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Abstract

Predictions of word-by-word conditional proba-

bilities from Transformer-based language mod-

els are often evaluated to model the incremental

processing difficulty of human readers. In this

paper, we argue that there is a confound posed

by the most common method of aggregating

subword probabilities of such language models

into word probabilities. This is due to the fact

that tokens in the subword vocabulary of most

language models have leading whitespaces and

therefore do not naturally define stop proba-

bilities of words. We first prove that this can

result in distributions over word probabilities

that sum to more than one, thereby violating

the axiom that P(Ω) = 1. This property results

in a misallocation of word-by-word surprisal,

where the unacceptability of the end of the cur-

rent word is incorrectly carried over to the next

word. Additionally, this implicit prediction of

word boundaries incorrectly models psycholin-

guistic experiments where human subjects di-

rectly observe upcoming word boundaries. We

present a simple decoding technique to reac-

count the probability of the trailing whitespace

into that of the current word, which resolves

this confound. Experiments show that this cor-

rection reveals lower estimates of garden-path

effects in transitive/intransitive sentences and

poorer fits to naturalistic reading times.

1 Introduction

Language models (LMs), which are trained to make

predictions about upcoming words, are at the core

of many natural language processing (NLP) appli-

cations. While most contemporary applications

involve generating text by sampling from the LMs’

conditional probability distribution, the magnitudes

of the probabilities they assign to each word in a

given sentence have been important from two per-

spectives. The first is from the perspective of LM

interpretability, which aims to study their predic-

tions and the linguistic knowledge encoded in their

representations. A well-established paradigm in

this line of research is what has been dubbed “tar-

geted syntactic evaluation” (Linzen et al., 2016;

Gulordava et al., 2018; Marvin and Linzen, 2018),

in which probabilities of critical words in mini-

mal pairs (e.g. grammatical vs. ungrammatical sen-

tences) are compared.

Moreover, in cognitive modeling, conditional

probabilities from LMs are used to model the word-

by-word reading times of human subjects, often

under the theoretical link that the contextual pre-

dictability of a word determines its processing diffi-

culty (Hale, 2001; Levy, 2008). Recent work in this

line of research has evaluated surprisal estimates

(i.e. negative log probabilities) from LMs and has

shown that surprisal from larger Transformer-based

model variants are less predictive of naturalistic

reading times (Oh and Schuler, 2023b; Shain et al.,

2024; Steuer et al., 2023) and that surprisal greatly

underpredicts the processing difficulty of garden-

path constructions (van Schijndel and Linzen, 2021;

Arehalli et al., 2022; Huang et al., 2024).

As such, while the use of word-by-word proba-

bilities from LMs is popular in computational lin-

guistics research, we argue that there is a confound

for calculating them correctly that has gone un-

addressed. This confound is posed by subword

tokenization schemes (e.g. byte-pair encoding; Sen-

nrich et al., 2016) that are used to define the token-

level vocabulary for training most contemporary

LMs (e.g. AI@Meta, 2024; Google Gemini Team,

2024; Jiang et al., 2023). For languages that use

whitespace orthography, these subword tokeniza-

tion schemes often build the whitespace character

directly into the front of the tokens, thereby result-

ing in leading whitespaces. As a consequence, the

stop probability of a word (i.e. the probability of

the trailing whitespace) is never explicitly calcu-

lated, and therefore the sum over the probabilities

of all possible whitespace words can exceed one.

We propose a simple and efficient decoding
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In Example 4, when human readers see mat, they

know that the next keystroke will reveal a new

whitespace-delimited word (analogous to observ-

ing that the next token will be in VB) and not trans-

form it into e.g. matron (analogous to observing

that the next token will be in VI). In contrast, LMs

define a probability distribution over both VB and

VI after the token mat in the sequence The cat sat

on the mat.

While this confound is more apparent in the self-

paced reading paradigm, this is also a potential con-

found for studying data collected through the typi-

cal eye-tracking paradigm. This is because native

speakers of languages with whitespace orthogra-

phies have been shown to be sensitive to the loca-

tion of upcoming whitespaces through parafoveal

processing and utilize this information to plan eye

movements (Pollatsek and Rayner, 1982; Rayner

et al., 1998; Perea and Acha, 2009). Therefore,

although information about word boundaries is not

directly built into the design of the paradigm, it

can be argued that human subjects engaged in the

eye-tracking paradigm also face little uncertainty

about upcoming word boundaries.

2.3 Proposed Solution: Whitespace-Trailing

Decoding

This inconsistency and confound can be resolved

by reaccounting the probability of the trailing

whitespace as part of the word’s probability, in

lieu of that of the leading whitespace as LMs cur-

rently do (Examples 2 and 3). To this end, we pro-

pose whitespace-trailing (WT) decoding. Given a

word wt+1 that consists of subword tokens xnt+1..nt+1
,

where nt is the total number of subword tokens

in the word sequence w1..t, and xnt+1∈VB, and

xnt+2..nt+1
∈VI , WT decoding reallocates the prob-

ability of the leading whitespace of each word to

its previous word:3

P(w′t+1 | w
′
1..t) =

P(wt+1 | w1..t) ·
P(xnt+1+1∈VB | w1..t+1)

P(xnt+1∈VB | w1..t)
. (5)

3See Appendix A for the proof that WT decoding results
in consistent word probabilities. However, we note that WT
decoding does not resolve other issues with subword units
that may be addressed by re-training LMs with different to-
kenization schemes (e.g. Nair and Resnik, 2023), which can
nonetheless be expensive. Concurrent work by Pimentel and
Meister (2024) points out this same issue and also proposes
WT decoding.

For instance, applying Equation 5 to Example 3

yields:

P(mat� | I�was� a�) =

P(�mat | I �was �a) ·
P(� | I �was �a �mat)

P(� | I �was �a)
. (6)

As WT decoding simply involves the factoriza-

tion of whitespace probabilities by marginalizing

over tokens in VB and rearranging them, it requires

no modifications to the LM and minimal over-

head. Additionally, the joint probability of the

entire sequence, and therefore metrics like perplex-

ity, changes minimally by a factor of the probability

of the final trailing whitespace with WT decoding.

As can be seen in Figure 1b, incorporating the

probabilities of trailing whitespaces correctly dif-

ferentiates between matron and mat in this context,

and removes the inherent relationship between the

two probabilities that holds with leading whites-

paces. Additionally, the ‘unacceptability’ of mat

that was incorrectly carried over to �in in Example

3 is now reflected in P(mat� | I� was� a�).

LM probabilities with trailing whitespaces are

also better aligned with the self-paced reading

paradigm where the upcoming word boundaries

are directly observed. For example, the calculation

of P(mat� | The� cat� sat� on� the�) precludes the

prediction of tokens in VI directly after mat, which

correctly reflects the fact that the next keystroke in

Example 4 will reveal a new whitespace word.

3 Experiment 1: Surprisal-Based

Estimates of Garden-Path Effects

Equation 6 shows that WT decoding will result

in an increase (or decrease) in probability to the

extent that the next token is likely to be in VB pro-

portional to the extent that the first token of the

current word was likely to be in VB. The first experi-

ment demonstrates that the confound posed by lead-

ing whitespaces affects surprisal-based estimates

of garden-path effects in transitive/intransitive sen-

tences (Mitchell, 1987; Gorrell, 1991), which is

caused by syntactic disambiguation that takes place

at the critical word (highlighted in magenta).

After the doctor left the room turned very dark ... (7)

The same critical word in the control counterpart is

thought to be easier to process, as the verb left is

disambiguated by the comma.

After the doctor left, the room turned very dark ... (8)
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Limitations

The confound in the connection between word-

by-word conditional probabilities of Transformer-

based language models and human reading times

identified in this work is supported by experiments

using language model variants trained on English

text and data from human subjects that are native

speakers of English. Therefore, the confound iden-

tified in this work may not generalize to other lan-

guages, in particular those that do not use whites-

pace orthography. Additionally, this work is con-

cerned with the use of language models as cognitive

models of human sentence processing, and there-

fore does not relate to their use in natural language

processing applications, such as text generation,

summarization, or question answering.

Ethics Statement

This work used data collected as part of previously

published research (Huang et al., 2024; Luke and

Christianson, 2018; Futrell et al., 2021; Kennedy

et al., 2003). Readers are referred to the respec-

tive publications for more information on the data

collection and validation procedures. As this work

focuses on studying the connection between condi-

tional probabilities of language models and human

sentence processing, its potential negative impacts

on society appear to be minimal.
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A Proof of Consistent Word Probabilities With Whitespace-Trailing Decoding

Theorem 2 Applying whitespace-trailing decoding results in word probabilities that satisfy the Kol-

mogorov (1933) axiom that P(Ω) = 1.

Proof In the context of predicting wt+1 given w1..t, the sample space is Ω = {xnt+1..nt+1
|

xnt+1∈VB, xnt+2..nt+1
∈VI , {nt, nt+1}⊂N, nt+1>nt}, where nt is the total number of subword tokens in the

word sequence w1..t, and nt+1 is the total number of subword tokens in the word sequence w1..t+1. There-

fore, P(Ω) is the total sum of word probabilities when nt+1 − nt = 1, 2, 3, ... .

The sum of word probabilities according to Equation 5 when nt+1 − nt = 1 is:

∑

j1∈VB

P(xnt+1= j1 | w1..t) ·
P(xnt+2∈VB | xnt+1= j1,w1..t)

P(xnt+1∈VB | w1..t)
=

P(xnt+1∈VB, xnt+2∈VB | w1..t)

P(xnt+1∈VB | w1..t)

= P(xnt+2∈VB | xnt+1∈VB,w1..t). (9)

More generally, the sum of word probabilities when nt+1 − nt ≥ 2 is:

∑

j1∈VB

j2..(nt+1−nt )∈VI

P(xnt+1..nt+1
= j1..(nt+1−nt) | w1..t) ·

P(xnt+1+1∈VB | xnt+1..nt+1
= j1..(nt+1−nt),w1..t)

P(xnt+1∈VB | w1..t)

= P(xnt+2..nt+1
∈VI , xnt+1+1∈VB | xnt+1∈VB,w1..t). (10)

P(Ω) can then be calculated as the following series that sums over disjoint subspaces of Ω:

P(Ω) = P(xnt+2∈VB | xnt+1∈VB,w1..t) +

P(xnt+2∈VI , xnt+3∈VB | xnt+1∈VB,w1..t) +

P(xnt+2∈VI , xnt+3∈VI , xnt+4∈VB | xnt+1∈VB,w1..t) +

P(xnt+2∈VI , xnt+3∈VI , xnt+4∈VI , xnt+5∈VB | xnt+1∈VB,w1..t) +

... , (11)

which approaches P(xnt+2∈VB | xnt+1∈VB,w1..t) + P(xnt+2∈VI | xnt+1∈VB,w1..t) = 1 in the limit. �

B Preprocessing Procedures for Naturalistic Reading Time Corpora

The Natural Stories Corpus (Futrell et al., 2021) provides self-paced reading times from 181 subjects

that read 10 English stories (10,256 words), which were filtered to exclude those shorter than 100 ms or

longer than 3000 ms, those of sentence-initial and -final words, and those from subjects who answered

fewer than four comprehension questions correctly. Approximately 50% of the observations (384,905

observations) selected based on the sum of the subject index and the sentence index was used to fit the

LMER models and calculate ∆LL.

The Dundee Corpus (Kennedy et al., 2003) provides fixation durations from 10 subjects that read 67

English newspaper editorials (51,501 words), which were filtered to exclude those from unfixated words,

those of words following saccades longer than four words, and those of sentence/document/line/screen-

initial and -final words. Again, approximately 50% of the observations (98,115 observations) selected

based on the sum of the subject index and the sentence index was used to fit the LMER models and

calculate ∆LL.

C Increase in Regression Model Log-Likelihood Without WT Decoding

The increase in regression model log-likelihood due to including surprisal estimates from Pythia LM

variants calculated without WT decoding can be found in Figure 4.
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