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CoPeD-Advancing Multi-Robot Collaborative
Perception: A Comprehensive Dataset
in Real-World Environments

Yang Zhou

Abstract—In the past decade, although single-robot perception
has made significant advancements, the exploration of multi-robot
collaborative perception remains largely unexplored. This involves
fusing compressed, intermittent, limited, heterogeneous, and asyn-
chronous environmental information across multiple robots to en-
hance overall perception, despite challenges like sensor noise, oc-
clusions, and sensor failures. One major hurdle has been the lack of
real-world datasets. This letter presents a pioneering and compre-
hensive real-world multi-robot collaborative perception dataset to
boost research in this area. Our dataset leverages the untapped po-
tential of air-ground robot collaboration featuring distinct spatial
viewpoints, complementary robot mobilities, coverage ranges, and
sensor modalities. It features raw sensor inputs, pose estimation,
and optional high-level perception annotation, thus accommodat-
ing diverse research interests. Compared to existing datasets pre-
dominantly designed for Simultaneous Localization and Mapping
(SLAM), our setup ensures a diverse range and adequate overlap
of sensor views to facilitate the study of multi-robot collaborative
perception algorithms. We demonstrate the value of this dataset
qualitatively through multiple collaborative perception tasks. We
believe this work will unlock the potential research of high-level
scene understanding through multi-modal collaborative perception
in multi-robot settings.

Index Terms—Data sets for robotic vision, deep learning for
visual perception, multi-robot systems.

I. INTRODUCTION

OBOTIC perception has advanced significantly over the
past decade, largely due to progress in machine learning
and the widespread adoption of increasingly powerful comput-
ing and sensor systems. However, most of these developments
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have been centered on single-robot systems, leaving the area
of multi-robot collaborative perception relatively unexplored.
This form of perception refers to a network of robots, each
with its unique sensing characteristics, capabilities, and spa-
tial viewpoints being able to collect and fuse environmental
sensing data in an efficient, distributed, and meaningful way
to obtain accurate context-appropriate information, leading to
potential advantages in terms robustness, accuracy, and redun-
dancy compared to a single robot solution. Pushing the frontier of
multi-robot collaborative perception could harness these unique
advantages to create a more comprehensive, unified, and re-
silient perception system. The creation of multi-robot perception
datasets can support and facilitate the development of collabora-
tive perception models and algorithms. In this paper, we present
the first heterogeneous multi-robot perception dataset collected
in challenging indoor and outdoor settings using ground and
aerial robots.

Notably, the multi-robot air-ground systems have the potential
to provide a distinct opportunity for multi-robot perception.
Specifically, ground and small-scale aerial robots combine dif-
ferent mobility and sensing characteristics (e.g., types of sensors
as well as different spatial viewpoints and sensing range charac-
teristics). For instance, ground robots can carry heavy payloads
such as 3D LiDAR, whereas small-scale aerial robots due to their
Size, Weight, and Power (SWaP) constraints generally can only
rely on small sensors such as cameras and Inertial Measurements
Units (IMUs).

Existing multi-robot datasets are mainly geared towards Si-
multaneous Localization and Mapping (SLAM) applications [1],
[2], [3], [4], [5], focusing primarily on spatial coverage rather
than collaborative perception. The limited overlap of sensor
views in these datasets hinders the study of perception results
that rely on perception compensation mechanisms between
robots. Furthermore, most of the existing multi-agent percep-
tion datasets are based on photorealistic simulators, neglect-
ing the real-world sensor noise and characteristics inherent in
real-world multi-robot settings. Although there are datasets tar-
geting autonomous driving systems through vehicle-to-vehicle
(V2V) communication [6], [7], [8], [9] these fall short due to
the mismatch between simulated and real-world data or the
absence of multiple vehicles with heterogeneous mobility and
modalities. Furthermore, the algorithms developed from these
datasets are designed for Bird’s Eye View (BEV) since the
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TABLE I
TAXONOMY OF EXISTING DATASETS

Task Approaches Platform Type Real-World Modalities Scene
Lamp 2.0 [1] Multi-Ground Robot v Camera, LiDAR Outdoor
Multi-Robot SLAM Subt-Cerberus [2] Multi-Ground Robot v Camera, LiDAR, IMU Outdoor
Graco [3] Aerial/Ground Robot v Camera, LiDAR, IMU, GPS Outdoor
S3e [4] Aerial/Ground Robot v Camera, LiDAR, IMU, GPS  Indoor/Outdoor
Tian et al. [5] Multi-Ground Robot v Camera, LiDAR, IMU, GPS Outdoor
Opv2v [6] Vehicle-to-Vehicle (V2V) X Camera, LiDAR, IMU, GPS Outdoor
Arnold et al. [7] Vehicle-to-Vehicle (V2V) X Camera, Depth Camera Outdoor
Collaborative Perception  Dair-V2X [8] Vehicle-to-Everything (V2X) v Camera, LiDAR, IMU, GPS Outdoor
V2X-Sim [9] Vehicle-to-Vehicle (V2V) X Camera, LiDAR, IMU, GPS Outdoor
When2comm [10] Multi-Aerial Robot X Camera Outdoor
‘Where2comm [11] Multi-Aerial Robot X Camera Outdoor
CoPeD (Ours) Multi-Aerial/Ground Robot v Camera, LiDAR, IMU, GPS  Indoor/Outdoor

scene is constrained on the flat surface and agent mobility is
limited to ground vehicle. Due to the limited scope and biases
of existing datasets, there is no existing methods that utilize
multiple modalities, multiple mobilities and goes beyond BEV
paradigm. Creating a comprehensive dataset tailored to address
multi-robot collaborative perception problems, a crucial yet
unexplored area in the community, is indispensable to making
significant progress in this area and push the frontier to develope
new methods.

The contributions of this paper can be summarized as fol-
lows. First, we present the first multi-robot dataset tailored to
collaborative perception tasks featuring both indoor and out-
door sequences, multiple sensor spatial viewpoints, robot types,
multi-rate and multi-modal data as well as coverage ranges. It
reflects the real-world sensor noise and disturbances encoun-
tered when deploying a heterogeneous robot team in the wild.
The aerial robots equipped with stereo cameras, forward and
downward RGB cameras, depth sensors, Inertial Measurement
Units (IMUs), and GPS. Ground robots carry a stereo camera,
forward RGB camera, depth sensor, 3D LiDAR, IMU, and GPS.
Second, to cater to diverse research needs, in addition to raw
sensor data streams, we provide pose estimation and optional
high-level perception annotation. Specifically, pose estimation
is obtained by fusing GPS data with existing SLAM frameworks.
For high-level perception annotation, we employ foundation
models to obtain zero-shot automatic annotation. Finally, we
validate the usefulness of the dataset in several collaborative
perception tasks. Our dataset is a first-of-its-kind contribution
to the robotics community going beyond the BEV autonomous
driving scenario. The incorporation of multiple sensor modali-
ties and robots enables to pave the way for studying multi-modal
collaborative perception using real-world data.

The paper is organized as follows. In Section II, we discuss
existing datasets. In Section III, we present the dataset character-
istics, and in Section IV the technical details related to sensors
and calibration. Section V introduces the pose and perception
annotations procedures, Section VI discuss the dataset attributes,
whereas Section VII presents use cases and applications. Finally,
Section VIII concludes the work and presents several future
research directions.

Fig. 1. Multi-robot collaborative data collection. The top row shows the
infrared and RGB images from the aerial robots, whereas the bottom row shows
the GPS and LiDAR data from the ground robots. The sensor data present several
overlapping spatial areas. Red boxes show sample objects identified in multiple
heterogeneous sensors’ data streams.

II. RELATED WORKS

This section reviews existing datasets and highlights the
differences between our approach and existing solutions as
illustrated in Table I. The field of multi-robot collaborative per-
ception is relatively new [12], [13], with few datasets available
for research purposes within the community. Existing datasets
are primarily designed for SLAM applications [1], [2], [3], [4],
[5], while our dataset is specifically tailored to facilitate research
into multi-robot collaborative perception.
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(a) ARL Warthog Ground Robot

Fig. 2. Layout of the ground robots and aerial robots.

Historically, the multi-robot collaborative perception was pri-
marily confined to geometric mapping in robotics. However,
significant advancements have been made in this area by the
research community [14], resulting in the release of several
multi-robot SLAM datasets [1], [2], [3], [4], [5]. These datasets
contain outdoor sequences, with the exception of [4], which
includes both indoor and outdoor sequences. Datasets such
as [1], [4], [5] deploy multiple ground robots for data collection,
and [2], [3] extend this to air-ground robot teams, but only
in outdoor urban settings. Despite these advancements, these
datasets are primarily designed for SLAM applications, focus-
ing on geometric mapping rather than high-level collaborative
perception tasks, including monocular depth estimation [12],
semantic segmentation [10], [12], [15], [16], correspondence
matching [17], object detection [11], [13], [18], [19], [20], [21].
The limited overlap of sensor views and types of environments
in these datasets hinders the study of perception models and
algorithms that exploit the benefits of using multiple robots.

There are a few collaborative perception datasets target au-
tonomous driving systems through V2V communication [6], [7],
[81, [9]. Specifically, most of these datasets, due to the difficul-
ties associated with the collection and annotation of real-world
data, are based on simulation with the exception of [8] which
provides the first real-world V2X dataset. The dataset from [7]
employs LiDAR as the single sensing modality, while [6], [8], [9]
adopt multiple modalities including cameras and 3D LiDARs.
However, these datasets are intended for autonomous driving
applications, missing the aerial complementary viewpoints and
perspectives, and focusing on 3D object detection tasks. In
addition, most of these datasets are based on simulation due
to the difficulties associated with real-world data collection
and annotation. In addition to autonomous driving-focused
datasets, [10] and [11] provide simulation-based photorealistic
datasets from multiple aerial robot perspectives. Therefore, it is
important to acknowledge that this data alone cannot completely
replicate the nuanced aspects of robot data available in the
real-world. Finally, existing datasets do not fully offer the ben-
efits of data streams from multiple distinct spatial complemen-
tary viewpoints and perspectives as in the proposed air-ground
case.

Datasets need to be more comprehensive to be used for
collaborative perception tasks. Very few are designed for het-
erogeneous multi-robot applications, and the sensor modality

(b) ARL Jackal Ground Robot
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(¢) NYU ARPL Race Aerial Robot

setups are unsuitable for multi-robot collaborative perception.
Compared to existing datasets as summarized in Table I, the
proposed dataset is the first real-world heterogeneous air-ground
collaborative perception dataset, designed explicitly for multi-
modal collaborative robot perception research.

III. DATASET DESCRIPTION

A. Robots and Equipment

Our dataset utilizes three ground robots and two aerial robots.
The robot layouts are illustrated in Fig. 2. The Clearpath
Robotics Warthog platform is equipped with one Ouster OS1-64
3D LiDAR, a LORD Microstrain 3DM-GX5-25 IMU, an u-
Blox EVK-MS8T GNSS module, an Intel Realsense D435i1/D455
stereo camera, two high-resolution FLIR Blackfly S cameras and
a hardware time synchronization Masterclock GMR1000. The
Clearpath Robotics Jackal platform is equipped with an Ouster
0OS1-64 3D LiDAR, a LORD Microstrain 3DM-GXS5- 25 IMU,
an u-Blox EVK-M8T GNSS module, and an Intel Realsense
D435i/D455 stereo camera. Each of the aerial robots, developed
at the Agile Robotics and Perception Lab (ARPL) ! at the New
York University, carries a forward Intel Realsense D435i stereo
camera, a downward IMX219 color camera, a top-mounted PX4
autopilot module and an mRO Location One GPS module. The
D435i stereo camera includes an RGB camera module, a stereo
infrared camera module, and an IMU module. The complete
list of sensor specifications is shown in Tables II and III. All
robots’ autonomy software stack builds upon ROS 1 [22]%, and
all robots are connected under one 5 G Wi-Fi subnetwork with
time synchronization to a laptop’s system clock using Network
Time Protocol (NTP).

‘We mount AprilTag [23] on ground robots illustrated in Fig. 2
to provide relative localization visual markers between the aerial
robots and the ground robots. Compared to other visual fiducial
markers, AprilTags guarantee increased robustness and accuracy
from the perspectives of long-range detection and localization
accuracy under real-time computation constraints. The aerial
robots obtain the relative pose of the ground robots by AprilTag
detection and Perspective-n-Point (PnP) [24] using downward
cameras. We use 8 AprilTags as a tag bundle in order to facilitate

![Online]. Available: https://wp.nyu.edu/arpl/
2[Online]. Available: http://wiki.ros.org/
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Equipment Model Type Characteristics Resolution FoV Sensor Rate
LiDAR Ouster OS1-64 200 m range 512 x 64 45° vertical 10 Hz
LiDAR Ouster OS1-128 200 m range 512 x 128 45° vertical 10 Hz
LiDAR Ouster OS0-64 100 m range 512 x 64 90° vertical 10 Hz

LORD Microstrain -
MU 3DM-GX5-25 +8 ¢ 300 dps 1000 Hz
GNSS u-Blox EVK-M8T 2 m, 0.3° accuracy - - 2 Hz
RGB: Rolling Shutter 1920 x 1080 69° x 42° 30 Hz
RGBD Intel Realsense D435i Stereo IR: Global Shutter, Baseline: 50 mm 640 x 480 87° x 58° 30 Hz
(Wilbur) IMU: BMI 055 - - 200 Hz
RGB: Global Shutter 1280 x 800 90° x 65° 30 Hz
RGBD Intel Realsense D455 Stereo IR: RS, Baseline: 95 mm 1280 x 720 87° x 58° 30 Hz
(Wanda) IMU: BMI 055 - - 200 Hz
FLIR Blackfly S X . .
Stereo Camera (BFS-PGE-1652C-CS) RGB: Global Shutter, Baseline: 60 cm 1440 x 1080 78 Hz
Sync Masterclock GMR1000 +3 second / year - - -
. Intel i7-8700 CPU @ 3.20GHz w. 32GB - - -
Main Computer Nuvo-7166GC RAM, NVIDIA T4 GPU w. 16GB RAM
- Intel i7-8700 CPU @ 3.20GHz w. 32GB - - -
Vision Computer Nuvo-7166GC RAM. NVIDIA T4 GPU w. 16GB RAM
TABLE III
AERIAL ROBOT SENSOR SPECIFICATIONS
Equipment Model Type Characteristics Resolution FoV Sensor Rate
ublox NEO-M9N - - 8 Hz
GNSS mRO Location One Magnetic Compass RM3100 - - 8 Hz
Barometer DPS310 - - 8 Hz
RGB IMX219 RGB: Global Shutter 640 x 480 160° x 160° 30 Hz
RGB: Rolling Shutter 1920 x 1080 69° x 42° 30 Hz
RGBD Intel Realsense D435i1 Stereo IR: Global Shutter, Baseline: 50 mm 640 x 480 87° x 58° 30 Hz
IMU: BMI 055 - - 200 Hz
6-core NVIDIA Carmel ARM v8.2 64-bit
Computer NVIDIA Jetson Xavier NX CPU, 384-core NVIDIA Volta GPU with 48 - - -

Tensor Cores, 8 GB RAM

robust AprilTag detection in the presence of occlusion, illumina-
tion changes, motion blur, and FoV constraints. The tag bundle
is calibrated and detected using the method in [25].

Our heterogeneous robot team setup ensures that a diverse
array of sensor modalities and robot mobilities are captured,
thus enriching the dataset and providing more robust material
for multi-modal heterogeneous robotic perception studies.

B. Indoor Sequences

For indoor sequences, we use one Jackal ground robot, one
Warthog ground robot, and two aerial robots. We present three
sequences with one Warthog ground robot and one aerial robot,
and one sequence with two ground robots and two aerial robots
as shown in Fig. 3.

The indoor sequences named "Indoor-NYUARPL’ are cap-
tured in a large indoor environment of 38 m x 60 m with arich
composition of objects including tables, chairs, and doors. We
split the robot team into two subteams, each of them consisting
of one aerial robot and one ground robot. The two subteams
explore different parts of the environment. The aerial robots fly

PointCloud

RGB

Fig.3. Indoor-NYUARPL environment. Pointcloud data (top row) is captured
by the ground robots, and the color images (bottom row) are captured by the
aerial robots. Each column shows one subgroup of one aerial robot and one
ground robot exploring different parts of the environment.

ataheight of 2.0"m above the ground robots, whereas the ground
robots move at a speed of 0.5 m/s. The first team explores a
lab room and the second one explores a hallway characterized
by natural lighting.
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PointCloud

RGB

Fig.4. Outdoor-FOREST environment. Pointcloud data (top row) is captured
by the ground robots, and the color images (bottom row) are captured by the
aerial robots. This snapshot captures the scenarios when two groups of robot
subteams encounter each other.

C. Outoor Sequences

In the outdoor scenario, we use two Warthog ground robots
and two aerial robots. We present three sequences with two
Warthog ground robots and two aerial robots, and two se-
quences with one Warthog ground robot and one aerial robot.
Sample dataset qualitative results are shown in Fig. 4. The
outdoor sequences are captured in two outdoor environments.
The first environment, named ‘HOUSE’, is an open space of
150"m x 30 "m situated by a forest, encompassing houses,
roads, trees, and rocks. The houses in this setting can be used
as object detection targets, thus providing a practical context for
target detection tasks. The second environment, 'FOREST", is
a space of 100 m x 80 "m nestled within the forest, present-
ing a rich composition of trees, ground variations, and rocks.
These environments introduce various features and obstacles
commonly encountered in outdoor environments, thus offering
a robust platform for training and testing algorithms. In all
outdoor sequences, the robot team splits up into two subteams
each composed of one aerial robot and one ground robot. The
aerial robots fly above the ground robots for most of the time,
and detach from the ground robot to explore the area where
ground robots have difficulty maneuvering. The aerial robots fly
at a height ranging from 2.0 "m to 10.0"m. The ground robots
drive at a speed up to 1.5"m/s. In *Outdoor-HOUSEB’, we
also experiment with switching the pairing of the aerial and
ground robots in the middle of the sequence to study the effect
of formation on collaborative perception performances.

IV. CALIBRATION

Aerial Robot Calibration: The parameters of the aerial robot
sensors are calibrated using the Kalibr toolbox [26]. The calibra-
tion process includes the intrinsic calibration [27] of the RGB
and RGBD cameras respectively, the extrinsic calibration [28]
of the RGBD camera and IMU, and the extrinsic calibration of
the RGB camera and IMU. We also calibrate the IMU intrinsic
parameter by conducting IMU Allan covariance analysis.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

Fig. 5. Detected AprilTag mounted on the ground robots captured from one
aerial robot’s downward-facing camera.

Ground Robot Calibration: We employ multi-sensor Graph-
based Calibration to produce a unified graph-based represen-
tation of the ground robots’ sensor nodes [29]. These sensors
include LiDAR, RGBD, and stereo cameras from Table II. The
Ouster LiDAR (OS1) is chosen as the root/reference frame in the
robot’s transform hierarchy. The graph optimization approach
computes pairwise relative poses for each sensor node.

Air-Ground Calibration: To ensure the accuracy and con-
sistency of our data, we implemented a meticulous air-ground
system sensor calibration process. For extrinsic calibration of the
start position of the robot team, a calibration board is positioned
in front of all the forward-facing cameras of the robot team,
which ensures the spatial alignment of different modalities and
data consistency, therefore providing a reliable foundation for
subsequent research.

V. DATA ANNOTATION
A. Pose Estimation

We employ an individual state estimation system for each
robot. For aerial robots, the fusion of Global Positioning Sys-
tem (GPS) data with Stereo Visual Inertial Odometry provides
accurate pose estimation. In our autonomy stack, we adopt
OpenVINS [30] for stereo Visual Inertial Odometry (VIO).
Conversely, the ground robots utilize IMU and wheel odometry
for reliable state estimation. The maximum speed of the aerial
robot is 2.1 m/s, the maximum speed of the ground robot is
1.757m/s.

Moreover, computing the cross-robot relative pose estima-
tion adds an additional level of precision. This is achieved by
identifying a bundle of AprilTags [23]—fiducial marker systems
commonly used in robotics—mounted on the ground robots
from the vantage point of the aerial robots, illustrated in Fig. 5.
We calibrate the extrinsic between each tag within the AprilTab
bundle by capturing a sequence of images from a camera with
known intrinsic parameters. Therefore, we can calculate the
relative transformation between the AprilTag bundle frame with
respect to the camera frame.

B. Zero-Shot Semantics and Depth Annotation

In addition to pose estimation, we provide semantic and
depth annotations within our dataset. We harness the power
of foundation models to deliver zero-shot semantic and depth
annotation. For semantics annotation, we adopt the combination
of RAM [31], Grounding DINO [32] and SAM [33] to enable
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Semantics Depth Semantics

Depth

(a) Aerial Robot

Fig. 6.

the acquisition of 2D instance segmentation masks directly
from the camera sensors. We obtain 2D bounding boxes by
post-processing the mask annotations. For depth estimation, we
adopt Zoedepth [34] to produce zero-shot monocular depth esti-
mation annotation. Due to the limited baseline of Intel Realsense
stereo camera, the quality of traditional stereo depth matching
such as SGBM [35] and graph-cut stereo matching [36] are
worse than state-of-the-art monocular depth estimation such
as Zoedepth, which combines relative and metric depth. We
cannot apply learning-based stereo-matching algorithms since
these are designed for color rather than grayscale cameras which
are employed on our robots. For semantics annotation, we uti-
lize temporal propagation among multiple frames to increase
the temporal consistency of the zero-shot prediction. Temporal
consistent annotation is essential to denoise the annotation and
it enables video-based dense prediction tasks. Specifically, we
leverage [37] as temporal propagation model to propagate the
segments on keyframes to consecutive frames. The employment
of zero-shot learning, wherein the model is not explicitly trained
on task-specific data, increases the generalization and applica-
bility of the annotations. Therefore, they enhance the usability of
our dataset, facilitating robust multi-robot collaborative percep-
tion research. Sample qualitative results are illustrated in Fig. 6.

VI. DATASET ATTRIBUTES

The dataset presents several characteristics that are unique
compared to other multi-robot datasets. These characteristics
highlight real-world challenges and scenarios encountered when
deploying a heterogeneous robot team in the wild. The statistics

(b) Ground Robot

Zero-shot annotation of semantics and depth in indoor and outdoor environments from aerial and ground robots.

TABLE IV
SEQUENCE INFO

Sequence Scene Time  RGB Frames Instances/Frame
NYUARPL Indoor 400 s 48000 9
CHAIR-1 Indoor 180 s 10800 11
HALLWAY Indoor 200 s 12000 3
HOUSEA Outdoor 440 s 52800 8
HOUSEB Outdoor 440 s 52800 9
FOREST Outdoor 225 s 27000 5

of the scene is illustrated in Table IV. First, we present a
mixed setup of indoor and outdoor scenarios. We showcase
the transition between outdoor and indoor environments in
‘Outdoor-HOUSEB’ sequence using one aerial robot ’race5’,
this sequence is unique and challenging to perception algo-
rithms, as it requires the robot to adapt to the drastic change in
environment and sensor modalities. Second, for the multi-robot
sequences, we provide continous spatio-temporal variations of
the formation and relative position of the robot team memebers,
introducing distinct and complementary viewpoint perspectives
to guarantee a wide range of inter-robot interactions. This variety
is crucial in studying how different formations and positional
arrangements influence collaborative perception and team effi-
ciency. In the indoor sequence ‘Indoor-NYUARPL’ and outdoor
sequence "Outdoor-FOREST’, we split the robot team in two
groups, one aerial robot and one ground robot in each group. This
is a challenging setup for perception algorithms, as it requires
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Baseline GroundTruth RGB

MultiRobot

(a) T1: Aerial (b) T1: Aerial (¢) T1: Ground

Fig. 7.
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(d) T2: Aerial (e) T2: Aerial (f) T2: Ground

Multi-robot collaborative depth estimation with two aerial robots and one ground robot. (a)—(c) and (d)—(f) show two scenarios (T1 and T2) with (c) and

(d) robot image sensors corrupting the rows correspond to RGB images, groundtruth depth, single-robot baseline, and multi-robot collaboration results respectively.

the robot team to collaborate and share information to perform
perception tasks under a wide range of overlap and occlusion
conditions. Third, the dataset preserves the real-world sensor
noise and disturbances encountered when deploying a hetero-
geneous robot team in the wild. Cameras may experience color
jittering, LiDARSs can exhibit discontinuous intensities tempo-
rally, GPS may be denied or drifted in indoor or outdoor forest
environments, IMU may have inconsistent intrinsic parameters
because of temperature change, and clock synchronization can
be lost because of the network delay. These real-world distur-
bances are crucial for perception algorithms to be robust and
reliable. Fourth, we also provide several single-robot sequences
using one aerial robot exploring the ‘HOUSE’ and "FOREST’
environments. These sequences are captured using the same
aerial robot as the multi-robot sequences, thus providing a
consistent perspective for comparison. These sequences are
useful to provide additional samples and annotations to facilitate
perception research. Finally, the availability of scenes where
aerial robots detach from the ground robots when these cannot
maneuver due to environmental constraints further shows the
diverse capabilities of the proposed heterogeneous system and
its usefulness for collaborative perception tasks.

VII. USE-CASES AND APPLICATIONS

Our dataset offers a unique platform for developing and
evaluating collaborative perception algorithms in multi-robot
systems. Researchers can explore the utilization of sensor data
among various robots for complex multi-robot collaborative
perception tasks including scenarios with sensor and environ-
mental noise. We showcase qualitative results of monocular
depth estimation and semantics segmentation using Graph Neu-
ral Network [12] in Figs. 7 and 8. Two aerial robots collaborate
with one ground robot to overcome sensor noises by feature
map communication. The results show that multi-robot collabo-
ration improves the depth prediction and semantic segmentation

Baseline RGB

MultiRobot

(a) T2: Aerial

(b) T2: Aerial (c) T2: Ground

Fig. 8. Multi-robot collaborative semantics estimation with two aerial robots
and one ground robot. Image sensor of (a) is corrupted. The rows correspond
to groundtruth semantics, single-robot baseline, and multi-robot collaboration
results.

robustness against single-agent baseline. The predictions of
far-away objects are recovered, such as trees in depth estimation
and houses in semantic segmentation.

Given that the dataset provides multi-modal sensor data from
different types of robots, it can also be a tool for investigating
sensor fusion techniques. This could lead to the development
of more robust algorithms for multi-robot mapping [17], object
detection [11], and decision-making [21] for real-world settings
in varying indoor and outdoor conditions.

VIII. CONCLUSION

In this letter, we presented a comprehensive multi-robot,
multi-modal, and multi-rate air-ground dataset captured in di-
verse real-world indoor and outdoor environments. The goal is
to provide a substantial resource for the research community to
investigate and advance the field of multi-robot collaborative
perception. Specifically, the dataset includes data from two
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types of robots (i.e., ground and aerial) equipped with multi-
ple heterogeneous sensing modalities. A substantial effort was
invested in covering multiple distinct indoor and outdoor envi-
ronments, specifically ‘HOUSE’ and "'FOREST’. This involved
varying navigation sequences and formation therefore ensuring
to capure heterogeneous sensing data affected by real-world
sensor noise and disturbances and with large spatio-temporal
distinct viewpoints variations and complementary perspectives.
The data and annotations offer a unique opportunity to delve
into several challenging research problems and aspects related
to multi-robot systems, such as collaborative perception, sensor
fusion, object detection, and formation control. We believe that
the limitations and challenges associated with our dataset will be
a source of inspiration to the community to advance the research
development of multi-robot perception systems and autonomy
algorithms.

In the future, we plan to enrich the dataset with comprehensive
2D and 3D semantic annotations. This dataset should not be
considered a monolithic solution. We will continue to expand
it, drawing from additional tests in multiple additional environ-
mental contexts and with diverse robot configurations. Feedback
and suggestions from the community will be pivotal in guiding
these enhancements. Finally, this dataset can serve to improve
robotics simulation by real-to-sim. It will serve as a stepping
stone for future research in collaborative perception and will be
instrumental in shaping the future of autonomous multi-robot
systems.
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