedure. After searching over all policies, the policy
with the lowest cost is the optimal policy. The detailed algorithm is presented in
Alg. 1.

Algorithm 1 SINGLE-REGION POLICY SIR

1: Input: Time T, initial infected population [;, initial susceptible
population Sy, intensity levels A, minimal policy time interval At,
policy end time 7, Tol ¢

2: Initialize county policies, minimal cost ¢y, = 9999, current cost ¢ =0
3: N = £7 n=1
4: Initialize policy v € RV, optimal policy Uopt € RV
5. if n == N then
6: for intensity level & € A do
7 calculate Sgna using the intensity level «, Sy—_1, In—_1, and the update rule
(3)
8: if Sgnal > Shera — € then
9: calculate the cost cemp = C(a) for N-th time interval
10: ¢ += Ctemp,u(N) =
11: if ¢ < ¢pin then
12: Cmin = C, Uopt = U
13: end if
14: C —= Ctemp
15: end if
16:  end for
17: else
18:  for intensity level a € A do
19: calculate the cost ciemp = C(a) for the n-th time interval
20: calculate the susceptible S,, and the infected I, at time nAt using «, S, _1,
I,,_1 and the update rule 3
21: € += Ctemp, u(n) = o’
22: n+ =1
23: repeat line 5-22 until n = N
24: n—=1
25: C —= Ctemp
26: end for
27: end if

28: return Cuyin, Uopt
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8 OPTIMAL POLICY FOR CONTROL OF EPIDEMICS

3.4. Simulations. In this section, we present the results for both single-region
and multiple-region cases. We first compare the results of our discretized method
of the COVID-19 in France with the results [3]. Next, we study the second wave
(November 2020-May 2021) in Los Angeles County.

3.4.1. Optimal policy in France. We compare the results from [3] to our model with
the same cost function but only three possible levels of policy intensity . Asin [3],
the general cost function (8) reduces to the impact cost and is parameterized as the
final epidemic size R.,. Bliman et al. assume that the paths considered all reach
herd immunity. Therefore, in our search for the optimal policy, we exclude cases that
do not reach herd immunity. Note that without this exclusion, the optimal solution
is to adopt and hold the strictest possible policy starting from the beginning of the
pandemic. This results in the least number of infections. For ease of computation,
we consider three levels of policy intensity: 0, 0.5, 1 and fixed time intervals for the
MPTI. We use the same set of parameters for the SIR model as in Bliman et al.
[3]: N =6.7x 107, Iy = 103, So = N — Iy, Ro = 2.9. Following [3], we also choose
the policy end time T as close as possible to 100, thus setting T = 98 since the
time interval needs to be a multiple of the MPTI of 7 days. We show the result
our algorithm produces in Fig. 2a which we visually compare to the result from [3],
shown in Fig. 2b. Note that we normalized curves by the total population. Both
solutions are bang-bang controllers. The solution using our model starts the control
on day 63 (a multiple of 7) rather than day 61.9 (continuous). Slightly more people
are infected under a policy that is forced to use seven day intervals compared with
continuous time as used by Bliman et al.

Using a larger minimal policy time interval of 28 days and T = 112, the optimal
solution is no longer a bang-bang controller, as shown in Fig. 2c with a larger So, =
0.32. The optimal policy starts with a looser “intermediate” policy phase followed
by a stricter phase. Interestingly, in practice, during COVID-19 it was common for
policies to start with the strictest restrictions followed by partial opening [27, 9].
Thus, it is interesting to contrast the optimal policy with a policy in which the two
stages are flipped in time, see Fig. 2d. The flipped policy is a sub-optimal solution—
it results in a larger pandemic size and a second wave of infections, as was often
seen during the first two years of the COVID-19 pandemic. Nevertheless, the policy
in Fig. 2d, while infecting more people, divides the impacted population into two
distinctive waves, which could decrease daily hospital demand over the course of the
outbreak. Our policy model does not optimize for hospital demand. Since many
public health agencies (including Los Angeles County) considered hospital demand
when making policy decisions, it could be important to consider in future studies.

H Figure ‘ T() ‘ At ‘ N ‘ I(] ‘ S() ‘ R(] ‘ Ssoo H
A 98 7 6.7x 107 [10° | N =1, [ 2.9 | 0.296
B 100 | Not applicable | 6.7 x 107 [ 103 | N — I, [ 2.9 | 0.31
C 112 28 6.7x107 [103 | N =1, [ 2.9 | 0.32
D 112 28 6.7x107 [103 | N -1, [ 2.9 0.174

TABLE 1. Parameters.

Lu(i) represents the i-th entry of vector wu.
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0.0 0.0 0.0 0.0
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Time (days) Time (days)
(A) Optimal policy with the minimal policy (B) Optimal policy in [3], Sec = 0.31

time interval At = 7 days, Soo = 0.296

1.0 e 1.0 1.0 1.0
0.8 0.8 0.8 0.8
0 B I
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0.2 0.2 0.2 0.2
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(c) Optimal policy with the minimal policy (D) Flipped policy from panel (c), Soc =
time interval At = 28 days, Soc = 0.32 0.174

FIGURE 2. Optimal policy and the SIR model of France from March 17 to May
11 2020. Shera = 0.345.

3.4.2. Case Study—second wave in Los Angeles. We first present the course of in-
fections in three counties in California and their corresponding ‘stay-at-home’ policy
changes from Mar 2020 to Sept 2021. Fig. 3a shows the 7-day rolling average of
the fraction of the daily increased infected cases based on the data from [10] in 3
counties with the largest population density in California, namely, San Francisco,
Orange, and Los Angeles. There were 3 major outbreaks during the given time
interval. For the first and second waves, Orange and Los Angeles Counties followed
similar trajectories, while San Francisco County stayed more contained. Due to
substantial holiday travel in winter 2020-21, the second wave was a much larger
than the first.

In [8], the US Centers for Disease Control and Prevention describes six levels of
‘stay-at-home’ policy. The intensity of the policy decreases as the numerical value
increases. The exact descriptions of the five levels of policies and their numerical
representation are shown in Table 2. Fig. 3b shows the change of the intensity
of the ‘stay-at-home’ policy during the same period. Policy during the first wave
was proactive, whereas for the second wave it was more reactive. This may reflect
some hesitancy on the part of policy-makers as well as lesser compliance by the
population at large by the time the second wave emerged. During the second wave,
with a relatively strict policy, the regions all stayed below herd immunity. With
vaccination available in early 2021, the pandemic in all three regions tapered off.
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H Numerical value ‘ ‘Stay-at-home’ policy H
0 Mandatory for all individuals
0.2 Mandatory only for all individuals in certain areas of the jurisdiction
0.4 Mandatory only for at-risk individuals in the jurisdiction
0.6 Mandatory only for at-risk individuals in certain areas of the jurisdiction
0.8 Advisory /Recommendation
1 No order for individuals to stay home

TABLE 2. CDC stay-at-home policies. There are 6 levels of policies and we
map the levels linearly onto the interval [0,1] for simplicity. The numerical

value on the left is used to graph actual policies over time in Fig. 3b.

1e-3  Fraction of daiy incresed cases Stay-at-home poiicy
1.6
—®- Los Angeies 1.0
1.4 Orange
1.2 —A— San Francisco 0.8
< 1.0 oe
gos , g"
o s
£ 06 0.4
0.4
02 t 0.2 - LA
’ A‘ A oc
0.0 A& ‘ 0.0 —A— SF

00 00 o A 10 Y Y W a0
A a0l oI el el et el gt o on® 00 o0 o® o b ob o b
EN A L RN N i R bl | S

(A) The fraction of the daily increase of the (B) Stay-at-home Policy
infected with a 7-day rolling average.

FIGURE 3. The fraction of the infected and ‘stay-at-home’ policy over time in

Los Angeles, San Francisco, and Orange County.

Now we consider a counterfactual study of how the pandemic would have evolved
had herd immunity been reached during the second wave, controlled by our policy
model, using parameters measured from the Los Angeles data. We choose to study
the period of the second wave for several reasons. First, the data reporting scheme
improved for the second wave compared to the first wave. In addition, with the
experience and knowledge gained from the first wave, authorities were in a better
position to make optimal decisions. Given that there was no complete lockdown
during the second wave, we consider the policy intensity levels A = {0.2,0.6,1}, and
use the minimal policy time interval At = 7. We choose 0.2 as our maximal policy
intensity because full lockdown was not desirable during this period. We choose a
second policy level of 0.6 as the midpoint between 0.2 and 1. In all simulations we
optimize for final pandemic size and compare the optimal controls found.

In Fig. 4, the left column (Figs. 4a, 4c, 4e) is the simulated SIR with the opti-
mal policy when the basic reproduction number Ry = 2.5 and the initial recovered
ro = 0.1,0.2,0.3. The right column (Figs. 4b, 4d, 4f) is the simulated SIR with
the optimal policy when the reproduction number Ry = 2.15 and the initial recov-
ered 79 = 0.1,0.2,0.3. This value Ry = 2.5 is estimated from the early COVID-19
infected data (Jan 22—Mar 15, 2020 [10]) and Ry = 2.15 is estimated using the
infected data from September 16 to November 15, 2021 ([10]), prior to the sec-
ond wave. All optimal policies have a bang-bang-like shape. The policy started
approximately around the peak of the infected curve, and the resulting dynamics
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approach herd immunity. For larger values of rg, we expect that a shorter period of
high intensity policy is needed to reach herd immunity and our results confirm this.
Once enough of the population is infected and recovered, a shorter control policy is
needed.
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FIGURE 4. Optimal policy in Los Angeles with the basic reproduction number
Ro = 2.5,2.15, Sherd = 0.4,0.465, and the fraction of the initial recovered

population rog = 0.1,0.2,0.3, respectively

4. Multi-layer multi-regional case. In this section, we present a multi-regional
model with multiple policy-making layers, extending the model propose by Jia et al
[14] to consider a dynamic epidemic model and control policies discussed above (see
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12 OPTIMAL POLICY FOR CONTROL OF EPIDEMICS

Section 3). Specifically, we propose a game-theoretic model in which regions are
combined into layers, with the top layer corresponding to the highest-level decision
maker (e.g., a federal government), the next layer comprised of the next level of
decision making (e.g., states or provinces), and so on (see Fig. 5). The top decision
maker chooses the policy first, next all the decision makers in the next layer simul-
taneously, and so on. Additionally, we consider a special case in which there are
multiple decision makers (e.g., states, counties, etc) choosing their epidemic control
policies simultaneously in one layer. We use a form of hierarchical best response dy-
namic to compute approximate equilibria in this multi-layer game [14], performing
this computation independently for each time interval (essentially assuming that the
players do not reason explicitly about future dynamics when making instantaneous
policy decisions at a particular point in time).

The multi-region case naturally has a competition between regions to optimize
their strategy with respect to the choices made by other regions. For this reason
the single-region model does not directly extend. There are two main differences
between our work and that of Jia at al. [14]. First, their model is based on Nash
equilibrium, where agents make decisions with other agents’ possible actions in
mind. We use the idea of ‘in-game learning’ [11]. We assume that the agents
gradually evolve towards the best decisions instead of being optimal instantly.In
practice, each region in the game assumes other regions’ policies (at the same level)
stay the same when optimizing its own cost function. Second, we focus on the
dynamics, instead of a snapshot in time considered by Jia et al.

State 1

[ County 1 J [ County 2 ] [ County 3 } [ County 4 ]

FIGURE 5. An example of a three-layer hierarchical structure.

State 2

Network SIR. In practice, counties can hardly be treated as independent. People
travel across county borders to work and socialize. The majority of the literature of
network-style SIR models focus on the individuals as nodes and study the effects of
interpersonal network on the pandemics [16, 17, 20]. For example, [20] empirically
study how well various centrality measures perform at identifying which individuals
in a network will be the best spreaders of disease. In [25], the authors explains why
most COVID-19 infection curves are linear after the first peak in the context of
the contact network using a network SIR model. There are a few works that study
the interplay between different geographical regions rather than the interpersonal
contact network. In [12], a kernel-modulated SIR model was introduced to model
the spread of COVID-19 across counties. The kernel is based on the spatial prox-
imity between regions. Metapopulation epidemic models are based on the spatial
structure of the environment, and detailed knowledge of transportation infrastruc-
ture and movement patterns. The metapopulation dynamics of infectious diseases
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has generated a wealth of models and results using mechanistic approaches taking
explicitly into account the movement of individuals ([13, 15, 22]). For example,
n [22], the authors proposed a multi-regional compartmental model using medi-
cal geography theory (central place theory) and studied the effect of the travel of
individuals (especially those infected and exposed) between regions on the global
spread of severe acute respiratory syndrome (SARS). Another way to account for
the interplay between regions is to use a cross excitation matrix [28]. This scheme
assumes the a uniform mixing of the population across regions and the infected
population in one region can trigger the infection in another. The entries of the
matrix records the pair-wise cross excitation from one region to another. In this
paper, we assume uniform mixing in the population and use an excitation matrix
K = {K,q} to model the travel and infections across counties. Our network-style
SIR is the following:

dSq(t /
d( ) = —Oéaﬁ Za’ Kaa’ L (i\)[fa(t)a
dla(t) a8 Kaa,%)f(t) — I, (1),
dt (10)
dfiy (1)
dt = ’VIa(t>7
S(O) = SOa I(O) = IO? R(O) = RO-

For any county a, the rate of change from S, to I, triggered by I,, depends on
K,q, the current fraction of the susceptible S, in county a and the current fraction
of the infected I,/ in county a’. Note that K,, = 1. When K = I, the network SIR
is the independent SIR.

Cost function. Consider the 4-th time interval [iAt, (i + 1)At] and u(t) = « for
t € [iAt, (i + 1)At]. A Region a adopts the following cost function:

cfAt7(i+1)At(a) = k(1 — a)At/T + naRar(a) + (1 — kg — 1a)(a — 7())2 At/ T,

where R, r(c) is the epidemic size of region a at time T'. For a top-layer region f,
there is no non-compliance cost and the cost function is

ch(@) = k(1 — Q)ALT +nsRyr(a),

where k¢ + 7y = 1 and Ry 7 (c) is the number of the recovered of region f which is
an aggregation of the the epidemic size of its leaf nodes.

4.1. Algorithms. The single region algorithm minimizes over all admissible piece-
wise functions, while the multiple-region algorithm only minimizes over every time
interval. We assume there are up to three layers: federal government, the states,
and the counties. At n-th time interval, we first determine the optimal policy
intensity that minimizes the cost C’f: At (n+1)At for the federal layer. After obtaining
the optimal federal policy, each state optimizes its own cost function C? At (nt1)At
for the period [nAt, (n 4+ 1)At] unilaterally, i.e., assuming other states follow their
previous policies. Next, we choose the optimal policy intensity for the counties in
the same manner. Note that the federal layer does not pay the non-compliance cost
as it is not subject to any higher-level policy making. The states and counties may

pay a non-compliance cost. The full details of the three-layer model is in Alg. 2.

4.2. Simulations. In this section, we present results for a three-county example
of the multiple regions game and a three-county example with a state. First, we
discuss when one layer exists (i.e., only counties). The game between the counties
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0.8
— k=0.33,n=0.33
0.71 k=0.5, N=0.25
061 — k=0.25,n=0.75
— k=08, n=0.1
0.51 — k=0.99, n=0.01

0.4

Cost

0.34

0.2

0.1+

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Po.icy intensity a

Ficure 6. Different cost functions vs policy intensity a.

Algorithm 2 GAME Poricy SIR

1: Input: Time T, excitation matrix K, intensity levels A, time interval
At

2: Initialize state, county policies

3: Number of policy stages N = Alt, n=1

4: while n < N do

5: t = nAt

6: whilet < 7T do

7 for every state s do

8: for every county a in state s do

9: update S,, I, R, according to the current policy a, and the excitation
matrix K:

10: Sa(t) = Sa(t = 1) — @B Y4 Koq Lo R520=1)

11: Lo(t) = Io(t = 1) + 00 Y oy Koo 5= 1, (1 - 1)

12: R,(t) =Ra(t—1)+~I,(t—1)

13: end for

14: end for

15: t+=1

16: end while
17 ap = argmingeca Cim7(n+1)m(a')
18:  for every state s do

19: Qs = arg mingse 4 szAt,(n+1)At(a/)
20: for every county a in state s do

21: Qg = argming e OZAt,(n—&-l)At(O/)
22: end for

23:  end for

24: n+=1

25: end while

is through cross excitation of infection among the counties. Next, we study the case
when a governing state is added.
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We consider three interacting counties with the excitation matrix K:

1 0 0
K=1]01 1 0
0 01 1

We set the reproduction number Ry = 2 and therefore, Sperq = 0.5. Counties 1, 2,
3 have initial fractions of the infected population as ig = 0.2,0.1,0.1, respectively.
This implies that county 1 has a bigger outbreak initially, and part of the infection
in county 2 is excited from county 1 and part of the infection in county 3 is excited
from county 2. The cost functions for all counties consist of an implementation cost
and an impact cost with equal weights (n, = k, = 1/2, for all a). The minimal
policy time interval A is set to be 7 (days).

The left column (Figs. 7a, 7c, 7e) are simulations for the counties without any
intervention and the right column (Figs. 7b, 7d, 7f) are simulations with interven-
tions. Without intervention, we see propagation of waves of infection from county
1 to county 2 and then to county 3. All of the counties reached herd immunity
eventually. With interventions, policy restrictions started on day 7 and, for county
2 and 3, the infected curves decrease before reaching their peaks. With control,
county 1 contained the pandemic and the final S, is close herd immunity level
Sherd. With a fewer infected population to begin with, county 2 and 3 contained
the pandemic before reaching herd immunity. Fig. 8 shows the results of adding
a governing state on top of the county layer. We keep the ratio of the weights for
the implementation cost and the impact cost to be 1:1, the same as in the no-state
case in Fig. 7. The state has slightly different weights, with the ratio of the weights
for the implementation cost and the impact cost being 1:2. Compared to Fig. 7,
by adding a state, the three counties ended up with the same policy. In this case,
the noncompliance cost results in each county choosing the same policy as the state
rather than different policies.

5. Discussion and future work. We propose a policy-making model coupled
with the SIR model to study a single region and game-like interactions between
multiple regions. The model demonstrates its ability to model real-life situations
with different sets of parameters in both one and multiple-region scenarios. One
can extend the model to a hierarchical structure by building multiple layers of the
multiple regions model and study the cross-layer effects.

In the search for an optimal policy, we used a naive depth-first search algorithm
for the one-region model. One can speed up the algorithm by removing some of the
obvious non-optimal paths.

In our model, the policy intensity « is a heuristic representation of the lockdown,
social distancing and mask policy. It remains to be discussed how other policies,
for example, vaccination policies, affects the spreading in the different stages of the
pandemic. The model ignores some of the important features like the limitation of
the hospital capacity [24], which could be added as constraints when minimizing
the cost function. Fig. 3b shows the policy for the first wave is proactive while the
one for the second wave is reactive. One possible effect is from fatigue of following
policy, which increases in time and has a memory. So far, the model does not
have the capability of modeling this fatigue. In the future, one could consider an
adaptive term in the cost function to model it. The network example considered was
rather simplistic, with just three counties within one state. One could consider more
complex systems with multiple layers. The computational method here would likely
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FIGURE 7. An example of three dependent counties without and with inter-
ventions. With intervention, for all counties, the coefficients for the implemen-

tation cost kK = % and the coefficients for the impact cost n = % The minimal

policy time interval At = 7.

need to be improved to address the computational complexity of the search space.
In addition, a potentially important generalization is to capture implementation
and impact costs with more refined cross-layer dependencies, but this is potentially

(F) County 3.

non-trivial from both a modeling and computational perspective.
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