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Abstract. We introduce a policy model coupled with the susceptible–infected–
recovered (SIR) epidemic model to study interactions between policy-making
and the dynamics of epidemics. We consider both single-region policies, as well
as game-theoretic models involving interactions among several regions, and hi-
erarchical interactions among policy-makers modeled as multi-layer games. We

assume that the policy functions are piece-wise constant with a minimum time
interval for each policy stage, considering policies cannot change frequently in

time or they cannot be easily followed. The optimal policy is obtained by min-
imizing a cost function which consists of an implementation cost, an impact

cost, and, in the case of multi-layer games, a non-compliance cost. We show
in a case study of COVID-19 in France that when the cost function is reduced
to the impact cost and is parameterized as the final epidemic size, the solution
approximates that of the optimal control in Bliman et al, J. Optim. Theory
Appl., 189, 2021, for sufficiently small minimum policy time interval. For a
larger time interval however the optimal policy is a step down function, quite
different from the step up structure typically deployed during the COVID-19

pandemic. In addition, we present a counterfactual study of how the pandemic
would have evolved if herd immunity was reached during the second wave in the

county of Los Angeles, California. Lastly, we study a case of three interacting
counties with and without a governing state.
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1. Introduction. In the course of battling COVID-19, public health policies sought1

to enforce non-pharmaceutical interventions to slow or halt the spread of the pan-2

demic. Common policies included ‘safer-at-home’, ‘social distancing’ and ‘mask3

wearing’ mandates, which were seen as crucial during the early stages of the pan-4

demic prior to the availability of vaccines. The timeline of COVID-19 globally and5

locally ([7, 26]) indicates that the evolution of policy affected the evolution of the6

pandemic and vice versa. For example, in the county of Los Angeles, social dis-7

tancing was first mandated [9] on March 21, 2020, about a month after the first8

reported COVID-19 case in LA. Around that time, the Los Angeles Mayor’s Office9

released the ‘safer-at-home’ policy [1]. One week later, beaches, hiking trails, dog10

parks, skate parks, and other public sites and facilities were temporarily closed. On11

April 15th, as infected cases continued to increase, facial coverings were mandated12

in many indoor places [19]. In hindsight, it is important to ask: Were policies that13

were enforced done so in an optimal way? What can we learn by using mathematical14

modeling to understand the interplay between policy and spread of disease? This15

paper introduces a policy model coupled to a susceptible–infected–recovered (SIR)16

epidemic model to study interactions between policy-making and the dynamics of17

epidemics. There have been several studies on the relationship between policies and18

epidemics [4, 5, 21, 6, 18]. In a study analyzing data from 16 US cities during the19

1918 pandemic [5], Bootsma and Ferguson analyzed specific outcomes related to20

the impact of the delay of lockdown policies on the total deaths and also on the21

appearance of second waves of outbreaks due to reopening too early. The analysis22

was done fitting available data to an SEIR model. They also considered optimal23

control for the simpler SIR and the end-state of the pandemic, noting that there24

exists an optimal control level with fewer deaths and no second wave. More re-25

cently, Bliman et al. [3] developed a theoretical study of the optimal control of a26

classical SIR outbreak. Bliman et al. do not consider the possible of vaccines or27

pharmaceutical interventions. Rather, focusing exclusively on non-pharmaceutical28

interventions, they design an optimal policy that achieves an end state as close29

to the herd immunity threshold as possible. This is the same problem considered30

briefly in a section of [5]. Bliman et al. prove the existence and the uniqueness31

of their solution and showed the optimal social distancing polity is a bang-bang32

controller [2], generalizing the results of [3] by modeling without prescribing the33

starting date of the policy.34

The substantial theoretical insights of Bliman et al.’s model are limited in their35

practical implications by a few assumptions. First, Bliman et al. assume that policy36

that can change continuously in time, which would imply, for example, the ability37

to shift in three successive instants between no restrictions, perfect “lockdown”,38

and back to no restrictions. As observed during the COVID-19 pandemic, policies39

that change frequently in time cannot be easily followed. Moreover, policies must40

be relatively easy to interpret, with a small number of different intensity levels (see41

Fig. 3b). A practical implementation also requires a minimum time duration for a42

particular stage of the policy. These practical constraints can be modeled together43

as a piece-wise constant function of time with a minimum time interval for each44

well-defined policy level (i.e., not continuous). With this idea in mind, we aim45

to re-examine the optimal practical policy among all possible piece-wise constant46

policies with minimal time duration.47

Second, Bliman et al. assume that that the only outcome to manage is the48

final epidemic size. This so-called “impact cost” is clearly a central concern (see49
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below). However, as also seen during the pandemic, there are real trade-offs between1

decreased infections and the negative impact of strict policies on other aspects2

of society such as remote learning for young students, employment curtailment3

in certain job sectors, and lack of key services provided to the public. In the4

present work, we modify Bliman et al.’s model to take into account these other5

practical “implementation costs.” Specifying a short minimal time interval during6

which policies must remain constant (e.g., one week), we find our results resemble7

Bliman et al.’s bang-bang controller [3] despite the more complex cost structure8

that includes both impact and implementation costs. With a larger minimal time9

interval during which time policies must remain constant (e.g., 28 days), optimal10

policies depart from the bang-bang solution.11

Finally, Bliman et al. also assume a pandemic spreading in an single popula-12

tion pool overseen by a single policy-making entity. The reality of the COVID-1913

pandemic is that there are policy makers at several (nested) hierarchical scales that14

oversee different population pools. For example, within the United States, policies15

may be set at Federal, State, County and local levels, not to mention finer-grained16

institutional and family scales. And populations at any one scale (e.g., counties)17

may interact to varying degrees. Inspired by the work of Jia et al. [14], we intro-18

duce a hierarchical version of Bliman et al.’s model with sequential (Stackleberg)19

policy-making. Specifically, levels higher in a jurisdictional hierarchy make policy20

decisions, while levels lower in the hierarchy make their decisions with full knowledge21

of the policy recommendations from above. We find that a hierarchical structure can22

make the policies converge in all regions using the right weight for a non-compliance23

cost.24

The remainder of this paper is organized as follows. We first introduce the25

work in [3] and reproduce the results using our methods. We discuss how different26

optimal policies result from different parameter choices for model constraints and27

costs. Next, we discuss an empirical case study of the so-called “second wave” of the28

pandemic (November 6th 2020–May 12th 2021) in Los Angeles County, California.29

Last, we use simulation to study optimal control of the pandemic in three counties30

with and without a governing state as an example of the multi-layer multi-regional31

model.32

2. Policy model using optimal control. A policy function is a continuous func-33

tion that has a range of [0, 1]. As the numerical value increases, the strictness of the34

policy decreases. The Numerical value 0 denotes a total lockdown and 1 denotes no35

control. We assume a policy u(t) directly influences the level of a lockdown, which36

affects the rate of the population transport from compartment S to I. We use the37

following policy-incorporated SIR:38


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



























dS(t)

dt
= −u(t)β I(t)S(t)

N
,

dI(t)

dt
= u(t)β I(t)S(t)

N
− γI(t),

dR(t)

dt
= γI(t),

S(0) = S0, I(0) = I0, R(0) = R0.

(1)

Like the traditional SIR model, the reproduction number R0 = β
γ
. Herd immu-

nity occurs when a large proportion of the population has become immune to the
infection. Mathematically, it is defined as the value of S below which the number
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of infected decrease and can be calculated as Sherd = N
R0

. In [3], a policy u(t) is
assumed to belong to the admissible set Uαmax,T0

defined by

{u ∈ L∞([0,+∞]), αmax ≤ u(t) ≤ 1 if t ∈ [0, T0], u(t) = 1 if t > T0}.

The constant T0 characterizes the duration of the policy, and αmax its maximal1

intensity. In [3], Theorem 2.1 states that no finite time intervention is able to2

stop the epidemics before or exactly at the herd immunity. However, one may3

stop arbitrarily close to herd immunity by having a sufficiently long intervention of4

sufficient intensity. To determine the closest state S to this threshold attainable by5

control of maximal intensity αmax on the interval [0, T0], one is led to consider the6

following optimal control problem:7

sup
u∈Uαmax,T0

S∞(u). (2)

Furthermore, Bliman et al. prove the existence and uniqueness of the optimal8

solution to problem 2 and that the solution is a bang-bang controller (a control9

that switches from one extreme to the other). More specifically, they have the10

following theorem:11

Theorem 2.1. (Theorem 2.1 in [3]) Let αmax ∈ [0, 1) and T0 > 0. Problem 212

admits a unique solution u∗. Furthermore,13

(i) the maximal value S∗
∞,αmax,T0

:= {maxS∞(u) : u ∈ Uαmax,T0
}is non-increasing14

with respect to αmax and non-decreasing with respect to T0 .15

(ii) there exists a unique T ∗
0 ∈ [0, T0) such that u∗ = uT∗

0
:= 1[0,T∗

0
]+αmax1[T∗

0
,T0]+16

1[T0,+∞) (in particular, the optimal control is bang-bang).17

3. Single region case. We use the same policy-incorporated SIR model for the18

epidemic dynamic as in [3]. Instead of minimizing the final epidemic size alone, we19

adopt a similar policy-making process as in [14] by using a cost function that takes20

into account the cost of implementing the policy, the impact of the infection and a21

penalty for being non-compliant. The latter cost only applies in hierarchical models22

where a lower-level unit can choose to not follow the policy recommendation of a23

higher-level unit.24

We also consider practical implementation constraints, namely that the policy25

can only be implemented using a finite number of discrete levels of control and26

with a minimal time interval during which a policy must remain constant. As an27

example, consider the policy implementation in France during the year 2020 and28

2021 shown in Fig. 1 ([27]). Implemented policies were discrete both in terms of the29

small number of intervention types and the fixed time intervals of enforcement, the30

shortest of which was approximately 15 days in duration, with the longest lasting31

more than a year. A discrete policy model is realistic given the empirical pattern32

of real-world interventions. Such a model also simplifies the computation problem33

of optimal policy discovery by searching through a discrete set of potential policies34

rather than a continuum of policies.35

3.1. The policy-incorporated SIR model. To model the evolution of the pan-36

demic, we discretize the system of ODE using forward Euler’s method with a time37
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(i) the implementation cost, which represents the consequences of policies meant1

to curtail the pandemic on individuals and the broader economic and social2

systems.3

(ii) the impact cost, which represents the consequences of people getting sick both4

on individuals and the broader economic and social systems.5

(iii) the non-compliance cost, which is a penalty imposed by a policy-maker upon6

an agent within its jurisdiction for deviating from its recommendation (e.g., a7

fine or litigation costs).8

The implementation cost is a non-increasing function of α and the impact cost9

function is a non-decreasing function of α. The coefficients κ, η, κ+ η ∈ [0, 1]. The10

cost from time t1 to t2 is defined as the averaged integral of the cost function over11

a total time period T :12

ct1t2(u) =
1

T

∫ t2

t1

c(α(t))dt. (5)

There are different ways to parameterize the cost function. In this paper, the cost13

function is parameterized in the following way:14

ct1t2(u) = κ

(

1−

∫ t2

t1
u(t)dt

T

)

+ηRt2(u)+(1−κ−η)
1

T

∫ t2

t1

(u(t)−π(u(t)))2dt, (6)

where Rt2(u) is the fraction of the recovered population at time t2 if policy u is15

adopted during [t1, t2] and π(u) is the policy of the agent one level above. The pa-16

rameterization of the implementation cost and the non-compliance cost are adopted17

from [14]. The impact cost is parameterized as the recovered population at time t218

to approximate the impact on the medical system since a fraction of the recovered19

represents the hospitalized population. If the cost function u is fixed at constant20

value α over time interval [t1, t2] , the cost can be written as:21

ct1t2(u) = κ
t2 − t1

T
(1− α) + ηRt2(α) + (1− κ− η)

t2 − t1
T

(α− π(α))2. (7)

An example of cost functions with different weights using the above parameteriza-22

tion is shown in Fig. 6. In our simulation for a single region, we use a averaged23

total cost over a time period T as the following:24

ctotal(u) =
1

T

∫ T

0

c(u(t))dt

= κ

(

1−

∫ T

0
u(t)dt

T

)

+ ηRT (α) + (1− κ− η)

∫ T

0

(u(t)− π(u(t)))2dt.

(8)
If at time T , the SIR model has reached the equilibrium, we can use RT (α) to25

approximate R∞, the fraction of the final size of the recovered population. To find26

the optimal policy, we solve for the following optimization problem:27

u(t) = argmin
u′

ctotal(u
′) (9)

3.3. Algorithm. We discretize time by MPTI ∆t and the policy intensity into28

multiple levels. Let T be the total time and A be the set of possible policy intensities29

(e.g., A = {0, 0.5, 1}). We search for all the policies that lead to Sfinal being close to30

Sherd, i.e. Sfinal > Sherd − ϵ, for some sufficiently small ϵ using a depth-first search31

algorithm [23]. The depth-first search algorithm stores the cost up to the current32

time interval and reuses this result to obtain the total cost for each policy function33
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through backtracking. Let N = T
∆t

and N denote the number of stages of a policy.1

In total, there are |A|N policies. We initialize the minimal cost cmin to be 9999.2

Assume the initial susceptible and infected population are S0, I0, respectively. For3

n-th time interval (n < N), we choose a value from the set intensity levels A that4

has not been used before, calculate the cost for the policy intensity, add it to the5

previous cost, and calculate the susceptible and the infected at the end of n-th time6

interval using the chosen intensity. Then we move to (n + 1)-th time interval. If7

the end time interval is reached, we check if Sfinal > Sherd − ϵ. If yes, we calculate8

the cost for the final time interval and add it to the previous cost to get the current9

total cost c. If the total cost c is smaller than cmin, we update cmin with the total10

cost c, and the optimal policy uopt with u. Next, we go back to the previous time11

interval and repeat the same procedure. After searching over all policies, the policy12

with the lowest cost is the optimal policy. The detailed algorithm is presented in13

Alg. 1.

Algorithm 1 Single-region policy SIR

1: Input: Time T , initial infected population I0, initial susceptible

population S0, intensity levels A, minimal policy time interval ∆t,
policy end time T0, Tol ϵ

2: Initialize county policies, minimal cost cmin = 9999, current cost c = 0
3: N = T

∆t
, n = 1

4: Initialize policy u ∈ R
N , optimal policy uopt ∈ R

N

5: if n == N then

6: for intensity level α ∈ A do

7: calculate Sfinal using the intensity level α, SN−1, IN−1, and the update rule
(3)

8: if Sfinal > Sherd − ϵ then
9: calculate the cost ctemp = C(α) for N -th time interval

10: c += ctemp,u(N) = α
11: if c ≤ cmin then

12: cmin = c, uopt = u
13: end if

14: c −= ctemp

15: end if

16: end for

17: else

18: for intensity level α ∈ A do

19: calculate the cost ctemp = C(α) for the n-th time interval
20: calculate the susceptible Sn and the infected In at time n∆t using α, Sn−1,

In−1 and the update rule 3
21: c += ctemp, u(n) = α1

22: n+ = 1
23: repeat line 5–22 until n = N
24: n− = 1
25: c −= ctemp

26: end for

27: end if

28: return cmin, uopt
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3.4. Simulations. In this section, we present the results for both single-region1

and multiple-region cases. We first compare the results of our discretized method2

of the COVID-19 in France with the results [3]. Next, we study the second wave3

(November 2020–May 2021) in Los Angeles County.4

3.4.1. Optimal policy in France. We compare the results from [3] to our model with5

the same cost function but only three possible levels of policy intensity α. As in [3],6

the general cost function (8) reduces to the impact cost and is parameterized as the7

final epidemic size R∞. Bliman et al. assume that the paths considered all reach8

herd immunity. Therefore, in our search for the optimal policy, we exclude cases that9

do not reach herd immunity. Note that without this exclusion, the optimal solution10

is to adopt and hold the strictest possible policy starting from the beginning of the11

pandemic. This results in the least number of infections. For ease of computation,12

we consider three levels of policy intensity: 0, 0.5, 1 and fixed time intervals for the13

MPTI. We use the same set of parameters for the SIR model as in Bliman et al.14

[3]: N = 6.7× 107, I0 = 103, S0 = N − I0, R0 = 2.9. Following [3], we also choose15

the policy end time T0 as close as possible to 100, thus setting T0 = 98 since the16

time interval needs to be a multiple of the MPTI of 7 days. We show the result17

our algorithm produces in Fig. 2a which we visually compare to the result from [3],18

shown in Fig. 2b. Note that we normalized curves by the total population. Both19

solutions are bang-bang controllers. The solution using our model starts the control20

on day 63 (a multiple of 7) rather than day 61.9 (continuous). Slightly more people21

are infected under a policy that is forced to use seven day intervals compared with22

continuous time as used by Bliman et al.23

Using a larger minimal policy time interval of 28 days and T0 = 112, the optimal24

solution is no longer a bang-bang controller, as shown in Fig. 2c with a larger S∞ =25

0.32. The optimal policy starts with a looser “intermediate” policy phase followed26

by a stricter phase. Interestingly, in practice, during COVID-19 it was common for27

policies to start with the strictest restrictions followed by partial opening [27, 9].28

Thus, it is interesting to contrast the optimal policy with a policy in which the two29

stages are flipped in time, see Fig. 2d. The flipped policy is a sub-optimal solution—30

it results in a larger pandemic size and a second wave of infections, as was often31

seen during the first two years of the COVID-19 pandemic. Nevertheless, the policy32

in Fig. 2d, while infecting more people, divides the impacted population into two33

distinctive waves, which could decrease daily hospital demand over the course of the34

outbreak. Our policy model does not optimize for hospital demand. Since many35

public health agencies (including Los Angeles County) considered hospital demand36

when making policy decisions, it could be important to consider in future studies.37

Figure T0 ∆t N I0 S0 R0 Ss∞

A 98 7 6.7× 107 103 N − I0 2.9 0.296
B 100 Not applicable 6.7× 107 103 N − I0 2.9 0.31
C 112 28 6.7× 107 103 N − I0 2.9 0.32
D 112 28 6.7× 107 103 N − I0 2.9 0.174

Table 1. Parameters.

1u(i) represents the i-th entry of vector u.
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Numerical value ‘Stay-at-home’ policy

0 Mandatory for all individuals
0.2 Mandatory only for all individuals in certain areas of the jurisdiction
0.4 Mandatory only for at-risk individuals in the jurisdiction
0.6 Mandatory only for at-risk individuals in certain areas of the jurisdiction
0.8 Advisory/Recommendation
1 No order for individuals to stay home

Table 2. CDC stay-at-home policies. There are 6 levels of policies and we

map the levels linearly onto the interval [0, 1] for simplicity. The numerical

value on the left is used to graph actual policies over time in Fig. 3b.
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Figure 3. The fraction of the infected and ‘stay-at-home’ policy over time in

Los Angeles, San Francisco, and Orange County.

Now we consider a counterfactual study of how the pandemic would have evolved1

had herd immunity been reached during the second wave, controlled by our policy2

model, using parameters measured from the Los Angeles data. We choose to study3

the period of the second wave for several reasons. First, the data reporting scheme4

improved for the second wave compared to the first wave. In addition, with the5

experience and knowledge gained from the first wave, authorities were in a better6

position to make optimal decisions. Given that there was no complete lockdown7

during the second wave, we consider the policy intensity levels A = {0.2, 0.6, 1}, and8

use the minimal policy time interval ∆t = 7. We choose 0.2 as our maximal policy9

intensity because full lockdown was not desirable during this period. We choose a10

second policy level of 0.6 as the midpoint between 0.2 and 1. In all simulations we11

optimize for final pandemic size and compare the optimal controls found.12

In Fig. 4, the left column (Figs. 4a, 4c, 4e) is the simulated SIR with the opti-13

mal policy when the basic reproduction number R0 = 2.5 and the initial recovered14

r0 = 0.1, 0.2, 0.3. The right column (Figs. 4b, 4d, 4f) is the simulated SIR with15

the optimal policy when the reproduction number R0 = 2.15 and the initial recov-16

ered r0 = 0.1, 0.2, 0.3. This value R0 = 2.5 is estimated from the early COVID-1917

infected data (Jan 22—Mar 15, 2020 [10]) and R0 = 2.15 is estimated using the18

infected data from September 16 to November 15, 2021 ([10]), prior to the sec-19

ond wave. All optimal policies have a bang-bang-like shape. The policy started20

approximately around the peak of the infected curve, and the resulting dynamics21
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has generated a wealth of models and results using mechanistic approaches taking1

explicitly into account the movement of individuals ([13, 15, 22]). For example,2

in [22], the authors proposed a multi-regional compartmental model using medi-3

cal geography theory (central place theory) and studied the effect of the travel of4

individuals (especially those infected and exposed) between regions on the global5

spread of severe acute respiratory syndrome (SARS). Another way to account for6

the interplay between regions is to use a cross excitation matrix [28]. This scheme7

assumes the a uniform mixing of the population across regions and the infected8

population in one region can trigger the infection in another. The entries of the9

matrix records the pair-wise cross excitation from one region to another. In this10

paper, we assume uniform mixing in the population and use an excitation matrix11

K = {Kaa′} to model the travel and infections across counties. Our network-style12

SIR is the following:13



































dSa(t)

dt
= −αaβ

∑

a′ Kaa′

Ia′ (t)Sa(t)
Na

,

dIa(t)

dt
= αaβ

∑

a′ Kaa′

Ia′ (t)S(t)
Na

− γIa(t),

dRa(t)

dt
= γIa(t),

S(0) = S0, I(0) = I0, R(0) = R0.

(10)

For any county a, the rate of change from Sa to Ia triggered by Ia′ depends on14

Kaa′ , the current fraction of the susceptible Sa in county a and the current fraction15

of the infected Ia′ in county a′. Note that Kaa = 1. When K = I, the network SIR16

is the independent SIR.17

Cost function. Consider the i-th time interval [i∆t, (i + 1)∆t] and u(t) = α for18

t ∈ [i∆t, (i+ 1)∆t]. A Region a adopts the following cost function:19

cai∆t,(i+1)∆t(α) = κa(1− α)∆t/T + ηaRa,T (α) + (1− κa − ηa)(α− π(α))2∆t/T,

where Ra,T (α) is the epidemic size of region a at time T . For a top-layer region f ,20

there is no non-compliance cost and the cost function is21

cf∆t(α) = κf (1− α)∆t/T + ηfRf,T (α),

where κf + ηf = 1 and Rf,T (α) is the number of the recovered of region f which is22

an aggregation of the the epidemic size of its leaf nodes.23

4.1. Algorithms. The single region algorithm minimizes over all admissible piece-24

wise functions, while the multiple-region algorithm only minimizes over every time25

interval. We assume there are up to three layers: federal government, the states,26

and the counties. At n-th time interval, we first determine the optimal policy27

intensity that minimizes the cost Cf

n∆t,(n+1)∆t
for the federal layer. After obtaining28

the optimal federal policy, each state optimizes its own cost function Cs
n∆t,(n+1)∆t29

for the period [n∆t, (n + 1)∆t] unilaterally, i.e., assuming other states follow their30

previous policies. Next, we choose the optimal policy intensity for the counties in31

the same manner. Note that the federal layer does not pay the non-compliance cost32

as it is not subject to any higher-level policy making. The states and counties may33

pay a non-compliance cost. The full details of the three-layer model is in Alg. 2.34

4.2. Simulations. In this section, we present results for a three-county example35

of the multiple regions game and a three-county example with a state. First, we36

discuss when one layer exists (i.e., only counties). The game between the counties37
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Figure 6. Different cost functions vs policy intensity α.

Algorithm 2 Game Policy SIR

1: Input: Time T , excitation matrix K, intensity levels A, time interval

∆t
2: Initialize state, county policies

3: Number of policy stages N = T
∆t

, n = 1
4: while n ≤ N do

5: t = n∆t
6: while t < T do

7: for every state s do

8: for every county a in state s do

9: update Sa, Ia, Ra according to the current policy αa and the excitation
matrix K:

10: Sa(t) = Sa(t− 1)− αaβ
∑

a′ Kaa′

Ia′ (t−1)Sa(t−1)
Na

11: Ia(t) = Ia(t− 1) + αaβ
∑

a′ Kaa′

Ia′ (t−1)S(t−1)
Na

− γIa(t− 1)

12: Ra(t) = Ra(t− 1) + γIa(t− 1)
13: end for

14: end for

15: t += 1
16: end while

17: αf = argminα′∈A Cf

n∆t,(n+1)∆t
(α′)

18: for every state s do

19: αs = argminα′∈A Cs
n∆t,(n+1)∆t(α

′)

20: for every county a in state s do

21: αa = argminα′∈A Ca
n∆t,(n+1)∆t(α

′)

22: end for

23: end for

24: n += 1
25: end while

is through cross excitation of infection among the counties. Next, we study the case1

when a governing state is added.2
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We consider three interacting counties with the excitation matrix K:

K =





1 0 0
0.1 1 0
0 0.1 1





We set the reproduction number R0 = 2 and therefore, Sherd = 0.5. Counties 1, 2,1

3 have initial fractions of the infected population as i0 = 0.2, 0.1, 0.1, respectively.2

This implies that county 1 has a bigger outbreak initially, and part of the infection3

in county 2 is excited from county 1 and part of the infection in county 3 is excited4

from county 2. The cost functions for all counties consist of an implementation cost5

and an impact cost with equal weights (ηa = κa = 1/2, for all a). The minimal6

policy time interval ∆ is set to be 7 (days).7

The left column (Figs. 7a, 7c, 7e) are simulations for the counties without any8

intervention and the right column (Figs. 7b, 7d, 7f) are simulations with interven-9

tions. Without intervention, we see propagation of waves of infection from county10

1 to county 2 and then to county 3. All of the counties reached herd immunity11

eventually. With interventions, policy restrictions started on day 7 and, for county12

2 and 3, the infected curves decrease before reaching their peaks. With control,13

county 1 contained the pandemic and the final S∞ is close herd immunity level14

Sherd. With a fewer infected population to begin with, county 2 and 3 contained15

the pandemic before reaching herd immunity. Fig. 8 shows the results of adding16

a governing state on top of the county layer. We keep the ratio of the weights for17

the implementation cost and the impact cost to be 1:1, the same as in the no-state18

case in Fig. 7. The state has slightly different weights, with the ratio of the weights19

for the implementation cost and the impact cost being 1:2. Compared to Fig. 7,20

by adding a state, the three counties ended up with the same policy. In this case,21

the noncompliance cost results in each county choosing the same policy as the state22

rather than different policies.23

5. Discussion and future work. We propose a policy-making model coupled24

with the SIR model to study a single region and game-like interactions between25

multiple regions. The model demonstrates its ability to model real-life situations26

with different sets of parameters in both one and multiple-region scenarios. One27

can extend the model to a hierarchical structure by building multiple layers of the28

multiple regions model and study the cross-layer effects.29

In the search for an optimal policy, we used a naive depth-first search algorithm30

for the one-region model. One can speed up the algorithm by removing some of the31

obvious non-optimal paths.32

In our model, the policy intensity α is a heuristic representation of the lockdown,33

social distancing and mask policy. It remains to be discussed how other policies,34

for example, vaccination policies, affects the spreading in the different stages of the35

pandemic. The model ignores some of the important features like the limitation of36

the hospital capacity [24], which could be added as constraints when minimizing37

the cost function. Fig. 3b shows the policy for the first wave is proactive while the38

one for the second wave is reactive. One possible effect is from fatigue of following39

policy, which increases in time and has a memory. So far, the model does not40

have the capability of modeling this fatigue. In the future, one could consider an41

adaptive term in the cost function to model it. The network example considered was42

rather simplistic, with just three counties within one state. One could consider more43

complex systems with multiple layers. The computational method here would likely44
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