
6416 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

CoPeD-Advancing Multi-Robot Collaborative

Perception: A Comprehensive Dataset

in Real-World Environments
Yang Zhou , Graduate Student Member, IEEE, Long Quang , Carlos Nieto-Granda ,

and Giuseppe Loianno , Member, IEEE

Abstract—In the past decade, although single-robot perception
has made significant advancements, the exploration of multi-robot
collaborative perception remains largely unexplored. This involves
fusing compressed, intermittent, limited, heterogeneous, and asyn-
chronous environmental information across multiple robots to en-
hance overall perception, despite challenges like sensor noise, oc-
clusions, and sensor failures. One major hurdle has been the lack of
real-world datasets. This letter presents a pioneering and compre-
hensive real-world multi-robot collaborative perception dataset to
boost research in this area. Our dataset leverages the untapped po-
tential of air-ground robot collaboration featuring distinct spatial
viewpoints, complementary robot mobilities, coverage ranges, and
sensor modalities. It features raw sensor inputs, pose estimation,
and optional high-level perception annotation, thus accommodat-
ing diverse research interests. Compared to existing datasets pre-
dominantly designed for Simultaneous Localization and Mapping
(SLAM), our setup ensures a diverse range and adequate overlap
of sensor views to facilitate the study of multi-robot collaborative
perception algorithms. We demonstrate the value of this dataset
qualitatively through multiple collaborative perception tasks. We
believe this work will unlock the potential research of high-level
scene understanding through multi-modal collaborative perception
in multi-robot settings.

Index Terms—Data sets for robotic vision, deep learning for
visual perception, multi-robot systems.

I. INTRODUCTION

R
OBOTIC perception has advanced significantly over the

past decade, largely due to progress in machine learning

and the widespread adoption of increasingly powerful comput-

ing and sensor systems. However, most of these developments
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have been centered on single-robot systems, leaving the area

of multi-robot collaborative perception relatively unexplored.

This form of perception refers to a network of robots, each

with its unique sensing characteristics, capabilities, and spa-

tial viewpoints being able to collect and fuse environmental

sensing data in an efficient, distributed, and meaningful way

to obtain accurate context-appropriate information, leading to

potential advantages in terms robustness, accuracy, and redun-

dancy compared to a single robot solution. Pushing the frontier of

multi-robot collaborative perception could harness these unique

advantages to create a more comprehensive, unified, and re-

silient perception system. The creation of multi-robot perception

datasets can support and facilitate the development of collabora-

tive perception models and algorithms. In this paper, we present

the first heterogeneous multi-robot perception dataset collected

in challenging indoor and outdoor settings using ground and

aerial robots.

Notably, the multi-robot air-ground systems have the potential

to provide a distinct opportunity for multi-robot perception.

Specifically, ground and small-scale aerial robots combine dif-

ferent mobility and sensing characteristics (e.g., types of sensors

as well as different spatial viewpoints and sensing range charac-

teristics). For instance, ground robots can carry heavy payloads

such as 3D LiDAR, whereas small-scale aerial robots due to their

Size, Weight, and Power (SWaP) constraints generally can only

rely on small sensors such as cameras and Inertial Measurements

Units (IMUs).

Existing multi-robot datasets are mainly geared towards Si-

multaneous Localization and Mapping (SLAM) applications [1],

[2], [3], [4], [5], focusing primarily on spatial coverage rather

than collaborative perception. The limited overlap of sensor

views in these datasets hinders the study of perception results

that rely on perception compensation mechanisms between

robots. Furthermore, most of the existing multi-agent percep-

tion datasets are based on photorealistic simulators, neglect-

ing the real-world sensor noise and characteristics inherent in

real-world multi-robot settings. Although there are datasets tar-

geting autonomous driving systems through vehicle-to-vehicle

(V2V) communication [6], [7], [8], [9] these fall short due to

the mismatch between simulated and real-world data or the

absence of multiple vehicles with heterogeneous mobility and

modalities. Furthermore, the algorithms developed from these

datasets are designed for Bird’s Eye View (BEV) since the
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TABLE I
TAXONOMY OF EXISTING DATASETS

scene is constrained on the flat surface and agent mobility is

limited to ground vehicle. Due to the limited scope and biases

of existing datasets, there is no existing methods that utilize

multiple modalities, multiple mobilities and goes beyond BEV

paradigm. Creating a comprehensive dataset tailored to address

multi-robot collaborative perception problems, a crucial yet

unexplored area in the community, is indispensable to making

significant progress in this area and push the frontier to develope

new methods.

The contributions of this paper can be summarized as fol-

lows. First, we present the first multi-robot dataset tailored to

collaborative perception tasks featuring both indoor and out-

door sequences, multiple sensor spatial viewpoints, robot types,

multi-rate and multi-modal data as well as coverage ranges. It

reflects the real-world sensor noise and disturbances encoun-

tered when deploying a heterogeneous robot team in the wild.

The aerial robots equipped with stereo cameras, forward and

downward RGB cameras, depth sensors, Inertial Measurement

Units (IMUs), and GPS. Ground robots carry a stereo camera,

forward RGB camera, depth sensor, 3D LiDAR, IMU, and GPS.

Second, to cater to diverse research needs, in addition to raw

sensor data streams, we provide pose estimation and optional

high-level perception annotation. Specifically, pose estimation

is obtained by fusing GPS data with existing SLAM frameworks.

For high-level perception annotation, we employ foundation

models to obtain zero-shot automatic annotation. Finally, we

validate the usefulness of the dataset in several collaborative

perception tasks. Our dataset is a first-of-its-kind contribution

to the robotics community going beyond the BEV autonomous

driving scenario. The incorporation of multiple sensor modali-

ties and robots enables to pave the way for studying multi-modal

collaborative perception using real-world data.

The paper is organized as follows. In Section II, we discuss

existing datasets. In Section III, we present the dataset character-

istics, and in Section IV the technical details related to sensors

and calibration. Section V introduces the pose and perception

annotations procedures, Section VI discuss the dataset attributes,

whereas Section VII presents use cases and applications. Finally,

Section VIII concludes the work and presents several future

research directions.

Fig. 1. Multi-robot collaborative data collection. The top row shows the
infrared and RGB images from the aerial robots, whereas the bottom row shows
the GPS and LiDAR data from the ground robots. The sensor data present several
overlapping spatial areas. Red boxes show sample objects identified in multiple
heterogeneous sensors’ data streams.

II. RELATED WORKS

This section reviews existing datasets and highlights the

differences between our approach and existing solutions as

illustrated in Table I. The field of multi-robot collaborative per-

ception is relatively new [12], [13], with few datasets available

for research purposes within the community. Existing datasets

are primarily designed for SLAM applications [1], [2], [3], [4],

[5], while our dataset is specifically tailored to facilitate research

into multi-robot collaborative perception.
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Fig. 2. Layout of the ground robots and aerial robots.

Historically, the multi-robot collaborative perception was pri-

marily confined to geometric mapping in robotics. However,

significant advancements have been made in this area by the

research community [14], resulting in the release of several

multi-robot SLAM datasets [1], [2], [3], [4], [5]. These datasets

contain outdoor sequences, with the exception of [4], which

includes both indoor and outdoor sequences. Datasets such

as [1], [4], [5] deploy multiple ground robots for data collection,

and [2], [3] extend this to air-ground robot teams, but only

in outdoor urban settings. Despite these advancements, these

datasets are primarily designed for SLAM applications, focus-

ing on geometric mapping rather than high-level collaborative

perception tasks, including monocular depth estimation [12],

semantic segmentation [10], [12], [15], [16], correspondence

matching [17], object detection [11], [13], [18], [19], [20], [21].

The limited overlap of sensor views and types of environments

in these datasets hinders the study of perception models and

algorithms that exploit the benefits of using multiple robots.

There are a few collaborative perception datasets target au-

tonomous driving systems through V2V communication [6], [7],

[8], [9]. Specifically, most of these datasets, due to the difficul-

ties associated with the collection and annotation of real-world

data, are based on simulation with the exception of [8] which

provides the first real-world V2X dataset. The dataset from [7]

employs LiDAR as the single sensing modality, while [6], [8], [9]

adopt multiple modalities including cameras and 3D LiDARs.

However, these datasets are intended for autonomous driving

applications, missing the aerial complementary viewpoints and

perspectives, and focusing on 3D object detection tasks. In

addition, most of these datasets are based on simulation due

to the difficulties associated with real-world data collection

and annotation. In addition to autonomous driving-focused

datasets, [10] and [11] provide simulation-based photorealistic

datasets from multiple aerial robot perspectives. Therefore, it is

important to acknowledge that this data alone cannot completely

replicate the nuanced aspects of robot data available in the

real-world. Finally, existing datasets do not fully offer the ben-

efits of data streams from multiple distinct spatial complemen-

tary viewpoints and perspectives as in the proposed air-ground

case.

Datasets need to be more comprehensive to be used for

collaborative perception tasks. Very few are designed for het-

erogeneous multi-robot applications, and the sensor modality

setups are unsuitable for multi-robot collaborative perception.

Compared to existing datasets as summarized in Table I, the

proposed dataset is the first real-world heterogeneous air-ground

collaborative perception dataset, designed explicitly for multi-

modal collaborative robot perception research.

III. DATASET DESCRIPTION

A. Robots and Equipment

Our dataset utilizes three ground robots and two aerial robots.

The robot layouts are illustrated in Fig. 2. The Clearpath

Robotics Warthog platform is equipped with one Ouster OS1-64

3D LiDAR, a LORD Microstrain 3DM-GX5-25 IMU, an u-

Blox EVK-M8T GNSS module, an Intel Realsense D435i/D455

stereo camera, two high-resolution FLIR Blackfly S cameras and

a hardware time synchronization Masterclock GMR1000. The

Clearpath Robotics Jackal platform is equipped with an Ouster

OS1-64 3D LiDAR, a LORD Microstrain 3DM-GX5- 25 IMU,

an u-Blox EVK-M8T GNSS module, and an Intel Realsense

D435i/D455 stereo camera. Each of the aerial robots, developed

at the Agile Robotics and Perception Lab (ARPL) 1 at the New

York University, carries a forward Intel Realsense D435i stereo

camera, a downward IMX219 color camera, a top-mounted PX4

autopilot module and an mRO Location One GPS module. The

D435i stereo camera includes an RGB camera module, a stereo

infrared camera module, and an IMU module. The complete

list of sensor specifications is shown in Tables II and III. All

robots’ autonomy software stack builds upon ROS 1 [22]2, and

all robots are connected under one 5 G Wi-Fi subnetwork with

time synchronization to a laptop’s system clock using Network

Time Protocol (NTP).

We mount AprilTag [23] on ground robots illustrated in Fig. 2

to provide relative localization visual markers between the aerial

robots and the ground robots. Compared to other visual fiducial

markers, AprilTags guarantee increased robustness and accuracy

from the perspectives of long-range detection and localization

accuracy under real-time computation constraints. The aerial

robots obtain the relative pose of the ground robots by AprilTag

detection and Perspective-n-Point (PnP) [24] using downward

cameras. We use 8 AprilTags as a tag bundle in order to facilitate

1[Online]. Available: https://wp.nyu.edu/arpl/
2[Online]. Available: http://wiki.ros.org/

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:16:17 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: COPED-ADVANCING MULTI-ROBOT COLLABORATIVE PERCEPTION: A COMPREHENSIVE DATASET 6419

TABLE II
GROUND ROBOT SENSOR SPECIFICATIONS

TABLE III
AERIAL ROBOT SENSOR SPECIFICATIONS

robust AprilTag detection in the presence of occlusion, illumina-

tion changes, motion blur, and FoV constraints. The tag bundle

is calibrated and detected using the method in [25].

Our heterogeneous robot team setup ensures that a diverse

array of sensor modalities and robot mobilities are captured,

thus enriching the dataset and providing more robust material

for multi-modal heterogeneous robotic perception studies.

B. Indoor Sequences

For indoor sequences, we use one Jackal ground robot, one

Warthog ground robot, and two aerial robots. We present three

sequences with one Warthog ground robot and one aerial robot,

and one sequence with two ground robots and two aerial robots

as shown in Fig. 3.

The indoor sequences named ’Indoor-NYUARPL’ are cap-

tured in a large indoor environment of 38˜m× 60˜mwith a rich

composition of objects including tables, chairs, and doors. We

split the robot team into two subteams, each of them consisting

of one aerial robot and one ground robot. The two subteams

explore different parts of the environment. The aerial robots fly

Fig. 3. Indoor-NYUARPL environment. Pointcloud data (top row) is captured
by the ground robots, and the color images (bottom row) are captured by the
aerial robots. Each column shows one subgroup of one aerial robot and one
ground robot exploring different parts of the environment.

at a height of2.0˜m above the ground robots, whereas the ground

robots move at a speed of 0.5˜m/s. The first team explores a

lab room and the second one explores a hallway characterized

by natural lighting.
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Fig. 4. Outdoor-FOREST environment. Pointcloud data (top row) is captured
by the ground robots, and the color images (bottom row) are captured by the
aerial robots. This snapshot captures the scenarios when two groups of robot
subteams encounter each other.

C. Outoor Sequences

In the outdoor scenario, we use two Warthog ground robots

and two aerial robots. We present three sequences with two

Warthog ground robots and two aerial robots, and two se-

quences with one Warthog ground robot and one aerial robot.

Sample dataset qualitative results are shown in Fig. 4. The

outdoor sequences are captured in two outdoor environments.

The first environment, named ‘HOUSE’, is an open space of

150˜m× 30˜m situated by a forest, encompassing houses,

roads, trees, and rocks. The houses in this setting can be used

as object detection targets, thus providing a practical context for

target detection tasks. The second environment, ’FOREST’, is

a space of 100˜m× 80˜m nestled within the forest, present-

ing a rich composition of trees, ground variations, and rocks.

These environments introduce various features and obstacles

commonly encountered in outdoor environments, thus offering

a robust platform for training and testing algorithms. In all

outdoor sequences, the robot team splits up into two subteams

each composed of one aerial robot and one ground robot. The

aerial robots fly above the ground robots for most of the time,

and detach from the ground robot to explore the area where

ground robots have difficulty maneuvering. The aerial robots fly

at a height ranging from 2.0˜m to 10.0˜m. The ground robots

drive at a speed up to 1.5˜m/s. In ’Outdoor-HOUSEB’, we

also experiment with switching the pairing of the aerial and

ground robots in the middle of the sequence to study the effect

of formation on collaborative perception performances.

IV. CALIBRATION

Aerial Robot Calibration: The parameters of the aerial robot

sensors are calibrated using the Kalibr toolbox [26]. The calibra-

tion process includes the intrinsic calibration [27] of the RGB

and RGBD cameras respectively, the extrinsic calibration [28]

of the RGBD camera and IMU, and the extrinsic calibration of

the RGB camera and IMU. We also calibrate the IMU intrinsic

parameter by conducting IMU Allan covariance analysis.

Fig. 5. Detected AprilTag mounted on the ground robots captured from one
aerial robot’s downward-facing camera.

Ground Robot Calibration: We employ multi-sensor Graph-

based Calibration to produce a unified graph-based represen-

tation of the ground robots’ sensor nodes [29]. These sensors

include LiDAR, RGBD, and stereo cameras from Table II. The

Ouster LiDAR (OS1) is chosen as the root/reference frame in the

robot’s transform hierarchy. The graph optimization approach

computes pairwise relative poses for each sensor node.

Air-Ground Calibration: To ensure the accuracy and con-

sistency of our data, we implemented a meticulous air-ground

system sensor calibration process. For extrinsic calibration of the

start position of the robot team, a calibration board is positioned

in front of all the forward-facing cameras of the robot team,

which ensures the spatial alignment of different modalities and

data consistency, therefore providing a reliable foundation for

subsequent research.

V. DATA ANNOTATION

A. Pose Estimation

We employ an individual state estimation system for each

robot. For aerial robots, the fusion of Global Positioning Sys-

tem (GPS) data with Stereo Visual Inertial Odometry provides

accurate pose estimation. In our autonomy stack, we adopt

OpenVINS [30] for stereo Visual Inertial Odometry (VIO).

Conversely, the ground robots utilize IMU and wheel odometry

for reliable state estimation. The maximum speed of the aerial

robot is 2.1˜m/s, the maximum speed of the ground robot is

1.75˜m/s.
Moreover, computing the cross-robot relative pose estima-

tion adds an additional level of precision. This is achieved by

identifying a bundle of AprilTags [23]—fiducial marker systems

commonly used in robotics—mounted on the ground robots

from the vantage point of the aerial robots, illustrated in Fig. 5.

We calibrate the extrinsic between each tag within the AprilTab

bundle by capturing a sequence of images from a camera with

known intrinsic parameters. Therefore, we can calculate the

relative transformation between the AprilTag bundle frame with

respect to the camera frame.

B. Zero-Shot Semantics and Depth Annotation

In addition to pose estimation, we provide semantic and

depth annotations within our dataset. We harness the power

of foundation models to deliver zero-shot semantic and depth

annotation. For semantics annotation, we adopt the combination

of RAM [31], Grounding DINO [32] and SAM [33] to enable
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Fig. 6. Zero-shot annotation of semantics and depth in indoor and outdoor environments from aerial and ground robots.

the acquisition of 2D instance segmentation masks directly

from the camera sensors. We obtain 2D bounding boxes by

post-processing the mask annotations. For depth estimation, we

adopt Zoedepth [34] to produce zero-shot monocular depth esti-

mation annotation. Due to the limited baseline of Intel Realsense

stereo camera, the quality of traditional stereo depth matching

such as SGBM [35] and graph-cut stereo matching [36] are

worse than state-of-the-art monocular depth estimation such

as Zoedepth, which combines relative and metric depth. We

cannot apply learning-based stereo-matching algorithms since

these are designed for color rather than grayscale cameras which

are employed on our robots. For semantics annotation, we uti-

lize temporal propagation among multiple frames to increase

the temporal consistency of the zero-shot prediction. Temporal

consistent annotation is essential to denoise the annotation and

it enables video-based dense prediction tasks. Specifically, we

leverage [37] as temporal propagation model to propagate the

segments on keyframes to consecutive frames. The employment

of zero-shot learning, wherein the model is not explicitly trained

on task-specific data, increases the generalization and applica-

bility of the annotations. Therefore, they enhance the usability of

our dataset, facilitating robust multi-robot collaborative percep-

tion research. Sample qualitative results are illustrated in Fig. 6.

VI. DATASET ATTRIBUTES

The dataset presents several characteristics that are unique

compared to other multi-robot datasets. These characteristics

highlight real-world challenges and scenarios encountered when

deploying a heterogeneous robot team in the wild. The statistics

TABLE IV
SEQUENCE INFO

of the scene is illustrated in Table IV. First, we present a

mixed setup of indoor and outdoor scenarios. We showcase

the transition between outdoor and indoor environments in

‘Outdoor-HOUSEB’ sequence using one aerial robot ’race5’,

this sequence is unique and challenging to perception algo-

rithms, as it requires the robot to adapt to the drastic change in

environment and sensor modalities. Second, for the multi-robot

sequences, we provide continous spatio-temporal variations of

the formation and relative position of the robot team memebers,

introducing distinct and complementary viewpoint perspectives

to guarantee a wide range of inter-robot interactions. This variety

is crucial in studying how different formations and positional

arrangements influence collaborative perception and team effi-

ciency. In the indoor sequence ‘Indoor-NYUARPL’ and outdoor

sequence ’Outdoor-FOREST’, we split the robot team in two

groups, one aerial robot and one ground robot in each group. This

is a challenging setup for perception algorithms, as it requires
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Fig. 7. Multi-robot collaborative depth estimation with two aerial robots and one ground robot. (a)–(c) and (d)–(f) show two scenarios (T1 and T2) with (c) and
(d) robot image sensors corrupting the rows correspond to RGB images, groundtruth depth, single-robot baseline, and multi-robot collaboration results respectively.

the robot team to collaborate and share information to perform

perception tasks under a wide range of overlap and occlusion

conditions. Third, the dataset preserves the real-world sensor

noise and disturbances encountered when deploying a hetero-

geneous robot team in the wild. Cameras may experience color

jittering, LiDARs can exhibit discontinuous intensities tempo-

rally, GPS may be denied or drifted in indoor or outdoor forest

environments, IMU may have inconsistent intrinsic parameters

because of temperature change, and clock synchronization can

be lost because of the network delay. These real-world distur-

bances are crucial for perception algorithms to be robust and

reliable. Fourth, we also provide several single-robot sequences

using one aerial robot exploring the ‘HOUSE’ and ’FOREST’

environments. These sequences are captured using the same

aerial robot as the multi-robot sequences, thus providing a

consistent perspective for comparison. These sequences are

useful to provide additional samples and annotations to facilitate

perception research. Finally, the availability of scenes where

aerial robots detach from the ground robots when these cannot

maneuver due to environmental constraints further shows the

diverse capabilities of the proposed heterogeneous system and

its usefulness for collaborative perception tasks.

VII. USE-CASES AND APPLICATIONS

Our dataset offers a unique platform for developing and

evaluating collaborative perception algorithms in multi-robot

systems. Researchers can explore the utilization of sensor data

among various robots for complex multi-robot collaborative

perception tasks including scenarios with sensor and environ-

mental noise. We showcase qualitative results of monocular

depth estimation and semantics segmentation using Graph Neu-

ral Network [12] in Figs. 7 and 8. Two aerial robots collaborate

with one ground robot to overcome sensor noises by feature

map communication. The results show that multi-robot collabo-

ration improves the depth prediction and semantic segmentation

Fig. 8. Multi-robot collaborative semantics estimation with two aerial robots
and one ground robot. Image sensor of (a) is corrupted. The rows correspond
to groundtruth semantics, single-robot baseline, and multi-robot collaboration
results.

robustness against single-agent baseline. The predictions of

far-away objects are recovered, such as trees in depth estimation

and houses in semantic segmentation.

Given that the dataset provides multi-modal sensor data from

different types of robots, it can also be a tool for investigating

sensor fusion techniques. This could lead to the development

of more robust algorithms for multi-robot mapping [17], object

detection [11], and decision-making [21] for real-world settings

in varying indoor and outdoor conditions.

VIII. CONCLUSION

In this letter, we presented a comprehensive multi-robot,

multi-modal, and multi-rate air-ground dataset captured in di-

verse real-world indoor and outdoor environments. The goal is

to provide a substantial resource for the research community to

investigate and advance the field of multi-robot collaborative

perception. Specifically, the dataset includes data from two
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types of robots (i.e., ground and aerial) equipped with multi-

ple heterogeneous sensing modalities. A substantial effort was

invested in covering multiple distinct indoor and outdoor envi-

ronments, specifically ‘HOUSE’ and ’FOREST’. This involved

varying navigation sequences and formation therefore ensuring

to capure heterogeneous sensing data affected by real-world

sensor noise and disturbances and with large spatio-temporal

distinct viewpoints variations and complementary perspectives.

The data and annotations offer a unique opportunity to delve

into several challenging research problems and aspects related

to multi-robot systems, such as collaborative perception, sensor

fusion, object detection, and formation control. We believe that

the limitations and challenges associated with our dataset will be

a source of inspiration to the community to advance the research

development of multi-robot perception systems and autonomy

algorithms.

In the future, we plan to enrich the dataset with comprehensive

2D and 3D semantic annotations. This dataset should not be

considered a monolithic solution. We will continue to expand

it, drawing from additional tests in multiple additional environ-

mental contexts and with diverse robot configurations. Feedback

and suggestions from the community will be pivotal in guiding

these enhancements. Finally, this dataset can serve to improve

robotics simulation by real-to-sim. It will serve as a stepping

stone for future research in collaborative perception and will be

instrumental in shaping the future of autonomous multi-robot

systems.
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