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Figure 1: Overall setup architecture demonstrating data collection, preprocessing, and model architecture.

ABSTRACT SYSTEM DESIGN
Sleep monitoring has many health applications. One of the main To prepare our data for model training, we collected 200 sync
tasks in sleep monitoring is sleep posture classification. Most of pressure mat and RGB images from a single volunteer in 14 postures.
the traditional approaches have a camera as their primary detector In order to extract the silhouette from the RGB images, we utilized
which can be privacy-invasive and malfunction in some settings. the YOLO-v8 model[1] to predict the bounding box and locate the
An alternative is to use pressure mats. The problem however with person’s silhouette within that box. Once the silhouette was obtained,
most of the pressure mat raw images is that they contain gaps and we positioned the bounding box (with the silhouette inside) at the
discontinuous blocks which makes direct classification challenging. center of a blank 512 X 256 box. We took this step to prevent any
To address this issue, we propose PressureSilhouette, a deep learning potential changes in body composition caused by resizing the initial
model based on the Pix2Pix model that predicts the silhouette of the bounding box.
body. Using the generated silhouette, we will be able to predict the After preprocessing, we customized the Pix2Pix[2] model and
posture classification more accurately. trained it to predict the silhouette from a pressure mat image input.
CCS CONCEPTS PRELIMINARY RESULTS AND FUTURE WORK
« Human-centered computing — Ubiquitous and mobile comput- From the total of 200 images for each of our postures, we used 150
ing systems and tools; * Computing methodologies — Machine images for training and the remaining 50 images to test our model.
learning approaches. The metric that we used was IoU (Intersection of Union) between
the silhouette of ground truth and generated silhouette images. We
KEYWORDS used the total number of 700 (50 X 14) images to calculate the mean

and CDF of our metric. Our model achieved an overall mean of 77%.
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