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A B S T R A C T

Chiral edges of 2+1D systems can have very robust emergent conformal symmetry. When the
edge is purely chiral, the Hilbert space of low-energy edge excitations can form a representation
of a single Virasoro algebra. We propose a method to systematically extract the generators of
the Virasoro algebra from a single ground state wavefunction, using entanglement bootstrap and
an input from the edge conformal field theory. We corroborate our construction by numerically
verifying the commutation relations of the generators. We also study the unitary flows generated
by these operators, whose properties (such as energy and state overlap) are shown numerically
to agree with our analytical predictions.

. Introduction

A remarkable fact about many-body quantum systems is that a variety of simple and elegant mathematical structures can emerge
s a description of their low-energy physics. For instance, the low-energy physics of gapped quantum many-body systems — aside
rom the notable example of fracton phases [1–4] — are expected to be described by topological quantum field theory (TQFT) [5],
hich successfully predicts many universal features of the underlying system, such as ground state degeneracy [6], low-energy
xcitations [7], and entanglement properties [8,9].

Over the past few decades, it was realized that fingerprints of these mathematical structures often manifest themselves in the
ntanglement properties of ground state wavefunctions. Early studies discovered that the entanglement entropy often encodes
niversal information about the underlying quantum phases, both in gapped [8,9] and gapless systems [10,11].

More recently, new progress is being made under the moniker of ‘‘entanglement bootstrap’’, which aims to recover the universal
roperties of the underlying phase of matter from ground state entanglement. For instance, the list of anyon types, their fusion
ules [12] and braiding data [13] (including the data associated with gapped interfaces [14]) can be extracted from the ground
tate wavefunction; similar statements apply in general dimensions [15,16]. Moreover, a new entanglement measure known as the
odular commutator was used to extract the chiral central charge of the edge theory [17]; in the presence of a 𝖴(1) symmetry, a

imilar formula exists for the Hall conductivity [18]. These results are strongly suggestive of the basic dogma that underlies all these
tudies: that all of the universal information about a state of matter is encoded in the local reduced density matrix of a representative
avefunction.

In fact, there is nontrivial evidence for this dogma even in more general physical contexts. As a basic example, equal-time
orrelators of local operators in gapped ground states decay exponentially [19], whereas in gapless ground states they do not. In
onformal field theory (CFT) ground states, renormalization group monotones (called 𝑐 , 𝑎, or 𝐹 depending on the dimension) can
e extracted from the entanglement entropy of a round ball [10,20,21].
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More ambitiously, one may posit that structural features, that is, mathematical relationships between these quantities, can emerge
from the universal entanglement properties of the ground state wavefunctions. In systems with liquid topological order, there is
already strong evidence that supports this expectation. For instance, in two [12] and higher [15,16] dimensions, various identities
relating superselection sectors, their quantum dimensions, and fusion multiplicities emerge from simple universal properties of
apped ground states. In the presence of a gapped boundary or domain wall, similar progress can be made [14]. In fact, in the

context of three space dimensions, fusion spaces associated with knotted excitations (and partons for domain wall excitations) are
dentified, making the existing puzzle of ‘‘what is the minimal set of data?’’ more pronounced in such physical contexts.

The focus of this paper is a simple but nontrivial physical setup that differs from these previous studies, namely the chiral gapless
dge of a 2+1D system. From the field theory perspective, the key mathematical structure that should be present in this system is
he Virasoro algebra:

[L𝑚,L𝑛] = (𝑚 − 𝑛)L𝑚+𝑛 +
𝑐
12

(𝑚3 − 𝑚)𝛿𝑚+𝑛,0, (1.1)

where 𝑐 is the central charge and {L𝑛}𝑛∈Z is the set of Virasoro generators. The Virasoro algebra and its unitary representations
ppear in 1+1D CFT, 1+1D critical lattice models,1 such as the critical transverse field Ising model, and the edge theories of 2+1D

topological orders, such as the 𝜈 = 2∕3 quantum Hall state [23] and critical points describing phase transitions between two gapped
edges [24]. In general, these theories contain both the left and right moving parts which are the representations of two separate
opies of Virasoro algebra. However, in a 2+1D system with a purely chiral edge, such as the edge of 𝜈 = 1∕3 Laughlin state [25] or
he most natural (𝑐 = 8) edge of the 𝐸8 bosonic invertible phase [26], there is only one copy of the Virasoro algebra, simplifying
he analysis.

Compared to the case of liquid gapped ground states, for gapless systems, precisely how these mathematical objects (such as
the Virasoro algebra) emerge from entanglement is much more wide open. Before diving into this problem directly, we need to do
exploratory work and test various conjectures. This is the main aim of this paper.

In this paper, we identify generators of such a Virasoro algebra in terms of linear combinations of modular Hamiltonians
(entanglement Hamiltonian) of a purely chiral ground state supported near the edge. These form a part of a larger class of modular
flows called good modular flows that can create excitations at the edge whilst preserving the bulk local density matrices. (By ‘bulk local
density matrices’ here we mean reduced density matrices of regions that do not touch the gapless edge. Throughout the paper, we
will refer to such regions as ‘bulk regions’.) We provide analytical and numerical arguments that support our claim in Section 3. The
arguments presented in this Section are independent of any CFT assumption and heavily rely on the techniques from entanglement
bootstrap [12].

In Section 4, we put forward a hypothesis [Hypothesis 1] that relates the generators of certain subsets of the good modular flows
o quantities in CFT. This hypothesis will be the foundation upon which the results of the ensuing sections rely. While proving this

hypothesis is beyond the scope of this paper, we provide several pieces of nontrivial evidence in support of it. First, we provide
several locally checkable consequences of the hypothesis in Section 4.2, including a generalization of the recently-discovered vector
ixed point equation of [27]. We verify these numerically in Section 7. Secondly, we prove a special case of this conjecture under a
easonable physical assumption: that a 2+1D gapped ground state with a chiral gapless edge on a strip can be formally viewed as
 1+1D CFT ground state under dimensional reduction [Section 4.3].

In Section 5, we define a carrier space for our representation of the chiral Virasoro algebra from purely chiral states on a
two-dimensional disk. It is swept out by the generators of good modular flow.

We then construct the Virasoro generators modulo our hypothesis and explore their properties in Sections 6 and 7. In Section 6,
we devise a systematic method to extract the Virasoro generators, which are shown to be a special class of good modular flow
generators. We numerically verify their commutation relations in Section 7 using 𝑝 + 𝑖𝑝 superconductor and chiral semion lattice
round states, which both show good agreement with the predictions.

We remark that there is a large literature on the construction of Virasoro algebras in 1+1D systems, starting from [22] and more
recently in [28–31]. Here, we make some comparisons: Firstly, the idea of these works is to perform an exact Fourier transformation
f the Hamiltonian density. The starting point of their construction is very different from ours: [22] starts from the partition
unction, [28] directly starts from the local Hamiltonian and [30,31] starts from a tensor network representation of the partition

function. So all of these begin with a time evolution operator, either transfer matrix or Hamiltonian. Our construction, instead, is
directly from a single quantum state. Taking advantage of the form of a certain linear combination of modular Hamiltonians near
the edge, designed in such a way that it acts nontrivially only on the edge, we can perform an approximate2 Fourier transformation
to the stress–energy tensor, even without the construction of the Hamiltonian density beforehand. Secondly, previous work focuses
on 1+1D systems, which involve two copies of Virasoro algebra, while our construction is for 2+1D purely chiral systems, where
there is only one copy of Virasoro algebra. Therefore, there is no need to separate the two copies of Virasoro algebra as in the 1+1D
construction.

1 See [22] for a concrete example of how Virasoro algebra could appear in critical lattice models.
2 We also design a systematic process to make the approximation converge to the exact Fourier transformation.
2 
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Fig. 1. Axioms of the entanglement bootstrap. Here 𝜎 is the global state, often referred to as the reference state. Here 𝛥(𝐵 , 𝐶)𝜎 ∶= 𝑆(𝜎𝐵 𝐶 ) + 𝑆(𝜎𝐶 ) − 𝑆(𝜎𝐵 ) and
𝛥(𝐵 , 𝐶 , 𝐷)𝜎 ∶= 𝑆(𝜎𝐵 𝐶 ) + 𝑆(𝜎𝐶 𝐷) − 𝑆(𝜎𝐵 ) − 𝑆(𝜎𝐷).

2. Primer on entanglement bootstrap

In this Section, we provide a brief review of the basics of entanglement bootstrap [12]. In the absence of edges, there are two
axioms (A0 and A1) that constitute the core of entanglement bootstrap. These axioms pertain to the entanglement property of the
global state, often referred to as the reference state. These are described in Fig. 1. Here we use the convention that the subscript
𝜎 appearing after the parenthesis represents the underlying global state used for the evaluation of the entanglement entropies; for
instance, in expressions like (𝑆𝐴𝐵 +⋯)𝜎 , one can simply replace 𝑆𝐴𝐵 with 𝑆(𝜎𝐴𝐵). While the only assumptions we make are that A0
and A1 hold true on every constant-sized ball, as a logical consequence, one can show that the analogous set of assumptions holds
true at larger scales [12]. Therefore, without loss of generality, we can assume that these axioms hold on any disks, independent of
their size.

The axioms A0 and A1 are intimately related to quantum information-theoretic measures of correlations, such as mutual
nformation and conditional mutual information. Mutual information with respect to a state 𝜌 is defined as

𝐼(𝐴 ∶ 𝐵)𝜌 ∶= 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵) − 𝑆(𝜌𝐴𝐵). (2.1)

Conditional mutual information is a generalization of mutual information, defined as

𝐼(𝐴 ∶ 𝐶|𝐵)𝜌 ∶= 𝑆(𝜌𝐴𝐵) + 𝑆(𝜌𝐵 𝐶 ) − 𝑆(𝜌𝐵) − 𝑆(𝜌𝐴𝐵 𝐶 ). (2.2)

If the global state is pure, one can verify that A0 and A1 reduce to 𝐼(𝐴 ∶ 𝐶)𝜎 = 0 (choosing 𝐴 as a purifying system) and
𝐼(𝐴 ∶ 𝐶|𝐵)𝜎 = 0 (choosing 𝐴 as a purifying system). Therefore, A0 and A1 imply that certain mutual information and conditional

utual information are zero.
Intuitively, the fact that the mutual and conditional mutual information are zero can be understood as follows. Because mutual

nformation is a measure of the correlation between two subsystems, in gapped systems we can expect 𝐼(𝐴 ∶ 𝐶) to approach 0 as
he distance between 𝐴 and 𝐶 diverges. Therefore, A0 can be thought of as a condition that we expect to hold at a long-distance
cale, in particular, at the fixed point of some coarse-graining procedure. We can arrive at the same conclusion for A1, but using
 different reasoning. At long distance, the entanglement entropies of the subsystems are expected to be approximated well by a
eading ultraviolet-divergent term, proportional to the area, and a subleading universal term, known as the topological entanglement
ntropy [8,9]. It is an easy exercise to show that this scaling law implies A1. Therefore, A0 and A1 are the conditions that we can

expect to hold in gapped systems at long distances.3
In the context of this paper, the main power of A0 and A1 comes from the fact that they let us decompose the modular

amiltonian [32,33] (also known as the entanglement Hamiltonian, defined as − ln 𝜌𝐴 for the subsystem 𝐴) of any region into terms
hat act locally within that region. For any quantum state, the following relations are known:

𝐼(𝐴 ∶ 𝐵)𝜌 = 0 ⟺ ln 𝜌𝐴𝐵 = ln 𝜌𝐴 + ln 𝜌𝐵 ,
𝐼(𝐴 ∶ 𝐶|𝐵)𝜌 = 0 ⟺ ln 𝜌𝐴𝐵 𝐶 = ln 𝜌𝐴𝐵 + ln 𝜌𝐵 𝐶 − ln 𝜌𝐵 .

(2.3)

Therefore, by iteratively applying these decompositions, one can often decompose the modular Hamiltonian of a region to a linear
combination of modular Hamiltonians acting on smaller regions. In the presence of edges, one should not expect these axioms to
hold. However, one can still assume that the axioms hold at any location that is sufficiently far away from the edge; we numerically
verified this fact, the result of which is presented in Section 3.2. The fact that the axioms are still satisfied in the bulk comes into
play in our analysis, letting us decompose the linear combination of modular Hamiltonians over regions that are anchored on the
edge. However, the remaining piece of the puzzle is what kind of entanglement-based assumptions one ought to make at the edge.
This is what we discuss and explore in the rest of the paper.

3 Note that for chiral systems with finite-dimensional Hilbert spaces, we expect the axioms to only hold approximately.
3 
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Fig. 2. A modular flow generated by 𝐾𝐵 𝐶 𝐷 changes the density matrix on 𝐴𝐵. The outermost boundary in this diagram is the physical edge.

3. Good modular flows

In this Section, we introduce and study a special class of unitary flows,4 referred to as good modular flows. A good modular flow
creates only edge excitations, and this is the intuitive reason that their study can be related to an (anomalous) 1+1D system. The
central hypothesis of this paper [Hypothesis 1] is that certain generators of the good modular flows can be identified as the Virasoro
enerators, in the sense we make precise in Section 6.

3.1. Definition and properties of good modular flows

In order to motivate the definition of good modular flows, it will be instructive to consider a general linear combination of
modular Hamiltonians:

L =
∑

𝐴∈
𝜆𝐴𝐾𝐴, 𝜆𝐴 ∈ R, (3.1)

where  is a set of regions, 𝐾𝐴 = − ln 𝜌𝐴 is the modular Hamiltonian of the subsystem on the region 𝐴, 𝜌𝐴 = Tr𝐴̄ (|𝛹⟩⟨𝛹 |) is the
reduced density matrix over 𝐴, and 𝜆𝐴 is a real number. Upon evolving the global state by a unitary flow 𝑒−𝐢L𝑡, 𝑡 ∈ R, (such that
|𝛹 (𝑡)⟩ = 𝑒−𝐢L𝑡|𝛹⟩), we can ask how the reduced density matrices of different subsystems change.

In general, such a flow can change the reduced density matrices in the bulk. For instance, consider a flow generated by L = 𝐾𝐵 𝐶 𝐷
for the subsystems shown in Fig. 2. For small 𝛿 𝑡, 𝑒−𝐢𝐾𝐵 𝐶 𝐷𝛿 𝑡 changes the entanglement entropy of the state on 𝐴𝐵 by an amount 𝜋

3 𝑐−𝛿 𝑡,
here 𝑐− is the chiral central charge [17,34], which is generally nonzero. Therefore, this particular flow can change reduced density

matrices in general. Indeed, for a chiral state,5 by which we mean 𝑐− ≠ 0, the density matrix on 𝐴𝐵 must change in the first order
of 𝛿 𝑡.

However, unlike these more general modular flows, good modular flows are constructed in such a way that they do not change
the bulk reduced density matrices. Here is a simple rule that we advocate.

Definition 3.1 (Good Modular Flows). Let  be a set of regions and L =
∑

𝐴∈ 𝜆𝐴𝐾𝐴 (with 𝜆𝐴 ∈ R) be a modular flow generator.
This generator is good if for any line segment 𝑒

∑

𝐴∈ with 𝜕 𝐴⊃𝑒
𝜆𝐴 = 0, (3.2)

where 𝜕 𝐴 ⊃ 𝑒 means 𝜕 𝐴, the entanglement boundary of 𝐴,6 fully contains 𝑒. Throughout this paper, we denote the class of good
modular flow generators as g. We call the modular flow 𝑒−𝐢L𝑡 good if L ∈ g.

Any linear combination of modular Hamiltonians that does not satisfy Eq. (3.2) shall be referred to as a bad modular flow
enerator.

We now explicitly explain Definition 3.1 with the following examples of good and bad modular flow generators. More examples
are given in Table 1. Consider two modular flow generators L = 𝐾𝐴 +𝐾𝐵 −𝐾𝐴𝐵 and L′ = 𝐾𝐴′ +𝐾𝐵′ −𝐾𝐴′𝐵′ , where 𝐴, 𝐵 , 𝐴′, 𝐵′ are
egions in the bulk shown in Fig. 3. Based on the definition, L is a good modular flow generator while L′ is bad. For L, we can

consider an arbitrary line segment, say 𝑒1 shown in Fig. 3. Since 𝜕 𝐴 ⊃ 𝑒1, 𝜕(𝐴𝐵) ⊃ 𝑒1 and 𝜆𝐴 = −𝜆𝐴𝐵 = 1, the sum in Eq. (3.2) for 𝑒1
s indeed zero: 𝜆𝐴 + 𝜆𝐴𝐵 = 0. One can examine that for any line segment inside 𝜕 𝐴, 𝜕 𝐵 , 𝜕(𝐴𝐵),7 Eq. (3.2) condition is satisfied, and
herefore L is a good modular flow generator. For L′, notice for the line segment 𝑒′1, it is only fully contained in 𝜕 𝐴′, therefore the

sum in Eq. (3.2) results in 𝜆𝐴′ = 1, which makes L′ a bad modular flow generator.

4 i.e. flows generated by unitary operators
5 Throughout this paper we use ‘‘chiral’’ to mean 𝑐− ≠ 0 and ‘‘purely chiral’’ to mean |𝑐−| = 𝑐tot, where 𝑐tot ≡ 𝑐𝐿 + 𝑐𝑅 is the total central charge.
6 By entanglement boundary 𝜕 𝐴 (sometimes called entanglement cut) we mean the boundary of 𝐴 inside the bulk, away from the boundary of the sample.
7 One only needs to consider the line segments on the entanglement boundaries of the regions involved in the sum since those are not parts of any

entanglement boundaries and will not give any constraints.
4 
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Fig. 3. A good and a bad modular flow generators L = 𝐾𝐴+𝐾𝐵 −𝐾𝐴𝐵 and L′ = 𝐾𝐴′ +𝐾𝐵′ −𝐾𝐴′𝐵′ . 𝐴, 𝐵 , 𝐴′ , 𝐵′ are regions in the bulk and 𝑒1 , 𝑒2 , 𝑒′1 , 𝑒′2 are examples
of line segments.

Table 1
Examples of good and bad modular flow generators. The setups are shown in the figure on the left. Each line
of the equation is a modular flow generator, with its type (good or bad) marked at the end. The two figures
in the last row are two ways to partition the same disk, where the colored dots are identified.

While we do not have a rigorous proof for the invariance of the bulk reduced density matrices under good modular flows, we
provide an argument that supports the validity of this claim. As a starter, we prove this claim for an infinitesimally small flow. Let
L be a good modular flow generator. We compute the reduced density matrices in the bulk under a flow generated by exp(−𝐢L𝛿 𝑡),
or an infinitesimally small 𝛿 𝑡. We show that the linear-order contribution in 𝛿 𝑡 vanishes.

Without loss of generality, consider a local bulk region 𝑆, by which we mean 𝑆 is a subset of a bulk disk. Under the good
odular flow generated by L, the first order contribution can be computed as
5 
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Fig. 4. Deformation of the subsystem 𝐴 and 𝐵 (left) by a half-disk 𝑐 (right).

𝜌𝑆 (𝛿 𝑡) = 𝜌𝑆 + 𝐢𝛿 𝑡Tr𝑆̄ ([|𝛹⟩⟨𝛹 |,L]) . (3.3)

The generator L is a linear combination of modular Hamiltonians. Our goal is to show that the linear order contribution vanishes,
Tr𝑆̄ ([|𝛹⟩⟨𝛹 |,L]) = 0.

By the cyclicity of the trace, for any modular Hamiltonian associated with a region included in 𝑆̄, its contribution is identically
zero. Similarly, by noting the identity 𝐾𝑋 |𝛹⟩ = 𝐾𝑋 |𝛹⟩ for any subsystem 𝑋, any contribution coming from the region that includes
𝑆 is also identically zero. Therefore, for computing the linear-order contribution, it suffices to compute the contributions from the
modular Hamiltonians associated with regions that have nontrivial intersections with both 𝑆 and 𝑆. Put another way, only the
modular Hamiltonians whose entanglement cut passes through 𝑆 contribute.

To show that these contributions vanish, we will deform the cuts away from the local bulk region 𝑆. In particular, we will show
hat

L|𝛹⟩ = L′|𝛹⟩, (3.4)

where L′ is a good modular flow generator whose entanglement cut does not pass through 𝑆. This implies

Tr𝑆 ([|𝛹⟩⟨𝛹 |,L]) = Tr𝑆
(

[|𝛹⟩⟨𝛹 |,L′]
)

= 0, (3.5)

where the second equality applies the argument from the previous paragraph.
Therefore, if we were to show that the entanglement cuts present in the definition of L can be deformed away from the local

ulk region 𝑆, we would be done. More precisely, if we can show that

L|𝛹⟩ = L′|𝛹⟩, (3.6)

where L′ is a good modular flow generator whose entanglement cut does not pass through 𝑆, we have
Tr𝑆 ([|𝛹⟩⟨𝛹 |,L]) = Tr𝑆

(

[|𝛹⟩⟨𝛹 |,L′]
)

= 0. (3.7)

To prove the deformability of the entanglement cut [Eq. (3.6)], let us consider a special toy example, which will be an instructive
exercise that ultimately leads to the proof of this claim. Consider the bipartition of the entire system into two disks, 𝐴 and 𝐵 [Fig. 4].
Our claim is that the action of 𝐾𝐴−𝐾𝐵 on the reference state is invariant under the deformation of the entanglement cut [Eq. (3.6)].
Upon deforming 𝐴 to 𝐴 ∪ 𝑐 and 𝐵 to 𝐵 ⧵ 𝑐, the change in the good modular flow generator is 𝐾𝐴∪𝑐 − 𝐾𝐵⧵𝑐 − 𝐾𝐴 + 𝐾𝐵 . It is known
hat this quantity is zero if and only if 𝑆(𝜌𝐴∪𝑐 ) + 𝑆(𝜌𝐵) − 𝑆(𝜌𝐵⧵𝑐 ) − 𝑆(𝜌𝐴) = 0 [35]. Because of strong subadditivity (SSA) [36],

𝑆(𝜌𝐴∪𝑐 ) + 𝑆(𝜌𝑐 ) − 𝑆(𝜌𝐵⧵𝑐 ) − 𝑆(𝜌𝐴) ≤ 𝑆(𝜌𝑎∪𝑐 ) + 𝑆(𝜌𝑐 ) − 𝑆(𝜌𝑏⧵𝑐 ) − 𝑆(𝜌𝑎). (3.8)

The right hand side of Eq. (3.8) is zero by A1 [Section 2]. On the other hand, the left-hand side of Eq. (3.8) is at least zero by the
weak monotonicity [36]. Therefore, 𝑆(𝜌𝐴∪𝑐 ) + 𝑆(𝜌𝑐 ) − 𝑆(𝜌𝐵⧵𝑐 ) − 𝑆(𝜌𝐴) = 0, yielding

(𝐾𝐴∪𝑐 −𝐾𝐵⧵𝑐 −𝐾𝐴 +𝐾𝐵)|𝛹⟩ = 0, (3.9)

where |𝛹⟩ is the global state.
This argument can be straightforwardly extended to a more general setup in which 𝐴 and 𝐵 do not necessarily partition the

ntire system. As long as the subsystem 𝑐 is a disk in the bulk lying in a small neighborhood of an entanglement cut shared by
and 𝐵, our argument works exactly the same way. Furthermore, we remark that 𝐴 and 𝐵 need not lie on opposite sides of the

ntanglement cut. A similar argument applies to the case in which the subsystems 𝐴 and 𝐵 lie on the same side of the cut. In this
ase, while the overall structure of the argument is similar, strong subadditivity plays the role of weak monotonicity.

Now we are in a position to prove our main claim: that the action of good modular flow generators on the reference state are
nvariant under deformations of the entanglement cut. Without loss of generality, consider a modular flow generator L and a small
ine segment 𝑒 along an entanglement cut. We shall show that one can always deform the entanglement cut 𝑒 in a way similar to
6 
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Fig. 5. Here we consider a simple example of a good modular flow generated by 𝐾𝐴 − 𝐾𝐵 , where the relevant subsystems are shown in the left figure. The
entanglement cut of this good modular flow generator can be deformed close to the physical edge (right). In particular, (𝐾𝐴 − 𝐾𝐵 )|𝛹⟩ = (𝐾𝐴′ − 𝐾𝐵′ )|𝛹⟩, where
𝛹⟩ is the state from which the modular Hamiltonians are defined.

Fig. 4. Let 𝐾𝐴𝑖 , 𝑖 = 1,… , 𝑛 be the modular Hamiltonians in L whose entanglement boundaries contain 𝑒, i.e. 𝑒 ⊂ 𝜕 𝐴𝑖, and let 𝜆𝑖 be
he coefficient of 𝐾𝐴𝑖 in L. The idea behind this proof is simply to ‘‘pair up’’ these modular Hamiltonians in L as

𝑛
∑

𝑖=1
𝜆𝐴𝑖𝐾𝐴𝑖 =

𝑛
∑

𝑖=1
𝜆𝐴𝑖 (𝐾𝐴𝑖 −𝐾𝐴1

) +
( 𝑛
∑

𝑖=1
𝜆𝐴𝑖

)

𝐾𝐴1

=
𝑛
∑

𝑖=1
𝜆𝐴𝑖 (𝐾𝐴𝑖 −𝐾𝐴1

),

(3.10)

where the first line is simply a rearrangement of the terms in the left hand side and the second line follows because ∑𝑛
𝑖=1 𝜆𝐴𝑖 = 0

by the definition of the good modular flow generators [Definition 3.1]. Now we can see that the action of L on 𝑒 is simply the
ction of a sum of 𝑛 pairs 𝐾𝐴𝑖 −𝐾𝐴1

. Notice each pair is just the simple case we described in the previous paragraph (or the version
ith both regions on the same side of the cut). Therefore we can deform the entanglement cut 𝑒 for each pair as in Fig. 4, without

changing the action on the reference state. Thus, the action of a good modular flow generator on the reference state is invariant
nder deformations near any segment of an entanglement cut. Repeatedly applying this argument, we conclude that the action of

a good modular flow generator remains invariant under any smooth deformation of the entanglement cuts.
Therefore, we have shown that for any good modular flow generator, its entanglement cuts can be deformed [Eq. (3.6)]. In

particular, for any local bulk region, we can deform the generator so that none of its entanglement cuts pass through it. Therefore,
for an infinitesimally small flow, the reduced density matrix of any local bulk region8 remains invariant [Eq. (3.7)]. We will comment
lsewhere on the effects of good modular flow on density matrices of more general regions.

What if the flow is no longer infinitesimal? In this case, we can heuristically argue for the invariance of the bulk reduced
ensity matrices by making a nontrivial assumption: that Eq. (3.9) can be promoted to an operator identity acting on an appropriate

subspace. Specifically, let L be a good modular flow generator. Let L′ be a deformation of L such that (L−L′)|𝛹⟩ = 0. (For instance,
one may consider L = 𝐾𝐴 −𝐾𝐵 and L′ = 𝐾𝐴′ −𝐾𝐵′ in Fig. 5.) We posit that

(L − L′)|𝜙edge⟩ = 0 (3.11)

for any |𝜙edge⟩ which is indistinguishable from the reference state in the bulk. This includes the reference state |𝛹⟩ but also includes
states that may have excitations at the boundary.

We claim that L𝑛|𝛹⟩ = L′𝑛|𝛹⟩ for any 𝑛 ∈ N. For 𝑛 = 1, the claim is what we showed above [Eq. (3.6)]. For L2|𝛹⟩, note that
2
|𝛹⟩ = LL′|𝛹⟩, where L′|𝛹⟩ is a state with excitations only at the edge. Therefore, using Eq. (3.11), we get LL′|𝛹⟩ = L′2|𝛹⟩. The

same argument can be repeated recursively, establishing L𝑛|𝛹⟩ = L′𝑛|𝛹⟩. In particular, using Taylor expansion we conclude that
−𝐢L𝑡

|𝛹⟩ = 𝑒−𝐢L′𝑡|𝛹⟩ for any 𝑡 ∈ R.
Now we claim that the reduced density matrix of a disk in the local bulk region (denoted as 𝐶) is invariant under 𝑒−𝐢L′𝑡 provided

hat the entanglement cut associated with L′ does not pass through 𝐶. This is due to the existence of a disentangling unitary acting
n a region surrounding 𝐶 (denoted as 𝐷) [Fig. 6]. More concretely, the entanglement bootstrap axioms imply that A0 is satisfied
n this disk; it is known that [12]

(

𝑆𝐶 𝐷 + 𝑆𝐶 − 𝑆𝐷
)

𝜎 = 0. (3.12)

Therefore, for any extension of 𝜎𝐶 𝐷 to a larger system, say, 𝜌𝐵 𝐶 𝐷, there is a disentangling unitary acting on 𝐷 (denoted as 𝑈𝐷) such
hat

𝑈𝐷𝜌𝐵 𝐶 𝐷𝑈†
𝐷 = |𝜙⟩𝐶 𝐷𝐿 ⟨𝜙|⊗ 𝜌𝐷𝑅𝐵 , (3.13)

for some pure state |𝜙⟩𝐶 𝐷𝐿 , where 𝐷 ≅ 𝐷𝐿 ⊗ 𝐷𝑅 . What is more, |𝜙⟩𝐶 𝐷𝐿 depends only on 𝜎𝐶 𝐷, independent of the choice of
extension 𝜌𝐵 𝐶 𝐷. In particular, the same 𝑈𝐷 disentangles the global state |𝛹⟩ as well as its reduced density matrices over 𝐴′.

8 An example of what we are excluding is a cylinder, where the modular flow generators involve regions touching both boundaries, and the bulk region in
question wraps around the cylinder.
7 
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Fig. 6. For any bulk disk (𝐶) there is a region surrounding 𝐶 (denoted as 𝐷) on which a disentangling unitary exists. Upon applying this disentangling unitary,
we obtain a state in which the disk 𝐶 is fully entangled with part of 𝐷.

Therefore, all the modular Hamiltonians appearing in L associated with supersets of 𝐶 𝐷 can be disentangled using 𝑈𝐷. Without
loss of generality, let 𝑋 be such a subsystem.

𝐾𝑋 = ln
(

|𝜙⟩𝐶 𝐷𝐿 ⟨𝜙|
)

+ ln 𝜌𝐷𝑅∪(𝑋⧵𝐶 𝐷). (3.14)

Therefore, L can be expressed as a sum of terms that act nontrivially on the complement of 𝐶 𝐷𝐿 and the terms that act on 𝐶 𝐷𝐿.
The latter term is a multiple of ln

(

|𝜙⟩𝐶 𝐷𝐿 ⟨𝜙|
)

, which acts trivially on |𝛹⟩. Therefore, the reduced density matrix of |𝛹⟩ over 𝐶 𝐷𝐿
is invariant under the good modular flow. In particular, the reduced density matrix over 𝐶 is invariant under the flow. Because
𝑒−𝐢L𝑡|𝛹⟩ = 𝑒−𝐢L′𝑡|𝛹⟩ and we showed that the bulk reduced density matrix of 𝑒−𝐢L′𝑡|𝛹⟩ is independent of 𝑡, we can also conclude that
he bulk reduced density matrix of 𝑒−𝐢L𝑡|𝛹⟩ is invariant.

We remark that our argument for the invariance of the bulk reduced density matrices for non-infinitesimal flow is not rigorous.
here are two key mathematical issues that need to be dealt with. First, Eq. (3.11) may not hold even if Eq. (3.9) is true. Second,

Eq. (3.14) is unbounded because we are taking the logarithm of the rank-one projector |𝜙⟩𝐶 𝐷𝐿 ⟨𝜙|. Making our argument into a
igorous argument that takes care of these subtleties is left for future work. We complement this shortcoming of our argument by

providing strong numerical evidence for our claim in Section 3.2.
In summary, the argument we present in this section says that if we apply a good modular flow to the ground state, the resulting

state

|𝛹 (𝑡)⟩ = 𝑒−𝐢L𝑡 |𝛹⟩ , L ∈ g (3.15)

will have only edge excitations, without any bulk excitations. This is because, as we argued, the bulk density matrix should not
hange. We will denote the subspace spanned by these states as edge from now on.

3.2. Fidelity tests

In this subsection, we provide numerical evidence for our claim that the bulk reduced density matrices are invariant under good
modular flow.

3.2.1. Fidelity as a diagnostic of change under modular flow
In order to assess how close two density matrices are, we employed the fidelity 𝐹 (𝜌, 𝜎) ≡ Tr

(

√

√

𝜌𝜎
√

𝜌
)

. For the ensuing
discussion, recall the basic properties of fidelity: that 0 ≤ 𝐹 (𝜌, 𝜎) ≤ 1 and 𝐹 (𝜌, 𝜎) = 1 if and only if 𝜌 = 𝜎.

Consider a flow (one-parameter family of unitary) 𝑈 (𝑡) = 𝑒𝐢𝐺 𝑡 on a state |𝛹⟩ generated by a Hermitian operator 𝐺. We compute
𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡)), where 𝜌𝑋 (𝑡) = Tr𝑋 |𝛹 (𝑡)⟩ ⟨𝛹 (𝑡)| and |𝛹 (𝑡)⟩ = 𝑈 (𝑡) |𝛹⟩ to quantify the extent to which the local reduced density matrix
f a region 𝑋 has been changed under the flow.

We will also be interested in the change of the state under the flow 𝑈 (𝑡) = 𝑒𝐢𝐺 𝑡 for infinitesimal 𝑡. Provided that 𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡))
s twice differentiable around 𝑡 = 0, we define

𝛼(𝐺 , 𝑋) ≡ − 𝑑2

𝑑 𝑡2 𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡))
|

|

|

|𝑡=0
. (3.16)

The Taylor expansion around 𝑡 becomes:

𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡)) = 1 − 1
2
𝛼(𝐺 , 𝑋)𝑡2 + 𝑂(𝑡3). (3.17)

The absence of the linear term comes from the fact that 𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡)) ≤ 1. Otherwise, under an infinitesimal time 𝑡, 𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡))
can exceed 1. (For a similar reason, we can also conclude that 𝛼(𝐺 , 𝑋) ≥ 0.) Thus the single number 𝛼(𝐺 , 𝑋) accurately captures the
small 𝑡 behavior of the fidelity9 under the flow.

9 This is related to the fact that
√

1 − 𝐹 is a metric; see Ref. [37] and Bures distance [38] for related discussions.
8 
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Fig. 7. Setups for testing the good and bad modular flows. The left and right figure represents the setup for test 1 and test 2, respectively. Each test involves
 choice of good (blue) and bad (pink) modular flow generators. The sizes and the locations of the subsystems can be inferred from the figure by noting that
ach dot represents a site of a square lattice.

In the following section, we shall numerically study a specific model and utilize these quantities, namely fidelity and 𝛼(𝐺 , 𝑋),
o quantitatively study the change of local reduced density matrices various under modular flows.

3.2.2. Numerical tests
The main goal of our numerical tests is to verify our prediction in Section 3.1: that good modular flow at finite time preserves

the bulk local density matrices.10 For this purpose, we shall use the fidelity [Section 3.2.1] to quantify the degree to which the bulk
local density matrix changes. For concreteness, we will study the ground state of a 𝑝 + 𝐢𝑝 superconductor on a square lattice:

𝐻 =
∑

𝑟, ⃗𝑎

[

−𝑡𝑎†
𝑟
𝑎𝑟+𝑎 + 𝛥𝑎

†
𝑟
𝑎†
𝑟+𝑎
𝑒𝐢𝑎⋅𝐴 + ℎ.𝑐 .

]

−
∑

𝑟

(𝜇 − 4𝑡)𝑎†
𝑟
𝑎𝑟, (3.18)

where 𝑟 = (𝑥, 𝑦) represents a site on the square lattice, and 𝑎 is the lattice vector, taking values of (1, 0) and (0, 1) for positive 𝑥 and 𝑦
direction respectively. We set 𝐴 = (0, 𝜋∕2), so that 𝑒𝐢𝑎⋅𝐴 is either 1 or 𝐢. In the following test, we choose 𝑡 = 1.0, 𝛥 = 1.0, and 𝜇 = 1.3;
his choice of parameter yields a relatively small correlation length (approximately 1.2 lattice spacings). We impose an anti-periodic
oundary condition on the 𝑥-direction so that no flux is threaded.

We have numerically observed that the ground state of this model satisfies entanglement bootstrap axioms A0 and A1
pproximately with error decaying with subsystem sizes; see Section 7.1.1 for details. We thus anticipate the conclusions made

in the previous section to continue to hold, at least approximately. In particular, we expect the local bulk reduced density matrices
to be approximately invariant under good modular flows.

Let us now discuss our setup [Fig. 7]. We considered two types of good and bad modular flows, each shown on the left and
the right side in Fig. 7; we shall refer to these two different setups as ‘‘test 1’’ and ‘‘test 2’’, respectively. In both cases, we chose
three disk-like regions, indexed by 𝑖 = 1, 2, 3. As 𝑖 increases, the region gets progressively farther away from the physical edge. In
particular, 𝑖 = 1 corresponds to a region anchored at the physical edge. We computed 𝐹 (𝜌𝑖(0), 𝜌𝑖(𝑡)) for 𝑖 = 1, 2, 3 in Fig. 7, where
𝜌𝑖(𝑡) is the reduced density matrix of region 𝑖 at time 𝑡.

The fidelities are plotted in Fig. 8. As expected, the reduced density matrices of the bulk regions (regions 2 and 3) remain
invariant under the good modular flow, though they can change under the bad modular flow. On the other hand, for the reduced
density matrices anchored at the physical edge (region 1), the good modular flow can change the fidelity. We remark that, for test
1, the fidelity of region 1 appears unchanged under the good modular flow. The origin of this invariance is unclear to us and we
leave it as an open problem to explain this unexpected behavior.

At small 𝑡, the fidelity can be approximated as

𝐹 (𝜌𝑖(0), 𝜌𝑖(𝑡)) ≈ 1 − 1
2
𝛼𝑖 𝑡

2, (3.19)

where 𝛼𝑖 is equal to the 𝛼(𝐺 , 𝑋) are defined in Eq. (3.16), with 𝐺 being the generators of the flow and 𝑋 being the disk-like region
. The coefficient 𝛼𝑖 can be inferred from the intercept of a linear fit between ln(1 − 𝐹 (𝜌𝑖(0), 𝜌𝑖(𝑡))) and ln(𝑡). We list the results of 𝛼𝑖
n the caption of Fig. 8. (For these tests, we estimated 𝛼𝑖 only for the bad modular flows, since good modular flows did not change

the density matrices for small 𝑡.)

10 Note that this statement holds in the limit in which the size of the involved subsystems are sufficiently large compared to the correlation length. For
ealistic systems, the invariance of the bulk local density matrix is only approximate.
9 
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Fig. 8. The fidelity tests associated with the regions shown in Fig. 7. For each test (each row), we have 𝐹 (𝜌𝑖(0), 𝜌𝑖(𝑡)) for modular flow with a long evolution
ime (left) and a zoom-in to the short evolution time (right). For the short time data, we perform linear fit of ln

(

1 − 𝐹 (𝜌𝑖(0), 𝜌𝑖(𝑡))) vs. ln 𝑡. From the intercepts,
e compute the 𝛼s for the associated bad modular flows: For test 1: 𝛼1 = 1.10, 𝛼2 = 2.27, 𝛼3 = 2.25. For test 2: 𝛼1 = 13.41, 𝛼2 = 8.45, 𝛼3 = 3.23.

4. Good modular flow generators and CFT

The numerical results in Section 3.2 showed that good modular flows do not alter the bulk reduced density matrices,
orroborating our argument in Section 3.1. This suggests that there is an invariant subspace associated with good modular flows,

which is a set of states that are locally indistinguishable from the reference state in the bulk. This subspace, edge, can therefore be
thought of as a subspace formed by states with excitations that are localized at the edge.

Now the natural question is how the good modular flows act on edge. To make progress, in the following, we shall employ an
xtra assumption (motivated by the chiral CFT description of the edge) which allows us to establish a dictionary between the good
odular flow generators and the Virasoro generators of a 1+1D chiral CFT. More specifically, we apply these concepts to gapped

round states with purely-chiral gapless edges, laying the groundwork for the construction of Virasoro generators in Section 6.
We shall study the following subclass of good modular flow generators, denoted as g∙:

Definition 4.1. We define g∙ as the subclass of good modular flow generators [Definition 3.1] of the form g ∋ L =
∑

𝐴 𝜆𝐴𝐾𝐴,
where every subsystem 𝐴 appearing in the summation is a disk-like region that intersects with at most one single interval on the edge.

By definition, g∙ ⊂ g. In Table 2, we shall see that g∙ ≠ g. There we list examples of good modular flow generators, delineating
the difference between the generators that are in g∙ and those that are not.

At a high level, the main motivation for defining g∙ is to focus on the good modular flow generators that can be identified
with the modular Hamiltonians of CFT on an interval, for which we have a good understanding [39]. For the good modular flow
enerators outside of g∙, it is less clear if such an identification holds because the corresponding subsystems in the CFT would
ontain more than one interval. The CFT modular Hamiltonians of such subsystems are not local [40–42], posing a challenge for

making such an identification.
As we shall soon see, by hypothesizing a certain relationship between the good modular flow generators and the modular

amiltonians of CFT, we can identify the good modular flow generators as weighted integrals of the stress–energy tensor in CFT.
oreover, this will lead to several testable predictions which we verify, thereby supporting our hypothesis.
10 
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Table 2
Examples of good modular flow generators. Some of them are in g∙ and some are not. We
remark that not all linear combinations of modular Hamiltonians of the form 𝐼(𝐴 ∶ 𝐶) or
𝐼(𝐴 ∶ 𝐶|𝐵) are good modular flow generators; see for example Fig. 3 and Table 1 second
column.
Good modular flow generators and their types

𝐼(𝐴 ∶ 𝐶) = 𝐾𝐴 +𝐾𝐶 −𝐾𝐴𝐶 ∉ g∙

𝐼(𝐴 ∶ 𝐶|𝐵) = 𝐾𝐴𝐵 +𝐾𝐵 𝐶 −𝐾𝐴𝐵 𝐶 −𝐾𝐶 ∉ g∙

𝐼(𝐴 ∶ 𝐶) = 𝐾𝐴 +𝐾𝐶 −𝐾𝐴𝐶 ∉ g∙

𝐼(𝐴 ∶ 𝐶|𝐵) = 𝐾𝐴𝐵 +𝐾𝐵 𝐶 −𝐾𝐴𝐵 𝐶 −𝐾𝐶 ∈ g∙

𝛥(𝐴𝐴′𝐶 𝐶 ′ , 𝐵 , ∅) = 𝐾𝐴𝐴′𝐶 𝐶 ′𝐵 +𝐾𝐵 −𝐾𝐴𝐴′𝐵 𝐶 𝐶 ′ ∉ g∙

𝛥(𝐴𝐴′ , 𝐵 , 𝐶 𝐶 ′) = 𝐾𝐴𝐴′𝐵 +𝐾𝐶 𝐶 ′𝐵 −𝐾𝐴𝐴′ −𝐾𝐶 𝐶 ′ ∈ g∙

4.1. CFT perspective

We shall focus on the low-energy physics of (2+1)D systems which are gapped and chiral in the bulk. Such a system has robust
apless edge, which is expected to be described by a chiral CFT [43–45]. Due to the gravitational anomaly of the chiral CFT, this
heory cannot be realized on a stand-alone 1D system with a tensor product Hilbert space structure [44,46]. However, the chiral

CFT is well-defined as an edge of a 2+1D system due to the cancellation of the anomaly [44,47].
From the CFT perspective, it is natural to expect the modular Hamiltonian of the edge to have a particularly simple form. It is

well-known that for a 1+1D CFT (without gravitational anomaly) on a circle,11 the modular Hamiltonian of the ground state |𝛺⟩

over an interval [𝜃1, 𝜃2] is of the following form [39]:

K [𝜃1 ,𝜃2] = ∫

2𝜋

0
𝑑 𝜃 𝛽[𝜃1 ,𝜃2](𝜃) (T (𝜃) + T̄ (𝜃)

)

+ 𝛼[𝜃1 ,𝜃2]1, (4.1)

where 𝛼[𝜃1 .𝜃2] is a UV-dependent constant, 𝛽[𝜃1 ,𝜃2](𝜃) is

𝛽[𝜃1 ,𝜃2](𝜃) = 2𝛩(𝜃 − 𝜃1)𝛩(𝜃2 − 𝜃)
sin( 𝜃−𝜃12 ) sin( 𝜃2−𝜃2 )

sin( 𝜃2−𝜃12 )
, (4.2)

and T (𝜃), T̄ (𝜃) are the holomorphic and anti-holomorphic components of the stress–energy tensor, respectively. (Both T (𝜃) and T̄ (𝜃)
re hermitian.) 𝛩(𝑥) is the Heaviside function, namely 𝛩(𝑥) = 1 for 𝑥 ≥ 0, and 𝛩(𝑥) = 0 for 𝑥 < 0. We will refer to 𝛽[𝜃1 ,𝜃2](𝜃) as the
oolness function.12

For a purely-chiral CFT, by which we mean a 1+1D CFT with only holomorphic components, we expect the modular Hamiltonian
to take the form:

K 𝜒
[𝜃1 ,𝜃2]

= ∫

2𝜋

0
𝑑 𝜃 𝛽[𝜃1 ,𝜃2](𝜃)T (𝜃) + 𝛼′[𝜃1 ,𝜃2]1, (4.3)

where the upper index 𝜒 signifies the fact that we are talking about a purely-chiral CFT.
While Eq. (4.3) is a well-defined object in CFT, as we mentioned, there is an obstruction to defining a chiral CFT on a stand-

alone 1+1D system. However, there are certain 2+1D states with an energy gap in the bulk, whose gapless edge is described by such
purely-chiral CFTs. We shall also refer to these 2+1D states as ‘‘purely-chiral’’. Next, we put forward a hypothesis that quantitatively
onnects good modular flow generators in g∙ from a purely-chiral 2+1D state to the modular Hamiltonians in a purely-chiral CFT.

For concreteness, let edge be the low-energy subspace which is spanned by the states obtained from good modular flows [Section 3].

Hypothesis 1 (Action of Good Modular Flow Generators for Purely-chiral States). Consider a purely chiral reference state |𝛹⟩ on a
wo-dimensional disk. Let L =

∑

𝐴 𝜆𝐴𝐾𝐴 ∈ 𝑔∙. There exists an isometry V ∶ CFT → edge (i.e., V†V = 1) such that

LV = V

(

∑

𝐴
𝜆𝐴K 𝜒

𝑏(𝐴) + 𝛼
′′(L)1

)

and |𝛹⟩ = V|𝛺⟩ (4.4)

11 The circle can have some radius 𝑅. The form of the modular Hamiltonian in Eq. (4.1) in angular coordinates does not depend on 𝑅, because of conformal
ymmetry.
12 Here we consider the CFT is on a circle. If the CFT is on an infinite line, for an interval [𝑥1 , 𝑥2], the coolness function takes the form 𝛽[𝑥1 ,𝑥2 ](𝑥) =
𝛩(𝑥 − 𝑥 )𝛩(𝑥 − 𝑥) (𝑥−𝑥1 )(𝑥2−𝑥) .
1 2 𝑥2−𝑥1
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Fig. 9. The edge interval 𝑏(𝐴) (red) corresponding to a disk 𝐴 (blue).

where K 𝜒
𝑏(𝐴) is the modular Hamiltonian of the CFT ground state |𝛺⟩ for the interval 𝑏(𝐴) obtained from the intersection of 𝜕 𝐴 with

he edge [see Fig. 9]. 𝛼′′(L) is a constant.
We will also use the following short-hand notation:

L
V
=
∑

𝐴
𝜆𝐴K 𝜒

𝑏(𝐴) + 𝛼
′′(L)1 is short for LV = V

(

∑

𝐴
𝜆𝐴K 𝜒

𝑏(𝐴) + 𝛼
′′(L)1

)

. (4.5)

A few remarks are in order. (1) Firstly, although the hypothesis may seem to be limited to expressions linear in L, this is actually
not the case. Because V is an isometry, the hypothesis immediately implies the following identity:

⟨𝛹 | 𝑓 ({L𝑖 ∈ g∙}) |𝛹⟩ = ⟨𝛺| 𝑓 ({𝐿𝜒CFT𝑖 }) |𝛺⟩ , g∙ ∋ L𝑖
V
= 𝐿𝜒CFT𝑖 (4.6)

for any (multi-variable) polynomial 𝑓 . (2) Secondly, we note that the hypothesis does not say anything about how the individual
𝐾𝐴 are related to the CFT modular Hamiltonians. One may think that the hypothesis is demanding that 𝐾𝐴

V?
= K 𝜒

𝑏(𝐴) + 𝛼
′′(𝐴)1 for

very disk 𝐴, but this is not the case. Rather, the hypothesis tells us only how to map elements of 𝑔∙13 to a linear combination of
CFT modular Hamiltonians. (3) Thirdly, the constant 𝛼′′(L) of (4.4) is necessary and non-trivial in some cases. One example of a
ood modular flow generator with such non-zero 𝛼′′ is shown in the second row in Table 1, where the constant term 𝛼′′ comes

from the topological entanglement entropy [8,9] (see also [12]) of bulk disks.14 (4) Moreover, by applying the good modular flow
enerators in g∙ to |𝛹⟩, one can obtain states of the form of V|𝛺′

⟩, where |𝛺′
⟩ is some excited state of the CFT. Physically, we

an expect V to map states of the CFT to edge. In particular, because the CFT Hilbert space is infinite-dimensional, this isometry
can only exist in the limit in which the edge is an infinite-dimensional Hilbert space. If edge is finite-dimensional, such as some
urely-chiral reference state realized in a finite lattice system we shall numerically study later, we anticipate V to map a certain
egularized subspace of CFT to edge. (5) Lastly, we remark that due to the Stinespring dilation theorem [48], the existence of

isometry can be reformulated as the existence of a quantum channel that maps a set of operators acting on edge to the ones on
CFT.

As a consequence of this hypothesis, we can establish a relationship between good modular flow generators in g∙ and the
tress–energy tensor of the purely-chiral CFT:

L
V
=
∑

𝐴
𝜆𝐴 K

𝜒
𝑏(𝐴) + 𝛼

′′(L)1 = ∫

2𝜋

0
𝑓 (𝜃)T (𝜃) + 𝜅(L)1, (4.7)

where 𝜅(L) is a real constant (depending on L) and 𝑓 (𝜃), which will be called a weight function, is a linear combination of the
coolness functions 𝛽𝑎(𝜃) of intervals 𝑎 with the coefficients appearing in the good modular flow generator:

𝑓 (𝜃) =
∑

𝐴
𝜆𝐴𝛽

𝑏(𝐴)(𝜃). (4.8)

Eq. (4.7) is the main starting point of our ensuing analysis. This is an important identity that establishes a correspondence between
good modular flow generators and the CFT stress–energy tensor for purely chiral states.

In the remainder of this paper, we will study many good modular flow generators, whose corresponding weight functions 𝑓 (𝜃)
re of special interest to us. One particularly simple case is when the weight function in Eq. (4.7) vanishes. This will result in an

equation (which we call the vector fixed-point equation) that we can verify using means independent of Hypothesis 1. We discuss this
equation in Section 4.2 and provide an alternative argument for its derivation in Section 4.3.

Remark. Hypothesis 1 implies that the behavior of a good modular flow for any 𝑡 ∈ R matches a certain CFT prediction. Note,
however, Hypothesis 1 is intended for systems in the thermodynamic limit. For systems with finite sizes (and with finite onsite

13 A stronger hypothesis we can make is to replace g∙ with g. We will not need this stronger version in this paper.
14 We suspect the only source of contribution to 𝛼′′ is topology dependent.
12 
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Fig. 10. Subsystems used in the construction of 𝐼 and 𝛥 appearing in Eq. (4.10). The yellow region represents the bulk and the thick bold line represents the
hysical edge.

Hilbert dimensions), we expect the match to hold approximately only within a finite time range 𝑡 ∈ (−𝑡∗, 𝑡∗), where 𝑡∗ depends on
he system size and parameters. At larger 𝑡, the modular flow behavior depends on the UV and is not universal. We will not study

such UV phenomena in this paper.

4.2. Vector fixed-point equation

A straightforward consequence of Hypothesis 1 is that there is a nontrivial identity that certain good modular flow generators
ought to satisfy. Consider a 1+1D CFT ground state |𝛺⟩. Let 𝑎, 𝑏, and 𝑐 be three contiguous intervals. It was shown in [27] that

𝜂𝛥CFT(𝑎, 𝑏, 𝑐) + (1 − 𝜂)𝐼CFT(𝑎 ∶ 𝑐|𝑏) ∝ 1, (4.9)

where 𝛥CFT(𝑎, 𝑏, 𝑐) ≡ K 𝑎𝑏 +K 𝑏𝑐 −K 𝑎 −K 𝑐 , 𝐼CFT(𝑎 ∶ 𝑐|𝑏) ≡ K 𝑎𝑏 +K 𝑏𝑐 −K 𝑎𝑏𝑐 −K 𝑏, and 𝜂 is the cross-ratio.15 Eq. (4.9) follows from the
form of the coolness function, as observed in [27]. In particular, the derivation of this equation can be generalized straightforwardly
to purely chiral CFTs.

Then by Hypothesis 1, we obtain a vector fixed-point equation for a purely chiral 2+1D state |𝛹⟩; see Eq. (4.13). Explicitly, for
the regions 𝐴𝐴′𝐵 𝐶 𝐶 ′ shown in Fig. 10, we consider a particular linear combination of modular Hamiltonians:

D(𝜂) ≡ 𝜂𝛥(𝐴𝐴′, 𝐵 , 𝐶 𝐶 ′) + (1 − 𝜂)𝐼(𝐴 ∶ 𝐶|𝐵), (4.10)

where 𝛥(𝐴𝐴′, 𝐵 , 𝐶 𝐶 ′) ≡ 𝐾𝐴𝐴′𝐵 +𝐾𝐶 𝐶′𝐵 −𝐾𝐴𝐴′ −𝐾𝐶 𝐶′ , and 𝐼(𝐴 ∶ 𝐶|𝐵) ≡ 𝐾𝐴𝐵 +𝐾𝐵 𝐶 −𝐾𝐴𝐵 𝐶 −𝐾𝐵 . Here 𝜂 is the cross-ratio computed
from the length of the edge interval. Note that

𝛥, 𝐼 ∈ g∙ ⇒ D(𝜂) ∈ g∙. (4.11)

In other words, D(𝜂) is a good modular flow generator. It is a very special one, because by Hypothesis 1 we have

D(𝜂)
V
∝ 1, (4.12)

implying that D(𝜂) acts trivially on the invariant subspace edge, that is,
D(𝜂)|𝛹⟩ ∝ |𝛹⟩. (4.13)

Eq. (4.13) is the vector fixed-point equation (for a chiral edge), which we study in the rest of this Section.
While Eq. (4.13) is a priori only a necessary condition for Hypothesis 1 to be true, it has the advantage of being locally checkable.

This is due to the equivalence of the following two statements:

D(𝜂) |𝛹⟩ ∝ |𝛹⟩ ⇔ D(𝜂)𝜌𝐴𝐴′𝐵 𝐶 𝐶′ ∝ 𝜌𝐴𝐴′𝐵 𝐶 𝐶′ , (4.14)

where 𝜌𝐴𝐴′𝐵 𝐶 𝐶′ is the reduced density matrix of |𝛹⟩. Note that the right-hand side of Eq. (4.14) is formulated entirely in terms of
local reduced density matrices. As such, this condition can be verified locally.

Now let us provide the proof of Eq. (4.14). The ⇒ direction is obvious as one can simply trace out the complement of 𝐴𝐴′𝐵 𝐶 𝐶 ′

n both hand side of D(𝜂) |𝛹⟩ ⟨𝛹 | ∝ |𝛹⟩ ⟨𝛹 |. For ⇐ direction, one can first consider a purification of 𝜌𝐴𝐴′𝐵 𝐶 𝐶′ , denoted as |

|

𝛹 ′
⟩,

o get D(𝜂) ||𝛹 ′
⟩ ∝ |

|

𝛹 ′
⟩. By Uhlmann’s theorem [49], there is an isometry acting on the complement of 𝐴𝐴′𝐵 𝐶 𝐶 ′ that maps |

|

𝛹 ′
⟩

rom |𝛹⟩. Because this unitary commutes with D(𝜂) by construction, we obtain the original vector equation. Therefore, the vector
ixed-point equation can be verified from the local reduced density matrix of |𝛹⟩ over 𝐴𝐴′𝐵 𝐶 𝐶 ′.

We note that our Hypothesis 1 assumes that the bulk state is purely chiral. The vector fixed-point equation, however, applies
more generally. We expect that a suitable generalization of Hypothesis 1 to non-purely-chiral states would also imply the vector
fixed-point equation.

Currently, we do not know if the vector fixed-point equation implies Hypothesis 1 in the case of purely-chiral states. While we
leave this question for future work, we make some further remarks on it in Section 4.3.

15 Explicitly, 𝜂 = |𝑎||𝑐| , where on an infinite line |𝑎| is the length of edge interval 𝑎, and on a circle |𝑎| is the chordal distance associated with arc 𝑎.

|𝑎𝑏||𝑏𝑐|
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Fig. 11. An illustration of the cylinder assumption. One can view a 2+1D gapped system with a chiral gapless edge mode (red) as a 1+1D CFT using dimensional
eduction. For illustration purposes we draw a purely-chiral 2+1D system where we have either left or right moving mode for each edge (not both). The cylinder
ssumption works more generally.

4.3. Analytical evidence for Hypothesis 1

The purpose of this section is to give evidence for Hypothesis 1. We do this by first proving the vector fixed point equation under
an assumption that we call the ‘‘cylinder assumption’’. Then we ask about the extent to which the vector fixed point equation and
its operator version imply Hypothesis 1.

Analytical evidence for the vector fixed-point equation. In Section 4.2, we introduced a straightforward consequence of
Hypothesis 1, which we referred to as the vector fixed-point equation. In this subsection, we use physics arguments to derive the
vector fixed-point equation. A certain reformulation of this condition will be used centrally in our upcoming work [50]. We then
iscuss the strength of such fixed-point equations, and the extent to which they in turn imply Hypothesis 1. This subsection thereby

provides nontrivial evidence for Hypothesis 1.
Because we will use an independent physics argument to derive the vector fixed-point equation, we emphasize that the

assumptions used in this Section (and its associated Appendix E) are different from the rest of the paper. Our starting point is
the idea that a (possibly chiral) 2+1D topological phase on a cylinder is a (non-chiral) 1+1D CFT. This assumption lets us use the
entanglement structure of a 1+1D CFT ground state and the bulk assumptions [Section 2] to learn about the entanglement structure
of the 2+1D state altogether. We will call this line of thought ‘‘the cylinder argument’’.

Consider a system with a large bulk gap on a cylinder. It is natural to regard the whole system as a 1+1D CFT [Fig. 11]: we
dimensionally reduce along the direction normal to the boundary, meaning that we regard the degrees of freedom with the same
value of the position along the boundary as lying at the same site of the 1D system. The basic assumption is that the resulting
system satisfies the vector fixed-point equation of [27], reviewed in Appendix E, for regions of the form indicated on the right side
f Fig. 11. We will call this statement (that the dimensionally reduced state satisfies the 1+1D vector fixed-point equation) the
cylinder assumption.

Taking the cylinder assumption as a starting point, with entanglement bootstrap axioms A0 and A1 plus two global assumptions,
we indeed partially verify the ‘‘dictionary’’ provided by Hypothesis 1. Here we state the assumptions and results and defer proof
details to Appendix E.

We introduce the two technical assumptions (similar to the axioms A0 and A1) to guarantee that no nefarious person has
distributed a Bell pair between the two boundaries of the cylinder [Fig. 12] so as to break the ensuing argument. These can be
thought of as versions of A0 and A1 over regions that include the inner boundary of the cylinder. If the inner boundary is contracted
to a point, this reduces to the usual A0 and A1. Nonetheless, we note that these are extra assumptions that do not follow from A0 and
A1. To see why these assumptions are necessary, we note the following fact. If we impose conditions on disks that only include the
bulk regions, we cannot exclude the possibility of having an end-point of a twist defect [51] (or Majorana zero modes in fermionic
models [52]) in the inner boundary. It is well-known that this leads to long-range mutual information [53,54]. We are ruling out
such pathological cases by imposing the full-boundary version of the axioms A0 and A1.

The main result of this Section is the following proposition.

Proposition 4.2 (Cylinder Assumption Gives Boundary Vector Fixed-Point Equation). Given the cylinder assumption, bulk A1, full-boundary
A0 and full-boundary A1, the 2+1D vector fixed-point equation (4.13) holds near each boundary independently.

We defer the proof of this Proposition to Appendix E.

Vector fixed-point equation hints at Hypothesis 1. Having just explained that the vector fixed-point equation near the physical
oundary follows from the cylinder assumption, we now discuss to what extent the vector fixed-point equation supports Hypothesis 1.

We shall give a physical discussion here. Work on the question of the strength of the vector fixed-point equation (as well as its
perator version) will be reported elsewhere [55].

In fact, the vector fixed-point equation largely determines the form of the modular Hamiltonian of a disk 𝐴 that touches the
gapless boundary along an interval 𝑏(𝐴), at least when it acts on the reference state 𝛹⟩. Recall that a modular Hamiltonian 𝐾
| 𝐴

14 
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Fig. 12. Full-boundary versions of the axioms A0 and A1. The solid lines represent the physical boundary and the dashed lines represent the entanglement cut.

only has non-trivial action on |𝛹⟩ along its entanglement cut 𝜕 𝐴.16 If the reference state satisfies the vector fixed point equation for
every set of three contiguous intervals, it has the following three consequences. (1) Vector fixed-point equations suggest that

𝐾𝐴 |𝛹⟩ =
(

∫𝑏(𝐴)
𝑑 𝜃 𝛽(𝜃)h(𝜃) + 𝜕 𝐴

)

|𝛹⟩ , (4.15)

where 𝜕 𝐴 acts on 𝜕 𝐴 (the entanglement cut of 𝐴) inside the bulk, and will be canceled in a linear combination of modular
Hamiltonians that gives a good modular flow generator. (2) Moreover, the vector fixed-point implies that the weight function 𝛽(𝑥)
takes the form of the coolness function (4.2). (3) Finally, the operator h(𝜃) in (4.15) is the ‘‘reconstructed Hamiltonian density’’ [27]
that governs the edge excitations.

We make three further remarks regarding the reconstructed Hamiltonian density. Firstly, h(𝜃) is a suitable limit of a particular
inear combination of modular Hamiltonians of small disks that touch the gapless edge at infinitesimal intervals near the point

labeled 𝜃. The reconstructed Hamiltonian from the integral of h(𝜃) can be regarded as the continuous version of the reconstructed
Hamiltonian in [27]. Secondly, if one considers a lattice realization of |𝛹⟩, then the Hamiltonian density shall be supported on the
hickened edge. The thickness is inevitable at least in chiral state, since otherwise, one can obtain a lattice realization of chiral CFT,
hich is forbidden by gravitational anomaly. Lastly, we should point out that from the vector fixed-point equation (which only

nvolves a linear action of modular Hamiltonians), it is not clear that h(𝜃) satisfies the operator product expansion (OPE) relation
equired for a stress–energy tensor of a CFT.

5. Coherent states

In the previous section, we introduced Hypothesis 1, relating the action of a good modular flow generator in g∙ on the reference
state to a weighted integral of the stress–energy tensor on the CFT ground state. In this section, we discuss the general properties
of states obtained from good modular flows. These states have the form |𝛹 (𝑡)⟩ = 𝑒𝐢L𝑡 |𝛹⟩ for some 𝑡 ∈ R, where L ∈ g∙ is Hermitian.
We shall refer to these states as coherent states for the reasons we discuss in Section 5.1. The vector space spanned by such coherent
tates gives a representation of the Virasoro algebra. This representation is known as the ‘‘identity module’’ in literature [56].

5.1. Virasoro algebra and coherent states

Consider a good modular flow generator L ∈ g∙:

L
V
= ∫ 𝑑 𝜃 𝑓 (𝜃)T (𝜃). (5.1)

Define |𝛹 (𝑡)⟩ ≡ 𝑒𝑖L𝑡|𝛹⟩. According to Hypothesis 1, this state is of the following form:

|𝛹 (𝑡)⟩ = 𝑒𝐢L𝑡 |𝛹⟩ = V exp
(

𝐢𝑡∫ 𝑑 𝜃 𝑓 (𝜃)T (𝜃)
)

|𝛺⟩ , (5.2)

where |𝛺⟩ is the CFT ground state. The state exp
(

𝐢𝑡 ∫ 𝑑 𝜃 𝑓 (𝜃)T (𝜃)
)

|𝛺⟩ is known as a coherent state in the CFT literature [57]. As
such, we shall refer to |𝛹 (𝑡)⟩ also as a coherent state. (We remark that |𝛹 (𝑡)⟩ is a state in 2+1 dimensions, though |𝛺⟩ describes a
tate in 1+1 dimensions.)

16 Explicitly, 𝐾 𝛹⟩ = 𝑂 𝛹⟩. This only requires bulk A0.
𝐴 | 𝜕 𝐴 |
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In purely chiral CFTs, the group generated by
{

exp
(

𝐢𝑡 ∫ 𝑓 (𝜃)T (𝜃)
)

|𝑓 (𝜃)
}

forms a projective representation of the orientation-
reserving diffeomorphisms over 𝑆1, denoted as Dif f+(𝑆1) from now on. As such, in the context of 2+1D purely chiral state, we
xpect the good modular flow 𝑒𝑖L𝑡 to be an element of a (projective) representation of Dif f+(𝑆1). A natural Hilbert space to consider
s ∙

edge, defined as:

∙
edge ≡ Span

{

𝑒𝐢L𝑡 |𝛹⟩ |L ∈ g∙, 𝑡 ∈ R} . (5.3)

This is our carrier space for Dif f+(𝑆1).
We now formally define the representation of the Virasoro generators with respect to ∙

edge. We define 𝐿𝑛 as an operator satisfying

𝐿𝑛
V
= L𝑛, 𝑛 ∈ Z, (5.4)

where V is the isometry appearing in Hypothesis 1. We shall discuss constructions of 𝐿𝑛 in Section 6. Following from Hypothesis 1,
𝐿𝑛 shall satisfy the Virasoro algebraic relation in ∙

edge, with the same charge 𝑐 as L𝑛.
Let us make a few remarks. First, Eq. (5.4) does not define 𝐿𝑛 uniquely in the original Hilbert space of the 2+1D chiral system.

his is because there can be different operators that satisfy Eq. (5.4) for the same value of 𝑛. However, within the subspace
∙
edge, these different choices act in an identical way. Specifically, consider 𝐿𝑛 and 𝐿′

𝑛 such that 𝐿𝑛V = 𝐿′
𝑛V = VL𝑛. Then for

ny |𝛹 (𝑡)⟩ = V𝑒𝐢L𝑡|𝛺⟩,

𝐿𝑛|𝛹 (𝑡)⟩ = 𝐿′
𝑛|𝛹 (𝑡)⟩ = VL𝑛𝑒

𝐢L𝑡
|𝛺⟩. (5.5)

Second, L𝑘|𝛹⟩ ∈ ∙
edge for any L ∈ g∙. This can be seen by taking the 𝑛’th order derivative of 𝑒𝐢L𝑡|𝛹⟩ at 𝑡 = 0. In Section 6, we shall

see that 𝐿𝑛 can be approximated arbitrarily well by a linear combination of various good modular flow generators. Therefore, ∙
edge

is closed under applications of 𝐿𝑛s.
Now, we can understand the action of a good modular flow generator in g∙ in terms of the Virasoro algebra (up to the isometry

). Recall the mode expansion of the stress–energy tensor:

L𝑛 =
1
2𝜋 ∫

2𝜋

0
𝑑 𝜃 𝑒𝐢𝑛𝜃T (𝜃) and T (𝜃) =

∑

𝑛∈Z
𝑒−𝐢𝑛𝜃L𝑛. (5.6)

By Hypothesis 1, any good modular flow generator in g∙ can be expressed in terms of a weighted integral of the stress–energy tensor:

L
V
= ∫

2𝜋

0
𝑑 𝜃 𝑓 (𝜃)T (𝜃) =

∑

𝑛∈Z
𝜆𝑛L𝑛, 𝜆𝑛 = ∫

2𝜋

0
𝑑 𝜃 𝑓 (𝜃)𝑒−𝐢𝑛𝜃 . (5.7)

Recalling 𝐿𝑛
V
= L𝑛, we can write L in Eq. (5.7) as

L =
∑

𝑛∈Z
𝜆𝑛𝐿𝑛. (5.8)

Therefore, the action of L on |𝛹⟩ is essentially a linear combination of Viraoro generators acting on the gapless edge. Moreover, a
coherent state can also be expressed as

|𝛹 (𝑡)⟩ = 𝑒𝐢L𝑡 |𝛹⟩ = exp
(

𝐢𝑡
∑

𝑛∈Z
𝜆𝑛𝐿𝑛

)

|𝛹⟩ . (5.9)

We wish to remark on an important property of the Fourier coefficient 𝜆𝑛, namely, |𝜆𝑛| decays as 𝑂(|𝑛|−3). This follows because
he weight function 𝑓 (𝜃) is piecewise17 𝐶2 by the construction of good modular flow. By contrast, if the action of a bad modular
low on the edge could be written as a weighted integral of the stress tensor (as in Hypothesis 1 for good modular flow), the weight

function would be piecewise 𝐶1, which leads to 𝑂(|𝑛|−2) decay of its Fourier coefficients. (See Lemma B.1 for the detailed proof.)
As we shall discuss below, the Fourier coefficients of the modular flow generators play an important role in computing several
quantities, such as the variance of the generator and the energy of the edge excitations. These quantities are finite for good modular
flow, thanks to the 𝑂(|𝑛|−3) decay of the Fourier coefficients for the generators. However, these quantities diverge for bad modular
flow, since the Fourier coefficients of the generators are 𝑂(|𝑛|−2) decay.

Using this expression Eq (5.9), one can obtain several analytic properties of the coherent states, which we discuss in the following
two subsections.

5.2. State overlap

In this subsection, we compare |𝛹 (𝑡)⟩ = 𝑒𝐢L𝑡 |𝛹⟩ ,L ∈ g∙ and |𝛹⟩. The difference between |𝛹⟩ and |𝛹 (𝑡)⟩ can be characterized by
he overlap |⟨𝛹 (𝑡)|𝛹⟩|2. The behavior for small 𝑡 is

|⟨𝛹 (𝑡)|𝛹⟩|2 = 1 − 𝜎(L)2𝑡2 + 𝑂(𝑡4), (5.10)

where 𝜎(L)2 is the variance of the operator L on |𝛹⟩:

𝜎(L)2 ≡ ⟨𝛹 |L2 |𝛹⟩ − ⟨𝛹 |L |𝛹⟩2 . (5.11)

17 The precise definition of piecewise 𝐶𝑚 is given in Appendix B.
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𝜎 quantifies the change of |𝛹⟩ under the good flow 𝑒𝐢L𝑡 for small 𝑡.
Moreover, the states |𝛹 (𝑡)⟩ and |𝛹⟩ only differ near the edge region where L ∈ g∙ has non-trivial action. To be more precise,

we utilize the fidelity 𝐹 (𝜌𝐴(0), 𝜌𝐴(𝑡)) to compare reduced density matrices from |𝛹⟩ and |𝛹 (𝑡)⟩ on a region 𝐴. (By fidelity, we mean
(𝜌, 𝜆) = Tr

√

√

𝜌𝜆
√

𝜌 as in Section 3.2.) Denoting the total system as  , we can show that

𝐹 (𝜌edge(0), 𝜌edge(𝑡)) = 𝐹 (𝜌 (0), 𝜌 (𝑡)) = |⟨𝛹 (𝑡)|𝛹⟩|, (5.12)

where 𝜌edge(0) and 𝜌edge(𝑡) are reduced density matrices on the thickened edge region. The first equality is proven in Appendix F.
The idea is that one can deform the support of L ∈ g∙ to a region near the gapless edge without changing the action on the reference
state, and hence, only the reduced density matrix near the edge is changed. In the circumstances where there are multiple gapless
edges, such as when the system is on a cylinder, the proof requires the full-boundary A0 condition,18 which is explained previously
n Fig. 12 in Section 4.3. The role of full boundary A0 can be understood as a constraint that there is no long-ranged entanglement

between the gapless edges. The second equality in Eq. (5.12) follows from the definition of fidelity.
As a result of Eq. (5.12), we obtain

𝐹 (𝜌 (0), 𝜌 (𝑡)) = 𝐹 (𝜌edge(0), 𝜌edge(𝑡)) = 1 − 1
2
𝜎(L)2𝑡2 + 𝑂(𝑡3). (5.13)

and therefore

𝜎(L)2 = 𝛼(L,) = 𝛼(L, edge region), L ∈ g∙ , (5.14)

where 𝛼 is defined in Eq. (3.16) in Section 3.2.1. Later, we shall numerically test Eq. (5.14) for some selected good modular flow
generators. We shall also compare the results with theoretical predictions, which are obtained by the Fourier coefficients in the

irasoro mode expansion g∙ ∋ L =
∑

𝑛∈Z 𝜆𝑛𝐿𝑛

𝜎(L)2 = 𝑐
12

∑

𝑛≥0
|𝜆𝑛|

2(𝑛3 − 𝑛). (5.15)

It is worth noting that 𝜎(L)2 converges due to the decaying property |𝜆𝑛| ∼ |𝑛|−3 for the good modular flow. In contrast, for the bad
modular flow, where |𝜆𝑛| ∼ |𝑛|−2, 𝜎(L)2 ∼ ∑∞

𝑛=1 1∕𝑛→ ∞, which diverges.

5.3. Energy of the coherent states

Since the Virasoro algebra contains a natural notion of Hamiltonian, we can also compute the ‘‘energy’’ of the edge excitations.
n Section 6.1.1, we will construct

𝐿0
V
= L0, (5.16)

and the energy of the edge excitation created by the good modular flow 𝑒𝐢L𝑡 with small 𝑡 is

⟨𝛹 (𝑡)|𝐿0 |𝛹 (𝑡)⟩ =
𝑐 𝑡2
12

∑

𝑚≥0
|𝜆𝑚|

2(𝑚4 − 𝑚2) + 𝑂(𝑡4). (5.17)

Interestingly, for small 𝑡, the leading order of this average energy is equal to the leading order (i.e. the 𝑡2 order) of the Schwarzian
action of an element 𝜑𝑡 ∈ Dif f (𝑆1)

𝐼[𝜑𝑡] = 2𝜋 𝑐
24 ∫

2𝜋

0
𝑑 𝜃

(

𝜑′
𝑡(𝜃)

2 +
(𝜑′′

𝑡 (𝜃)
𝜑′
𝑡(𝜃)

)2

− 1
)

. (5.18)

Specifically, the transformation 𝜑𝑡(𝜃) is generated by the good modular flow 𝑒𝐢L𝑡. The weight function 𝑓 (𝜃) of L in Eq. (5.7) is the
vector field of the transformation, i.e. 𝜑𝑡(𝜃) = 𝜃 + 𝑡𝑓 (𝜃) for small 𝑡, with which one can show Eq. (5.17) and (5.18) agrees at the
leading order.

The Schwarzian action (5.18) governs the dynamics of various theories of low-dimensional quantum gravity and appears to be
n effective description of certain 0+1-dimensional approximate CFTs like the low-energy limit of the SYK model (see e.g. [58]). It
lso gives the relative entropy of coherent states in chiral CFT [57].

6. Construction of approximate Virasoro generators

In the previous section, we formally defined the Virasoro generators 𝐿𝑛 by requiring 𝐿𝑛
V
= L𝑛. We now begin to discuss their

constructions from a single 2+1D purely-chiral wavefunction |𝛹⟩.
In Section 6.1, we shall use good modular flow generators to construct approximate Virasoro generators 𝐿̃𝑛, assuming the state

𝛹⟩ satisfies Hypothesis 1. For 𝑛 = 0,±1, the construction is exact 𝐿̃0 = 𝐿0, 𝐿̃±1 = 𝐿±1,19 while for the other generators, 𝐿̃±𝑛 take the
form

𝐿̃±𝑛 = 𝐿±𝑛 +
∑

|𝑘|≥2
𝜆𝑘𝑛𝐿𝑘𝑛, 𝑛 ≥ 2. (6.1)

18 If the system is on a disk (i.e. it has only one gapless edge), this full-boundary A0 condition follows from the bulk A0 condition.
19 For this reason, we will occasionally drop the ‘‘∼’’ for 𝐿̃ and 𝐿̃ .
0 ±1
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The first term 𝐿±𝑛 gives the leading-order contribution and the remaining higher-harmonic terms are sub-leading in the sense that
|𝜆𝑘𝑛| ∼ |𝑘|−3. We shall discuss the exact version of Eq. (6.1) at the end of the next subsection.

In Section 6.2, we analytically discuss several properties of 𝐿̃𝑛. Using the result of Eq. (6.1), we compute several meaningful
uantities that are related to 𝐿̃𝑛. The purposes of studying these quantities are not only for their own physical meaningfulness but
lso for comparisons. Later in Section 7, we first compare the theoretical predictions for these quantities with numerical results. The
ood agreement between them supports the validity of Hypothesis 1. Secondly, we compare the results for these quantities from 𝐿̃𝑛
nd those from 𝐿𝑛, from which we will see that the approximation ‘‘error’’ of 𝐿̃𝑛 to 𝐿𝑛 is quite small.

We remark that one can further improve the construction by a procedure that reduces the discrepancy between 𝐿̃𝑛 and 𝐿𝑛. The
procedure is introduced in Appendix C. As the limit of such a procedure, one can obtain exact 𝐿𝑛.

6.1. Explicit construction of 𝐿̃𝑛

In this subsection, we introduce the explicit construction of 𝐿̃𝑛 using good modular flow generators from a 2+1D purely-chiral
state |𝛹⟩. The general idea of the construction can be understood as an approximate spatial Fourier transformation. Recall the
Virasoro generator 𝐿𝑛 is

𝐿𝑛
V
= L𝑛 =

1
2𝜋 ∫

2𝜋

0
𝑑 𝜃 𝑒𝐢𝑛𝜃T (𝜃). (6.2)

Based on Hypothesis 1, a good modular flow generator in g∙ under the isometry V is a weighted integral of stress–energy tensors,
i.e. a linear combination of them. That is20:

∑

𝑖
𝜆𝑖L𝑖

V
= ∫

2𝜋

0
𝑓 (𝜃)T (𝜃), L𝑖 ∈ g∙, 𝜆𝑖 ∈ C. (6.3)

Therefore, to approximate 𝐿𝑛, one can find a certain linear combination of suitable good modular flow generators in g∙ such that
the weight function 𝑓 (𝜃) is approximately 𝑒𝐢𝑛𝜃 .

We shall introduce the construction of 𝐿0 and 𝐿𝑛≠0 separately, as their construction schemes are different. For 𝐿0, it can be
obtained directly from a single good modular flow generator [Section 6.1.1]. However, the construction for 𝐿𝑛, 𝑛 ≠ 0 takes more
teps [Section 6.1.2]. First of all, since 𝐿𝑛 for 𝑛 ≠ 0 are not Hermitian while good modular flow generators are, a certain linear

combination of good modular flow generators with imaginary coefficients is necessary. Secondly, in the construction of 𝐿̃𝑛≠0, we
utilize a method to which we shall refer as ‘‘twisting trick’’ (illustrated in Fig. 15). The twisting trick enables us to obtain a certain
et of good modular flow generators with desirable weight functions whose linear combinations can approximate 𝑒𝐢𝑛𝜃 .

6.1.1. Construction of 𝐿0
We begin with the construction of the Virasoro generator 𝐿0. We shall construct 𝐿0 as a good modular flow generator in g∙.

Such a generator needs to give 𝑓 (𝜃) ≡ 1
2𝜋 for 𝑓 (𝜃) appearing in Eq. (6.3). As discovered in 1+1D CFT [27], if the system is on a

ircle divided into 𝑁 equal-sized intervals (labeled by 𝑖 = 1,… , 𝑁), a constant weight function can be obtained by summing over
ll the coolness functions on two successive intervals 𝑖, 𝑖 + 1 and then subtracting the sum over all the coolness functions on single
ntervals:

∑

𝑖

(

K 𝜒
𝑖,𝑖+1 − K 𝜒

𝑖

)

∝ ∫

2𝜋

0
𝑑 𝜃T (𝜃) + 𝜅1, (6.4)

where K 𝜒
𝑎 , as a reminder, is the modular Hamiltonian of interval 𝑎 from a chiral CFT ground state, defined in Eq. (4.3). The constant

can be computed by taking the expectation value on the ground state.
For the 2+1D purely chiral state |𝛹⟩ with a gapless edge, we will be using a linear combination of modular Hamiltonians from |𝛹⟩,

hich takes the form of 𝛥(𝐴, 𝐵 , 𝐶) ≡ 𝐾𝐴𝐵 +𝐾𝐵 𝐶 −𝐾𝐴 −𝐾𝐶 for the region (𝐴, 𝐵 , 𝐶) near the edge [Fig. 13]. Note that 𝛥(𝐴, 𝐵 , 𝐶) ∈ g∙

is already a good modular flow generator by construction. We expect

𝛥(𝐴, 𝐵 , 𝐶) V= K 𝜒
𝑎𝑏 + K 𝜒

𝑏𝑐 − K 𝜒
𝑎 − K 𝜒

𝑐 (6.5)

for intervals 𝑎, 𝑏, and 𝑐 [Fig. 13]. While we believe Eq. (6.5) holds exactly, Hypothesis 1 allows a possible additive multiple of the
identity operator. This additive constant is irrelevant since (in the next paragraph) we will express 𝐿0 as a sum of 𝛥s with their
expectation values subtracted.

We now introduce the construction from the reference state |𝛹⟩ that satisfies Hypothesis 1 near the gapless edge. We divide the
edge into 𝑁 equal-sized intervals, labeled by 𝑖 = 1, 2,… , 𝑁 . Let 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 be regions touching the edge at the 𝑖 − 1, 𝑖, and 𝑖 + 1th
ntervals respectively, and they are arranged in way topologically equivalent to the 𝐴, 𝐵 , 𝐶 shown in Fig. 13. We see that

𝐿0 ≡
1

4𝜋 t an(𝜋∕𝑁)

𝑁
∑

𝑗=1

(

𝛥(𝐴𝑖, 𝐵𝑖, 𝐶𝑖) − 𝛥(𝐴𝑖, 𝐵𝑖, 𝐶𝑖)
)

(6.6)

satisfies the desired property 𝐿0
V
= 1

2𝜋 ∫ 2𝜋
0 𝑑 𝜃 T (𝜃) = L0, and it is the generator we are looking for. Here, the lower indices of the

regions should be understood modulo 𝑁 and 𝛥(𝐴𝑖, 𝐵𝑖, 𝐶𝑖) = ⟨𝛹 |𝛥(𝐴𝑖, 𝐵𝑖, 𝐶𝑖) |𝛹⟩.

20 Notice since 𝜆𝑖 in the equation can take values of complex numbers, such a linear combination might not be Hermitian and hence might not a good modular
low generator.
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Fig. 13. Subsystems for 𝛥(𝐴, 𝐵 , 𝐶). The gapless edge is indicated by the thick black line. The construction of Virasoro generator 𝐿0 utilizes a similar choice of
subsystems with (𝐴, 𝐵 , 𝐶) taken to be (𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖) that touches the gapless edge at interval (𝑖 − 1, 𝑖, 𝑖 + 1).

6.1.2. Construction of 𝐿̃𝑛, 𝑛 ≠ 0 with the twisting trick
In this subsection, we introduce a scheme to construct the approximate Virasoro generator 𝐿̃𝑛 which is generically applicable

or all 𝑛 ≠ 0. Our construction for 𝑛 = ±1 shall give the exact 𝐿±1, i.e. 𝐿̃±1 = 𝐿±1. On the other hand, 𝐿̃𝑛 for 𝑛 ≥ 2 is equal to 𝐿𝑛
lus a sum of sub-leading higher-harmonic terms 𝐿𝑘𝑛, |𝑘| ≥ 2, as we mentioned in Eq. (6.1).

As we mentioned at the beginning of this subsection, to construct an approximate Virasoro generator, our goal is to design a
uitable set of good modular flow generators which realize approximate spatial Fourier transformations. We shall later introduce

a twisting trick [Fig. 15] to achieve this goal. This trick leads to a judicious choice of linear combination of modular Hamiltonians
that only create excitations on the edge. Below we explain this idea in detail with an example, followed by the discussion on the
more general cases.

The main task of the construction is to find two types of good modular flow generators, denoted as L(𝑜)𝑛 ,L
(𝑒)
𝑛 , such that

L(𝑜)𝑛
V
≈ 1

2𝜋 ∫

2𝜋

0
𝑑 𝜃 sin(𝑛𝜃)T (𝜃), L(𝑒)𝑛

V
≈ 1

2𝜋 ∫

2𝜋

0
𝑑 𝜃 cos(𝑛𝜃)T (𝜃). (6.7)

Once L(𝑜)𝑛 ,L
(𝑒)
𝑛 are constructed, one can obtain the approximate Virasoro generators 𝐿̃±𝑛 as

𝐿̃±𝑛 = L(𝑒)𝑛 ± 𝐢L(𝑜)𝑛
V
≈ 1

2𝜋 ∫

2𝜋

0
𝑑 𝜃 𝑒±𝐢𝑛𝜃T (𝜃) = L±𝑛, 𝑛 ≥ 1, (6.8)

since 𝑒±𝐢𝑛𝜃 = cos(𝑛𝜃) ± 𝐢 sin(𝑛𝜃).
Now we discuss the construction of L(𝑜)𝑛 and L(𝑒)𝑛 . Let us use 𝛽(𝑜)𝑛 (𝜃) and 𝛽(𝑒)𝑛 (𝜃) to denote their weight function:

L(𝑜)𝑛
V
= ∫

2𝜋

0
𝑑 𝜃 𝛽(𝑜)𝑛 (𝜃)T (𝜃), L(𝑒)𝑛

V
= ∫

2𝜋

0
𝑑 𝜃 𝛽(𝑒)𝑛 (𝜃)T (𝜃). (6.9)

We aim to choose 𝛽(𝑜)𝑛 (𝜃), 𝛽(𝑒)𝑛 (𝜃) in Eq. (6.9) so that they approximate sin(𝑛𝜃) and cos(𝑛𝜃). Based on Hypothesis 1, the weight function
𝛽(𝑜)𝑛 (𝜃), 𝛽(𝑒)𝑛 (𝜃) shall be a linear combination of the coolness functions 𝛽[𝜃1 ,𝜃2](𝜃), introduced previously in Eq. (4.2), on various intervals
on a circle. Therefore, to obtain the desired L(𝑜)𝑛 ,L

(𝑒)
𝑛 , one needs to answer the following two questions: (1) Which linear combination

of coolness functions gives a good approximation of sin(𝑛𝜃), cos(𝑛𝜃)? (2) Which good modular flow generator can result in such a
linear combination in its weight function?

For the first question, dividing a circle into 2𝑛 equal-size intervals
[

(𝑘 − 1) 2𝜋
2𝑛
, 𝑘2𝜋

2𝑛

]

, 𝑘 = 1,… , 2𝑛

and adding up the coolness function of these intervals with alternating signs will provide an approximation of sin(𝑛𝜃), up to a
normalization factor (denoted as 𝐴𝑛). Similarly, the approximation of cos(𝑛𝜃) can be obtained by a shift of 𝜋∕(2𝑛) angle along the
circle.21 Explicitly,

𝛽(𝑜)𝑛 (𝜃) = 𝐴𝑛
2𝑛
∑

𝑘=1
(−1)𝑘−1𝛽

[

(𝑘−1)𝜋
𝑛 , 𝑘𝜋𝑛

]

(𝜃) ≈ 1
2𝜋

sin(𝑛𝜃),

𝛽(𝑒)𝑛 (𝜃) = 𝛽(𝑜)𝑛
(

𝜃 + 𝜋
2𝑛

)

= 𝐴𝑛
2𝑛
∑

𝑘=1
(−1)𝑘−1𝛽

[

(𝑘−3∕2)𝜋
𝑛 , (𝑘−1∕2)𝜋𝑛

]

(𝜃) ≈ 1
2𝜋

cos(𝑛𝜃),

(6.10)

where normalization factor 𝐴𝑛 is defined as

𝐴𝑛 =

⎧

⎪

⎨

⎪

⎩

1
2𝜋

𝑛 = 1

t an
( 𝜋
2𝑛

)

(𝑛2 − 1)∕8, 𝑛 ≠ 1
. (6.11)

This factor 𝐴𝑛 in the equation above is obtained by demanding

∫

2𝜋

0
𝛽(𝑜)𝑛 (𝜃) sin(𝑛𝜃) = 1

2
, ∫

2𝜋

0
𝛽(𝑒)𝑛 (𝜃) cos(𝑛𝜃) = 1

2
. (6.12)

21 The important part is the 𝜋∕(2𝑛) phase difference between 𝛽(𝑜)𝑛 and 𝛽(𝑒)𝑛 , It is also okay to call 𝛽(𝑜)𝑛 the approximation for cos(𝑛𝜃) and 𝛽(𝑒)𝑛 for sin(𝑛𝜃). That
just amounts to a 𝜋∕(2𝑛) overall coordinate translation.
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Fig. 14. Comparison between 𝛽(𝑜,𝑒)𝑛 (𝜃) and sin(𝑛𝜃)∕(2𝜋), cos(𝑛𝜃)∕(2𝜋) respectively.

See Fig. 14 for a comparison between 𝛽(𝑜,𝑒)𝑛 and sin(𝑛𝜃)∕(2𝜋), cos(𝑛𝜃)∕(2𝜋) respectively. We will provide a quantitative comparison in
Appendix C, discussing the error in this approximation in detail.

Now, we need to identify a certain good modular flow generator that results in such weight function Eq. (6.10). To that end,
e utilize the following ‘‘twisting trick’’ [Fig. 15]. For illustration purposes, let us consider the construction for 𝑛 = 2. We divide

the chiral gapless edge into four intervals of equal size, labeled by 𝑥𝑘 ≡ [(𝑘 − 1)𝜋∕2, 𝑘𝜋∕2], 𝑘 = 1, 2, 3, 4. We wish to obtain a good
modular flow generator, denoted as L(𝑜)2 , whose weight function is 𝛽𝑥1 (𝜃) − 𝛽𝑥2 (𝜃) + 𝛽𝑥3 (𝜃) − 𝛽𝑥4 (𝜃), that is:

L(𝑜)2
V
∝ L = K 𝜒

𝑥1
− K 𝜒

𝑥2
+ K 𝜒

𝑥3
− K 𝜒

𝑥4
, (6.13)

where K 𝜒
𝑎 is the modular Hamiltonian of an interval 𝑎 for chiral CFT ground state, defined in Eq. (4.3).

One approach to achieve this would be to choose four regions 𝑋𝑘 anchored at the interval 𝑥𝑘, 𝑘 = 1, 2, 3, 4 along the gapless
edge shown in the left column of Fig. 15. The linear combination 𝐿 = 𝐾𝑋1

− 𝐾𝑋2
+ 𝐾𝑋3

− 𝐾𝑋4
, with alternating signs, acting on

|𝛹⟩ shall create the same edge excitations as L in Eq. (6.13) does on the chiral CFT ground state. However, this 𝐿 is not a good
modular flow generator: 𝐿 will create bulk excitations along the entanglement cuts 𝑏𝑘 shown in Fig. 15 due to the action of 𝐾𝑋𝑘 on
𝛹⟩. To cancel these bulk excitations, we introduce a twisting trick to construct another linear combinations of modular Hamiltonian
t wist = 𝐾𝑋′

1
−𝐾𝑋′

2
+𝐾𝑋′

3
−𝐾𝑋′

4
. Each region 𝑋′

𝑘 is obtained by a twisting of 𝑋𝑘 in the bulk, such that the boundary of 𝑋′
𝑘 includes

he entanglement cut 𝑏𝑘+1 from its neighboring untwisted region 𝑋𝑘+1, i.e. 𝑏𝑘+1 ⊂ 𝜕 𝑋′
𝑘; see the right column of Fig. 15 for the

illustration of the twisted regions. Notice 𝑋′
𝑘 anchors at the same interval at the gapless edge as 𝑋𝑘. Therefore 𝐿t wist will create the

ame edge excitations as 𝐿. Now we can simply add up

L(𝑜)2 ≡
𝐴2
2

(

𝐿 + 𝐿t wist) , (6.14)

where 𝐴2 is the prefactor defined in Eq. (6.11). Notice L(𝑜)2 will create the same edge excitations as 𝐿 and 𝐿t wist , but create no
excitations in the bulk. Indeed, we can see that the excitations in 𝑏𝑘 created by 𝐾𝑋𝑘 is canceled by 𝐾𝑋′

𝑘−1
, as they have opposite sign

n L(𝑜)2 . As a result, we obtain a good modular flow generator L(𝑜)2 that satisfies Eq. (6.13). To obtain L(𝑒)2 , we can simply shift the
hole setup by 𝜋∕4 clockwise, such that 𝑥𝑘 → 𝑦𝑘 = [(𝑘− 3∕2)𝜋∕2, (𝑘− 1∕2)𝜋∕2], 𝑋𝑘 → 𝑌𝑘, 𝑋′

𝑘 → 𝑌 ′
𝑘 , and then use the same summation

using 𝐾𝑌𝑘 , 𝐾𝑌 ′
𝑘

as we did for 𝐾𝑋𝑘 , 𝐾𝑋′
𝑘
.

The idea we described above works for the construction of L(𝑜)𝑛 ,L
(𝑒)
𝑛 with 𝑛 ≥ 1, defined in Eq. (6.9). We now explicitly describe

the algorithm using Fig. 16:
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Fig. 15. Illustration of the twisting trick. The color (green, red) of each region stands for the sign (+,−) of the modular Hamiltonian on that region. Between
the two plots, the colored dots are identified. 𝐿 = 𝐾𝑋1

−𝐾𝑋2
+𝐾𝑋3

−𝐾𝑋4
, 𝐿t wist = 𝐿𝑋′

1
−𝐿𝑋′

2
+𝐾𝑋′

3
−𝐿𝑋′

4
. Neither 𝐿 nor 𝐿t wist is a good modular flow generator,

as there are ‘‘excitations’’ near the entanglement cut. Once we add them, such ‘‘excitations’’ cancel.

• Step 1: For a 2+1D purely-chiral state |𝛹⟩, we first choose a gapless edge of length 𝐿 and divide it into 2𝑛 equal-size intervals,
labeled by 𝑥𝑗 , 𝑗 = 1,… , 2𝑛. We remark that the starting point of the choice of intervals does not affect the construction due to
the translation symmetry along the edge.

• Step 2: Then we make a set of twisted squares 𝑋𝐿
𝑗 , 𝑋𝑅

𝑗 anchored at the interval 𝑥𝑗 . They are twisted to the left (𝐿) and right
(𝑅) such that 𝑋𝐿

𝑗 meets 𝑋𝑅
𝑗+1 at the top edge of the squares, see Fig. 16.

• Step 3: With this setup, we construct

L(𝑜)𝑛 =
𝐴𝑛
2

2𝑛
∑

𝑗=1
(−1)𝑗−1

(

𝐾𝑋𝑅𝑗 +𝐾𝑋𝐿𝑗

)

. (6.15)

• Step 4: To obtain L(𝑒)𝑛 , we can shift the intervals and squares by 𝐿∕(4𝑛) distance to the left direction: 𝑥𝑖 → 𝑦𝑖, (𝑋𝐿
𝑗 , 𝑋𝑅

𝑗 ) →

(𝑌 𝐿𝑗 , 𝑌 𝑅𝑗 ), 𝑗 = 1,… , 2𝑛. Then

L(𝑒)𝑛 =
𝐴𝑛
2

2𝑛
∑

𝑗=1
(−1)𝑗−1

(

𝐾𝑌 𝑅𝑗 +𝐾𝑌 𝐿𝑗

)

. (6.16)

In summary, in this way, we obtain good modular flow generators L(𝑜)𝑛 ,L
(𝑒)
𝑛 :

L(𝑜)𝑛
V
= ∫

2𝜋

0
𝛽(𝑜)𝑛 (𝜃)T (𝜃) ≈ 1

2𝜋 ∫

2𝜋

0
sin(𝑛𝜃)T (𝜃)

L(𝑒)𝑛
V
= ∫

2𝜋

0
𝛽(𝑒)𝑛 (𝜃)T (𝜃) ≈ 1

2𝜋 ∫

2𝜋

0
cos(𝑛𝜃)T (𝜃)

(6.17)

At last, by making linear combinations of L(𝑜)𝑛 and L(𝑒)𝑛 ,

𝐿̃±𝑛 = L(𝑒)𝑛 ± 𝐢L(𝑜)𝑛 , (6.18)

we can approximate 𝑒±𝐢𝑛𝜃∕(2𝜋) in the weight function,

𝐿̃𝑛
V
= ∫

2𝜋

0

(

𝛽(𝑒)𝑛 + 𝐢𝛽(𝑜)𝑛
)

T (𝜃) ≈ 1
2𝜋 ∫

2𝜋

0
𝑒𝐢𝑛𝜃T (𝜃) = L𝑛

𝐿̃−𝑛
V
= ∫

2𝜋

0

(

𝛽(𝑒)𝑛 − 𝐢𝛽(𝑜)𝑛
)

T (𝜃) ≈ 1
2𝜋 ∫

2𝜋

0
𝑒−𝐢𝑛𝜃T (𝜃) = L−𝑛,

(6.19)

and as a result we obtain the approximate Virasoro generators 𝐿̃±𝑛
V
≈ L±𝑛, 𝑛 ≥ 1.

6.1.3. Expansion of 𝐿̃𝑛 in Virasoro modes
With the approximate 𝐿̃𝑛 constructed, we now discuss the exact form of 𝐿̃𝑛 in terms of Virasoro generators 𝐿𝑚. Such an expression

of 𝐿̃𝑛 is useful in analytically computing several quantities that are related to them, such as those discussed in Section 6.2. The
explicit expression of 𝐿̃𝑛 also reveals the approximation ‘‘error’’ of 𝐿̃𝑛 to 𝐿𝑛.

For 𝑛 = 0, as we mentioned before in Section 6.1.1, the construction gives 𝐿̃0 = 𝐿0. Therefore, we shall focus on 𝐿̃𝑛≠0. We
remark that even though the construction of 𝐿̃±1 also gives exactly 𝐿±1, we still include 𝑛 = ±1 into the discussion below, because
the construction for all 𝑛 ≠ 0 follows the same procedure, so the analysis is applicable to all 𝑛 ≠ 0.

Based on the construction Eq. (6.19), the approximate Virasoro generator takes the form

𝐿̃𝑛
V
=

2𝜋
𝑑 𝜃 𝛽𝑛(𝜃)T (𝜃), 𝑛 ≠ 0 (6.20)
∫0
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Fig. 16. Construction of L(𝑜)
𝑛 . The color indicates the sign of the modular Hamiltonian of that region. Each of the figures depicts a connected component of a

boundary. Left and right sides of the figure are identified. We can be agnostic about what happens farther into the bulk; for example, the whole geometry could
be a disk. The regions used in the construction of L(𝑒)

𝑛 are called 𝑌 𝑅𝑘 and 𝑌 𝐿𝑘 ; they are obtained by shifting 𝑋𝑅
𝑘 and 𝑋𝐿

𝑘 to the left by 𝜋∕2𝑛.

where

𝛽±𝑛(𝜃) = 𝛽(𝑒)𝑛 (𝜃) ± 𝐢𝛽(𝑜)𝑛 (𝜃), 𝑛 ≥ 1. (6.21)

Employing T (𝜃) = ∑

𝑚∈Z 𝐿𝑚𝑒
−𝐢𝑚𝜃 in Eq. (6.20), one can obtain the exact form of 𝐿̃𝑛 in terms of exact Virasoro generators 𝐿𝑛

𝐿̃𝑛 =
∑

𝑚∈Z
𝜆𝑛,𝑚𝐿𝑚, (6.22)

where the 𝜆𝑛,𝑚 are the Fourier coefficients of 𝛽𝑛(𝜃):

𝜆𝑛,𝑚 = ∫

2𝜋

0
𝑑 𝜃 𝛽𝑛(𝜃)𝑒−𝐢𝑚𝜃 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if |𝑛| = 1, 𝑚 = 𝑛

𝑛3 − 𝑛
𝑚3 − 𝑚

, if |𝑛| ≥ 2, 𝑚 = (−1)𝑘(2𝑘 + 1)𝑛, 𝑘 ∈ N

0, otherwise

(6.23)

We make several remarks regarding the exact form 𝐿̃𝑛, 𝑛 ≠ 0.

• For |𝑛| = 1, we emphasize that 𝐿̃𝑛 is exactly 𝐿𝑛, i.e. 𝐿̃±1 = 𝐿±1. This can be seen directly by checking 𝛽±1(𝜃) = 𝑒±𝐢𝜃 .
• For |𝑛| ≥ 2, we can see that the Virasoro mode labels appearing in 𝐿̃𝑛 are 𝑛 multiplied by odd integers with alternating signs:
𝐿𝑛, 𝐿−3𝑛, 𝐿5𝑛, etc. Among these modes, the leading order contribution is 𝐿𝑛, as 𝜆𝑛,𝑛 = 1. As |𝑚∕𝑛| increases, the magnitude of
its coefficient |𝜆𝑛,𝑚| decay as 𝑂(|𝑚∕𝑛|−3), which ensures the contribution from these sub-leading terms are considerably small.

Moreover, having obtained the exact form of 𝐿̃𝑛, 𝑛 ≠ 0, we can also design a procedure to reduce the subleading terms in 𝐿̃𝑛, so
that it becomes a better approximation to 𝐿𝑛. The procedure is explicitly introduced in Appendix C. As a limit of such a procedure,
ne can obtain the exact Virasoro generator 𝐿𝑛 as a linear combination of good modular flow generators.

6.2. Quantitative properties

In this subsection, we discuss several quantitative properties related to 𝐿̃𝑛, which will be tested in numerics [Section 7]. Based
on Hypothesis 1, these proprieties are analytically expressed in terms of the Fourier coefficients 𝐿̃𝑛 in Eq. (6.22). Therefore the
excellent agreement we shall see in Section 7 provides support for the correctness of the exact form of 𝐿̃𝑛 in Eq. (6.22), as well as to
the validity of Hypothesis 1. These quantities of 𝐿̃𝑛 will also be compared with those from 𝐿𝑛. Such a comparison gives a measure
of the quality of the approximation of 𝐿̃𝑛 to 𝐿𝑛.

6.2.1. Variance
The first quantity we consider is the variance of the good modular flow generators L(𝑜)𝑛 ,L

(𝑒)
𝑛 that are involved in the construction

f 𝐿̃𝑛. We will focus on L(𝑜)𝑛 ; the results for the other one L(𝑒)𝑛 can be obtained similarly.
Based on Eq. (6.18), L(𝑜)𝑛 , 𝑛 ≥ 1 is of the form

(𝑜) −𝐢 ̃ ̃
L𝑛 =
2
(𝐿𝑛 − 𝐿−𝑛). (6.24)
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Taking the exact form of 𝐿̃±𝑛 from Eq. (6.22), we can express L(𝑜)𝑛 in terms of Virasoro generators

L(𝑜)𝑛 =
∑

𝑛∈Z
𝜆(𝑜)𝑛,𝑚𝐿𝑚, (6.25)

where

𝜆(𝑜)𝑛,𝑚 = − 𝐢
2
(𝜆𝑛,𝑚 − 𝜆−𝑛,𝑚), 𝑛 ≥ 1. (6.26)

As we mentioned in Section 6.2.1, the variance of a good modular flow generator can be expressed in terms of its Fourier coefficient
as Eq. (5.15). Therefore, for L(𝑜)𝑛 , we obtain

𝜎(L(𝑜)𝑛 )2 = 𝑐
12

∑

𝑚≥0
|𝜆(𝑜)𝑛,𝑚|

2(𝑚3 − 𝑚). (6.27)

This quantity can be explicitly computed by making use of the analytic formula of 𝜆(𝑜)𝑛,𝑚 obtained from Eqs. (6.26) and (6.23):

𝜎(L(𝑜)𝑛 )2 = 𝑐
192

𝑛(𝑛2 − 1)2
[

2𝜓
( 1
2

)

− 𝜓
( 𝑛 + 1

2𝑛

)

− 𝜓
( 𝑛 − 1

2𝑛

)]

, (6.28)

where 𝜓(𝑧) is the polygamma function, defined as 𝜓(𝑧) ≡ 𝛤 ′(𝑧)∕𝛤 (𝑧) from the gamma function 𝛤 (𝑧) and its first derivative 𝛤 ′(𝑧).
hus, at large 𝑛, 𝜎(L(𝑜)𝑛 )2 ∼ 𝑛3.

6.2.2. Expectation values of commutators
We are also interested in expectation values of commutators among 𝐿̃𝑛, 𝑛 ≠ 0 since they encode information about the Virasoro

algebra relations. Explicitly, we shall consider ⟨𝛹 | [𝐿̃𝑛, 𝐿̃−𝑛] |𝛹⟩ , 𝑛 ≥ 1. Recall 𝐿̃±𝑛 = L(𝑒)𝑛 ± 𝐢L(𝑜)𝑛 , therefore the expectation value of
the commutator can be expressed as

⟨𝛹 | [𝐿̃𝑛, 𝐿̃−𝑛] |𝛹⟩ = 2𝐢 ⟨𝛹 | [L(𝑒)𝑛 ,L(𝑜)𝑛 ] |𝛹⟩ , 𝑛 ≥ 1. (6.29)

Before we explicitly compute 𝐢 ⟨𝛹 | [L(𝑒)𝑛 ,L
(𝑜)
𝑛 ] |𝛹⟩ , 𝑛 ≥ 1, we first discuss the general case, namely, the expectation value

𝐢 ⟨𝛹 | [L1,L2] |𝛹⟩ for any two good modular flow generators L1,L2 ∈ g∙. There are, in general, two methods to compute it.
One way is to follow the same idea we used to compute the variance and use Fourier expansion of L1,L2

L1 =
∑

𝑚∈Z
𝜆1𝑚𝐿𝑚, L2 =

∑

𝑚∈Z
𝜆2𝑚𝐿𝑚, (6.30)

then the expectation value of their commutators is
⟨𝛹 | [L1,L2] |𝛹⟩ = 𝑐

12
∑

𝑚∈Z
𝜆1𝑚𝜆

2
−𝑚(𝑚

3 − 𝑚). (6.31)

The other way is to utilize the result in [59]: The expectation value of the commutator between two chiral CFT modular
Hamiltonian on interval 𝑎𝑏, 𝑏𝑐 is

𝐢⟨𝛺|[K 𝜒
𝑎𝑏,K

𝜒
𝑏𝑐 ] |𝛺⟩ =

𝜋 𝑐−
6

(2𝜂𝑎,𝑏,𝑐 − 1), (6.32)

where 𝜂𝑎,𝑏,𝑐 =
|𝑎|⋅|𝑐|
|𝑎𝑏|⋅|𝑏𝑐| is the cross-ratio of the successive intervals (𝑎, 𝑏, 𝑐), and 𝑐− is the chiral central charge. With Eq. (6.32) at hand,

e can, in general, compute expectation values between any two good modular flow generators

g∙ ∋ L1 =
∑

𝐴1

𝜆1𝐴𝐾𝐴1
V
=
∑

𝑎1
𝜆𝐴1K 𝜒

𝑎1
,

g∙ ∋ L2 =
∑

𝐴2

𝜆2𝐴𝐾𝐴2
V
=
∑

𝑎2
𝜆𝐴2K 𝜒

𝑎2
.

(6.33)

In the equation above, 𝑎1, 𝑎2 are the intervals where 𝐴1, 𝐴2 intersect with the gapless edge. Using the isometry relation in
Hypothesis 1, the expectation value of the commutator [L1,L2] is

𝐢 ⟨𝛹 | [L1,L2] |𝛹⟩ =
∑

𝐴1 ,𝐴2

𝜆𝐴1𝜆𝐴2
(

𝐢 ⟨𝛺| [K 𝑎1 ,K 𝑎2 ] |𝛺⟩

)

, (6.34)

where each commutator 𝐢 ⟨𝛺| [K 𝑎1 ,K 𝑎2 ] |𝛺⟩ in the right hand side can be computed via Eq. (6.32).
We shall use the second method to compute 𝐢 ⟨𝛹 | [L(𝑒)𝑛 ,L

(𝑜)
𝑛 ] |𝛹⟩, as it provides a succinct analytic formula of the result. Based on

the construction of L(𝑒)𝑛 ,L
(𝑜)
𝑛 in Eqs. (6.15) and (6.16),

L(𝑜)𝑛
V
= 𝐴𝑛

∑

𝑘
(−1)𝑘−1K 𝑥𝑘 , L(𝑒)𝑛

V
= 𝐴𝑛

∑

𝑘
(−1)𝑘−1K 𝑦𝑘 , (6.35)

where 𝑥𝑘 =
[

(𝑘−1)𝜋
𝑛 , 𝑘𝜋𝑛

]

and 𝑦𝑘 =
[

(𝑘−3∕2)𝜋
𝑛 , (𝑘−1∕2)𝜋𝑛

]

are sequences of intervals on a circle, as explained in Section 6.1.2. By counting

the intersection of intervals, we can obtain

𝐢 ⟨𝛹 | [L(𝑒)𝑛 ,L
(𝑜)
𝑛 ] |𝛹⟩ = 𝐴2

𝑛 ⋅ 4𝑛 ⋅
𝜋 𝑐−
6

(1 − 2𝜂𝑛), (6.36)

where

𝜂𝑛 =
sin(𝜋∕(4𝑛))2

. (6.37)

sin(𝜋∕(2𝑛))2
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Therefore, plugging in the expression of 𝐴𝑛 in Eq. (6.11), we can obtain the final expression of ⟨𝛹 | [𝐿̃𝑛, 𝐿̃−𝑛] |𝛹⟩.

⟨𝛹 | [𝐿̃𝑛, 𝐿̃−𝑛] |𝛹⟩ =
𝜋 𝑐−
24

𝑛(𝑛2 − 1)2 sin
2(𝜋∕(4𝑛))

cos(𝜋∕(2𝑛))
, 𝑐− = 𝑐 . (6.38)

where the chiral central charge 𝑐− is equal to the holomorphic central charge 𝑐, since we are working with purely chiral CFT.22

Later we will numerically compute the commutators ⟨𝛹 | [𝐿̃𝑛, 𝐿̃−𝑛] |𝛹⟩ and compare them with Eq. (6.38). Such tests examine
he validity of Hypothesis 1. We are also going to compare the numerical results with the results obtained by Virasoro algebra
enerators. These tests demonstrate the quality of 𝐿̃𝑛 as an approximation to Virasoro generator 𝐿𝑛.

As a mathematical aside, from the two ways of computing ⟨𝛹 | [L1,L2] |𝛹⟩ we are able to show a number of interesting relations
between their Fourier coefficients and the set of cross-ratios. For example, in the computation of ⟨𝛹 | [L(𝑒)𝑛 ,L

(𝑜)
𝑛 ] |𝛹⟩, we have shown

∑

𝑚∈Z
|𝜆𝑛,𝑚|

2(𝑚3 − 𝑚) = 𝜋
2
𝑛(𝑛2 − 1)2 sin

2(𝜋∕(4𝑛))
cos(𝜋∕(2𝑛))

, 𝑛 ≥ 1 (6.39)

where 𝜆𝑛,𝑚 is given in Eq. (6.23).

6.2.3. Expectation value of double commutators
Besides the expectation values of commutators, we shall also consider expectation values of double commutators

⟨𝛹 | [[𝐿̃𝑚, 𝐿̃𝑛], 𝐿̃𝑘] |𝛹⟩. The results can be explicitly computed by utilizing the Fourier expansion of 𝐿̃𝑛 (Eq. (6.22)) in terms of Virasoro
generators. Such quantities will allow us to test further the closure of our realization of the Virasoro algebra.

One particular double commutator that we will compute is ⟨𝛹 | [[𝐿̃𝑛, 𝐿0], 𝐿̃−𝑛] |𝛹⟩, 𝑛 ≥ 1. By making use of the Fourier expansion
f 𝐿̃±𝑛 as follows

𝐿̃𝑛 =
∑

𝑚∈Z
𝜆𝑛,𝑚𝐿𝑚, 𝐿̃−𝑛 = (𝐿̃𝑛)† =

∑

𝑚∈Z
𝜆∗𝑛,𝑚𝐿−𝑚, 𝑛 ≥ 1, (6.40)

and the Virasoro algebraic relations, we can derive

⟨𝛹 | [[𝐿̃𝑛, 𝐿0], 𝐿̃−𝑛] |𝛹⟩ =
𝑐
12

∑

𝑚∈Z
|𝜆𝑛,𝑚|

2(𝑚4 − 𝑚2). (6.41)

With the analytic formula of 𝜆𝑛,𝑚 given in Eq. (6.23), we are able to explicitly compute Eq. (6.41) and the result is
⟨𝛹 | [[𝐿̃𝑛, 𝐿0], 𝐿̃−𝑛] |𝛹⟩ =

𝜋 𝑐
48
𝑛(𝑛2 − 1)2 t an

( 𝜋
2𝑛

)

. (6.42)

The result shall be compared with numerical results. Such a test examines not only the Fourier expansion of 𝐿̃±𝑛 but also the
construction of 𝐿0.

Note that Eq. (6.41) is the (𝑡2) term in the quantity ⟨𝛹 (𝑡)|𝐿0 |𝛹 (𝑡)⟩, with |𝛹 (𝑡)⟩ = 𝑒𝐢𝑡𝐿̃−𝑛
|𝛹⟩, and therefore as explained in

ection 5.3 is the leading contribution to a Schwarzian functional.

7. Numerical tests

In the previous section, we explicitly described the procedures to construct approximate Virasoro algebra 𝐿̃𝑛 and made several
predictions based on Hypothesis 1. In this section, we study two specific reference states, namely 𝑝+ 𝐢𝑝 superconductor (SC) ground
state and semion ground state, to test the construction of 𝐿̃𝑛 via the predictions we discussed in the previous section. We will also
compare results obtained by 𝐿̃𝑛 and 𝐿𝑛, to test the quality of the approximation 𝐿̃𝑛 ≈ 𝐿𝑛.

𝑝 + 𝐢𝑝 SC is a free fermion system. By the means introduced by [60], we are able to reach pretty large system sizes. Therefore,
we will perform a thorough test in 𝑝+ 𝐢𝑝 SC. One may wonder, however, whether the conclusions rely on the free fermion property.

herefore, we also perform tests on a ground state with chiral semion topological order, which has no free-fermion representation.
or the semion ground state, due to the limitation of the computation power, we will not do as many tests as in 𝑝 + 𝐢𝑝 SC, but the
esults nevertheless indicate that the construction works and the predictions are valid.

7.1. Tests in 𝑝 + 𝐢𝑝 superconductor

We choose the 𝑝 + 𝐢𝑝 SC Hamiltonian as Eq. (3.18), with the same parameters used in Section 3.2. Again, we choose the anti-
eriodic boundary condition in the 𝑥-direction and the open boundary condition in the 𝑦-direction so that there is no flux threaded

inside the cylinder, and full-boundary A0, A1 introduced in Section 4.3 are satisfied. We will specify the size of the cylinder 𝐿𝑥 ×𝐿𝑦
later.

The ground state of 𝑝 + 𝐢𝑝 SC for this choice of parameters is in its chiral gapped phase. In the bulk, its entanglement entropy
satisfies the area law and therefore, the entanglement bootstrap axioms A0 and A1 are approximately satisfied. It has chiral central
harge 𝑐− = 1∕2 in the bulk and has chiral gapless edge, which is robust against any local perturbations. Next we check these
xpectations.

22 𝑐 = 0, therefore 𝑐 = 𝑐 − 𝑐 = 𝑐.
−
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Fig. 17. Subsystems used in numerical tests. 𝐵 𝐶 𝐷 in regions 1, 2, and 3 in the left column are used to test bulk entanglement bootstrap axioms A0 and A1.
𝐴𝐵 𝐶 in regions 1, 2, 3 of the middle column are used to test the modular commutator formula. The region 𝐴𝐵 𝐶 𝐷 in the right column, near the edge, is used to
test the vector fixed-point equation. The location of the subsystems can be inferred from the plot. We omit the 𝑥-coordinate of each region because the ground
tate is translational invariant in that direction.

7.1.1. Tests of the ground state
Before we test the construction of the approximate Virasoro generators, we first check whether 𝑝 + 𝐢𝑝 ground state is indeed a

uitable state to do the constructions. Therefore, we will check the following: (1) The entanglement bootstrap axioms A0 and A1
in the bulk as well as the full boundary A0 and A1. Recall this property is crucial in our argument that the bulk reduced density
matrices are invariant under good modular flow. (2) Modular commutators. This quantity indicates the chirality of the state and
computes the chiral central charge 𝑐− = 𝑐−𝑐 from the bulk. (3) Vector fixed-point equation: As argued in [27,55], the satisfaction of
the vector fixed-point equation near the edge is a strong indication that the edge is described by a CFT. Moreover, the proportionality
factor in the vector fixed-point equation contains the total central charge 𝑐t ot = 𝑐 + 𝑐 of the edge CFT. If the total central charge
𝑐t ot is equal to the absolute value of chiral central charge 𝑐−, then this indicates the edge CFT is purely chiral. Therefore, this test
provides strong evidence that Hypothesis 1 is satisfied by the state.

We choose the subsystems shown in Fig. 17 on a cylinder with size 𝐿𝑥 = 80, 𝐿𝑦 = 80. The tests are explicitly enumerated as
ollows:

1. For A0 and A1, we compute

𝛥(𝐵 𝐷 , 𝐶 , ∅) = 𝑆𝐵 𝐶 𝐷 + 𝑆𝐶 − 𝑆𝐵 𝐷, 𝛥(𝐵 , 𝐶 , 𝐷) = 𝑆𝐵 𝐷 + 𝑆𝐶 𝐷 − 𝑆𝐵 − 𝑆𝐷 (7.1)

respectively, and see if they are close to zero. The subsystems are regions 1,2,3 shown in the left column in Fig. 17, which
are progressively farther away from the gapless edge. We also compute the full-boundary A0 and A1, using the setup shown
in Fig. 18.

2. For the modular commutator, we computed

𝐽 (𝐴, 𝐵 , 𝐶) = 𝐢 ⟨𝛹 | [𝐾𝐴𝐵 , 𝐾𝐵 𝐶 ] |𝛹⟩ (7.2)

for regions 1,2,3 shown in the middle column, which are also progressively farther away from the gapless edge. We compare
the results with 𝑐−𝜋∕3 with 𝑐− = 1∕2.

3. For the vector fixed-point equation (4.13), the setup is shown in the right column in Fig. 17. We construct 𝛥(𝐴𝐷 , 𝐵 , 𝐶) =
𝐾𝐴𝐵 𝐷 +𝐾𝐵 𝐶 −𝐾𝐴𝐷 −𝐾𝐶 and 𝐼(𝐴 ∶ 𝐶|𝐵) = 𝐾𝐴𝐵 +𝐾𝐵 𝐶 −𝐾𝐴𝐵 𝐶 −𝐾𝐵 to obtain

D(𝜂) = 𝜂𝛥(𝐴𝐷 , 𝐵 , 𝐶) + (1 − 𝜂)𝐼(𝐴 ∶ 𝐶|𝐵), (7.3)

with 𝜂 being the cross-ratio of the intervals (𝑎, 𝑏, 𝑐)
𝜂 =

sin(𝜋|𝑎|∕𝐿𝑥) sin(𝜋|𝑐|∕𝐿𝑥) . (7.4)

sin(𝜋|𝑏𝑐|∕𝐿𝑥) sin(𝜋|𝑎𝑏|∕𝐿𝑥)
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Fig. 18. Subsystems used in the test of full boundary axioms A0 and A1.

Fig. 19. Numerical results for the violation of entanglement bootstrap axioms A0 and A1 in the 𝑝 + 𝐢𝑝 SC ground state as a function of the linear size of the
subsystem 𝓁, as shown in Fig. 17. From the slope of the linear fit result of A0, one can extract an upper bound of the correlation length, as explained in
Eq. (7.8).

To test D(𝜂) |𝛹⟩ ∝ |𝛹⟩, we compute the square root of its variance:

𝜎(D(𝜂)) =
√

⟨𝛹 |D(𝜂)2 |𝛹⟩ − ⟨𝛹 |D(𝜂) |𝛹⟩
2 (7.5)

and see if it vanishes. We also compute the proportionality factor

⟨𝛹 |D(𝜂) |𝛹⟩ =
𝑐t ot
6
ℎ(𝜂), (7.6)

with ℎ(𝜂) = −𝜂 ln(𝜂) − (1 − 𝜂) ln(1 − 𝜂), and test whether 𝑐t ot = 1∕2, which is an indication that the edge CFT is purely chiral.

The linear sizes of the subsystems for these tests are labeled by 𝓁, as shown in Fig. 19. We now describe the numerical results.
(1) Entanglement bootstrap axioms: The results for axioms A0, A1 are shown in Fig. 19. For the parameters we chose, both

(𝐵 𝐷 , 𝐶 , ∅) and 𝛥(𝐵 , 𝐶 , 𝐷) decay to zero exponentially as the linear size 𝓁 of the subsystem increases. For some different choices of
arameters,23 as far as we observed, A1 and modular commutator could decay algebraically, while A0 still decays exponentially. It
s interesting that the means of approach to the fixed point seems not to be a universal property of the phase. The reason for such
 distinction is a topic for further study.

As an aside, the rate of exponential decay of 𝛥(𝐵 𝐷 , 𝐶 , ∅) (i.e. the entanglement entropy combination that appears in A0) can be
used as a characterization of correlation length, as it upper bounds any correlation functions in the following way:

𝛥(𝐵 𝐷 , 𝐶 , ∅) ≥ 𝐼(𝐴 ∶ 𝐶) ≥ 1
2

(

⟨𝐴𝐶 ⟩𝑐
‖𝐴‖ ⋅ ‖𝐶‖

)2
, (7.7)

where 𝐴 is any region outside 𝐵 𝐶 𝐷, for 𝐵 𝐶 𝐷 shown in the left column in Fig. 17, and 𝐴,𝐶 are any two operators supported
n 𝐴 and 𝐶 respectively. The first inequality follows from SSA. The second inequality is a well-known result in quantum

23 One instance of such parameter is 𝛥 = 0.9, 𝜇 = 1.3 in Eq. (3.18). Such an algebraic decay feature persists if one varies these parameters around this choice.
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Fig. 20. Difference of the numerical results of the modular commutator from its theoretical expectation in the 𝑝 + 𝐢𝑝 SC ground state, for various regions, as a
function of the linear size of the region 𝓁 shown in Fig. 17.

information theory [61], where ⟨𝐴𝐶 ⟩𝑐 ≡ ⟨𝐴𝐶 ⟩− ⟨𝐴⟩⟨𝐶 ⟩ stands for the connected correlation function and ‖‖ is defined as
sup

{

√

⟨𝜓|†|𝜓⟩||
|

∀ |𝜓⟩ w.t. |⟨𝜓|𝜓⟩| = 1
}

. Therefore, from the exponential decaying violation of A0, i.e. 𝛥(𝐵 𝐷 , 𝐶 , ∅) ∝ 𝑒−𝓁∕𝜉∗ , one
can obtain an upper bound on the correlation length 𝜉 of the correlation function ⟨𝐴𝐶 ⟩𝑐 ∝ 𝑒−𝓁∕𝜉 :

𝛥(𝐵 𝐷 , 𝐶 , ∅) = 𝛼 𝑒−𝓁∕𝜉∗ ≥ 1
2

(

⟨𝐴𝐶 ⟩𝑐
‖𝐴‖ ⋅ ‖𝐶‖

)2
= 𝛽 𝑒−2𝓁∕𝜉 ⇒ 𝜉 ≤ 2𝜉∗, (7.8)

where 𝛼 , 𝛽 are two prefactors which are not important in the current discussion. As a result, from the linear fit of ln(𝛥(𝐵 𝐷 , 𝐶 , ∅))
ersus 𝓁 shown in the first plot in Fig. 19, we can conclude that the correlation length 𝜉 of any correlation function satisfies
𝜉 ≤ 2∕1.66 ≈ 1.2 lattice spacings, for the choice of 𝑝 + 𝐢𝑝 Hamiltonian parameters used in the numerics.

We also computed the violation of full-boundary A0, A1 in the setup shown in Fig. 18. The results are of the order 𝑂(10−8).
ecall such full-boundary axioms play an important role in the cylinder argument [Section 4.3], as well as in the discussion of
elation between state overlap and fidelity of reduced density matrices on the edge region for comparison between the reference

state and coherent states [Section 5.2]. The latter shall be tested in the following sub Section 7.1.3.
(2) Modular commutators: The results for modular commutators are shown in Fig. 20. With this choice of parameters, the modular

commutators 𝐽 (𝐴, 𝐵 , 𝐶) approach the expected value 𝜋 𝑐−
3 with 𝑐− = 1∕2 exponentially, which agrees with the fact that the non-trivial

hase of the 𝑝+ 𝐢𝑝 superconductor has a chiral central charge 1∕2. As for the test of A1, we also observe that 𝐽 (𝐴, 𝐵 , 𝐶) can approach
∕6 algebraically for certain other choices of parameters. The fact that the data for regions 1, 2 and 3 largely overlap corroborates
he fact that the state satisfies bulk A1 with pretty small violation, because bulk A1 enables one to deform or move the regions of
he subsystems used in the modular commutator in the bulk without changing its value [17].24

(3) Vector fixed-point equation: The results of tests of the vector fixed-point equation are shown in Fig. 21. The left column shows
the results for testing the proportionality via 𝜎(D(𝜂)), and the right column shows the results for the total central charge computed
from the proportionality factor. Both results satisfy our expectations with algebraically decreasing discrepancy. As the system size
grows, 𝜎(D(𝜂)) → 0 indicates the CFT nature of the gapless edge. And 𝑐t ot approaches 1∕2, the expected chiral central charge,
indicating that the CFT is purely chiral.

In summary, the numerical data indicates that: (1) The 𝑝 + 𝐢𝑝 SC ground state |𝛹⟩ from the Hamiltonian Eq. (3.18) with such
choice of parameters satisfies EB axioms A0, A1 (both bulk version and full boundary version) and is in a non-trivial chiral phase.
(2) It has a purely chiral CFT on the gapless edge, whose total central charge agrees with the chiral central charge computed from
he bulk wavefunction. Therefore, such a state is ideal for the construction of approximate Virasoro generators.

7.1.2. Tests of constructions of Virasoro generators
In the previous subsubsection, we concluded that the 𝑝+ 𝐢𝑝 SC ground state from the Hamiltonian Eq. (3.18) with such a choice

of parameters listed in [Section 3.2] is suitable for the construction of approximate Virasoro generators 𝐿̃𝑛. We now put the system
n a cylinder of size 𝐿𝑥 = 240, 𝐿𝑦 = 24 and test the construction of 𝐿̃𝑛 from its ground state |𝛹⟩. Such a choice of total system size
s large enough so that the linear size of the smallest subsystem used in the construction of 𝐿̃𝑛 is much larger than the correlation
ength, as discovered in the previous subsubsection. The gapless edge is along the 𝑥-direction of the cylinder. In order to construct
̃𝑛 with several choices of 𝑛, we choose a pretty large 𝐿𝑥. This is because the construction of 𝐿̃𝑛 with large 𝑛 requires dividing the

24 One might be concerned that region 1 for modular commutator test touches the gapless edge. We comment that the proof using A1 still goes through, as
long as the triple intersection point is far away (compared with the correlation length) from the edge and 𝐴, 𝐵 , 𝐶 are not all intersecting with the gapless edge.
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Fig. 21. Left: The amount of violation of the vector fixed-point equation in the 𝑝 + 𝐢𝑝 superconductor ground state, as a function of linear region size 𝓁, as
shown in Fig. 17. The 𝜂 used in the fixed point equation is the geometrical cross-ratio. Right: The deviation of the central charge inferred from the RHS from
its expected value. The fact that we find 𝑐tot = 1∕2 is evidence that the state is indeed purely chiral.

gapless edge into many intervals, and a large 𝐿𝑥 can make sure that the length of the smallest interval is much larger than the
correlation length. In the 𝑦-direction, the construction does not demand many lattice sites, so 𝐿𝑦 does not have to be very large.

Following the instructions given in Section 6, we construct

𝐿̃0 =
1

4𝜋 t an
(

𝜋
𝑁

)

𝑁
∑

𝑖=1

(

𝛥𝑖 − ⟨𝛹 |𝛥𝑖 |𝛹⟩
)

where 𝛥𝑖 = 𝐾𝑋𝑖𝑋𝑖+1𝑌𝑖 +𝐾𝑋𝑖+2𝑋𝑖+1𝑌𝑖+1 −𝐾𝑋𝑖𝑌𝑖 −𝐾𝑋𝑖+2𝑌𝑖+1

(7.9)

for regions 𝑋𝑖, 𝑌𝑖, 𝑖 = 1,… , 𝑁 shown in Fig. 22. For 𝑛 ≥ 1, we construct approximate Virasoro generators 𝐿̃𝑛 and 𝐿̃−𝑛 as
𝐿̃𝑛 = L(𝑒)𝑛 + 𝑖L(𝑜)𝑛 , 𝐿̃−𝑛 = L(𝑒)𝑛 − 𝑖L(𝑜)𝑛

with L(𝑜)𝑛 =
𝐴𝑛
2

2𝑛
∑

𝑗=1
(−1)𝑗−1

(

𝐾𝑋𝑅𝑗 +𝐾𝑋𝐿𝑗

)

and L(𝑒)𝑛 =
𝐴𝑛
2

2𝑛
∑

𝑗=1
(−1)𝑗−1

(

𝐾𝑌 𝑅𝑗 +𝐾𝑌 𝐿𝑗

)

,

(7.10)

where regions 𝑋𝑅
𝑗 , 𝑋𝐿

𝑗 , 𝑌 𝑅𝑗 , 𝑌 𝐿𝑗 are shown in Fig. 23 and

𝐴𝑛 =

⎧

⎪

⎨

⎪

⎩

1
2𝜋

𝑛 = 1

t an
( 𝜋
2𝑛

)

(𝑛2 − 1)∕8, 𝑛 ≠ 1
. (7.11)

To test the construction, we will numerically compute several quantities involving 𝐿̃𝑛, and make the following two comparisons:

• We compare the numerical results with theoretical predictions discussed in Section 6.2. The theoretical prediction is made
under the assumption that |𝛹⟩ satisfies Hypothesis 1 is exactly, so that one can do the computation under the CFT ground
state |𝛺⟩. We shall call these theoretical results as ‘‘CFT prediction’’. This comparison tests the validity of Hypothesis 1.

• We compare the numerical results with those quantities from exact Virasoro generator 𝐿𝑛. The latter is computed also under
the assumption that Hypothesis 1 is satisfied.25 These results are titled with ‘‘Virasoro algebra’’ (or ‘‘Vir’’ for short) when we
list the data. Such a comparison estimates the quality of approximation of 𝐿̃𝑛 to 𝐿𝑛.

Before we present the results, we emphasize that by ‘‘comparison’’ of 𝑥 with 𝑦, we explicitly mean |

|

|

𝑥−𝑦
𝑦
|

|

|

when we list the data below.
We first examine some selected commutation relations ⟨𝛹 | [𝐿̃𝑛, 𝐿̃−𝑛] |𝛹⟩ for 𝑛 = 1, 2,… , 6, and make comparisons with the CFT

predictions

CFT prediction: ⟨𝛹 | [𝐿̃𝑛, 𝐿̃−𝑛] |𝛹⟩ =
𝜋 𝑐
24
𝑛(𝑛2 − 1)2 sin

2(𝜋∕(4𝑛))
cos(𝜋∕(2𝑛))

(7.12)

25 When we talk about 𝐿𝑛, we should assume Hypothesis 1 is satisfied, as it is defined by 𝐿𝑛
V
= L𝑛 which utilize V in the hypothesis. Note we are not

onstructing 𝐿 in the lattice system and computing the results from them.
𝑛
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Fig. 22. Regions used in the construction of 𝐿̃0. The locations of equal-sized (2𝑙𝑥 × 𝑙𝑦) regions 𝑋𝑖 , 𝑌𝑖 can be inferred from the figure. In the numerical tests, we
used 𝐿𝑥 = 240, 𝐿𝑦 = 24, 𝑙𝑥 = 20, 𝑙𝑦 = 6. Each gray dot in the picture is not quite a coarse-grained site for a literal representation of our numerical setup.

Fig. 23. Construction of L(𝑜)
𝑛 (and L(𝑒)

𝑛 ). The location and size of 𝑋𝑅
𝑗 , 𝑋𝐿

𝑗 can be inferred from the diagram. The color indicates the sign of the modular Hamiltonian
of that region used in L(𝑜)

𝑛 : Green (+), Red (−). In the numerical tests, we used 𝐿𝑥 = 240, 𝐿𝑦 = 24, 𝑙𝑥 = 𝑁𝑥

4𝑛
, 𝑙𝑦 = 6. The regions used in the construction of L(𝑒)

𝑛 are
called 𝑌 𝑅𝑘 and 𝑌 𝐿𝑘 , which are regions obtained from 𝑋𝑅

𝑘 and 𝑋𝐿
𝑘 by shifting to the left by 𝑙𝑥.

with the central charge 𝑐 = 1∕2, which is computed in Section (6.38) in Section 6.2.2 under Hypothesis 1. The results are listed
n Table 3. The pretty small discrepancy (10−5 in magnitude) between the numerical results and CFT expectation indicates the

reference state |𝛹⟩ we used in numerics satisfies the hypothesis pretty well on the length scale we chose. We also compare the data
with results from exact Virasoro generators

Vir: ⟨𝛹 | [𝐿𝑛, 𝐿−𝑛] |𝛹⟩ = ⟨𝛺| [L𝑛,L−𝑛] |𝛺⟩ = 𝑐
12

(𝑛3 − 𝑛), 𝑐 = 1
2
, (7.13)

which are computed under Hypothesis 1. The dominating source for the deviation is because we ignore the higher harmonic terms
n 𝐿̃𝑛 even though we know how to compute them. The purpose of such a comparison is to test the quality of the approximation of
̃𝑛 to 𝐿𝑛. The fact that the ‘‘error’’ is still small, indicates that higher harmonics only contribute a small correction and supports the
name ‘‘approximate Virasoro generators’’ for 𝐿̃𝑛. Later in Appendix C, we shall improve the construction and do similar comparisons.

s we shall see the ‘‘approximation error’’ is reduced as expected.
Secondly, we test the expectation values of double commutators ⟨𝛹 | [[𝐿̃𝑚, 𝐿̃𝑛], 𝐿̃𝑘] |𝛹⟩ among the approximate Virasoro genera-

tors. As above, the tests are summarized into two groups. The first group is the computation of ⟨𝛹 | [[𝐿̃𝑛, 𝐿̃0], 𝐿̃−𝑛] |𝛹⟩ , 𝑛 = 1,… , 6.
The results are listed in Table 4. We first compare the results with the CFT prediction, as computed in Eq. (6.42) in Section 6.2.3:

̃ ̃ ̃ 𝜋 𝑐 2 2
( 𝜋 )
CFT prediction: ⟨𝛹 | [[𝐿𝑛, 𝐿0], 𝐿−𝑛] |𝛹⟩ = 48
𝑛(𝑛 − 1) t an

2𝑛
, (7.14)
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Table 3
Results for expectation values of some selected commutators among approximate Virasoro generators 𝐿̃𝑛, and their comparison
with CFT predictions and with results from exact Virasoro generator.
𝑛 ⟨𝛹 |[𝐿̃𝑛 , 𝐿̃−𝑛]𝛹⟩ CFT

predictions
Virasoro algebra
⟨𝛺| [L𝑛 ,L−𝑛] |𝛺⟩

Comparison with
CFT prediction

Comparison
with Vir

1 𝑂(10−8) 0 0 NA NA
2 0.24399045 0.24399193 0.25 6.05 × 10−6 2.404%
3 0.97200578 0.97201215 1 6.55 × 10−6 2.799%
4 2.42663026 2.42665060 2.5 8.38 × 10−6 2.935%
5 4.85014000 4.85020037 5 1.245 × 10−5 2.997%
6 8.48474652 8.48491574 8.75 1.994 × 10−5 3.031%

Table 4
Results of ⟨𝛹 | [[𝐿̃𝑛 , 𝐿̃0], 𝐿̃−𝑛] |𝛹⟩ and comparison with CFT prediction and results of Virasoro algebra generators.
𝑛 ⟨𝛹 | [[𝐿̃𝑛 , 𝐿̃0], 𝐿̃−𝑛] |𝛹⟩ CFT prediction ⟨𝛺| [[L𝑛 ,L0],L−𝑛] |𝛺⟩ Comparison with

CFT prediction
Comparison
with Vir

1 𝑂(10−5) 0 0 NA NA
2 0.58734 0.58905 0.5 0.290% 14.981%
3 3.60489 3.62776 3 0.626% 15.834%
4 12.07894 12.19960 10 0.989% 15.006%
5 30.25392 30.62296 25 1.205% 13.150%
6 63.53049 64.44933 52.5 1.426% 11.298%

Table 5
Tests of ⟨𝛹 | [[𝐿̃𝑚 , 𝐿̃𝑛], 𝐿̃𝑘] |𝛹⟩ and comparison with the Virasoro generators.
(𝑚, 𝑛, 𝑘) ⟨𝛹 | [[𝐿̃𝑚 , 𝐿̃𝑛], 𝐿̃𝑘] |𝛹⟩ ⟨𝛺| [[L𝑚 ,L𝑛],L𝑘] |𝛺⟩ Comparison with

Virasoro algebra

(2, 1,−3) 1.00376 + 2.0 × 10−5𝐢 1 0.376%
(3, 1,−4) 4.95632 + 1.3 × 10−4𝐢 5 0.874%
(3, 2,−5) 4.98279 + 0.0𝐢 5 0.344%
(4, 2,−6) 17.40158 − 6 × 10−4𝐢 17.5 0.562%

as well as the results from the exact Virasoro generators:

Vir: ⟨𝛹 | [[𝐿𝑛, 𝐿0], 𝐿−𝑛] |𝛹⟩ = ⟨𝛺| [[L𝑛,L0],L−𝑛] |𝛺⟩ = 𝑐
12

(𝑛4 − 𝑛2). (7.15)

The central charge in Eqs. (6.42) and (7.15) are both 𝑐 = 1∕2. The sources of the discrepancy shown in both comparisons are similar
to those we discussed in the commutator test above. The second group is ⟨𝛹 | [[𝐿̃𝑚, 𝐿̃𝑛], 𝐿̃𝑘] |𝛹⟩ of some selected non-zero 𝑚, 𝑛, 𝑘, and
we compare the results with those obtained by Virasoro algebra:

Vir: ⟨𝛹 | [[𝐿𝑚, 𝐿𝑛], 𝐿𝑘] |𝛹⟩ = ⟨𝛺| [[L𝑚,L𝑛],L𝑘] |𝛺⟩ = 𝑐
12

(𝑚 − 𝑛)(𝑘3 − 𝑘)𝛿𝑚+𝑛,−𝑘, (7.16)

with 𝑐 = 1∕2. The results are listed in Table 5. We also computed the results using ‘‘improved’’ approximate Virasoro algebra in
Appendix C, and the approximation error is reduced as expected.

7.1.3. Tests about coherent states
After testing the constructions of approximate Virasoro generators, we now test some selected properties of coherent states,

defined as |𝛹 (𝑡)⟩ = 𝑒𝑖L𝑡 |𝛹⟩ for some good modular flow generator L ∈ g∙ [Section 5].
To be more explicit, we use 𝑝 + 𝐢𝑝 SC with the same parameters as we used before and put the system on a cylinder with

𝑥 = 72, 𝐿𝑦 = 18. The boundary condition is the same as before: open boundary condition in 𝑦 direction and anti-periodic boundary
condition in 𝑥-direction. We construct L(𝑜)2 and L(𝑜)3 to generate the good modular flow acting on the reference state. The construction
is similar to what we did in the previous subsubsection shown in Fig. 23, in which the size parameters for the subsystems used in
the construction are 𝑙𝑥 = 𝐿𝑥∕(4𝑛), 𝑙𝑦 = 6.

We focus on testing the ‘‘difference’’ between the coherent state |𝛹 (𝑡)⟩ and the reference state |𝛹⟩ = |𝛹 (0)⟩, which is characterized
y the fidelity 𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡)) between density matrices 𝜌𝑋 (0), 𝜌𝑋 (𝑡) from |𝛹⟩ and |𝛹 (𝑡)⟩. We choose the region 𝑋 as the entire system
nd the entire edge region. Explicitly, the edge region in the test is a cylinder that includes the entire gapless edge on which the
odular flows are acting and extends 5 lattice spacings into the bulk.

Based on the idea that good modular flow preserves the bulk state, we expect the two choices of 𝑋 to give the same results
[Section 5.2].26

26 Since the system is on a cylinder, the proof of this statement requires full boundary A0. As we showed in Section 7.1.1, indeed, with the current choice
of Hamiltonian parameters and boundary conditions, the full boundary A0 is satisfied with considerably small errors. Therefore, the proof is applicable here.
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Fig. 24. Change of fidelity 𝛥𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡)) ≡ 𝐹 (𝜌𝑋 (0), 𝜌𝑋 (0)) − 𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡)) between reduced density matrices 𝜌𝑋 (0) and 𝜌𝑋 (𝑡) under good modular flow 𝑒𝐢L𝑡,
ith flow generator L taken to be L(𝑜)

2 ,L
(𝑜)
3 . 𝜌𝑋 (𝑡) is the reduced density matrix of |𝛹⟩ = 𝑒𝐢L𝑡 |𝛹⟩ of region 𝑋. The region 𝑋 is chosen to be the entire system

nd the entire edge.

Table 6
Results of 𝜎(L)2 and 𝛼(L, 𝑋). L is chosen to be L(𝑜)

2 ,L
(𝑜)
3 and 𝑋 is chosen to be the entire system and entire edge. The data in

the second row is the CFT prediction. The rest of the data are numerical results. The comparison between numerical results with
CFT prediction is given in the parenthesis after each data.
L 𝜎(L)2 CFT

prediction
𝜎(L)2 numerical
results

𝛼(L, entire system) 𝛼(L, entire edge)

L = L(𝑜)
2 0.065322 0.065013

(0.05%)
0.077222 (18.22%) 0.070044 (7.23%)

L = L(𝑜)
3 0.262994 0.261825

(0.04%)
0.271779 (3.34%) 0.264401 (0.53%)

The change of fidelity with the evolution time 𝛥𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡)) ≡ 𝐹 (𝜌𝑋 (0), 𝜌𝑋 (0)) − 𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡)) is plotted in Fig. 24. We also
compute 𝛼(L(𝑜)2 , 𝑋), 𝛼(L3, 𝑋) defined in Eq. (3.16) in Section 3.2.1, by fitting the data of

𝛥𝐹 (𝜌𝑋 (0), 𝜌𝑋 (𝑡)) ≈ 1
2
𝛼(L, 𝑋)𝑡2, (7.17)

for the modular flow generated by L = L(𝑜)2 ,L
(𝑜)
3 as a function of 𝑡 in the small 𝑡 regions. Based on the argument in Section 5.2, we

shall expect they are equal to 𝜎(L(𝑜)2 )2, 𝜎(L(𝑜)3 )2. Recall from Section 6.2.1 that we can analytically compute 𝜎(L(𝑜)𝑛 )2 using Eq. (6.28)
under Hypothesis 1. Therefore, we shall compare the results of 𝛼(L(𝑜)2 ), 𝛼(L(𝑜)3 ) with the CFT prediction of 𝜎(L(𝑜)2 )2, 𝜎(L(𝑜)3 )2 from
q. (6.28). Moreover, we also compare the numerical evaluation of 𝜎(L(𝑜)2 )2, 𝜎(L(𝑜)3 )2 with the CFT prediction, which estimates how
ell the reference state from the lattice system satisfies Hypothesis 1. The data and comparison results are listed in Table 6.

The agreement in Fig. 24 and Table 6 supports the theoretical prediction that the action of good modular flow generators is only
on the gapless edge. Furthermore, the agreement between the numerical results for the variance and the CFT prediction further
upports the validity of Hypothesis 1.

7.2. Tests in chiral semion wavefunction

We also test the construction of approximate Virasoro generators starting from a chiral semion wavefunction. The chiral semion
odel describes a chiral topologically ordered phase with two abelian anyons 𝟏 (vacuum) and 𝑠 (semion). The wavefunction we
se is the discrete version of 𝜈 = 1∕2 bosonic Laughlin ground state introduced by Nielsen et al. [62], with no semion excitations

inserted. Such a wavefunction is expected to have chiral central charge 𝑐− = 1 in the bulk and a purely-chiral CFT ground state
on the edge with total central charge 𝑐tot = 1. Therefore, it will satisfy Hypothesis 1 and be suitable to apply our construction of

irasoro generators.
The wavefunction is on a cylinder and the underlying degrees of freedom are arranged as ‘‘ladders’’ of qubits [Fig. 25]. The

explicit expression of the wavefunction 𝛹⟩ is introduced in Appendix D.
|
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Fig. 25. A finite cylinder on which we define the semion wavefunction. The horizontal direction is glued periodically. (a) on a 16-qubit 2-leg ladder, and (b)
n a 24-qubit 3-leg ladder. See Appendix D for the details of the wavefunction. We shall also need regions 𝑌 s, which are obtained from 𝑋s by a shift by one
ite to the right.

Table 7
Same as Table 3, but for the semion wavefunction.
Tests ⟨𝛹 | [𝐿̃2 , 𝐿̃−2] |𝛹⟩ CFT

prediction
⟨𝛺| [L2 ,L−2] |𝛺⟩ Comparison with

CFT prediction
Comparison
with Vir

16 sites 0.242078 0.487984 0.5 50.39% 51.58%
24 sites 0.442392 0.487984 0.5 9.34% 11.5%

Table 8
Comparison of the variance of second Virasoro mode in the semion wavefunction with CFT predictions from Hypothesis 1.
Tests 𝜎(L(𝑜)

2 )2 CFT prediction 𝜎(L(𝑜)
2 )2 numerical results Comparison

16 sites 0.129965 0.110759 14.78%
24 sites 0.129965 0.122377 5.84%

Following the same method as above, we construct

𝐿̃±2 = L
(𝑒)
2 ± 𝐢L(𝑜)2 , (7.18)

where

L(𝑜)2 =
𝐴2
2

4
∑

𝑘=1
(−1)𝑘(𝐾𝑋𝑅𝑘

+𝐾𝑋𝐿𝑘
), L(𝑒)2 =

𝐴2
2

4
∑

𝑘=1
(−1)𝑘(𝐾𝑌 𝑅𝑘

+𝐾𝑌 𝐿𝑘
). (7.19)

The prefactor 𝐴2 = 3∕8 follows from Eq. (6.11). Due to the limitation of system size allowed by the single value decomposition
SVD) method, we cannot construct approximate Virasoro generators of higher mode numbers.

With the construction L(𝑜)2 ,L
(𝑒)
2 and 𝐿̃±2, we compute the expectation values of commutators ⟨𝛹 | [𝐿̃2, 𝐿̃−2] |𝛹⟩ and the variance

(L(𝑜)2 )2, and make comparisons with the theoretical prediction based on Hypothesis 1. We also compare the commutators of
approximate Virasoro generators 𝐿̃±2 with the results from exact Virasoro generators 𝐿±2 to test the quality of the approximation.

The results are given in Table 7 and Table 8. We see that the finite-size corrections to the approximate Virasoro algebra are large
for the 16-site system. However, the agreement with CFT predictions is already quite good for the system with 24 sites.

8. Discussion

8.1. Summary

We have described a way to construct Virasoro generators from a purely-chiral wavefunction. The argument is based on
ntanglement bootstrap axioms within the bulk and a hypothesis [Hypothesis 1] about the chiral CFT description of the physical

edge. The theoretical predictions are tested against numerical data. A notable concept we introduce is the good modular flow; the
idea is that such flows preserve the bulk density matrix, but create edge excitations that form a representation of the Virasoro
algebra.

We have provided theoretical arguments (based on a hypothesis) and numerical evidence that our method to extract the Virasoro
algebra works for both invertible phases and chiral topological orders. In particular, we have tested 𝑝 + 𝐢𝑝 superconductor ground
tates and found an excellent match with the theoretical prediction. We also tested our prediction on a semion wavefunction, and
he error is consistent with what we should expect on systems of small sizes, thus supporting our prediction.

We give a concrete summary of the results in the following list:

• Assumptions: (1) Entanglement bootstrap axioms A0, A1 [12] in the bulk, which give a sharp implementation of area law
of entanglement. (2) Hypothesis 1, which asserts the existence of a map between certain modular flow generators and CFT
operators.
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• Definitions: Good modular flow [Definition 3.1] and [Definition 4.1]. An important property for a good modular flow generator
is that it does not change the bulk reduced density matrices. The theoretical argument, which is based on the bulk A1
assumption, is given in [Section 3.1] and numerical verification is given in [Section 3.2].

• List of results regarding chiral edge:

– Vector fixed-point equations are satisfied near the edge [Eq. (4.13)].
– ∙

edge is a carrier space for a representation of the Virasoro algebra [Section 5].
– We give a construction of 𝐿0 [Eq. (6.6)] and approximate Virasoro generators 𝐿̃𝑛≠0 based on the twisting trick Fig. 15

[Eq. (6.15), Eq. (6.16), Eq. (6.19)]. Some quantitative analysis of 𝐿̃𝑛≠0 is provided.
– Our construction of the approximate Virasoro algebra passes a number of numerical tests [Section 7].

8.2. Further remarks

Our construction of Virasoro generators is effective for purely-chiral systems but not for systems with both left and right movers.
This is because the vector fixed point equation (4.13) holds only when the cross-ratios associated with the left- and right-moving

odes are the same 𝜂𝐿 = 𝜂𝑅.
This issue can be resolved by separating the left- and right-moving modes using the commutators of the modular Hamiltonians,

imilar to the construction of the global conformal generators in [27]. Alternatively, another approach involves performing a Fourier
transformation in space followed by a Fourier transformation in time.

Another difference between the purely-chiral system and the systems with both left and right movers is how they change under
a modular flow. We start from a state that satisfies the vector fixed-point equation (4.13) and apply a finite time modular flow.
For a system with both left and right movers, since the modular flow acts differently to the left- and right-movers, the cross-ratios
become different 𝜂𝐿(𝑡) ≠ 𝜂𝑅(𝑡) and the vector fixed-point equation no longer holds.

On the other hand, for a purely-chiral theory, where there is only one set of modes and one corresponding cross-ratio, we can
always set 𝜂 in the vector fixed-point equation (4.13) to be the cross-ratio. This ensures that the vector fixed-point equation holds,

hich enables us to generate the family of states utilized in the section on coherent states, Section 5.

8.3. Future directions

One might think that good modular flows only exhibit nontrivial features near the edge. Nevertheless, we believe that similar
esults can also be extracted directly from the bulk. In pursuit of this, we will introduce the notion of an ‘‘instantaneous modular
low’’ and generalize the vector fixed-point equation, Eq. (4.13).

We would like to further explore the relation between the conformal data of the 1+1D chiral edge and the anyon data of the
2+1D bulk under the framework of entanglement bootstrap. Such results would support the axioms widely believed in the category
theory approach to this problem [63–65].

One may hope to extend our formalism to include Kac–Moody algebra, which arises in CFT with continuous global symmetry.
Presumably, this involves replacing the entanglement Hamiltonian with the logarithm of the flux-insertion operator 𝑈𝐴(𝜃) =

𝑥∈𝐴 𝑢𝑥(𝜃)
V
= 𝑒𝐢𝜃 ∫𝑏(𝐴) 𝑑 𝑥𝑗0(𝑥), where V is a generalization of the isometry in Hypothesis 1 to include other degrees of freedom.

Our definition of good modular flow allows the inclusion of regions with disconnected components (this is the distinction between
g and g∙). The modular Hamiltonians of such regions in 1+1D CFT are no longer local [39–42], and depend on the detailed operator
content of the CFT (not just 𝑐 and the Hamiltonian density). We thus expect that such generators involve operators beyond the
Virasoro generators, but still preserve the bulk density matrix. This provides a possible route towards generalizing the isometry V
in Hypothesis 1 to access other CFT operators besides the stress tensor. Note that, in contrast to the good modular flow studied in
this paper, this type of modular flow with disconnected components likely does not preserve the vector fixed-point equation.

We have expressed the elements of the Virasoro algebra as quantum information quantities from the chiral ground state. It is
known that for a system with CFT behaviors (e.g. Hypothesis 1), the Virasoro algebra forms a Lie algebra, which is a vector space

ith commutator relations. However, the current construction only implies that the constructed Virasoro algebra forms a vector
pace. Can we find a checkable condition on the chiral state which implies these commutator relations?

8.4. Preview of results about irregular edges

In Nature, many chiral edges appear to be irregular, such as those in experiments (e.g. [66–72]). The theoretical reason for the
persistence of edge modes in such situations is that chiral edges are robust and cannot be gapped out if we add disorder (locally
perturbing the Hamiltonian) to the edge. However, as we shall discuss in [50], with some general considerations, such irregular
dges are secretly regular in a broader sense: they have a well-defined cross-ratio, measured using information-theoretic quantities.
e believe that our way of extracting the Virasoro algebra can also work in the context of irregular edges and give evidence for

his in the forthcoming paper.
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Appendix A. Notation

Notations Meanings
𝑐 Holomorphic central charge
𝑐 Anti-holomorphic central charge
𝑐t ot Total central charge: 𝑐t ot = 𝑐 + 𝑐
𝑐− Chiral central charge: 𝑐− = 𝑐 − 𝑐
𝐾𝐴 Modular Hamiltonian of region 𝐴 in 2+1D state |𝛹⟩
K𝑎 Modular Hamiltonian of an interval 𝑎 in 1+1D CFT ground state
K 𝜒
𝑎 Holomorphic component of K𝑎
V An isometry defined in Hypothesis 1
L Good modular flow generator [Definition 3.1]
L Linear combination of chiral CFT modular Hamiltonians,with LV = LV
L𝑛 Virasoro generator from a purely chiral CFT
𝐿𝑛 Representation of Virasoro generators on 2+1D edge, with 𝐿𝑛V = L𝑛V
L(𝑜)𝑛 ,L

(𝑒)
𝑛 Two particular good modular flow generators, defined in Eqs. (6.15) and (6.16)

𝐿̃𝑛 Approximate Virasoro generators,defined in Eq. (6.18)

Some remarks on these notations:

• If a CFT is purely chiral, then 𝑐 = 0, therefore 𝑐t ot = 𝑐 = |𝑐−|.
• Usually, the curly symbols, such as K ,L are operators for a CFT, while others are on the Hilbert space of the 2+1D state.

Appendix B. Smoothness and decay of Fourier coefficients

Here, we prove a statement that relates the smoothness of a function and the asymptotic decay properties of its Fourier
coefficients.

Let 𝑓 (𝑥) be a real-valued function and 𝑓 (𝑚)(𝑥) denote its 𝑚th derivative. We call a function 𝑓 (𝑥) ‘piecewise 𝐶𝑚’ if |𝑓 (𝑚)(𝑥)| is
bounded and piecewise continuous with a finite number of finite jump discontinuities, while 𝑓 (𝑚+1)(𝑥) is unbounded. By 𝑓 (𝑥) having
 finite jump discontinuity at 𝑥∗, we mean 0 < | lim𝑥→𝑥+∗

𝑓 (𝑥) − lim𝑥→𝑥−∗ 𝑓 (𝑥)| < ∞.

Lemma B.1. Let 𝑓 (𝜃) be a real-valued 2𝜋-periodic function. If 𝑓 (𝜃) is piecewise 𝐶𝑚, then its Fourier coefficient
𝑓𝑛 ≡

1
2𝜋 ∫

2𝜋

0
𝑑 𝜃 𝑓 (𝜃)𝑒−𝐢𝑛𝜃 , (B.1)

has the property |𝑓𝑛| ∼ 𝑂(1∕𝑛𝑚+1). That is, to be more explicit, lim𝑛→∞ 𝑛𝑚+1|𝑓𝑛| is bounded.
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Proof. Since 𝑓 (𝜃) = ∑

𝑛 𝑓𝑛𝑒
𝐢𝑛𝜃 ,

𝑓 (𝑘)(𝜃) =
∑

𝑛
𝐢𝑘𝑛𝑘𝑓𝑛𝑒𝐢𝜃 𝑛 ⇒ 𝑓𝑛 ⋅ 𝑛

𝑘 =
(−𝐢)𝑘
2𝜋 ∫

2𝜋

0
𝑑 𝜃 𝑓 (𝑘)(𝜃)𝑒−𝐢𝑛𝜃 . (B.2)

𝑓 (𝜃) is piecewise 𝐶𝑚. Therefore, let 𝜃1 < 𝜃2 < ⋯ < 𝜃𝑁 be the discontinuous points of 𝑓 (𝑚)(𝜃), then 𝑓 (𝑚)(𝜃) can be written as

𝑓 (𝑚)(𝜃) =
𝑁
∑

𝑘=1
𝛩(𝜃 − 𝜃𝑘)𝛩(𝜃𝑘+1 − 𝜃)𝐹𝑘(𝜃), (B.3)

where 𝜃𝑁+1 ≡ 𝜃1, 𝛩(𝑥) is the Heaviside step function. 𝐹𝑘(𝜃) is some smooth function, which is identical to 𝑓 (𝑚)(𝜃) on the interval
[𝜃𝑘, 𝜃𝑘+1]. The derivative of 𝑓 (𝑚)(𝜃) involves various 𝛿 functions:

𝑓 (𝑚+1)(𝜃) =
𝑁
∑

𝑘=1

[

𝛿(𝜃 − 𝜃𝑘)𝛩(𝜃𝑘+1 − 𝜃)𝐹𝑘(𝜃) − 𝛩(𝜃 − 𝜃𝑘)𝛿(𝜃𝑘+1 − 𝜃)𝐹𝑘(𝜃)

+ 𝛩(𝜃 − 𝜃𝑘)𝛩(𝜃𝑘+1 − 𝜃)
𝑑 𝐹𝑘(𝜃)
𝑑 𝜃

]

.

(B.4)

Therefore, even though the function 𝑓 (𝑚+1)(𝜃) itself is not upper bounded, the absolute value of its integral
|

|

|

|

|

1
2𝜋 ∫

2𝜋

0
𝑑 𝜃 𝑓 (𝑚+1)(𝜃)𝑒−𝐢𝑛𝜃

|

|

|

|

|

(B.5)

shall be a upper bounded by some finite number 𝑀 . This is because there is a finite number of 𝛿 functions, and each 𝛿 function
only contributes a finite number to the result of the integral.

Then utilizing Eq. (B.2), one can see that

|𝑓𝑛| ⋅ |𝑛
𝑚+1

| =
|

|

|

|

|

1
2𝜋 ∫

2𝜋

0
𝑑 𝜃 𝑓 (𝑚+1)(𝜃)𝑒−𝐢𝑛𝜃

|

|

|

|

|

≤𝑀 , (B.6)

Hence |𝑓𝑛| ∼ 𝑂(1∕𝑛𝑚+1).27 □

We can then apply this lemma to the weight function 𝑓 (𝜃) of a good modular flow generator

g∙ ∋ L
V
= ∫

2𝜋

0
𝑓 (𝜃)T (𝜃). (B.7)

As 𝑓 (𝜃) is piecewise 𝐶2, with a finite number of jump discontinuities, we can conclude

𝑓𝑛 =
1
2𝜋 ∫

2𝜋

0
𝑑 𝜃 𝑓 (𝜃)𝑒−𝐢𝑛𝜃 ∼ 𝑂(𝑛−3). (B.8)

For bad modular flow generators, if we assume its action on the edge is of a similar form as Eq. (B.7), the weight function will
only be piecewise 𝐶1, and therefore |𝑓𝑛| ∼ 𝑂(|𝑛|−2).

Appendix C. Improvement of the approximate Virasoro generators

We introduced the construction of the approximate Virasoro generators 𝐿̃𝑛 and their expansions in terms of Virasoro generators

𝐿̃𝑛 =
∑

𝑚∈Z
𝜆𝑛,𝑚𝐿𝑚, (C.1)

with 𝜆𝑛,𝑚 given in Eq. (6.23). In this section, we introduce a procedure to reduce the contribution of the higher harmonic terms in 𝐿̃𝑛.
As a result of the procedure, we shall obtain the Virasoro generator as a linear combination of the approximate Virasoro generators
𝐿̃𝑛. Furthermore, this indicates that {𝐿̃𝑛 |𝛹⟩}𝑛∈Z forms a (non-orthogonal) basis of the vector space spanned by {𝐿𝑛 |𝛹⟩}𝑛∈Z.

C.1. Improvement procedure

We first discuss the improvement of 𝐿̃𝑛 to produce a better approximation to 𝐿𝑛. Throughout this section, we shall focus on
|𝑛| ≥ 2 cases, as 𝐿̃0, 𝐿̃±1 are already equal to 𝐿0, 𝐿±1 by their constructions.

Upon a close examination of the Fourier coefficients 𝜆𝑛,𝑚 in Eq. (6.23), we can see that the mode numbers of Virasoro generators
in 𝐿̃𝑛 are (−1)𝑗 (2𝑗 + 1), 𝑗 ∈ N. To be more explicit,

𝐿̃𝑛 = 𝐿𝑛 +
∑

𝑗∈N∗
𝜆𝑛,(−1)𝑗 (2𝑗+1)𝑛𝐿(−1)𝑗 (2𝑗+1)𝑛, (C.2)

27 Some careful readers might wonder, is it possible |𝑓𝑛| ∼ 𝑂(𝑛−(𝑚+2))? The answer is no because if so, 𝑓 (𝑚)(𝜃) = ∑

𝑛 𝑖𝑚𝑛𝑚𝑓𝑛𝑒𝑖𝜃 𝑛 will be absolutely summable,
and as a result, it will absolutely and uniformly converge to a continuous function, so the function would actually be piecewise 𝐶𝑚+1.
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Table 9
Commutator tests for the constructed Virasoro generators, with and without improvements.
Tests Original data with 𝐿̃±𝑛 Replacing 𝐿̃±𝑛 with (𝐿̃±𝑛)′

Results Comparison with
Virasoro algebra

Results Comparison with
Virasoro algebra

⟨𝛹 | [𝐿̃2 , 𝐿̃−2] |𝛹⟩ 0.2440 2.404% 0.2509 0.367%
⟨𝛹 | [𝐿̃4 , 𝐿̃−4] |𝛹⟩ 2.4266 2.935% 2.5113 0.454%
⟨𝛹 | [[𝐿̃2 , 𝐿̃0]𝐿̃−2] |𝛹⟩ 0.5749 14.98% 0.5272 5.44%
⟨𝛹 | [[𝐿̃4 , 𝐿̃0]𝐿̃−4] |𝛹⟩ 11.5006 15.01% 10.4140 4.14%

where N∗ is defined as N ⧵ {0}, and

𝜆𝑛,(−1)𝑗 (2𝑗+1)𝑛 = (−1)𝑗 𝑛2 − 1
(2𝑗 + 1)3𝑛2 − (2𝑗 + 1) . (C.3)

Moreover, it is also these modes
{

𝐿(−1)𝑗 (2𝑗+1)𝑛
}

𝑗∈N∗ that contribute in the Virasoro mode expansion of 𝐿̃(−1)𝑘(2𝑘+1)𝑛, 𝑘 ∈ N∗. This can
e seen by

(−1)𝑗 (2𝑗 + 1)𝑛 ⋅ (−1)𝑘(2𝑘 + 1)
=(−1)𝑗+𝑘[2(2𝑗 𝑘 + 𝑗 + 𝑘) + 1]𝑛
=(−1)𝑚(2𝑚 + 1)𝑛, with 𝑚 = 2𝑗 𝑘 + 𝑗 + 𝑘.

(C.4)

Therefore, it is plausible that one can use the approximate Virasoro generators
{

𝐿̃(−1)𝑗 (2𝑗+1)𝑛

}

𝑗∈N∗
themselves to cancel the

ontribution of
{

𝐿(−1)𝑗 (2𝑗+1)𝑛
}

𝑗∈N∗ in 𝐿̃𝑛, as it will not introduce new Virasoro modes.

The exact expression for 𝐿𝑛 in terms of
{

𝐿̃(−1)𝑗 (2𝑗+1)𝑛

}

𝑗∈N
can be obtained by the following procedure. Starting from 𝐿̃𝑛, we can

ee the first sub-leading order contribution is from 𝐿−3𝑛. This term can be canceled by the replacement

𝐿̃𝑛 ≡ (𝐿̃𝑛)(0) → (𝐿̃𝑛)(1) ≡ 𝐿̃𝑛 − 𝜆−3𝑛𝐿̃−3𝑛. (C.5)

Then we can cancel the first sub-leading order contribution in (𝐿̃𝑛)(1) (which is from 𝐿5𝑛) by 𝐿̃5𝑛, and so on. Denoting the improved
approximate Virasoro generator after the 𝑘th correction as (𝐿̃𝑛)(𝑘), we can summarize the procedure as the following two steps: (1)
Find the first sub-leading order 𝐿𝑚 in (𝐿̃𝑛)(𝑘) and its coefficient 𝜆(𝑘)𝑛,𝑚. (2) Cancel this term by

(𝐿̃𝑛)(𝑘) → (𝐿̃𝑛)(𝑘+1) = (𝐿̃𝑛)(𝑘) − 𝜆(𝑘)𝑛,𝑚𝐿̃𝑚. (C.6)

Then the Virasoro generator 𝐿𝑛 can be obtained as the limit

𝐿𝑛 = lim
𝑘→∞

(𝐿̃𝑛)(𝑘), (C.7)

in the sense that

lim
𝑘→∞

𝜆(𝑘)𝑛,𝑚 = 0, ∀𝑚 ≠ 𝑛. (C.8)

C.2. Numerical tests of the improvement

We can test the success of the procedure elaborated in the previous subsection numerically in the 𝑝 + 𝐢𝑝 SC ground state. In the
construction of 𝐿̃±𝑛, the next leading order contribution is 𝐿∓3𝑛 [Eq. (C.2)]. We can thus subtract this term, yielding the following
construction:

𝐿̃±𝑛 → (𝐿̃±𝑛)′ = 𝐿̃±𝑛 +
𝑛2 − 1
27𝑛2 − 3 𝐿̃∓3𝑛 (C.9)

Although there are additional terms being introduced from 𝐿̃±3𝑛, we find the total error is reduced [ Table 9]. One can repeat the
process to further improve the approximation.

For example, we can improve 𝐿̃±2 and 𝐿̃±4 as follows, using the setups and construction in Section 7.1.2. For 𝐿̃±2, the next
leading order is L±6. Then we use 𝐿̃±6 to subtract off 𝐿±6. For 𝐿̃±4, we use 𝐿̃±12 to cancel the next leading term 𝐿±12:

𝐿̃±2 → (𝐿̃±2)′ = 𝐿̃±2 +
22 − 1

27 × 22 − 3 𝐿̃∓6

𝐿̃±4 → (𝐿̃±4)′ = 𝐿̃±4 +
42 − 1

27 × 42 − 3 𝐿̃∓12.
(C.10)

As expected, we found improvements; see Table 9
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Fig. 26. The sphere coordinates for the semion 2 and 3-leg ladders used in Section 7.2.

Appendix D. Semion setup

In this appendix, we explain the detailed setup of the semion wavefunction used in Section 7.2. This model wavefunction,
introduced by Nielsen et al. [62], describes a chiral topological order with semion statistics. It is also known as a discrete version
f the 𝜈 = 1

2 bosonic Laughlin state [25,73]. The semion topological order has 𝑐− = 1 and two species of Abelian anyons {1, 𝑠}.
The central charge of the chiral edge is expected to be 𝑐 = 1, which should be the same as its total central charge since the state is
purely chiral.

The construction of the semion wavefunction in Ref. [62] is as follows. Consider a pair (𝑁 , {𝑧𝑗}𝑁𝑗=1), where 𝑁 is an even integer
denoting the number of qubits in the system, and 𝑧𝑗 ∈ C for 𝑗 = 1,… , 𝑁 are distinct complex numbers. For each 𝑧𝑗 on the complex
plane, we assign a qubit. The system is bosonic, and thus the total Hilbert space is a tensor product of these qubits. The wavefunction
(not normalized) is

|𝛹 (𝑁 , {𝑧𝑗}𝑁𝑗=1)⟩ =
∑

{𝑠𝑖}𝑁𝑖=1

𝑤({𝑠𝑖}𝑁𝑖=1)|{𝑠𝑖}
𝑁
𝑖=1⟩, 𝑠𝑖 = ±1. (D.1)

The complex coefficients 𝑤({𝑠𝑖}𝑁𝑖=1) are given by

𝑤({𝑠𝑖}𝑁𝑖=1) = 𝛿{𝑠𝑖}
𝑁
∏

𝑛<𝑚
(𝑧𝑛 − 𝑧𝑚)

1
2 𝑠𝑛𝑠𝑚 , (D.2)

where 𝛿{𝑠𝑖} = 1 for ∑

𝑖 𝑠𝑖 = 0 and 𝛿{𝑠𝑖} = 0 otherwise.
It is convenient to map the coordinates 𝑧𝑗 to the sphere via the stereographic projection. Namely, we assign a sphere coordinate

(𝜃𝑗 , 𝜙𝑗 ) to 𝑧𝑗 according to
𝑧𝑗 =

sin 𝜃𝑗
1 + cos 𝜃𝑗

exp
(

𝐢𝜙𝑗
)

, 𝜃𝑗 ∈ [0, 𝜋] and 𝜙𝑗 ∈ [0, 2𝜋). (D.3)

The unit vector in 3-dimensional Euclidean space, corresponding to a sphere coordinate (𝜃 , 𝜙) is 𝑛 = (sin 𝜃 cos𝜙, sin 𝜃 sin𝜙, cos 𝜃),
as explained in Fig. 26(c). As an aside, the sphere coordinate is convenient in this problem because sphere rotation keeps the
wavefunction invariant [62].

Now, we are ready to specify the wavefunctions used in Section 7.2. This is done by specifying the coordinates on the sphere.

• For the 2-leg ladder in Fig. 26(a), the 16 points correspond to the coordinates

ladder 1:
(𝜋
2
− 𝜋

8
, 𝑘𝜋
4

)

, ladder 2:
(𝜋
2
+ 𝜋

8
, 𝑘𝜋
4

)

, (D.4)

with 𝑘 = 1, 2,… , 8.
• For the 3-leg ladder in Fig. 26(b), the 24 points correspond to the coordinates

ladder 1:
(𝜋
2
− 𝜋

8
, 𝑘𝜋
4

)

, ladder 2:
(𝜋
2
, 𝑘𝜋
4

+ 𝜋
8

)

, ladder 3:
(𝜋
2
+ 𝜋

8
, 𝑘𝜋
4

)

, (D.5)

with 𝑘 = 1, 2,… , 8.

Appendix E. The cylinder argument

E.1. Review of 1+1D CFT fixed-point equation

Here, we briefly review a local condition satisfied by 1+1D conformal field theory ground states |𝛺⟩ on a real line in [27],
which will play an important role in our analysis. The entanglement entropy of an interval of length 𝓁 in the ground state,
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Fig. 27. Two decompositions of a strip connecting two physical edges.

𝑆(𝓁) = 𝑐t ot
6 ln 𝓁

𝜖 [10,20], is by itself not strong enough to imply that the state is a CFT ground state. For the ground state of a
CFT, the modular Hamiltonian 𝐾𝐴, 𝜌𝐴 = 𝑒−𝐾𝐴 , for a single interval on the line is [39]:

K [𝑥1 ,𝑥2] = ∫

𝑥2

𝑥1
𝑑 𝑥𝛽[𝑥1 ,𝑥2](𝑥)ℎ(𝑥) + 𝑆[𝑥1 ,𝑥2]1, where

𝛽[𝑥1 ,𝑥2](𝑥) = 2𝛩(𝑥 − 𝑥1)𝛩(𝑥2 − 𝑥)
(𝑥 − 𝑥1)(𝑥2 − 𝑥)

𝑥2 − 𝑥1
.

(E.1)

Here 𝑇 (𝑥) is the Hamiltonian density of the CFT, and the 𝛩(𝑥) is the Heaviside step function.
A certain linear combination of these locally-quadratic functions is identically zero. Therefore the corresponding combination of

modular Hamiltonians is proportional to the identity. For any three contiguous intervals 𝐴, 𝐵 and 𝐶,

𝛥 ≡ K 𝐴𝐵 + K 𝐵 𝐶 − 𝜂(K 𝐴 + K 𝐶 ) − (1 − 𝜂)(K 𝐵 + K 𝐴𝐵 𝐶 ) =
𝑐t ot
6
ℎ(𝜂)1 (E.2)

≡ 𝜂𝛥(𝐴, 𝐵 , 𝐶) + (1 − 𝜂)𝐼(𝐴 ∶ 𝐶|𝐵) . (E.3)

Here

𝛥(𝐴, 𝐵 , 𝐶) ≡ K 𝐴𝐵 + K 𝐵 𝐶 − K 𝐴 − K 𝐶 , 𝐼(𝐴 ∶ 𝐶|𝐵) ≡ K 𝐴𝐵 + K 𝐵 𝐶 − K 𝐵 − K 𝐴𝐵 𝐶 . (E.4)

The function ℎ(𝜂) on the right-hand side of Eq. (E.2) is determined by taking expectation values to be the binary entropy function
ℎ(𝜂) = −𝜂 ln 𝜂 − (1 − 𝜂) ln(1 − 𝜂). In a lattice wavefunction (as opposed to continuum field theory), the density matrix may have a
kernel, and so K may be singular; as a result, the operator form of this equation is less robust than the following vector fixed-point
equation:

𝛥 |𝛺⟩ =
𝑐t ot
6
ℎ(𝜂) |𝛺⟩ . (E.5)

E.2. Vector fixed-point equation for chiral edge

In this Section, we derive several nontrivial identities for the modular Hamiltonians localized near the edge. Let us first recall
the setup. We shall consider a finite cylinder hosting a 2+1D reference state |𝛹⟩ with chiral gapless edges on both the top and the
bottom edge; see Fig. 27. It can be overall viewed as a 1+1D non-chiral CFT [Fig. 11] by the cylinder assumption: if we dimensionally
reduce along the direction normal to the boundaries, we obtain a 1+1D field theory with conformal symmetry. Thus for the regions
n Fig. 11, we get

(

𝜂𝛥(𝐴, 𝐵 , 𝐶) + (1 − 𝜂)𝐼(𝐴 ∶ 𝐶|𝐵)
)

|𝛹⟩ =
𝑐t ot
6
ℎ(𝜂) |𝛹⟩ , (E.6)

where 𝜂 is the cross-ratio computed form the circle and ℎ(𝜂) is the binary entropy function as above. The total central charge is
t ot = 𝑐𝐿 + 𝑐𝑅, with 𝑐𝐿, 𝑐𝑅 being the total central charge of the top and bottom edge. For purely chiral state 𝑐𝐿 = 𝑐𝑅 = |𝑐−|, where 𝑐−

is the chiral central charge of the state.
Our goal is to derive Eq. (4.13), a version of the vector fixed-point equation near the chiral edge. For the reader’s convenience,

e restate this below. For the regions shown in Fig. 10, the fixed-point equation is
(

𝜂𝛥(𝐴𝐴′, 𝐵 , 𝐶 𝐶 ′) + (1 − 𝜂)𝐼(𝐴 ∶ 𝐶|𝐵)
)

|𝛹⟩ ∝ |𝛹⟩ . (E.7)

The assumptions behind this derivation are the cylinder assumption [Section 4.3], axioms of the entanglement bootstrap in the bulk
Section 2], and the full boundary axioms introduced in Section 4.3 [Fig. 12].

Proposition 4.2 (Cylinder Assumption Gives Boundary Vector Fixed-Point Equation). Given the cylinder assumption, bulk A1,
ull-boundary A0 and full-boundary A1, the 2+1D vector fixed-point equation (4.13) holds near each boundary independently.
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Fig. 28. Because of bulk A1, (𝐾𝐴𝐵 −𝐾𝐶 ) |𝛹⟩ = (𝐾𝐴𝐵 −𝐾𝐶 ) |𝛹⟩. Comparing this figure with Fig. 27, we find 𝐴𝐵 = 𝐴𝐵 ⧵ 𝐵𝑀 and 𝐶 = 𝐶 ∪ 𝐵𝑀 .

Proof of 4.2. We wish to show:

𝐿
D |𝜓⟩ = 𝛤𝐿 |𝜓⟩ and 𝑅

D |𝜓⟩ = 𝛤𝑅 |𝜓⟩ , (E.8)

where, for 𝛼 = 𝐿, 𝑅, 𝛼
D

≡
(

𝜂 𝛥(𝐴𝛼↑ , 𝐵𝛼 , 𝐶𝛼↑ ) + (1 − 𝜂)𝐼(𝐴𝛼 ∶ 𝐶𝛼|𝐵𝛼)
)

, with 𝜂 is the geometric cross-ratio for the regions 𝑎𝑏𝑐 on the
oundary, and 𝐶𝐿↑ ≡ 𝐶𝐿𝐶 ′, 𝐴𝐿↑ ≡ 𝐴𝐿𝐴′, 𝐶𝑅↑ ≡ 𝐶𝑅𝐶 ′, 𝐴𝑅↑ ≡ 𝐴𝑅𝐴′ [Fig. 27]. Furthermore 𝛤𝐿 + 𝛤𝑅 = 𝑐t ot

6 ℎ(𝜂).
Here is the argument, in two steps. First, we can disconnect the two boundaries in the following sense. We show that the LHS

of Eq. (E.7) is

D |𝛹⟩ = (𝐿
D(𝜂) +𝑅

D(𝜂)) |𝛹⟩ (E.9)

where 𝐿∕𝑅
D

is made from modular Hamiltonians of regions that only touch the 𝐿∕𝑅 boundary.
To show Eq. (E.9), we use the full-boundary A1 [Fig. 12] to conclude that 𝐼(𝐴𝐿 ∶ 𝐴𝑅|𝐴𝑀 )

|𝛹⟩ = 0; see Fig. 27 for the description
of these regions. Therefore,

𝐾𝐴 |𝛹⟩ = (𝐾𝐴𝑀 𝐿 +𝐾𝐴𝑀 𝑅 −𝐾𝐴𝑀 ) |𝛹⟩ , (E.10)

and similarly for the other vertical strips. Therefore

𝐼(𝐴 ∶ 𝐶|𝐵) |𝜓⟩ =
(

𝐼(𝐴𝐿𝑀 ∶ 𝐶𝐿𝑀 |𝐵𝐿𝑀 ) + 𝐼(𝐴𝑅𝑀 ∶ 𝐶𝑅𝑀 |𝐵𝑅𝑀 )

−𝐼(𝐴𝑀 ∶ 𝐶𝑀 |𝐵𝑀 )
)

|𝜓⟩ . (E.11)

But bulk A1 says 𝐼(𝐴𝑀 ∶ 𝐶𝑀 |𝐵𝑀 ) |𝜓⟩ = 0. Therefore, using bulk A1 to deform the regions, we get

𝐼(𝐴 ∶ 𝐶|𝐵) |𝛹⟩ =
(

𝐼(𝐴𝐿 ∶ 𝐶𝐿|𝐵𝐿) + 𝐼(𝐴𝑅 ∶ 𝐶𝑅|𝐵𝑅)
)

|𝛹⟩ . (E.12)
Now we use bulk A1 to deform the regions as in Fig. 28:

𝛥(𝐴, 𝐵 , 𝐶) |𝛹⟩ = (

𝐾𝐴𝐵 −𝐾𝐶
)

+
(

𝐾𝐵 𝐶 −𝐾𝐴
)

|𝛹⟩

=
(

𝐾𝐴𝐵 −𝐾𝐶
)

+
(

𝐾𝐵 𝐶 −𝐾𝐴
)

|𝛹⟩
. (E.13)

Then using (E.10) to decompose each of these pieces vertically, we have

𝛥(𝐴, 𝐵 , 𝐶) |𝛹⟩ =
(

𝛥(𝐴𝐿↑ , 𝐵𝐿, 𝐶𝐿↑ ) + 𝛥(𝐴𝑅↑ , 𝐵𝑅, 𝐶𝑅↑ )
)

|𝛹⟩ . (E.14)

Combining (E.12) with (E.14) gives the sum of the criticality conditions for the two boundaries:
(

𝐿
D +𝑅

D

)

|𝛹⟩ =
𝑐t ot
6
ℎ(𝜂) |𝛹⟩ . (E.15)

Note that (E.15) implies
(

𝐿
D +𝑅

D

)

𝜌𝐿𝑅 =
𝑐t otℎ(𝜂)

6
𝜌𝐿𝑅, (E.16)

where 𝜌𝐿𝑅 is the reduced density matrix for 𝜓 reduced to the union of the regions 𝐿, 𝑅 of support of 𝐿
D

and 𝑅
D

respectively.
Using full-boundary A0, we conclude that 𝐼(𝐿 ∶ 𝑅) = 0 and therefore 𝜌𝐿𝑅 = 𝜌𝐿⊗ 𝜌𝑅. Since the state factorizes, the contributions

of 𝐿
D

and 𝑅
D

to (E.15) are independent. More precisely, we can take the trace of (E.16) over 𝑅 to get

𝐿
D𝜌

𝐿 + t r𝑅(𝑅
D𝜌

𝑅)𝜌𝐿 =
𝑐t otℎ(𝜂)

6
𝜌𝐿, (E.17)

which says

𝐿
D𝜌

𝐿 ∝ 𝜌𝐿. (E.18)

Therefore, each of them acting on |𝛹⟩ gives a c-number, which is denoted as 𝛤𝐿, 𝛤𝑅 respectively. One can purify the equation above
to obtain
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𝐿
D |𝛹⟩ = 𝛤𝐿 |𝛹⟩ . (E.19)

The one for 𝑅 can be obtained similarly. The two c-numbers add up to
𝛤𝐿 + 𝛤𝑅 =

𝑐t ot
6
ℎ(𝜂). □ (E.20)

If we assume the two edges contribute equally to the proportionality factor, then we obtain

𝛤𝐿 =
𝑐𝐿
6
ℎ(𝜂), 𝛤𝑅 =

𝑐𝑅
6
ℎ(𝜂) (E.21)

where 𝑐𝐿 = 𝑐𝑅 and 𝑐t ot = 𝑐𝐿 + 𝑐𝑅. 𝑐𝑅, 𝑐𝐿 can be interpreted as the holomorphic and anti-holomorphic central charge of the 1+1D
CFT.

We note that the assumptions in Proposition 4.2 (i.e., cylinder assumption, bulk A1, full-boundary A0, and full-boundary A1),
ogether with the extra assumption that the bulk is purely chiral, leads to the following equation:

(

𝛥(𝐴↑, 𝐵 , 𝐶↑) − 𝛥(𝐴↑, 𝐵 , 𝐶↑)
)

|𝛹⟩
V
= ∫ 𝑑 𝑥𝑓𝐴,𝐵 ,𝐶 (𝑥)h(𝑥) |𝛺⟩ (E.22)

with 𝐴↑ ≡ 𝐴𝐴′, 𝐶↑ ≡ 𝐶 𝐶 ′ as in the figure in (E.7). Here h(𝑥) is the Hamiltonian density for the edge CFT and 𝑓𝐴,𝐵 ,𝐶 (𝑥) is the 𝐶1 bump
unction implied by Hypothesis 1. This is an equation that we use throughout the body of results that follow from Hypothesis 1.

Thus, our argument below can be yet another justification for these derivations that do not rely on Hypothesis 1.
The argument for Eq. (E.22) follows a similar chain of reasoning as in Proposition 4.2. Consider again the regions 𝐴𝐵 𝐶 in Fig. 11.

First, we have (E.14). On the other hand, the cylinder assumption implies that
(

𝛥(𝐴, 𝐵 , 𝐶) − 𝛥(𝐴, 𝐵 , 𝐶)) |𝛹⟩ V= ∫ 𝑑 𝑥𝑓𝐴,𝐵 ,𝐶 (𝑥)
(

h𝐿(𝑥) + h𝑅(𝑥)
)

|𝛺⟩ (E.23)

where 𝑓𝐴,𝐵 ,𝐶 (𝑥) is the 𝐶1 bump function implied by Hypothesis 1, and h𝐿 and h𝑅 are the right-moving and left-moving parts of the
CFT Hamiltonian. In the case where the CFT is purely chiral, these contributions are localized at the two ends of the cylinder. That
is, full-boundary A0 implies that the two terms on the RHS of (E.14) are independent, and therefore

(

𝛥(𝐴𝐿↑ , 𝐵𝐿, 𝐶𝐿↑ ) − 𝛥(𝐴𝐿↑ , 𝐵𝐿, 𝐶𝐿↑ )
)

|𝛹⟩
V
= ∫ 𝑑 𝑥𝑓𝐴,𝐵 ,𝐶 (𝑥)h𝐿(𝑥) |𝛺⟩ ,

(

𝛥(𝐴𝑅↑ , 𝐵𝑅, 𝐶𝑅↑ ) − 𝛥(𝐴𝑅↑ , 𝐵𝑅, 𝐶𝑅↑ )
)

|𝛹⟩
V
= ∫ 𝑑 𝑥𝑓𝐴,𝐵 ,𝐶 (𝑥)h𝑅(𝑥) |𝛺⟩ . (E.24)

Appendix F. Fidelity near the edge under good modular flow

This appendix explains the relation 𝐹 (𝜌𝛺(0), 𝜌𝛺(𝑡)) = 𝐹 (𝜌edge(0), 𝜌edge(𝑡)) based on the full-boundary A0 condition. This result is
used in Section 5.2. Consider a good modular flow generated by L, intersecting with only one gapless edge.28 We partition the entire
system 𝛺 into 𝐴𝐵 𝐶 shown in Fig. 29. We let 𝐶 be the annulus that covers the particular gapless edge on which L has nontrivial
action, and 𝐵 be another annulus that surrounds 𝐶 and separates 𝐶 from the remaining region 𝐴.29 Without loss of generality, one
can think the support of L is within 𝐶, as its support can be deformed in the bulk such that it is localized near the edge [Section 3].
We claim that

𝐹 (𝜌𝐴𝐵 𝐶 (0), 𝜌𝐴𝐵 𝐶 (𝑡)) = 𝐹 (𝜌𝐵 𝐶 (0), 𝜌𝐵 𝐶 (𝑡)). (F.1)

This is plausible because the good modular flow does not change the state in the bulk 𝐴𝐵.
The proof of Eq. (F.1) follows from a well-known fact: that fidelity between any two states 𝜌 and 𝜎 is non-increasing under any

uantum channel  , i.e., 𝐹 (𝜌, 𝜎) ≤ 𝐹 ((𝜌), (𝜎)). First, note that 𝐹 (𝜌𝐴𝐵 𝐶 (0), 𝜌𝐴𝐵 𝐶 (𝑡)) ≤ 𝐹 (𝜌𝐵 𝐶 (0), 𝜌𝐵 𝐶 (𝑡)) by choosing the quantum
hannel to be the partial trace over 𝐴. On the other hand, we have 𝐹 (𝜌𝐵 𝐶 (0), 𝜌𝐵 𝐶 (𝑡)) ≤ 𝐹 (𝜌𝐴𝐵 𝐶 (0), 𝜌𝐴𝐵 𝐶 (𝑡)). The reason is as follows:
irstly, due to full-boundary A0,

0 ≤ 𝐼(𝐴 ∶ 𝐶|𝐵)
|𝛹⟩ ≤ 𝛥(𝐵 , 𝐶 , ∅)

|𝛹⟩ = 0 ⇒ 𝐼(𝐴 ∶ 𝐶|𝐵)
|𝛹⟩ = 0, (F.2)

where the first two ‘‘≤’’ signs are due to strong subadditivity [36]. Secondly, under the good modular flow |𝛹 (𝑡)⟩ = 𝑒𝑖L𝑡 |𝛹⟩ still
atisfies the Markov condition 𝐼(𝐴 ∶ 𝐶|𝐵)

|𝛹 (𝑡)⟩. To see this, notice |𝛹 (𝑡)⟩ still satisfies the full-boundary A0:

𝛥(𝐵 , 𝐶 , ∅)
|𝛹 (𝑡)⟩ = (𝑆𝐴 + 𝑆𝐴𝐵 − 𝑆𝐵)|𝛹 (𝑡)⟩ = (𝑆𝐴 + 𝑆𝐴𝐵 − 𝑆𝐵)|𝛹⟩ = 0, (F.3)

where the first equal sign is due to the purity of |𝛹 (𝑡)⟩ and the second equal sign is due to the support of L is within 𝐶 and as
 result 𝜌𝐴𝐵(0) = 𝜌𝐴𝐵(𝑡). As a result of Markov structure of 𝜌𝐴𝐵 𝐶 (0) and 𝜌𝐴𝐵 𝐶 (𝑡), one can use Petz recovery map 𝜌𝐴𝐵 (0)𝐵→𝐴𝐵

30 [74] to
recover both 𝜌𝐴𝐵 𝐶 (𝑡) from 𝜌𝐵 𝐶 (𝑡) for any 𝑡 ∈ R. Therefore, we can conclude 𝐹 (𝜌𝐴𝐵 𝐶 (0), 𝜌𝐴𝐵 𝐶 (𝑡)) = 𝐹 (𝜌𝐵 𝐶 (0), 𝜌𝐵 𝐶 (𝑡)).

28 If a good modular flow generator covers more than one edge, then one can first decompose the generator and then deform it to all the edges, similar as
e did in the cylinder argument in Appendix E.
29 We do not make any further assumption about the topology of 𝐴
30 The same channel for recovery because 𝜌 (0) = 𝜌 (𝑡).
𝐴𝐵 𝐴𝐵
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Fig. 29. The partition used in the proof of Eq. (F.1). Here we do not assume the topology of 𝐴, which could have holes that are not shown.

Data availability

Data will be made available on request.
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