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We present CoSense, a system that enables coexistence of networking and sensing on next-generation
millimeter-wave (mmWave) picocells for tra!c monitoring and pedestrian safety at intersections in all
weather conditions. Although existing wireless signal-based object detection systems are available, they suf-
fer from limited resolution and their outputs may not provide su!cient discriminatory information in com-
plex scenes, such as tra!c intersections. CoSense proposes using 5G picocells, which operate at mmWave
frequency bands and provide higher data rates and higher sensing resolution than traditional wireless tech-
nology. However, it is di!cult to run sensing applications and data transfer simultaneously on mmWave
devices due to potential interference, and using special-purpose sensing hardware can prohibit deployment
of sensing applications to a large number of existing and future inexpensive mmWave devices. Additionally,
mmWave devices are vulnerable to weak re"ectivity and specularity challenges, which may result in loss of
information about objects and pedestrians. To overcome these challenges, CoSense design customized deep
learning models that not only can recover missing information about the target scene but also enable coexis-
tence of networking and sensing. We evaluate CoSense on diverse data samples captured at tra!c intersections
and demonstrate that it can detect and locate pedestrians and vehicles, both qualitatively and quantitatively,
without signi#cantly a$ecting the networking throughput.
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ulations;
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1 Introduction
In 2021, a staggering 7,500 pedestrian fatalities were reported in the United States as a result of
vehicular collisions [1]. According to the US Department of Transportation, over 50% of fatal or
injurious road accidents occur at or in close proximity to tra!c intersections [2]. Most, if not
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all, of these deaths and injuries can be prevented by proactively warning the drivers, vehicles,
and pedestrians [3], for example, by notifying the pedestrian of oncoming vehicles at a cross
walk or by enabling smarter speed control for vehicles near tra!c interactions. While the advent
of full driving automation (i.e., Level 5 autonomy [4]) holds promise for a future without such
tragedies, there is a pressing need for an interim solution at intersections to reduce the frequency
of these incidents. Such a system can also collect important statistics and telemetry information,
such as real-time pedestrian and vehicular tra!c at intersections, their speeds, vehicle proximity
to intersection stop bars, occupied lanes, and vehicle types, which can enable a variety of
applications related to tra!c monitoring and management. Existing vision-based sensors, such
as cameras and LiDARs, provide powerful tools to not only measure such tra!c behavior at
intersections but also improve pedestrian safety. However, the performance of the vision-based
sensors are often signi#cantly impaired by the scene conditions, such as no ambient lights or
poor visibility during nighttime, heavy rain, or dense fog.

Wireless signal–based object detection systems can alleviate such a problem. A wireless device
can illuminate the target scene by transmitting wireless signals and receiving them bouncing o$
of di$erent objects. Based on the time-of-"ight and angle of re"ections, this device can map the
entire environment and “see” the static and dynamic objects within it, even under low visibility
and poor weather conditions. Traditionally, these systems rely on Wi-Fi/LTE devices or special-
purpose radars to transmit and receive low-frequency signals and capture information about ob-
jects and activities [5–8]. However, the information provided by these systems is limited in res-
olution due to the long wavelength and narrow bandwidth operations. The outputs from these
systems may also lack meaningful discriminatory information on par with the vision-based sys-
tems, e.g., RGB or depth cameras [9–11]. This is particularly true in complex scenes, such as tra!c
intersections, where the outputs from these low-frequency wireless systems may not provide suf-
#cient discriminatory information to distinguish objects, humans, and their characteristics, such
as location, walking or driving direction, and speed.

Fortunately, next-generation wireless networking devices operating at higher frequency, such
as 5G picocells [12], o$ers a solution to this issue. These networking devices have built-in
millimeter-wave (mmWave) technology, which o$ers a substantially higher data rate than tra-
ditional wireless technology and can host multiple, palm-sized antenna arrays to create hundreds
of beams for serving mobile users. Due to the short wavelength and wide bandwidth operation of
mmWave signals, each picocell can also function as a high-precision environment sensor. With a
wider contiguous bandwidth and multiple antennas, mmWave sensing can detect objects in harsh
weather conditions with more detail, such as their shape and bounding box. Thus, these devices
can be incorporated into roadside infrastructures, particularly at tra!c intersections, to provide
high-resolution monitoring of vehicles and pedestrians. Existing research works have also demon-
strated the potential of mmWave for a range of applications, such as identifying human postures
for exercise monitoring [13, 14], detecting small objects [15, 16], sensing soil characteristics [17, 18],
and detecting vehicle occupancy [19, 20]. Furthermore, the shorter wavelength and wider band-
width of mmWave signals, compared with traditional Wi-Fi or LTE signals, theoretically allows
for higher-resolution capture of the target scene. Additionally, mmWave devices provide an ad-
vantage over camera-based systems during poor weather and low visibility conditions, as wireless
signals can penetrate through some obstructions such as dense fog, while lights cannot. Thus, the
ubiquity of mmWave technology in 5G-and-beyond devices, such as the picocells in roadside infras-
tructure, enables the opportunity to bring tra!c monitoring and pedestrian safety at intersections in
all weather conditions. However, the design of mmWave sensing on networking devices presents
two challenges.
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First, although mmWave devices are good environmental sensors, it is di!cult to simultane-
ously run sensing applications and data transfer. For instance, if a pedestrian walks in front of
an mmWave picocell while it is streaming data, it can disrupt the Line-of-Sight (LOS) commu-
nication path. While its beam can be steered towards the Non-Line-of-Sight (NLOS) path or
networking and sensing operations can be time-multiplexed to reduce interference, these can neg-
atively impact both pedestrian detection accuracy and network performance by reducing through-
put, increasing latency, and disrupting the delivery of packets to critical applications. A strawman
approach for networking-sensing coexistence is to augment devices with special-purpose sens-
ing hardware to use di$erent parts of the mmWave spectrum and avoid interference. However,
this will prohibit deployment of the sensing applications to a large number of existing and future
inexpensive mmWave devices.

Second, mmWave devices are vulnerable to more specular and variable re"ectivity challenges
(compared with Wi-Fi or LTE) due to their high-frequency operations. Thus, depending on
the location, orientation, and absorption properties of objects and pedestrians on the road,
the signals transmitted may not reach back to the device [21–23]. This can result in a loss of
information about objects and pedestrians as well as di!culties in accurately capturing their
properties.

To address these challenges, we present CoSense, which seamlessly integrates networking and sens-
ing on picocells without compromising performance in all weather conditions. Existing approaches
have used mmWave signals for pedestrian and vehicle detection at tra!c intersections using
dedicated sensing hardware, such as radar, with high data acquisition rates [24, 25]. However, as
CoSense designs sensing applications on networking devices, high acquisition is infeasible due to
the need to share time between networking and sensing. Thus, we #nd opportunistic idle times
within the data transfer for sensing, allowing only partial temporal observation. Additionally, each
sensing sample only allows partial spatial observation due to specularity and weak re"ectivity.
To this end, CoSense designs deep learning augmented models to recover the missing information
in space and time.

The key idea is to learn the representation of mmWave re"ections to the pedestrian and ob-
ject properties from visual data in clear weather conditions by identifying patterns from several
examples. However, instead of trying to learn thousands of pixels in high-resolution visual im-
ages from only a few space and time samples in the mmWave re"ected signals, which could lead
to a network divergence during learning, CoSense divides the learning task into two networks.
First, it designs customized conditional Generative Adversarial Networks (cGAN) for object
detection model [26] to learn the pedestrians and objects, assuming that the sensing samples are
continuously available. Then, it augments the residual networks with a custom-designed decon-
volution layer that identi#es the missing sensing samples in time with dynamic frame prediction
from past frame and velocity information and recovers information about the scene. To assist the
deep learning model in comprehending visual data and distinguishing static and dynamic scenes,
CoSense produces image-like outputs from the mmWave re"ected signals by generating heatmaps
for static and dynamic objects (see Figure 1). The CoSense output includes depth images of pedes-
trians and vehicles, which contain bounding boxes of objects and their average depth from the
device, enabling precise location of objects in the environment. Furthermore, consecutive frames
of depth images enable the estimation of object velocities, an essential metric for anticipating and
avoiding pedestrian collisions.

Due to the lack of open-source mmWave datasets at the tra!c intersection, we implement and
evaluate CoSense by collecting datasets from a custom-designed experimental setup. The setup
consists of a Commercial-O!-The-Shelf (COTS) mmWave cascade device [27, 28] and a ZED
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Fig. 1. CoSense predicts the bounding box of pedestrians irrespective of the environmental conditions.

stereo camera [29] to collect the mmWave and ground-truth data samples. As there is currently
no open-source mmWave platform that supports 5G communication, we simulate a Ray-Tracing-
based 5G communication protocol [30] with the same hardware parameters as our experimental
setup to evaluate the joint networking and sensing tasks. For training, benchmarking, and testing
the design, we have collected ∼1.67 TB of data samples over a 6-month period. To evaluate the
performance of CoSense, we use well-established metrics such as the Intersection-over-Union
(IoU) [31], Multi-Scale Structural Similarity Index Measure (MS-SSIM) [32], and pixel-to-
pixel errors [33] to identify pedestrians and vehicles. Our results show that CoSense can identify
pedestrians and vehicles with a median IoU of 0.55 and 0.63 with regard to the ground truth visual
images for pedestrian and vehicle detection, respectively, indicating a good match. Additionally,
the mean depth error for both pedestrians and vehicles is less than 0.66 m on 90th percentile data.
Our context-aware model reduces sensing overhead by 70% while maintaining a good detection
performance, with only a 27% drop in median IoU, a 3.5% drop in MS-SSIM, and only a ∼15%
drop in the data throughput. The mean depth error for 90th percentile data increases from 0.16 m
to 0.35 m, which is tolerable for outdoor applications. Finally, our system demonstrates accurate
predictions of pedestrian bounding boxes and mean depth in foggy weather conditions, indicat-
ing that CoSense is e$ective in challenging environments such as tra!c intersections with poor
visibility.

In summary, we have the following contributions: (1) We propose a custom cGAN-based object
detection network to detect and locate pedestrians and vehicles, and evaluate it with experimental
datasets from a COTS mmWave device. (2) We recover the unobserved heatmaps from previous
heatmaps using a residual network to enable joint networking and sensing with a single mmWave
device. To accelerate the research on joint networking and sensing at mmWave, we will open-
source our measured dataset, 5G simulator, and deep learning codebase.
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Fig. 2. (a) An illustration of sensing with mmWave picocell at a tra!ic intersection. (b) Picocell communica-
tion to the user through Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) paths.

2 Background & Fundamentals
2.1 Millimeter-Wave Picocells, Networking, and Sensing

2.1.1 Picocell Fundamentals. Picocell technology is a next-generation cellular network solution
that o$ers wireless coverage in a small geographic area, such as a residential or commercial space.
Unlike traditional macrocell networks, picocell networks are characterized by their small size, fast
deployment, and lower infrastructure costs. They are widely used today to provide 5G/mmWave
connectivity in challenging environments such as areas with high-rise buildings or rural locations,
as well as to enhance the existing macrocell network capacity in areas experiencing high user den-
sity. Picocell devices use electronically steerable beams and communicate on very high frequency
and wide bandwidth to achieve substantially higher data rates than traditional wireless networks
at a short distance. Figure 2 shows a picocell installed at a tra!c intersection on a pole [34–36].

2.1.2 5G/Millimeter-Wave Networking. With the capability to transmit data at 10 s of gigabits
per second (Gbps), 5G networks promise to support next-generation applications in streaming;
virtual, augmented, and extended reality; telepresence; and network slicing that enables providers
to divide the network into multiple virtual stacks with distinct service requirements. 5G New
Radio (NR) represents a signi#cant improvement over 4G/LTE, enabling enhanced mobile broad-
band with high data rates, supporting a large number of Internet-of-Things (IoT) devices with
variable bandwidth needs, and providing ultra-reliable and low-latency communication (up to 1
ms) [37]. NR devices leverage mmWave as its core technology, with a center frequency of up to
90 GHz and a combined spectrum over 10 GHz, and use beam-forming and spatial multiplexing
techniques to achieve high data rates for multiple users [37, 38]. In addition, they use high subcar-
rier spacing (SCS) up to 240 KHz and can con#gure multiple bandwidth con#gurations within
a single device [37, 39]. Typically, 5G frames are 10 ms long, with 10 subframes and with 15 KHz
SCS. Each slot length is 1 ms, supporting up to 14 OFDM symbols [39]. Increasing the SCS to 240
KHz reduces the slot duration to 0.0625 ms, which improves latency and increases transmission
e!ciency [37].

2.1.3 Millimeter-Wave Sensing. Recently, mmWave wireless sensing technology has been gain-
ing widespread use across various domains, including security and surveillance, industry, and au-
tomotive [40–43]. For example, in security and surveillance applications, mmWave sensing can be
used for high-resolution imaging of hidden, contra-band, and hazardous materials; target tracking;
situational awareness; detecting intruders; and tracking people and vehicles. In industrial applica-
tions, it can be used to detect objects and their properties non-destructively, measure temperature,
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Fig. 3. (a) E!ect on data throughput to the user with di!erent sensing overheads. (b) Number of pedestrians
missed per second with joint networking and sensing tasks.

and detect motion. In automotive applications, it can be used for detecting pedestrians, control-
ling cruising speed, providing collision warnings, and assisting in parking. The main motivation
for using mmWave sensing for object detection is that it works in harsh weather conditions and
provides more detail than traditional radars, which provide only the distance and velocity of an
object without its category and semantic features. The shorter wavelength and wider bandwidth of
mmWave signals allow a better perception of the environment than the traditional low-frequency
signals (used by existing Wi-Fi or LTE devices). Such perception also works under low-light or
harsh weather conditions, since the wireless signal is (almost) una$ected by such environmental
conditions at a short distance. Since 5G picocells, installed at tra!c light poles, are equipped with
such mmWave technologies, they can be repurposed for sensing applications. The use of a large
number of transmitter and receiver antennas and GHz-wide bandwidth in 5G picocells can also
provide better angle and depth resolutions and more accurate perception of objects in the target
scene than traditional Wi-Fi or LTE. However, it should be noted that not all re"ected signals may
reach the mmWave receiver due to specularity and weak re"ectivity, leading to the loss of some
information about the scene.

2.2 Challenges in Joint Networking and Sensing
The integration of networking and sensing capabilities within a single mmWave picocell poses sig-
ni#cant challenges due to the potential for one function to adversely a$ect the performance of the
other. One possible approach to addressing this challenge is through spectrum sharing, whereby
a portion of the available spectrum is dedicated to networking and another portion is dedicated to
sensing. However, this approach can lead to reduced e$ective bandwidth for both tasks, which in
turn can negatively impact throughput performance and sensing resolution. Alternatively, spatial
multiplexing can be used to enable separate transceiver pairs to direct their beams toward data
users and the environment for networking and sensing, respectively. However, this may result in
a wider beam and reduced power due to the direct correlation between transmitted power and the
number of transceiver pairs used for beamforming. Although time-sharing could be a potential
solution whereby dedicated time slots are used for networking and sensing, allowing for full band-
width and transmitted power to be leveraged for each task, it can still impact the performance of
both networking and sensing.

Impact on Networking: To understand the impact of allocating dedicated time slots for mmWave
sensing on network performance, we conducted simulations of a 5G network operating at a tra!c
intersection (following [30]), in which we employed a time-sharing approach to allocate dedicated
time slots for networking and sensing. Figure 3(a) demonstrates a linear decrease in throughput
to the users with increasing sensing overheads for two distinct signal-to-noise ratios. Thus, mini-
mizing the sensing overhead is crucial to maximizing the data throughput for the users.
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Fig. 4. System overview of CoSense.

Impact on Sensing: Reducing the sensing duration can result in signi#cant inaccuracies in tra!c
monitoring, such as an increased number of pedestrians missed by the device. Figure 3(b) shows
that reducing the sensing frequency can lead to a greater average number of pedestrians missed
per second. For instance, when sensing frequency is reduced to 30% of the time, more than three
pedestrians are missed on 20% of the occasions. As tra!c intersections tend to experience high
pedestrian activity, it is critical to detect all pedestrians accurately to ensure their safety. The
absence of data samples at all timestamps mostly impacts the precision of object detection and
emphasizes the importance of balancing the networking and sensing requirements.

3 CoSense Design
3.1 System Overview
The CoSense system provides a solution to the aforementioned challenges by enabling an existing
mmWave device to perform joint communication and sensing tasks. CoSense follows the time-
sharing approach for the coexistence of networking and sensing. This system can be deployed
in various picocells to enhance pedestrian safety at tra!c intersections. To train the model, the
CoSense system uses an mmWave cascade device and a ZED stereo camera pair to collect a large
dataset of samples from tra!c intersections. The mmWave samples are processed using one-
dimensional (1D) Fast Fourier Transform (FFT) to produce dynamic and static heatmaps,
while an object detection algorithm [44] is applied to the stereo images to obtain the ground
truth bounding box locations of pedestrians and vehicles. The heatmaps and depth images are
synchronized and fed into a deep learning object detection model built using multiple convolution
layers based on cGANs [15, 23]. The model is trained using thousands of samples to establish a
mapping between the heatmaps and ground truth data. Once trained, the model can be deployed
in mmWave communication devices, where it takes mmWave wireless signals re"ected from the
environment as inputs and generates bounding boxes and velocities of pedestrians and vehicles as
outputs. Figure 4 provides an overview of the system.

As there is currently no open-source mmWave platform that supports 5G communication, we
developed a Ray-Tracing-based simulator with the same hardware parameters used for pedestrian
detection to design and evaluate joint communication and sensing tasks. To this end, we used the
Ray-Tracing and terrain buildings from an open street map [45] to estimate the mmWave chan-
nel of the environment and then modi#ed the physical and MAC layers’ parameters and “slot
sequence” to control data transmission. To evaluate data throughput, we sent a large amount of
data from the picocell to randomly placed users, decoded the received signal, and recorded the
“slot sequence.” During the “slots” when sensing data was unavailable, we recovered the heatmaps
through a dynamic heatmap prediction network and predicted pedestrians and vehicles using the
context-aware object detection model. In the following sections, we elaborate on our design com-
ponent in detail.
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Fig. 5. CoSense’s data preprocessing framework.

3.2 Data Preprocessing
Prior to designing the deep learning model and learning only the necessary features from mmWave
re"ections and ground truth data, CoSense #rst preprocesses the datasets to eliminate spurious in-
formation. Our custom-built data collection platform collects and saves the data on a host PC
with their corresponding timestamps. The platform uses separate devices to collect the ground
truth samples and mmWave re"ection samples, requiring tight synchronization, noise #ltering,
and pruning to extract meaningful information for the deep learning model. The vision sensor used
for ground truth images has a smaller "eld of view (FoV) than the mmWave device, necessitating
the pruning of mmWave re"ections to match the ground truth FoV. To this end, the data prepro-
cessing consists of two steps: (1) sampling and synchronizing the mmWave data with ground truth
vision data and (2) sanitizing the datasets to remove noise and generating input-output data pairs.

3.2.1 Sampling and Synchronization. We acquire 10 data frames per second to obtain both the
mmWave samples and stereo images, with samples collected every 100 ms due to limitations of
the camera hardware. Despite our e$orts to trigger both devices almost simultaneously from the
same host PC, there is still tens of milliseconds of hardware latency that impedes a tight synchro-
nization. To address this issue, we store the real-time timestamps of the host PC at the moment
each device records the data sample and match the mmWave samples with images by examining
their timestamps and interpolating any missing samples. If we observe a signi#cant discrepancy
between the timestamps of the #rst frames captured by the mmWave device and camera, we dis-
card the entire batch of data samples, as they do not represent the same time instance and could
negatively impact the learning network. Figure 5 illustrates the data acquisition, sampling, and
synchronization processes, in which a co-located mmWave device and stereo camera capture the
same region of the environment.

3.2.2 Sanitization and Generation. After synchronizing the mmWave samples and stereo im-
ages to ensure that they correspond to the same timestamp, we apply a series of FFTs to the raw
and unprocessed mmWave re"ections to generate the range-azimuth heatmaps of dynamic and
static objects, represented as D(r ,θ ) and S(r ,θ ), respectively (see Figure 5). The heatmap represen-
tations are preferable since it is relatively easier to learn correlations between image-like ground
truth output from image-like inputs [46, 47]. A static heatmap captures the details about the station-
ary objects in the scene, such as tra!c poles, #re hydrants, and parked cars. In contrast, dynamic
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heatmaps capture the objects that are in motion. Separating the static and dynamic heatmaps al-
lows the model to learn the association of the static and dynamic objects to the ground truth data
separately. Having separate static and dynamic heatmaps helps to make the CoSense robust in
di$erent tra!c scenarios. Since mmWave re"ections are mostly una$ected by harsh weather con-
ditions, such as low light [48], fog [23], and snow [49], except slight attenuation [50], the mmWave
heatmaps are also immune to such harsh weather conditions. Furthermore, attenuation happens
for object and background noises without signi#cantly changing the heatmap’s nature. Still, the
raw pixel values from the stereo and depth images cannot be directly used as ground truth for ob-
ject classi#cation and localization because they lack discriminating information about the object.
To this end, we employ a popular open-source object detection algorithm, YOLOv5 [44], to predict
the locations of objects such as pedestrians, cars, bicycles, and buses, that may appear in the tra!c
intersection from the stereo images and depth images. “You Only Look Once (YOLO)” is a famous
object detection algorithm that provides the accurate two–dimensional (2D) bounding box of
objects in clear weather [44]. It comprises 80 object classes, including Pedestrians, Cars, Buses,
and Cyclists. In CoSense, we focus our system on detecting the 2D bounding box of objects related
to pedestrian safety. YOLOv5 is the latest model released and provides accurate 2D bounding box
results. We acknowledge that the 2D bounding box from YOLOv5 will be less accurate than manual
labeling of the 2D bounding box. However, our empirical result shows that it can detect up to 23
objects in a single image. Furthermore, YOLOv5 may fail to detect vehicles that are far away and
appear as small blobs, but the re"ected signals from far-away objects to the mmWave devices are
also weak and close to the noise "oor. Hence, considering the high accuracy of YOLOv5 and ability
to streamline the ground truth generation process, we select the YOLOv5 model for generating a
ground-truth 2D bounding box.

To prepare the ground truth data for the deep learning model, we #rst separate the detected ob-
jects into two categories: pedestrians and vehicles, and generate two corresponding depth images,
P(x ,y) and C(x ,y), respectively. Since pedestrians are comparable in size and re"ective surface
areas, we keep all pedestrians in a single-depth image, P(x ,y). In contrast, vehicles spread on both
azimuth and elevation, and are kept inC(x ,y) for a scene. This approach enables the deep learning
network to generate distinctive depth images for pedestrians and vehicles by allowing us to map
each peak on the static and dynamic heatmaps to corresponding objects. The pedestrian depth
image is set to the median depth of pedestrian-like objects, such as pedestrians, bicycles, and mo-
torbikes, for their 2D locations and 0 for all other locations. Similarly, the vehicle depth image
covers the locations of cars, buses, and trucks. We only consider objects with con#dence scores of
50% or higher to ensure that our ground truth depth images are noise-free. In cases of overlapping
objects, such as two pedestrians, we assign the depth value of the closest pedestrian to the over-
lapped region, as that is the portion of the FoV that the mmWave device sees. Finally, we truncate
the dynamic and static heatmaps to match the FoV of the vision camera. In summary, our approach
generates static and dynamic heatmaps, along with three-dimensional (3D) points with velocity,
as inputs to the network, and produces a pedestrian depth image and a vehicle depth image as the
outputs, providing information on the location and category of objects.

3.3 Deep Learning Augmented Object Detection with mmWave Device
3.3.1 Challenges with Existing Object Detection Methods. Object detection is a critical task for

many applications, including industrial automation [51], autonomous driving [52], and monitor-
ing and surveillance [53, 54]. Most of the applications rely on the acquisition of visual images to
#rst extract the useful features and then use those particular features for robust object detection
and segmentation. CoSense, however, relies on object and pedestrian detection from incomplete
mmWave wireless signals from picocells. Even though the existing Mask RCNN approach [55] is
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Fig. 6. CoSense’s cGAN network and its dataflow paths.

e$ective for vision images, which isolates Regions-of-Interest (ROI) and extracts features for
classi#cation, we cannot use the Mask RCNN network architecture directly because of the follow-
ing two challenges with mmWave wireless signals: (1) the limited object details due to specularity
and weak re"ectivity of signals, where re"ections of not all transmitted signals reach the receiver;
and (2) the intermittent capture of target scene information due to joint networking and sensing.
To address these issues, CoSense uses cGANs because these generative networks are suitable meth-
ods for generating realistic images from latent noise in the given domain [26]. The cGAN helps to
recover missing regions of the mmWave heatmaps by learning from the corresponding vision im-
ages of the clear weather during the training phase. The CoSense cGAN network has multiple 2D
convolution layers, 2D deconvolution layers, and skip connections [56] on its Generator network
to produce 2D bounding box depth images from mmWave heatmaps. Next, we outline the steps
involved in the base model for object detection using all data samples, dynamic heatmap recovery
from missing data samples, and #nal object detection with recovered frames.

GAN Fundamentals: Generative networks are similar to the spirit of auto-encoder [57], which
uses a few random samples to learn the data distribution during the training. After training, the
generator network can generate new samples that never existed using the random noise [58]. Gen-
erative modeling is popular in synthetic data generation, in which thousands of new samples are
generated from a few observations. A GAN uses two sub-models during training: (1) Generator
G, which tries to generate samples close to real samples; and (2) Discriminator D, which predicts
whether the data sample generated (by G) is real or not. Output is the probability of the sample
being real, ∼ 1 indicates real, and ∼ 0 indicates generated. During the training, it is formulated as
an adversarial game [59] until G completely fools D, which indicates that D now thinks of gener-
ated samples as real samples. However, providing only random noise to the generative networks
can produce any output category, and output data distribution is not controlled. Therefore, we use
mmWave heatmaps as a “condition” to the GAN and use the cGAN network [26] because ground
truth depth images are in the same FOV and timestamp as mmWave heatmaps.

3.3.2 Base Model Object Detection with cGAN. The base model for object detection assumes that
the device continuously captures information about the target scene. We will then augment the
model for intermittently captured data samples. Figure 6 shows the learning framework of CoSense.
The base model includes the Generator (G) and Discriminator (D). We create two instances of the
base model with the same network architecture for pedestrians and vehicles. During training, we
update the network parameters of each model instance with mmWave heatmaps and correspond-
ing ground truth depth images of pedestrians and vehicles, respectively.
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Fig. 7. CoSense’s Generator network architecture.

Table 1. Generator Network Parameters

2DC1 2DC2 2DC3 2DC4 2DC5 2DC6 2DC7 2DDC1 2DDC2 2DDC3 2DDC4 2DDC5 2DDC6 2DDC7 Output
Filter # 16 32 64 128 256 512 1024 1024 512 256 128 64 32 16
Filter Size 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2
Dilation 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 1 × 1 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2
Act. Fcn LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLU LRelu Linear

2DC: 2D Convolution (with Batch Normalization); 2DDC: 2D DeConvolution (with Batch Normalization); Act. Fcn:
Activation Function; LReLU: LeakyReLU Activation Function;.There are 5 skip connections between 2DC and 2DDC
layers; Output layer uses linear activation.

Generator: Figure 7 show the Generator, in which we design a deep learning network with an
encoder and decoder that converts the mmWave heatmaps into 2D bounding boxes with depth
values. After static and dynamic heatmaps of size 256 × 256 × 1 are merged in channel dimension
at the input layer to create a single input of size 256 × 256 × 2, multiple 2D convolution layers
of G’s encoder extract the local and global features from mmWave heatmaps on successive layers
and locate all the objects. The Encoder network uses batch normalization and LeakyReLU activa-
tion after each 2D convolution layer to make training faster and more stable. Batch normalization
scales the input between 0 and 1 for the given batch of data, making it immune to the mmWave
re"ection attenuation. Since the nature of the heatmap input is not changed due to slight attenua-
tion, batch normalization reduces the e$ect of the particular pixel value of the heatmap on cGAN
output and focuses on the relationship among neighboring pixels to extract useful features. In ad-
dition, skip connections [23, 56] between successive layers of encoder and decoder preserves the
details present in mmWave heatmaps and passes it to the generated depth images. Once the en-
coder network generates a 1D abstract feature vector, we use the decoder to convert the abstract
feature vector into a 2D depth image by expanding its spatial dimension. The decoder network
comprises 2D deconvolution layers with batch normalization and LeakyReLU activation, similar
to an up-sampling process in which the network continuously increases its spatial dimensions
until the desired output shape is reached. Table 1 provides details of the convolution layers and de-
convolution layers, including the number of #lters, #lter size, activation on each layer, and spatial
dimension dilation.

Discriminator: The Discriminator’s primary goal is to guide G during the training process. The
Generator tries to use the mmWave heatmaps and learns to generate output close to ground truth
depth images. Figure 8 shows the discriminator network architecture. D has two encoders, Encoder
A and Encoder B, to extract features from mmWave heatmaps and ground truth depth images,
respectively. Both encoder network architectures are similar to the Generator’s encoder network
architecture. Encoder A converts the mmWave heatmaps of size 256× 256× 2 to abstract a feature
vector of size 1024 × 1, following multiple 2D convolution, batch normalization, and LeakyReLU
activation. Encoder B similarly converts depth image of size 256× 256× 1 to 1D a feature vector of
size 1024× 1. Finally, D combines 1D abstract features from mmWave heatmaps and ground truth
depth images and reshapes them to a long 1D vector of size 2048 × 1, and then passes through 2
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Fig. 8. CoSense’s Discriminator network architecture.

Table 2. Discriminator Network Parameters

2DC1 2DC2 2DC3 2DC4 2DC5 2DC6 2DC7 FC1 FC2 Output
Filter # 16 32 64 128 256 512 1024
Filter Size 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3
Dilation 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2 2 × 2
Act. Fcn LReLU LReLU LReLU LReLU LReLU LReLU LReLU LReLUu LReLU Sigmoid

2DC: 2D Convolution (with Batch Normalization); Act. Fcn: Activation Function; LReLU: LeakyReLU Activation
Function. Output layer uses sigmoid activation.

fully connected layers to generate the output probability of a value between 0 and 1 with a sigmoid
activation function on its output layer. The output probability indicates the closeness of the input
depth image to the ground truth depth image. We end training when D continuously outputs
a probability close to 0.5 for all the samples, which suggests that D can no longer distinguish
between ground truth and generated samples. Once this stage of training is reached, G generates
depth images with the same data distribution as ground truth depth images. Table 2 summarizes
the network parameters of the Discriminator.

3.3.3 Context-Aware Object Detection with cGAN. While the base model assumes that sensing
samples are continuously available, in practice, simultaneous networking and sensing on a picocell
can result in intermittent availability of the sensing samples. To recover the missing sensing sam-
ples, we propose context-aware object detection with a cGAN. To achieve communication and sens-
ing tasks, we use the “slot sequence” (Stimestamps) from the 5G network protocol (see Algorithm 1).
During the learning phase, we can drop the mmWave sensing samples to emulate the networking
slots and push our system closer to the actual hardware that performs both communication and
sensing tasks. With fewer mmWave samples available, CoSense has a limited ability to detect and
locate pedestrians and vehicles. Furthermore, we assign most of the time slots to network commu-
nication since the picocell’s primary function is to support required data throughput. We improve
our heatmap prediction process by estimating the static and dynamic heatmaps based on the past
few observed heatmaps. We expect the static heatmap to be primarily stationary and exhibit minor
changes, whereas the dynamic heatmap with moving pedestrians and vehicles could change signi#-
cantly, such as when new objects enter or leave the FoV. Figure 9 illustrates the process of removing
and recovering static and dynamic heatmaps based on di$erent slot sequence con#gurations.

Figure 10 illustrates the deep learning architecture for predicting dynamic heatmaps, which
utilizes the previous dynamic heatmaps and the dominant re"ecting points along with their corre-
sponding velocities to forecast the movements of objects in future dynamic heatmaps. The under-
lying idea is that passing the prior dynamic heatmap alongside the group of points with velocity
property will facilitate the generation of the dynamic heatmap based on the direction and speed of
objects in the heatmap. To select the network for dynamic heatmap prediction, we try multiple vi-
sion models for feature extraction to predict the next dynamic heatmap from the current dynamic
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Fig. 9. CoSense’s static and dynamic heatmap recovery processes.

Fig. 10. An example of the dynamic heatmap prediction process with residual network (ResNet18) for a
complete batch of data (with 90% unseen sensing samples).

heatmap, such as VGG16 and InceptionV3 [60]; however, Residual Network [61] performed best in
our test dataset. Following multiple convolution layers of various #lter sizes and a series of activa-
tion functions of Residual Networks [61], we obtain an abstract feature vector DF of size 1, 000× 1.
Similarly, we encode the velocity of high signal-to-noise ratio (SNR) points (i.e., strong re"ect-
ing objects) and pass them through a series of 1D convolution layers to obtain a feature vectorVF
of size 50×1. Finally, we concatenateVF and DF and pass through a series of deconvolution layers
to predict D ′(r ,θ )t+1 at the output layer of size 256×256. Mathematically, we can approximate this
as D ′(r ,θ )t+1 = DHPβ ([D(r ,θ )t ,Vt ]), where DHPβ represents the parameterized dynamic heatmap
prediction network and [D(r ,θ )t , Vt ] is the dynamic heatmap and velocity at time t .

By leveraging the recovered dynamic heatmaps, the cGAN based object detection model can access
past contextual information about the environment that would otherwise be unattainable due to the
networking and sensing obligations of the mmWave device.

3.3.4 Network Loss Functions. The loss function is a critical component of deep learning mod-
els that control the optimal convergence of the network. CoSense employs a combination of Mean
Squared Error (MSE) [33] and Binary Cross Entropy (BCE) [32] for its cGAN learning frame-
work. BCE measures the entropy loss of the Discriminator’s output and helps to guide both Gen-
erator and Discriminator for the optimal value of parameters in their networks. MSE loss is used
to enforce pixel-to-pixel mapping in the reconstructed depth images. For the network training of
pedestrians and vehicles, we use a combined loss function to train the cGAN with two di$erent
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Fig. 11. (a) MmWave cascade device with ZED stereo camera. (b) Le" stereo image collected from a ZED
stereo camera. (c–d) Static and dynamic heatmaps of objects in the scene a"er FFT on mmWave samples.

model instances of the same network architecture. The combined loss function is given by the
following equation:

LCoSense = λMSE × LMSE + λBCE × LBCE , (1)
where LMSE = MSE(G(x ,y),M(x ,y)) and LBCE = BCE([D(S(r ,θ ),D(r ,θ )),G(x ,y) orM(x ,y)], 1 or 0).
G(x ,y) and M(x ,y) are generated depth images and ground truth depth images for pedestrians and
vehicles, respectively. λMSE and λBCE are the hyper-parameters that control the predicted depth
values of the image and bounding-box similarity, respectively, and are calculated based on the val-
idation dataset. Finding the optimal values for hyper-parameters is tricky and requires heuristics.
We expect our networks to focus on learning the accurate bounding boxes and correct depth val-
ues of the objects rather than on the generated image’s quality. Thus, intuitively, we can assign
a higher weight to λMSE than λBCE . We discuss the choices of the hyper-parameters in detail in
Section 4. For the dynamic heatmap prediction model, we use the MSE between the predicted and
ground truth dynamic heatmap as the loss function to train the network.

In summary, CoSense detects pedestrians and vehicles from mmWave heatmaps and residual net-
work with already observed heatmaps to predict unobserved heatmaps to enable joint networking and
sensing.

4 Implementation
4.1 Hardware, Data, and Training

4.1.1 Hardware Platform. Due to the unavailability of open-source 5G/mmWave devices for
joint communication and sensing tasks, we build a custom hardware setup for real-time data col-
lection and post-process them o%ine. Figure 11(a) shows our hardware setup, which consists of
a COTS mmWave cascade device, TI MMWCAS-RF-EVM and MMWCAS-DSP-EVM [27, 28] for
mmWave data collection, and a ZED stereo camera [29] for RGB and depth image capture. A 3D-
printed structure holds the co-located devices in place so that the mmWave and visual sensor data
are spatially aligned. The mmWave cascade device combines 4 separate mmWave chipsets [62],
each controlling 3 transmit and 4 receive antennas. This results in a system with total 12 transmit
antennas, 16 receive antennas, and 192 virtual channels (i.e., 12 × 16 = 192). Eighty-six are placed
in the azimuth direction, which e$ectively provides 1.4◦ azimuth angle resolution. The cascade
device uses the following data collection parameters: Start frequency, 77 GHz; frequency ramp
slope, 25 MHz/µS; number of complex ADC samples, 256; ADC sampling rate, 8 MHz/s; sweep
duration, 40 µS; frame interval, 100 ms; and maximum receive antenna gain, 48 dB. The device is
capable of collecting data from a maximum range of up to ∼48 m with a range resolution of 0.19
m and has a total bandwidth of 800 MHz. Since the cascade device collects re"ection signals from
four separate chipsets, each introducing a slightly di$erent but #xed o$set in time and phase, the
device needs to be calibrated o%ine once. Appendix A describes the calibration process in detail.
The ZED camera is used to collect the ground truth data, capturing stereo RGB and depth images
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Table 3. Description of the Environment Near Tra!ic Intersection and Garage

Environment Number of Samples Static Objects Dynamic Objects
Tra!c Intersection 40,000 Tra!c lights, #re hydrant Pedestrian, Vehicles
Near Garage 7,500 Parked cars, vegetation, garage in background Pedestrian
Near Garage + Fog 2,500 Parked cars, vegetation, garage in background Pedestrian

with millimeter resolution and 10 frames per second. To eliminate spurious re"ections far away
from a tra!c intersection, we limit the maximum depth range of both the mmWave device and
ZED camera to 40 m.

4.1.2 Real Data Collection. We collect real datasets from the custom-built setup across di$er-
ent tra!c intersections around our o!ce building (see Figure 11(b) for an example). We place our
setup with di$erent orientations in the tra!c intersection to capture the multiple scenarios of
pedestrians and vehicles (camera images of Figure 11(b) and Figures 12(a)–(e)). Since the mmWave
data and stereo images are from di$erent COTS devices, a tight synchronization is unavailable in
hardware. Therefore, we use software synchronization based on the timestamps of data samples.
A MATLAB program, running on a host PC, initiates the con#guration of the mmWave device us-
ing the mmWave studio [63], which takes a few minutes to complete. Subsequently, the MATLAB
program triggers a Python script that is programmed to collect stereo images and depth images
from the ZED camera. As the con#guration of the ZED camera is typically faster than that of
the mmWave device, the ZED camera is programmed to wait for further instructions from MAT-
LAB before collecting data. Once the mmWave device is con#gured, both the ZED camera and
mmWave device are triggered to capture samples in real time. Each data collection lasts approxi-
mately 30 seconds, yielding approximately 300 data samples. A single data sample provides a static
heatmap, dynamic heatmap, object points with their corresponding velocities, and stereo RGB and
depth images. We #rst verify the timestamps of data collection between MATLAB and Python by
placing nothing in front of the setup and suddenly appearing in the FoV. We compute the SSIM
between consecutive stereo images, dynamic frames, and static frames to verify that timestamps
have ∼10 ms accuracy between MATLAB and Python. To verify the accuracy of the timestamps
between MATLAB and Python, the SSIM was calculated between consecutive stereo images, dy-
namic frames, and static frames in a controlled setup, revealing an accuracy of approximately 10 ms.
Figures 11(b)–(d) present examples of the RGB image captured by the ZED camera and dynamic
and static heatmaps produced by the mmWave device at a sample tra!c intersection during pedes-
trian crossing.

Table 3 provides a detailed description of the data samples collected to evaluate the performance
of CoSense in two distinct environments. At a tra!c intersection, our setup was positioned to face
the intersection and data samples were collected to capture various scenarios, including pedestri-
ans waiting to cross the road, vehicles traversing the intersection, pedestrians crossing the road
in both directions, vehicles passing through the intersection without any pedestrians in view, and
many other real-life situations. Table 4 summarizes the distribution of the collected data samples,
which include a large number of pedestrians, cars, and trucks appearing in the majority of sam-
ples. Additionally, we collected data samples using an arti#cial fog generator [64] with medium
and dense liquid density, placed in front of the mmWave device with pedestrians nearby (see
Figure 24). In total, we gathered 50,000 data samples over 6 months, equivalent to approximately
1.67 TB of data. We used 40,000 samples for training and reserved the remaining samples for test-
ing and benchmarking. The collected data from a real-world tra!c intersection under uncontrolled
conditions allow us to evaluate CoSense’s robustness in detecting both pedestrians and vehicles in
diverse and challenging environments.
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Table 4. Number of Di!erent Objects Detected by ZED Stereo Camera on 40,000 Data Samples at the
Tra!ic Intersection

Environment Total Data Samples # Pedestrians # Bicycles # Motorcycles # Cars # Buses # Trucks
Tra!c Intersection 40,000 65,000 507 284 150,000 616 16,000

4.1.3 Network Training. We conduct an empirical analysis on multiple training con#gurations
to determine the optimal model and parameters for CoSense. To train the networks, we use the
learning rate of 0.0005 for successive epochs. We keep the learning rate low to make sure the loss
of network does not diverge as training progresses. For the optimizer, we use RMSProp, which is a
gradient-based optimization technique with second momentum and decay to update the network
parameters [65]. To identify the best values of the network hyper-parameters, we explored di$er-
ent combinations of λMSE and λBCE, and #nd that a cGAN performs better when the ratio between
λMSE and λBCE is ∼ 10. Therefore, (λMSE , λBCE ) = (1, 0.1) performs optimally for our neural network
models because it aims to #nd maximum overlap and correct mean depth of the object. CoSense
achieves that by keeping the contribution of λMSE higher than λBCE . We train all our networks
for 1,000 epochs but terminate the training if there was no improvement on the validation dataset
for 30 consecutive epochs. All of our networks are trained on Python 3.10 [66] using Tensor"ow
and PyTorch APIs [67, 68] on a host server. A single network training takes ∼12 hours with 2 RTX
A6000 NVIDIA graphics processing unit (GPU) cores [69]. However, training can be further
improved by uploading datasets to the cloud server and using tensor processing unit (TPU)
devices [70].

4.2 5G Network Simulation
Since our custom-made hardware does not support a real-time evaluation of the 5G/mmWave
joint networking and sensing applications, we evaluate the e$ectiveness of CoSense by simulating
the 5G protocol based on an open-source, realistic Ray-Tracing method [30]. Conventional simu-
lations using Friis path loss [71] are insu!cient in capturing the intricacies of channel behavior
at high frequencies, whereas the Ray-Tracing takes into account the environmental layout and is
capable of providing more accurate channel estimation [72–74]. By implementing the Ray-Tracing
method [30], we are able to estimate the channel and then modify the 5G Medium Access Control
(MAC) layer to enable data scheduling to the user and sensing tasks for vehicles and pedestrians
at opportunistic time slots. This allows us to accurately quantify the data throughput and sensing
performance in various scenarios.

4.2.1 Channel Estimation. To accurately simulate an environment and estimate realistic
channel conditions, we use the open-street map [45] of our tra!c intersection. The map provides
detailed information on the building structure, lamp posts, and terrain of the intersection (refer
to Figure 28(a) in Appendix A.2). The Ray-Tracing method [30] is employed to estimate the propa-
gation paths by sending electromagnetic waves from the transmitter to the receiver and utilizing
the shooting and bouncing rays (SBR) approach. When a signal encounters a "at surface, it is
re"ected; however, when it encounters an edge, it undergoes di$raction. Given that the majority
of building surfaces are "at, we assume the presence of a "at surface for re"ection purposes. In
CoSense, we only consider the 1st order of re"ection apart from the LOS communication path in
the simulation since the other re"ections are very weak and close to the noise "oor at mmWave
frequencies [75–77]. We use the following parameters in the Ray-Tracing simulation: picocell
antenna height, 4 m; size of picocell antenna, [8 × 8]; user antenna height, 1 m; and size of
user antenna, [2 × 2]. Given a large number of transmit and receive antennas for the picocell, a
narrow directional beam can be employed. The user, with a smaller number of antennas, uses an
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omnidirectional beam pattern. We run the channel measurements for each User Equipment (UE)
and calculate the path delays, average path gains, angles of arrival, and angle of departure to assign
the channel properties. These, in turn, are used to calculate the resultant throughput for a user.

4.2.2 Throughput Calculation for Joint Networking and Sensing. The calculation of throughput
for joint networking and sensing involves several steps. First, we determine the channel properties
and the physical parameters in an environment following Section 4.2.1. Second, we modify the 5G
MAC layer to control the data transmission scheduling, where the parameters for modulation
(e.g., 16 QAM), code rate (e.g., 490/1024), number of hybrid automatic repeat request (HARQ)
processes (e.g., 16), number of resource blocks (e.g., 275), and sub-carrier spacing (e.g., 120 kHz)
are set. The physical downlink parameters are then con#gured, and the total number of slots for
simulation is calculated to schedule the di$erent types of data transmission to the UE via the
downlink channel. The transport block sizes are then calculated based on the total number of
slots for each transmission and fed into each HARQ process. Note that only the slot designated
as “N” is used for data transmission, while the special slot “S” is reserved for sensing and places
the channel in idle mode. The transport block is encoded, resource blocks are created, modulation
and precoding are applied, and the data is transmitted through the channel using the transmit
waveform. The channel is then measured to calculate the received waveforms, which are added
with noise to simulate the real-world channel as closely as possible. The noise-added received
waveform is demodulated to recover the transmitted data across multiple resource grids. Once the
simulation is complete, it provides the e$ective throughput achieved and the slot sequence used
for data transmission. This process is then repeated with multiple slot sequences, and the e$ective
throughput is recorded to evaluate the networking performance. The slot sequence is then used
by the object detection model to drop data frames collected at timeslots designated for networking
purposes to evaluate the sensing performance. Algorithm 1 in Appendix A.2 shows the process of
calculating the downlink’s data throughput and its slot sequence during transmission.

5 Performance Evaluation
5.1 Evaluation Metrics and Summary
We now evaluate the performance of CoSense in two distinct environments: a tra!c intersection
with diverse pedestrian and vehicle movements and a garage area in foggy conditions. We compare
our models with di$erent standard metrics commonly used on bounding box detection problems
for the objects and pedestrians plus number of pedestrians and vehicles missed per second.
! Intersection-over-Union (IoU): It measures the region overlap between the bounding

boxes of the predicted and ground truth objects and pedestrians. The value range is between
0 and 1.

! Multi-Scale Structural Similarity Index Measure (MS-SSIM): It measures the similarity
between the generated mask image and the ground truth image for pedestrians and vehicles.
The value is between 0 and 1.

! Mean Absolute Error (MAE): It measures the absolute di$erence between the predicted
metric and the ground truth metrics for pedestrians and vehicles.

! Miss Rate: It measures the average number of pedestrians and vehicles missed per second by
CoSense compared with the ground truth vision-based camera in clear weather conditions.

Evaluation Summary: Our evaluation of CoSense’s performance reveals the following key #nd-
ings. (1) The system accurately predicts pedestrians and vehicles, achieving a median IoU of 0.55
and 0.63, respectively. Furthermore, the mean depth error is less than 0.66 m on 90th percentile data
for both pedestrians and vehicles. (2) CoSense’s context-aware model reduces sensing overhead by
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Fig. 12. Example results for pedestrian detection at a tra!ic intersection. Some pedestrians are marked in
camera images.

70%, while only dropping median IoU and MS-SSIM by 27% and 3.5%, respectively. The mean depth
error increases from 0.16 m to 0.35 m for the 90th percentile of data, which is deemed tolerable for
outdoor applications. (3) Our system accurately predicts the bounding boxes and mean depth for
pedestrians even under foggy weather conditions, demonstrating that CoSense can e$ectively op-
erate at tra!c intersections and in poor visibility.

5.2 Object Detection with Joint Networking and Sensing
5.2.1 Base Object Detection Model. In this section, we evaluate the performance of the CoSense

model for detecting pedestrians and vehicles in tra!c intersections during o!ce working hours.
We collect 50K data samples and preprocess them to produce mmWave heatmaps and ground
truth depth images (following Section 3.2). Of the 50K samples, 40K samples are used for train-
ing CoSense’s base object detection model (Section 3.3). After training, we use the remaining 10K
samples to predict the bounding boxes for pedestrians and vehicles from mmWave signals. As an
illustration, Figures 12(a)–(e) show the generated bounding boxes for multiple pedestrians in a
sample test case. In Column (a) of Figure 12, there is a single pedestrian waiting to cross the road
while vehicles are moving; CoSense accurately predicts the pedestrian’s bounding box. CoSense also
performs well in generating accurate bounding boxes for other static and dynamic pedestrians (see
Columns [b],[d], and [e] of Figure 12). Figure 12(c) represents a scenario with no pedestrians; the
system predicts that accurately as well. Also, Figures 13(a)–(e) depict the bounding box generation
for single and multiple vehicles on the road, including those that are crossing the street or waiting
for a tra!c signal. CoSense accurately generates depth images for all vehicles. While it can occa-
sionally output spurious blobs on the bounding boxes, we can easily discard them since they are
small in size and irregular in shape.

Figures 14(a)–(c) show the IoU, MS-SSIM, and MAE between the ground truth and generated
bounding boxes across all the test samples for pedestrians and vehicles. For pedestrians, CoSense
achieves a median IoU of 0.55 and 90th percentile IoU of 0.76, indicating a good match across most
of the samples. For vehicles, CoSense achieves a median IoU of 0.62 and 90th percentile IoU of 0.83.
The detection performance for vehicles is better compared with pedestrians; this is intuitively cor-
rect because vehicles have a larger and smoother surface area compared with pedestrians and can
re"ect strong mmWave signals. Figure 14(b) shows the median MS-SSIM of CoSense generated
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Fig. 13. Example results for vehicle detection at a tra!ic intersection. Some vehicles are marked in camera
images.

Fig. 14. Results for di!erent metrics from the base model for pedestrian and vehicle detection.
(a) Intersection-over-Union (IoU). (b) MS-SSIM. (c) Mean depth error.

bounding boxes are 0.85 and 0.62 for pedestrians and vehicles, respectively. This result indicates
that CoSense accurately generates the bounding box for pedestrians and vehicles. Furthermore,
Figure 14(c) shows the CoSense’s performance in identifying the depth of the vehicles and pedes-
trians from the mmWave device. CoSense achieves a median depth error of 0.08 m and 0.34 m for
pedestrians and vehicles, respectively. Vehicles have higher depth error than pedestrians because
the object is larger and has more range variation from a mmWave device. Still, the 90th percentile
depth error does not exceed more than 0.66 m, indicating high accuracy in ranging for both pedes-
trians and vehicles. The high accuracy result on pedestrians and vehicles indicates that the azimuth
angular resolution of mmWave heatmaps and context-aware learning network enables such high sim-
ilarity between generated and ground truth depth images.

5.2.2 E!ect of Sensing on 5G Networking. To evaluate the impact of sensing on networking
performance, we modify the data transmission schedules of the 5G protocol as described in
Section 4.2 and Appendix A.2 to run the sensing applications on top of networking. We simulate
the picocell and user device in an open-street map near the tra!c intersection, with the picocell
and user device placed 40 m apart at the height of 4 m and 1.5 m, respectively (see Figure 28 for an
illustration). We control the data scheduling pattern by sending packets to the user device through
the emulated PHY and MAC layers when the slot symbol is ‘N’ and placing the picocell node in
an idle state when the slot symbol is ‘S’.
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Fig. 15. (a) Throughput results under various sensing overheads and SNR conditions. (b) Zoom-in view of
percentage of Sensing Overhead for 50 dB, 46 dB, and 42 dB SNR.

Figure 15 shows the data throughput from the picocell to the user in the downlink channel at
various SNRs. We also calculate additive white Gaussian noise (AWGN) with the given SNR and
add it to the received waveform through the channel. When the channel has a high SNR, i.e., the
SNR is greater than 46 dB, the picocell transfers data with 3.25 Gbps with 10% sensing overheads.
However, as the sensing overhead increases, the data throughput drops almost linearly. When the
SNR drops below 40 dB, the picocell node may have to retransmit some packets due to potential
bit errors on the data transport block. In this scenario, the data throughput is 1.5 Gbps for 10%
sensing overhead and only drops to 1.25 Gbps for 30% sensing overhead, which can still enable
detection of objects and pedestrians in the environment. This result suggests that we can piggyback
mmWave sensing on top of networking without a signi"cant drop in the user data throughput.

5.2.3 E!ect of Networking on Sensing. This section examines the e$ect of di$erent percentages
of data frame drop on sensing accuracy. In the base model, we evaluate the object detection accu-
racy of CoSense using mmWave devices for sensing tasks only, i.e., 100% sensing. Since mmWave
devices can also transfer data for networking tasks, sensing application is executed only oppor-
tunistically, thus, the need to allocate time between networking and sensing to maximize the use
of the full bandwidth spectrum. To evaluate under this scenario, we intentionally drop a percent-
age of the mmWave heatmaps in CoSense, ranging from 90% to 10%, to downsample them, resulting
in sampling frequencies varying from 9 fps to 1 fps. For each sample, we conduct our experiments
on a total of ∼83 minutes of samples, with the #rst 65 minutes allocated for training and the rest
for testing. Within the training samples, we formed batches of 10 consecutive mmWave heatmaps
and dropped the heatmaps from each batch based on the sensing overhead. For example, if the
mmWave device was at 90% sensing capacity, we randomly dropped 90% of the heatmaps. We
followed a similar process for sequential test samples.

We #rst train the dynamic heatmap prediction model by passing the previous dynamic heatmaps
and corresponding velocity points. We use the dynamic heatmap prediction model post-training
to predict future dynamic heatmaps from past observations. Figures 16(a)–(e) show predicted dy-
namic heatmaps and corresponding ground truth heatmaps. In Figures 16(b)–(c), CoSense accu-
rately predicts the location of a moving object(s) in the dynamic heatmap. However, the prediction
is not always accurate due to noise on the previous dynamic heatmap. For example, Figure 16 shows
that noise is low in the actual heatmap, but the deep learning network couldnot suppress it. Even
though we still observe the peaks at the correct location, they are buried by noise on heatmaps. We
can eliminate this by augmenting data for di$erent scenarios and noise cases. In a couple of cases,
we also observe that two blobs are merged into one. This particularly happens when two objects
are moving towards each other and, hence, the deep learning model thinks they are close in the
upcoming frames. Overall, the CoSense dynamic heatmap prediction model preserves the peaks of
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Fig. 16. Sample outputs from dynamic heatmap prediction from CoSense.

Fig. 17. Results for di!erent metrics from the dynamic heatmap prediction framework: (a) IoU. (b) MS-SSIM.
(c) Mean absolute signal strength error (pixel-to-pixel).

the next heatmap based on the previously observed heatmap and velocity points. Figures 17(a)–
(c) show the IoU, MS-SSIM, and mean absolute pixel-to-pixel error across test samples. We get a
median pixel-to-pixel error of 2.54 with not more than 3.35 for 90% of test samples. However, we
get very high IoU and low MS-SSIM because dynamic heatmaps are sparse blobs. Predicting a blob
at the right location in the heatmap provides high IoU. However, the image similarity of the pre-
dicted heatmap and ground truth heatmap could still be low because of the noise on the predicted
dynamic heatmap.

Once the dynamic heatmap network training is complete, we use it to recover dynamic frames
before feeding them into the object detection network to get the depth images of pedestrians
and vehicles. Figure 18(a) shows the IoU between the generated depth image of pedestrians with
di$erent sensing overheads. CoSense’s median IoU only drops to 0.4 from 0.55 for 30% of sensing,
and the di$erence holds for 90% of samples. Similarly, we observe a 3.5% drop on median MS-SSIM
with similar sensing overheads, i.e., 30%; however, the drop is negligible on the 90th percentile (see
Figure 18(b)). Finally, Figure 18(c) shows that we can predict pedestrians with 0.09 m median error;
however, there is a 90th percentile error increase with the drop in sensing overhead. Mean depth
prediction error increases to 0.35 m from 0.16 m for 90% of samples when sensing overhead is
reduced to 30% from 100%. The amount of error on the mean depth of the pedestrian is tolerable in
practical settings, especially when detecting pedestrians ahead of time. Figure 19 also shows similar
results for vehicles with a slight improvement in IoU and MS-SSIM and a slight deterioration
in depth error since vehicles have more rigid structures and are typically farther away than the
pedestrians. The high IoU and MS-SSIM and low depth error with low sensing overhead show that
CoSense is capable of performing both networking and sensing duties without a signi"cant drop of
performance in both of them.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 17. Publication date: August 2024.



17:22 H. Regmi and S. Sur

Fig. 18. Di!erent metrics on test samples for pedestrians with various sensing overheads: (a) IoU.
(b) MS-SSIM. (c) Mean depth prediction error in meters.

Fig. 19. Di!erent metrics on test samples for vehicles with various sensing overheads: (a) IoU. (b) MS-SSIM.
(c) Mean depth prediction error in meters.

5.2.4 Pedestrian and Vehicle Miss Rate. We now evaluate CoSense in predicting the number of
pedestrians and vehicles passing through the scene per second. To count the number of pedestri-
ans, we initially use all available sensing samples and assume YOLOv5 detection on camera images
as the ground truth in clear weather conditions. Next, we track pedestrians using bounding over-
lap and identify the times when each pedestrian enters or leaves the data frames to count the
total number of pedestrians in each frame. If a frame was dedicated to networking, we count any
pedestrians that left or entered the frame as a miss count. For instance, if the sensing overhead is
reduced to 30%, we count all pedestrian changes during the remaining 70% of the time as missed
counts. We aggregate these numbers over one second and de#ne the Miss Rate. We follow a sim-
ilar process for counting the number of vehicles missed per second. If CoSense fails to predict the
bounding box of a pedestrian or vehicle, we count it as a miss.

Figures 20(a)–(c) show the number of pedestrians missed with and without CoSense at various
sensing overheads. At 30% sensing overhead, without CoSense, we may miss up to 8 pedestrians
per second. In contrast, the maximum miss rate is reduced to 2 from 8 with CoSense’s context-
aware object detection network. Similarly, Figures 21(a)–(c) show the number of missed vehicles
with identical sensing overheads. At 30% sensing overhead, without CoSense, we may miss up to
10 vehicles per second, but CoSense reduces this to 3 vehicles per second at most. We observe a
higher miss rate for vehicles compared with pedestrians because they are far from the mmWave
device; hence, some re"ections from them may be missed in some data samples.

5.2.5 Velocity Estimation. While the location and count of the objects and pedestrians are im-
portant, their velocity plays a crucial role in determining the collision probability in ensuring road
safety. To estimate the velocity and direction of objects, the mmWave device can send multiple
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Fig. 20. Number of pedestrians missed per second near the tra!ic intersection with and without CoSense for
(a) 30% sensing overhead, (b) 60% overhead, snf (c) 90% overhead.

Fig. 21. Number of vehicles missed per second near the tra!ic intersection with and without CoSense for
(a) 30% sensing overhead, (b) 60% overhead, and (c) 90% overhead.

back-to-back signals within a short time and measure Doppler shift. The resulting signals can be
analyzed to determine the range, azimuth, and elevation of multiple points for di$erent objects in
3D, along with their velocity. However, due to specularity, only a few points from an object can
be obtained, making it di!cult to segment these points for pedestrians or vehicles on point cloud
data or mmWave heatmaps. Therefore, to label di$erent points in the heatmap and track objects
accurately, we use stereo images of corresponding heatmaps and apply YOLOv5 object detection
to calculate bounding boxes for pedestrians and vehicles. We then compare the overlapping of
bounding boxes on consecutive images to track di$erent objects accurately. Additionally, we cal-
culate the mean depth of each object and apply translation to estimate its range for the mmWave
device. Finally, we compare the estimated range and velocity of the objects to all the points from
the mmWave device to locate the closest match.

Figures 22(a)–(f) show examples of estimated velocity of pedestrians and vehicles on static
heatmaps, dynamic heatmaps, and actual camera images. Positive velocity values indicate objects
moving toward the mmWave device and vice versa. For example, Figure 22(b) shows that CoSense
correctly labels a truck (blue circle) moving away from the device at 15.67 m/s (∼35 mph), which
matches the expected speed of vehicles on the given road. It also predicts three pedestrians on the
mmWave heatmap (green circle), two of which have no movement and one with a velocity of -1.1
m/s. However, we observe that CoSense’s accuracy in labeling pedestrians and vehicles is a$ected
by their range and azimuth angles, as only a few re"ections arrive from the object, leading to incor-
rect labeling. For instance, Figure 22(a) shows that CoSense labels a pedestrian waiting for tra!c
lights with a speed of -2.238 m/s, while the actual speed is observed from the truck moving away,
leading to an incorrect prediction for the label and direction. Nevertheless, CoSense accurately pre-
dicts the velocity of pedestrians and vehicles on camera images, particularly for pedestrians, as
they are closer to the camera and provide error-free depth values.

ACM Trans. Internet Things, Vol. 5, No. 3, Article 17. Publication date: August 2024.



17:24 H. Regmi and S. Sur

Fig. 22. Camera image, dynamic heatmap, and static heatmap with the velocity of pedestrians and vehicles.

Figure 23 presents the velocity estimation error for detected pedestrians and vehicles. For pedes-
trians, the estimated velocity has a median error of 0.4 m/s and a 90th percentile error of 1.65 m/s.
For vehicles, the estimated velocity has a median error of 1.51 m/s and a 90th percentile error of
4.8 m/s. The larger velocity error for vehicles is due to their higher speeds and distance from the
mmWave device, which results in erroneous depth values and, in turn, higher velocity estimation
error. In the future, we plan to explore multi-perspective collaborative sensing that could improve
the accuracy velocity measurement by using a closer-by picocell (see Section 7).

5.2.6 Pedestrian Detection Under Foggy Conditions. We now evaluate the performance of
CoSense under foggy conditions. To create a controlled and realistic experiment, we use arti#cial
fog generated by a water-based "uid fog machine, following the methods described in previous
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Fig. 23. Average velocity estimation error with mmWave device compared with the camera image velocity
estimation for pedestrians and vehicles.

Fig. 24. (a) Experimental setup of fog trials for pedestrian detection at ∼2.5 m. (b–c) Two camera images
under foggy conditions. (d–e) Dynamic heatmaps, static heatmaps, and CoSense’s generated bounding boxes
for the two pedestrians.

Table 5. Summary of Pedestrian Detection under Medium and Poor Visibility

CoSense #Samples Depth Error (median) Depth Error (90th%-ile) IoU (Median) IoU (90th%-ile) MS-SSIM (Median) MS-SSIM (90th%-ile)
Pedestrian 1 152 0.03 m 0.05 m 0.78 0.84 0.93 0.94
Pedestrian 2 184 0.02 m 0.13 m 0.89 0.93 0.94 0.95

works [25, 78, 79]. Figure 24(a) shows an experimental setup with our setup, which includes the
DFM-400S fog machine [64]. We collect data samples from two pedestrians with di$erent body
somatypes, who stood in a natural pose at a distance of approximately 2.5 m from the setup. We
process the mmWave samples through the pre-trained bounding box generator model and compare
the output in foggy conditions with ground truth in clear conditions. Figures 24(b)–(c) show two
sample RGB images under medium and poor visibility, in which it is di!cult to detect the pedes-
trians. However, the dynamic heatmap of Figures 24(d)–(e) show a concentrated energy peak at
the range of approximately 2.5 m, corresponding to the sway movement of the pedestrians dur-
ing foggy conditions. The CoSense deep learning model leverages these unique heatmap features
to accurately identify the bounding box of the pedestrians and predict their range (Figure 24(d)).
Table 5 summarizes CoSense’s performance on over 100 data samples for each pedestrian. We ob-
serve a median IoU of 0.78 and 0.89, median MS-SSIM of 0.93 and 0.94, and median depth errors
of 0.03 m and 0.02 m for pedestrian 1 and pedestrian 2, respectively. This high accuracy is expected
since mmWave signals can easily penetrate through fog.

5.2.7 Pedestrian Detection Under Di!erent Light Conditions. Vision-based sensors (cameras, Li-
DAR) do better than mmWave devices to detect pedestrians during clear weather because they cap-
ture more detail of the object. However, camera images fail to capture the information about the
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Fig. 25. Experimental setup under di!erent light conditions. We have light bulbs at 20 di!erent locations on
the ceiling: (a) all lights ON, (b) 50% lights OFF, (c) ∼95% lights OFF, and (d) all lights OFF.

object in front of them during low-light conditions or nighttime, resulting in missed classi#cation
and incorrect bounding box generation. Although it would be ideal for performing experiments
in outdoor environments, it is not feasible for the following reasons. First, we cannot control the
lights on the street and it may not be safe to turn o$ the street lights completely during live tra!c
"ow. Second, we cannot control the number of vehicles and pedestrians and their positions. How-
ever, we can test the core idea that mmWave devices work in all light conditions by controlling
the lights of the indoor environment. Suppose that we can show that mmWave re"ections are not
a$ected by ambient light and show pedestrian detection in the indoor environment. These results
indicate that mmWave devices can still get a re"ection from pedestrians in outdoor environments
at di$erent light conditions because the medium of transmission of mmWave, i.e., air, remains
unchanged in the indoor and outdoor environments. To this end, we ask the pedestrian to stay
inside the classroom and turn the lights on and o$ while we capture the data samples, including
the mmWave heatmaps and camera images. To simulate di$erent light conditions, we start the
data collection with normal light conditions, i.e., all lights are ON. After a few seconds, we ask the
pedestrian to turn o$ 50% of the lights, collect data samples for a few more seconds, then turn o$
∼ 95% of lights, and #nally turn all lights o$.

Figure 25 shows the summary of the performance of CoSense under di$erent light conditions
with camera images and static and dynamic heatmaps. The dynamic heatmap represents the re"ec-
tions from the moving pedestrian, and the static heatmap represents the static objects such as the
door, drywall, and white board. When all the light bulbs or even 50% of lights are ON, we can see the
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Table 6. Model Size and Inference Time
Required for CoSense

Model Size (MB) Inference time (ms)
50.89 31.33

pedestrian in the camera image, and any vision-based method can detect a 2D bounding box of the
pedestrian. Similar to the camera-based methods (i.e., YOLOv5), CoSense also accurately generates
the 2D bounding box of the pedestrian in such cases. However, the camera image captures nothing
in poor light conditions, and vision-based methods fail to detect the object (see camera images of
Figures 25(c)–(d)). In contrast, the mmWave device still gets the re"ection from the pedestrian and
other static objects (see dynamic and static heatmaps of Figures 25(c)–(d)), which eventually en-
ables CoSense to generate the 2D bounding box of the pedestrian (see Figures 25(c)–(d)). CoSense
consistently generates a 2D bounding box of the pedestrian accurately in all light conditions, showing
its robustness to night conditions.

5.2.8 Runtime Complexity of CoSense. Finally, we evaluate the runtime complexity of CoSense
by analyzing its average inference time and model size. So far, the training, validation, and in-
ference of CoSense have been conducted on a computationally powerful GPU server (2-core RTX
A6000) to speed up the process. However, since our system aims to monitor tra!c intersections in
real time, it is important to also evaluate the inference time on a general-purpose CPU. Thus, we
#rst train CoSense’s model on the GPU server and then evaluate its inference time on an 8-core
AMD CPU. Table 6 shows the CoSense’s inference time and memory size. We observe that CoSense’s
model is lightweight, with a memory size of only 50.89 MB, making it suitable for deployment on
inexpensive networking devices in the future. Furthermore, on average, the model takes 31.33 ms
to generate bounding boxes for a single data sample on the CPU. In the case in which the pico-
cell, installed at the tra!c intersections, has very low computational power, the data can also be
uploaded to a remote GPU server for inference. This ensures that the system continues to operate
e!ciently, even in resource-constrained environments.

6 Related Works
Millimeter-Wave Networks for Joint Communication and Sensing: The integration of com-
munication and sensing capabilities in a single device has been one of the focuses of beyond 5G
and 6G network architectures [80–82], but it poses a challenge to achieve without negatively
impacting either functionality [83]. In recent years, mmWave sensing technology has found di-
verse applications in areas such as gesture sensing, posture identi#cation, pedestrian and vehicle
detection, high-resolution image generation, and see-through occlusion [15, 24, 25, 84, 85]. How-
ever, these applications are typically standalone and do not address the challenges of joint net-
working and sensing within a device. Previous research has explored the use of mmWave for com-
munication purposes, such as identifying optimal picocell locations, creating 5G coverage maps,
and predicting dominant re"ectors to estimate signal strength [74, 86, 87], but without sharing the
mmWave device for sensing applications. Some previous works have investigated the coexistence
of communication and sensing on a single mmWave device, but they lack experimental results
from real hardware and provide only simulated evaluations or require modi#cations to the stan-
dard frame structure and waveform patterns that might be di!cult to incorporate into practical
networking devices [88, 89]. SPARCS [90] uses the sparse recovery method to enable integrated
communication and sensing. However, the method is focused on sensing for indoor environments
and evaluated at 60 GHz with 1.76 GHz bandwidth. In contrast, this article presents CoSense, a
deep learning augmented model that enables the coexistence of communication and sensing on a
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single mmWave device without modifying the existing frame structure or waveforms for outdoor
environments.

Millimeter-Wave Sensing of Outdoor Environments: The ability of mmWave signals to work
under poor visibility or no light has enabled multiple applications, such as privacy non-invasive
pose reconstruction and exercise monitoring, high-resolution image generation, liquid and fruit
sensing, and robot navigation. [13, 91–93]. However, all the applications are designed and evalu-
ated in indoor, controlled settings. Also, the ability of mmWave to penetrate through rain particles
and fog has made it suitable for range detection of objects from vehicles under harsh weather condi-
tions [43, 94], but obtaining #ne object details like those provided by vision cameras and LiDARs is
challenging due to the limited antenna size at mmWave frequencies [23, 95, 96]. In outdoor scenar-
ios, only a few research works have used mmWave devices for #ne-resolution monitoring. Among
them, a previous work [24] used horizontal and vertical mmWave devices with 12 virtual channels
to detect pedestrians, bicyclists, and cars using a deep learning approach, but required dedicated
sensing hardware that continuously sampled the target scene. Another work [25] used cascade
mmWave devices to #nd the bounding boxes of incoming and outgoing vehicles around the ego
vehicle but did not consider pedestrian detections or coexistence with networking operations. In
contrast, CoSense uses cascade mmWave devices to collect data and a deep learning framework
to detect both vehicles and pedestrians at tra!c intersections while coexisting with networking
operations. In the future, we expect CoSense to facilitate the exploration of joint networking and
sensing applications with mmWave devices in other areas.

7 Discussion & Future Works
Compatibility of CoSense with 5G NR Devices: Due to the unavailability of 5G picocells, we
evaluate CoSense with an mmWave cascade device [28]. The device employs Frequency Modu-
lated Continuous Wave (FMCW) signals to estimate the re"ection pro#le of the signal, enabling
analysis and detection of objects in the environment. Although 5G picocells do not have the ca-
pability to generate FMCW signals, it is worth noting that they utilize Sound Reference Signal
(SRS) packets [30] for measuring channel quality, determining data transmission rates, and decod-
ing packets. These SRS packets contain valuable information about the environment, essentially
serving as an equivalent to the signal re"ection pro#le. Furthermore, 5G picocells can leverage
NLOS paths through beam steering, directing signals towards strong re"ectors to establish links
with user devices. This functionality provides insights into the re"ectivity of objects in the vicin-
ity [95]. Therefore, we believe that CoSense can operate on 5G NR devices without necessitating
any hardware modi#cations. Unfortunately, current open-source 5G NR devices [97, 98] do not
grant user access to SRS packets; thus, we are unable to evaluate CoSense on a real 5G NR device.
One factor that determines the performance of sensing tasks is the range resolution of the system,
which is directly related to the bandwidth usage. Even though our setup supports up to 4 GHz
bandwidth, we only use 800 MHz; thus, our system is close to the currently available bandwidth
ranges of 5G deployments. CoSense achieves a given object detection performance with a limited
bandwidth of 800 MHz. We know that in lower frequency ranges such as 28 GHz, 39 GHz, and
47 GHz, bandwidth is less than 4 GHz but more than 800 MHz (850 MHz at 28 GHz and 1.6 GHz at
39 GHz) [99]. Due to similar bandwidth usage, we anticipate our system to perform as expected in
5G NR devices. In the future, we will evaluate CoSense on real 5G NR devices once their function-
alities become open sourced.

Collaborative Sensing from Multiple Picocells: Although CoSense accurately predicts pedestri-
ans and vehicles for the majority of samples irrespective of the number of pedestrians and vehicles
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in the frame due to better range (∼ 0.19 m) and angle (∼ 1.4◦) resolution, there are still some in-
stances in which it fails to detect them. For example, CoSense might only detect a single pedestrian
when there are two pedestrians very close to each other. Additionally, we have observed high er-
rors in velocity estimation for vehicles that are far away from the mmWave device (approximately
35–40 meters). To address these issues, we plan to explore collaborative sensing from multiple
picocells located close by on tra!c poles to capture the same scene from di$erent perspectives.
This will require synchronizing and exchanging mmWave sensing samples between picocells, and
existing approaches such as the Integrated Access and Backhaul [37] in the 5G NR standard can
facilitate them. By combining re"ected signals from multiple picocells, we can compensate for
objects that are not detected by one picocell from one perspective. Since we expect there to be
more than one picocell in a given environment, we can also collaborate among them and optimize
the data scheduling to design a “slot sequence” so that they could sense the environment oppor-
tunistically at di$erent timestamps. This will improve both the accuracy of object detection and
networking performance for each picocell.

Model Generalization to Other Picocells and Evaluation at Diverse Tra#c Intersections:
Our experiments are designed and evaluated with an mmWave device that has 192 virtual chan-
nels and uses 800 MHz bandwidth for capturing re"ections. However, 5G picocells with di$erent
form-factors and costs can have di$erent antenna sizes (e.g., 64 or 256 antennas), a$ecting their
resolution in range, azimuth angle, and elevation angle, and accuracy in detecting objects. Another
factor that could a$ect object detection accuracy is the height of picocells, as those placed at higher
elevations might have more attenuated re"ected signals. In the future, we will investigate the per-
formance of CoSense with di$erent antenna sizes, operational bandwidths, and picocell heights,
and #nd potential avenues for amending the model and improving the accuracy. Furthermore, our
data samples were collected at a downtown tra!c intersection near our o!ce building, with a
speed limit of 35 miles per hour and busy tra!c "ow. Other intersections may have di$erent den-
sities of pedestrians, speed limits, and road structures (e.g., three-way, four-way, or #ve-way). In
the future, we will evaluate our model by collecting more data samples from diverse intersections
with di$erent picocell placements.

8 Conclusion
CoSense is designed to enable the coexistence of networking and sensing on next-generation
mmWave picocells for tra!c monitoring and pedestrian safety at tra!c intersections. The sys-
tem proposes the use of 5G picocells, which operate at mmWave frequency bands and provide
higher data rates and higher sensing resolution than traditional wireless technology. CoSense de-
signs customized deep learning models that recover missing information in space and time about
the target scene and solve the challenges with the coexistence of networking and sensing. The sys-
tem is evaluated on diverse data samples captured at tra!c intersections and demonstrates high
accuracy in detecting pedestrians and vehicles. CoSense o$ers a promising solution for improving
tra!c monitoring and pedestrian safety using next-generation ubiquitous networking devices in
all weather conditions.
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A Appendix
A.1 Cascade mmWave Device Calibration

Fig. 26. Millimeter-wave cascade device calibration setup. (a) Front view. (b) Side view. Note that the device
needs to be calibrated o!line only once.

The mmWave cascade device in our experiments consists of four separate chipsets, each controlling
a set of transmit and receive antennas. Each chipset introduces a slightly di$erent o$set in time
and phase of their received signals, potentially leading to inaccurate estimations of objects and
pedestrians’ range and locations. This is because we need synchronized signals across all transmit
and receive antenna pairs to focus the energy in a certain direction. To mitigate this issue, the
device must be calibrated once o%ine since the o$sets between the chipsets are #xed at the design
time. This is accomplished by collecting mmWave re"ections from a single thin target at a speci#c
distance and using these re"ections to estimate correction parameters that provide the necessary
gain for each antenna to achieve high power in the main lobe beam of the device [100].

In CoSense, the cascade device is calibrated by pointing the setup toward a thin re"ector lo-
cated at a distance of approximately 5 meters from the center of the device (at 0◦ in azimuth and
elevation). The device is positioned approximately 1.2 m above the ground to minimize ground
re"ections and to avoid other potential re"ections (see Figures 26(a)–(b)). Data samples are col-
lected for approximately 2 s, experiments are repeated 100 times, and a calibration program [101]
is executed to generate the accurate weights for each virtual antenna. Then, these weights are
used for all subsequent real experiments in tra!c intersections. Figures 27(a)–(b) show the tar-
get’s range/azimuth plots for uncalibrated and calibrated cases. We can see that energy is more
focused towards a single location close to the thin re"ector after the device is calibrated.

Fig. 27. Range/azimuth plots. (a) Before calibration. (b) A"er calibration. Note that the sharpness increases
a"er calibration.
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A.2 More Details on 5G Network Simulation

Fig. 28. (a) An open-street map view of the site with the virtual location of picocell and user device around
the tra!ic intersection. (b) Zoom-in view of picocell’s directional beam pa#ern and user device’s omnidirec-
tional beam pa#ern.

ALGORITHM 1: CoSense’s 5G Network Simulation
Initialize picocell← [fc =77 GHz, height = hpicocell, position = (Latpicocell, Longpicocell), ant_size = (8, 8)];

UEs← [position = (LatUE, LongUE), height = hUE, ant_size = (2, 2)]
for UE in UEs do

Estimate the channels for each UE using the Ray-Tracing method between the picocell and UE.
end for
De#ne the Frame Structure, Numerology, and Slot Sequence as follows:

• SCS← (15 KHz or 30 KHz or 60 KHz or 120 KHz or 240 KHz)
• Numerology← (0 or 1 or 2 or 3 or 4)
• Number of Resource Blocks (NRBs)← (<= 275)
• Number of Frames← NFrame (total time← NFrame× 10 ms)
• Duplex Mode← Half-Duplex (TDD)
• Find opportunistic idle time, and schedule networking and sensing;

// Example Schedule Pattern ← [‘N’, ‘N’, ‘N’, ‘S’, ‘S’, ‘N’, ‘N’, ‘N’, ‘N’, ‘N’] [‘N’←Networking Slot,
‘S’←Sensing Slot; 2 ms for sensing and 8 ms for networking]

for slot in TotalSlots (SlotsPerFrame ×NFrame) do
Set the carrier’s number of slots to the current slot.
Calculate the schedule, Sounding Reference Signal (SRS), Channel State Information (CSI), Cyclic Re-
dundancy Check (CRC), and Physical Downlink Shared Channel (PDSCH) values.
Picocell encodes and transmits the data to the UEs.
Decode data at UEs and record DataState
Record S-Slot timestamps (Stimestamps) with Slot Sequence

end for
ThroughputUEs← DataState
return ThroughputUEs, Stimestamps (Slot Sequences)
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