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Graph Neural Network for Decentralized
Multi-Robot Goal Assignment

Manohari Goarin

Abstract—The problem of assigning a set of spatial goals to a
team of robots plays a crucial role in various multi-robot plan-
ning applications including, but not limited to exploration, search
and rescue, or surveillance. The Linear Sum Assignment Problem
(LSAP) is a common way of formulating and resolving this prob-
lem. This optimization problem aims at assigning the tasks to the
robots minimizing the sum of costs while respecting a one-to-one
matching constraint. However, communication restrictions in real-
world scenarios pose significant challenges. Existing decentralized
solutions often rely on numerous communication interactions to
converge to a conflict-free and optimal solution or assume a prior
conflict-free random assignment. In this paper, we propose a novel
Decentralized Graph Neural Network approach for multi-robot
Goal Assignment (DGNN-GA). We leverage a heterogeneous graph
representation to model the inter-robot communication and the
assignment relations between goals and robots. We compare in
simulation its performance to other decentralized state-of-the-art
approaches. Specifically, our method outperforms popular state-of-
the art approaches in strictly restricted communication scenarios
and does not rely on any initial conflict-free guess compared to
two other algorithms. Finally, the DGNN-GA is also deployed and
validated in real-world experiments.

Index Terms—Task and motion planning, integrated planning
and learning, deep learning methods.

1. INTRODUCTION

ULTI-ROBOT systems have gained popularity in recent
M years due to their ability to speed up the execution of
several tasks compared to single robot solutions, while concur-
rently offering additional resilience to robot failures. Multi-robot
planning problems have been widely studied for exploration,
flocking or formation control. They can be solved using central-
ized approaches [1], [2], [3], where a central computer calculates
the solution for all robots, or decentralized approaches [4], [5],
in which each robot computes its own policy given some local
information about its environment and neighbors. While central-
ized approaches find optimal solutions, decentralization despite
challenging becomes necessary for application to real-world
scenarios with communication restrictions and to avoid single
point of failures.
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Fig. 1. Multi-robot Goal Assignment problem scenario with communication
ranges for two robots represented by circles.

* *

The Linear Sum Assignment Problem (LSAP) is a frequent
problem in many of these applications. An optimal goal assign-
ment as shown in Fig. 1 must minimize a given cost metric, such
as the total distance traveled or time required for completion,
while satisfying a one-to-one matching constraint. An efficient
assignment is crucial to leverage the collaborative capabilities
of multi-robot systems, expedite task completion, and reduce
conflicts and collision risks.

Optimal solutions exist and are provided by well-known
centralized algorithms such as the Hungarian algorithm [6].
However, these centralized methods are often impractical in
real-world scenarios because they still rely on the global knowl-
edge of the team’s state. This is generally not available due to
environment constraints or sparse communication among the
agents, and results in a single point of failure. Therefore, this
pushed to the design of decentralized solutions. For compre-
hensive reviews, the readers can refer to [7], [8], [9]. Many
works explore decentralized optimization-based algorithms and
market-based algorithms which often require numerous commu-
nication exchanges to guarantee the convergence to a consensus.
Recently, deep learning methods as in [10], [11] have shown
promising results in solving the LSAP using a Graph Neural
Network (GNN) on a bipartite graph where edges connect the
agent nodes to their possible task assignments. These techniques
leverage the structure knowledge of the problem and optimize
the information sharing between the nodes. However, they have
not been designed to model and solve multi-robot systems
problems with communication restrictions, and thus require full
communication between all nodes of the graph.

In this work, we propose a novel approach for decentralized
multi-robot LSAP using a GNN. We adopt a heterogeneous
graph structure to model both the inter-robot communication
links and the assignment relations between robots and goals.
We design a GNN that achieves competitive performances by
learning how to optimize the shared information. It demon-
strates good zero-shot generalizability to large teams and greater
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robustness in highly restricted communication scenarios com-
pared to existing methods.

The main contributions of this paper are the following

® We design a novel GNN architecture, namely DGNN-GA,
acting on a heterogeneous graph model to solve the decen-
tralized LSAP for multi-robot teams.

® We analyze the performance and zero-shot generalizability
of the proposed DGNN-GA with respect to the number of
agents and the communication topology. Additionally, we
investigate the influence of the number of communication
rounds and its impact on the trade-off between performance
and communication burden. We also conduct an ablation
study to discern the roles of the different neural network
architecture’s components.

® We evaluate our solution in simulation and real-world
settings for a general multi-robot planning objective mini-
mizing the total distance squared traveled. We compare our
solution with four other decentralized methods, namely
a Local Hungarian algorithm (LH) [12], the D-CAPT
pair-wise switching algorithm [4], the Consensus-Based
Auction Algorithm (CBAA) [13], and the Decentralized-
Based Hungarian Algorithm (DHBA) [14]. We show that
DGNN-GA outperforms CBAA with an equal number of
communication exchanges and improves the performance
compared to DHBA when the number of communication
rounds is minimal, while devoid of the strong assumption of
an initial conflict-free guess contrary to LH and D-CAPT.

II. RELATED WORKS

Task or goal assignment is widely used in various multi-robot
applications [9], [15] such as exploration [16], formation con-
trol [17] and search and rescue [18]. This section focuses on de-
centralized optimization-based, market-based, and centralized
or decentralized learning-based approaches.

Optimization-based Methods: Several works like [14], [19],
[20] propose decentralized versions of the Hungarian algo-
rithm. After O(N3) iterations, equivalent to O(N?) commu-
nication rounds (/N the number of agents) the robots are guar-
anteed to converge to an optimal solution, albeit with con-
siderable communication requirements. Alternatively, heuristic
approaches [21] and genetic algorithms [22] are also employed.
Especially, the authors in [21] introduce a greedy algorithm for
one-to-one assignment, guaranteeing a 2-approximation to the
optimal with O(N) communication rounds. Multi-robot path
planning applications also leverage multiple iterative methods
that rely on online improvements of the assignment during the
robots’ motion, with one-hop communication round at each time
step. In particular, D-CAPT [4] uses a pair-wise switching policy,
and the authors in [12] apply the Hungarian algorithm locally ev-
ery time a subset of robots communicate. These methods achieve
near-optimal assignments in practice and are communication
efficient. However, they rely on an initial conflict-free guess.

Market-based Methods: These approaches are mostly
auction-based methods [13], [17], [23]. Each robot shares its
list of task preferences along with bids, and the winning bid is
determined once the team reaches a consensus. For example,
the Consensus-Based Auction Algorithm (CBAA) [13] repre-
sents a baseline for multiple other auction algorithms due to its
communication efficiency. CBAA guarantees to converge to a
suboptimal conflict-free assignment after O(Nd) iterations (or
communication rounds), where d represents the diameter (i.e.,
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the longest path connecting two robots) of the network, but needs
much less in practice.

Learning-based Methods: These approaches have been
widely explored to address multi-robot task assignment and
trajectory planning problems using imitation learning [24], [25],
[26] or reinforcement learning [27], [28], [29]. Notably, Graph
Neural Networks (GNNs) gained significant attention due to
their intrinsic ability to model and process graph-structured data,
composed of nodes and edges, using graph filters [30], [31], [32].
Naturally decentralized, they offer an effective representation
for multi-robot systems with robot nodes and communication
edges [33]. Through a message-passing framework, robots share
information with their neighbors and make predictions locally.
Successful applications include collaborative perception [25],
[34], [35], [36], flocking [26], [37], path planning [24], [36] or
formation control [38] problems.

Learning-based approaches have also been used to tackle the
LSAP as demonstrated in works such as [39] or [10], [11], which
employ GNNs on a bipartite graph model constructed from agent
and task nodes. The GNN is trained in a supervised-learning
fashion to predict the classes of nodes or edges, demonstrating
competitive performances with compact architectures. However,
these methods do not address multi-robot problems with com-
munication restrictions which are typical in real-world settings
for multi-robot systems. Conversely, in this paper, we leverage
the GNN benefits to solve the challenging general LSAP prob-
lem in decentralized settings while considering communication
restrictions.

III. PROBLEM DEFINITION

In the following, we denote column vectors with bold notation
like h, matrices with capital notation like A, and scalars with
unbold notation like ¢. Let R = {rq,r2,...,7x} be the set of
robots, and G = {¢1, g2, . . ., g } be the set of goals. We assume
an equal number of robots and goals (i.e., N). All robots are
homogeneous and possess identical communication capabilities.
We denote with ¢;; the cost of the assignment of the robot r;
to the goal g;, which is arbitrarily chosen depending on the
application. The term s;; is the assignment label between r; and
g; that equals to 1 if 7; is assigned to g;, and 0 otherwise. The
variables ¢ and j will be used to refer respectively to robots’
indices and goals’ indices. The LSAP is formulated as

N N
min chijsij’ (1)

i=1 j=1

N

subject to Zsij =1, Vje{l,...,N},
i=1
N
Zsij:]., ViE{l,...,N},
j=1

si; €10,1}, VY(i,5) € {1,...,N}*

To solve this centralized problem in a decentralized fashion,
we build an heterogeneous graph represented in Fig. 2 from
the network of robots and goals. The graph is composed of
robot nodes {r;} € R and goal nodes {g;} € G. We define two
types of edges: £%°° = {ef**}1<; j<n is the set of assignment
edges connecting each robot to its possible assigned goals,
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Fig. 2.
aggregation at each step is illustrated with red arrows.

whereas £¢°™ = {efjm}mel’,,, ~ 1is the set of communication
edges between robots. These depend on the communication
availability between two robots (i.e., if they are within each
other’s communication range).

We denote £%°%(r;) the set of assignment edges connected to
r;. Additionally, we define N.(r;) the set of neighboring robots
that can communicate with r;. Similarly, A, (r;) and N, (g;)
represent the set of neighboring goals that can be assigned to
robot r; and the set of neighboring robots that can be assigned
to goal g; respectively as shown in Fig. 2. To characterize the
connectivity of the communication topology of a team, we define
the communication adjacency matrix A, of size N x N whose
components are

Aij:{

and the corresponding communication density Do, =

W. Do, is equal to zero if all robots are isolated, and to
100% if all robots can communicate with each other.

1 ifr; and r; can communicate
0 otherwise ’

€5

IV. DGNN-GA ARCHITECTURE

In this section, we introduce the proposed DGNN-GA archi-
tecture design. Itis decomposed in three modules (see Fig. 2): the
Encoder, the GNN module, and the Decoder detailed below.
For the purpose of predicting assignments, the optimization
problem is solved via an edge binary classification framework.
The DGNN-GA predicts a label for each assignment edge (see
Fig. 2) namely 1 if a node is assigned to a specific goal and
0 otherwise. The nodes and assignment edges are embedded
with feature vectors. We denote h7, h? , hf respectively for
robot node r;, goal node g;, and edge e{’*. In the following,
the notation ¢, refers to multi-layer perceptron (MLP) func-
tions with two linear layers and a ReLU activation function
in between. Initially, the nodes’ embeddings are zero vectors,
and the assignment edges’ equal to their corresponding cost:
V@j, h?j = Cij-

Encoder: The encoder at the robot r; transforms its assign-
ment edges’ costs into embedding vectors of size F'

Vet € €95 € {j1, .. jar s Ph§j < Gene (¢5;) . 3)

DGNN-GA architecture, sample case with three robots and three goals with the GNN applied on robot r; with ¢ = 1 and its local graph. The information

where M; = [N, (r;)|. The superscript 0 indicates the initial
value of the embeddings before the GNN Module is applied.

GNN Module: The GNN module is composed of a series
of L (layers) node and edge convolutions. Through a message-
passing framework, information is shared between neighbors
L times. In other words, L corresponds also to the number of
communication rounds among the robots.

One convolution at a node level is composed of a message
function that creates a message from nodes and edges’ em-
beddings (m., or IM,), an average function that is permutation
invariant to aggregate the messages from other nodes and edges
together (h, or H,), and an update function that updates the
nodes’ embedding. Moreover, DGNN-GA uses generalized con-
volutions with nonlinear functions, which were used in diverse
applications to improve the performance of a GNN [40], [41],
[42]. At one layer [ and at a robot node r; level, we apply
the following steps. The superscript [ indicates the value of the
embeddings at layer [.

Step 1: An agent assignment convolution (AAC) aggregates
information from the goal nodes connected to r; and updates
r;’s embedding

Vg] € Na(ri)? mj; = ¢acl (lthlthj) ) (4)
77‘ — 1 ..

B = TR 2 ™ ©)
"IN < ¢ueo ("hI|RY) . (6)

The notation || refers to the concatenation operation at the chan-
nel dimension. Additionally, the assignment edges’ information
is concatenated at the node r;’s level in another embedding
vector 'H; cqges of size F' x M;

l _ |1 l
Hi,edges - |: hijl,edges hijMi ,edges]

- [d)(w?’ (lh§||lhfjl) Pac3 (lh;th?jMi)} ’ @)
where gj,, ..., gj,, € Na(ri). Hj eages helps differentiate in-
formation related to different goals.

Step 2: An Agent Communication Convolution (ACC) ag-
gregates information from neighboring agent nodes about their
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Fig. 3. Testing results when training with N = 10 and L = 5.

possible assignments

Vry € Nc(/ri); My; = fmap (ZHi’,edges) ) (8)

1
= Vol > My 9

where fi,,qp is @ mapping function that retrieves information
from lHir7edges about common goals of interests between r; and
T

Step 3: A Goal Assignment Convolution (GAC) updates the
embedding of each g; connected to 7; given H; cqges

I+1 ]
Hi,edges — Hi,edges

ng € Na(”'i)a l+1h? — ¢gc (lh?||l+1hij,edges) . (10)

Step 4: Assignment edges’ embeddings are updated (AEU)
"  deu (‘BT RY) (11)
Decoder: The decoder at r;’s level predicts the assignment
edges’ labels from their final embeddings and is designed as
Vei?® € £°°, s;; = sigmoid (qzﬁdec (thj)) .

j

12)

V. RESULTS AND ANALYSIS

A. GNN Training

The DGNN-GA is trained in a supervised fashion, imitating
the Hungarian algorithm [6] in distributed fashion. To speed
up the training, the model is trained on a graph where goal
nodes are not duplicated for different robots and the commu-
nication adjacency matrix is used to enforce the communication
restrictions in the convolutions. Then the model is deployed and
executed as shown in Fig. 2. We build training datasets of 22000
graphs, each with a fixed number N of robots and goals and
a fixed number L of communication rounds. The assignment
costs are randomly initialized and communication topologies
uniformly distributed between 20% (sparse communication) and
100% (full communication). We also employ 50 test sets of 1000
graphs each, for different team sizes (i.e., 5, 10, 15, 20, 50) and
multiple communication densities (between 15% and 99%). For
training, the number of assignment edges is limited to the top 5
for each goal to reduce the size of the graph without impacting
the overall performance, since the optimal solution is likely to
be found within the top 5 possibilities.

To achieve a binary classification task, we choose to minimize
the Balanced Cross-Entropy (BCE) loss function

L.=—-ay'logy — (1—a)(1—y")log(l—-y), (13)
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TABLE I
MINIMUM TESTING ACCURACY IN % DEPENDING ON THE NUMBER OF ROBOTS
FOR TRAINING N7 AND TESTING N g

Ng

Ny 5 6 7 8 9 10
5 79.03  77.51 76.31 72.29  66.09  70.47
10 71.04  73.35 74.85 76.78 75.70  76.68
15 67.78  69.96 70.56  72.78 72.05 73.26
20 68.08  69.43  69.58  72.33 7179 73.38
50 66.21 68.27  67.85 69.67  69.87  T71.57

where y* is the flattened optimal assignment matrix S* given
by the Hungarian algorithm, and Y the flattened assignment
matrix S predicted by the DGNN-GA. We choose o = 0.9 to
account for the imbalance in the distribution of zero and one
labels. Moreover, inspired by [10], we use an additional loss to
help the neural network learn a one-to-one matching, satisfying
the constraints in eq. (1)

L = % <H1N - ;rowi(S)

‘+H1N—§;coli(9)

. || row: (S) | coly (S)
sl ] s
| rown (S)]] | col (S)]]
(14)
The total loss to minimize is therefore
L= ﬁLc + (1 - 5)Lm: (15)

where  weights the importance given to one loss with respect to
the other. We empirically set 5 = 0.8. The loweris 3 the more the
DGNN-GA will prioritize finding a one-to-one matching rather
than an optimal solution. Finally, the accuracy metric chosen to
evaluate the classification performance is the Binary Fl-score,
which is well-suited for class-imbalanced data. In the following
subsections, all training runs and comparisons were conducted
using the random seed 1215, a batch size of 200 graphs and 40
epochs on a 12" generation Intel CPU 19-12900H.

B. Performance and Generalizability Analysis

First, we train the model with N = 10 robots and L =5
convolution rounds. After 2 hours, we achieve a training classi-
fication accuracy of 81.02%. We then evaluate the GNN on the
test sets and obtain the results shown in Fig. 3.

The average testing accuracy on all possible communication
densities is between 70% and 82% for 5 to 50 robots. Even with
a communication density 20% or lower, the DGNN-GA is able
to achieve an accuracy greater than 70%, which demonstrates
that the heuristic learned by our DGNN-GA is robust to sparsely
connected networks which is an extremely important property
in multiple real-world settings and deployment cases. Moreover,
the DGNN-GA also demonstrates zero-shot generalizability to
larger teams of robots, up to 50, with an overall minimum
accuracy of 70.47% and a fixed number of communication
rounds L = 5.

To further analyze the generalizability properties of our so-
lution, we train the DGNN-GA with different fixed numbers

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:22:04 UTC from IEEE Xplore. Restrictions apply.



GOARIN AND LOIANNO: GRAPH NEURAL NETWORK FOR DECENTRALIZED MULTI-ROBOT GOAL ASSIGNMENT

©o
o

0
w

\

testing accuracy (%)
0
o

\

[)]
w

20 30 40 50 60 70 80 90 100
communication density (%)

Fig. 4. Influence of L on the testing accuracy for N = 10.

of agents, from 5 to 10, and report in Table I the minimum
accuracy obtained for each test set with 5 to 50 robots. In
most cases, the minimum testing accuracy is obtained for 50
robots with a communication density lower than 20%. For large
teams (N > 10), the minimum performance increases with the
number of robots used for training. Therefore, a trade-off can
be made between the team size for training and the zero-shot
generalizability performance.

C. Influence of the Number of Convolution Rounds

We test several convolutions rounds (L = 1, 3, 5, 8, 10) on
a 10 robots team. The results are presented in Fig. 4.

The number of layers defines the number of communication
exchanges between the neighboring robots. As we can see, the
performance increases with L. Therefore, its value strikes a
balance between performance and communication burden. In
any case, we notice that with only 5 rounds, the network reaches
a 75% accuracy for sparse communication networks and more
than 82% for well-connected networks.

D. Ablation Study

We conduct an ablation study on our DGNN-GA architecture.
Specifically, we compare the testing accuracy obtained if we
use linear functions instead of nonlinear MLPs for both update
and message functions used in the convolutions performed in
steps 1, 2, and 3 presented in Section IV. We compare and
analyze our nonlinear DGNN-GA with several variants of the
same architecture, where specific modules are replaced to clearly
identify their benefits

* DGNN-GA-MFlinear: the message functions are replaced

by one linear layer.

® DGNN-GA-UFlinear: the update functions are replaced by

one linear layer.

® DGNN-GA-MFUFlinear: both the message and update

functions are replaced by linear layers.

For comparison, all architectures are trained with 10 robots.
Fig. 5 reports the testing accuracy across the different communi-
cation densities using L = 5 convolution rounds. Similar results
are obtained for other values of L.

As we can see, nonlinear functions improve the expres-
siveness of our DGNN-GA. The classification performance is
significantly better compared to DGNN-GA-MFUFlinear that
has fully linear convolutions. DGNN-GA-UFlinear and DGNN-
GA-MFlinear perform similarly and lead to a worse but closer
performance to our DGNN-GA'’s performance. We can conclude
that at least one nonlinear function is needed to get a satisfying
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result, and nonlinear functions for both message and update
functions provide the best performances.

E. Simulation Results and Comparative Analysis

We evaluate our DGNN-GA in simulation for a common
multi-robot goal assignment problem. We run 100 Monte Carlo
simulations of duration 7" = 10 s with N = 5, 10, 15, 20 robots
and goals whose positions are randomly initialized, respecting
an initial safety relative distance of 1.0 m, and in variable
communication topologies defined by different communication
ranges. The cost to minimize in eq. (1) is chosen as the sum
of distances traveled squared, thus ¢;; = d?., where d;; is the
Euclidian distance between r; and g;. Indeed], distance costs are
widely used in multi-robot applications, as in [4], [12], [16].
They have shown great utility to minimize the execution time
of a mission and to reduce the risk of collision. We assume the
robots move at a constant velocity of v = 2m/s.

We compare our DGNN-GA with respect to four decentral-
ized approaches commonly used in multi-robot goal assignment
problems and that have shown great performances with limited
communication exchanges

® The pair-wise switching policy (D-CAPT) [4]: Neighbor-
ing robots communicate by pair and switch their goals if
the sum of their costs decreases. The assignment is im-
proved iteratively during the robots’ motion. The approach
requires one communication round at each time step and
an initial random assignment satisfying the one-to-one
matching constraint.

® The Local Hungarian algorithm (LH) [12]: Similar to D-
CAPT, the assignment is improved iteratively during the
robots’ motion. It performs one communication round at
each time step and assumes an initial random one-to-one
assignment. However, LH applies the Hungarian algorithm
on each subset of neighboring robots.

e The Consensus-Based Auction Algorithm (CBAA) [13]:
Conversely to LH and D-CAPT, CBAA applies multiple
communication rounds at once, without any initial assump-
tion. The robots start moving when a consensus is found.
CBAA is a baseline state-of-the-art approach among auc-
tion algorithms due to its efficiency. It guarantees to con-
verge to a consensus after O(Nd) communication rounds,
but is much faster in practice.

e The Decentralized Hungarian-Based  Algorithm
(DHBA) [14]: DHBA also applies multiple communication
rounds at once and does not require any initial assumption.
In the algorithm, each robot buffers an estimation of the
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Fig. 6.  Assignment costs comparisons using various assignment algorithms while varying the communication density Doy, the number of robots NV, and the

number communication rounds L.

global cost matrix, updates it with the neighbors’ cost
matrices at each communication round, and applies the
Hungarian algorithm. After multiple rounds, all robots’
cost matrices are equal and the algorithm converges to the
optimal solution.

We compare the average total cost across variable commu-
nication densities and different L. Fig. 6 reports the error in %
to the optimal solution, provided by the centralized Hungarian
algorithm, i.e. the percentage increase in total cost

22 8ijCij — D0 81iCi
POEATT I

where s} are the components of the optimal assignment matrix
S* given by the Hungarian algorithm, and 5;; the components

of the predicted assignment matrix S provided by the different
decentralized solutions. The associated minimum and maximum
values of the third quartile ¢ are reported in Table II as it
represents a more intuitive dispersion measure owing to the
non-Gaussian data distribution. It corresponds to the value under
which 75% of the errors are found. Minimum values are obtained
in low connectivity (low L and D.,,,) and maximum values in
high connectivity (high L and D_,,,). In general, a high disper-
sion of IV about the average is observed for all methods, reflecting
the diversity of the scenarios tested using our simulation setup,
especially in low connectivity.

Before comparing and discussing the methods, we notice that
the errors reported increase significantly over 100% when N >
10. The reason is that the errors accumulate with the number of

E(%) = 100 x (16)

robots, especially for low values of L and sparse communication
densities (Deopm < 30%), where more conflicts occur and more
robots need to be reassigned.

Comparison with LH and D-CAPT: LH converges quickly
to the optimal solution when the network is well connected (i.e.
D om > 40%), contrary to D-CAPT. Indeed, while the pair-wise
strategy is efficient, it leads to more frequent reassignments
than LH. DGNN-GA provides competitive results compared
to D-CAPT with L = 5 communication rounds, but predicts
worse assignments than LH and D-CAPT for lower L. Indeed,
our method DGNN-GA is devoid of any one-to-one initial
assumption and thus, as expected, needs more communication
rounds to find a consensus. However, in practice, an initial
one-to-one assignment represents a strong assumption since it
requires some initial global knowledge of the team’s state that
is not available in many multi-robot applications. On the other
hand, our approach, similarly to CBAA and DHBA in restricted
communication as discussed in the following, does not always
guarantee a conflict-free assignment because the one-to-one
matching constraint is enforced as a soft constraint in the training
loss. Regarding the dispersion of the errors in Table II, our
DGNN-GA provides lower quartiles compared to D-CAPT in
both low and high connectivity scenarios. For well-connected
networks (high values of L and D.,,,) and N < 15, 75% of our
DGNN-GA’s assignments reach the optimal solution.

Comparison with CBAA and DHBA: DGNN-GA outper-
forms CBAA in every scenario in terms of average percent-
age increase and dispersion. Therefore, the heuristic learnt by
the DGNN-GA, implicitely leveraging the structure knowledge

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:22:04 UTC from IEEE Xplore. Restrictions apply.



GOARIN AND LOIANNO: GRAPH NEURAL NETWORK FOR DECENTRALIZED MULTI-ROBOT GOAL ASSIGNMENT

TABLE II
MINIMUM AND MAXIMUM THIRD QUARTILES q(%) OF THE PERCENTAGE
INCREASE E FOR THE DIFFERENT ASSIGNMENT ALGORITHMS AND TEAM

SIZES N
N DGNN-GA CBAA DHBA LH D-CAPT
5 min 0 r 0 4 5
max 123 144 160 72 154
10 min 0 130 0 5 25
max 298 385 365 281 491
15 min 0 176 0 5 27
max 535 751 750 503 756
20 min 18 194 0 4 30
max 489 709 708 146 554

The min and max values are obtained respectively for low and high values of (L,D,,,,)-

of the graph, improves the performance compared to CBAA
with the same number of communication exchanges. Regarding
DHBA method, it outperforms DGNN-GA for L > 3 and in
that case converges to a near-optimal solution (£ < 10% and
q = 0%) for D.om > 40%. However, for L < 3, the average
error of DHBA is similar to CBAA, but worse than DGNN-GA.
Moreover, for low values of both L and D.,,,, DHBA generates
higher quartiles. Therefore, DGNN-GA is better suited than
DHBA for highly restricted communication scenarios. CBAA
and DHBA can guarantee the convergence to a conflict-free
assignment contrary to our DGNN-GA, but to achieve this goal
they need a sufficient number of communication rounds depend-
ing on the topology of the network and the number of robots.
However, in many real-world scenarios, we need to limit the
number of communication rounds, because of time constraints
to complete the task, or because of unpractical communication
delays or drops due to environment constraints or interferences.
In these cases, the conflict-free assignment is not guaranteed
anymore for both CBAA and DHBA. In the simulation tests,
the comparison is made considering only L communication
iterations, and we leverage a conflict resolution module for
CBAA, DHBA, and our DGNN-GA in case a consensus is not
found. A greedy approach detects and handles locally a conflict
between two neighboring robots. The further robot from the goal
of interest is reassigned to the second goal with minimum cost.
Besides, a random assignment policy was evaluated as a lower
bound. Each robot chooses initially a random goal and conflicts
are resolved using the same greedy approach. For team sizes
from 5 to 20, the average error generated goes from 100% to
230% in high connectivity and explodes from 320% to 2080%
in low connectivity.

As a conclusion, our DGNN-GA outperforms CBAA and
DHBA in highly restricted number of communication rounds,
and does not leverage any assumption of an initial one-to-one
assignment available compared to LH and D-CAPT.

FE. Real-World Tests

To demonstrate the practical applicability of our solution,
we deploy it in real-world settings in an indoor testbed of
10 x 6 x 4m3 with a Vicon! system for localization. We em-
ploy 3 custom built quadrotors equipped with a Qualcomm
Snapdragon™ VOXL 22 board and based on our previous

Uhttps://www.vicon.com/
Zhttps://www.modalai.com/products/voxl-2?variant=39914779836467
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Fig. 7. Real-world experiments with robot positions (green), goal positions
(red), trajectories (white).

work [43]. Three goals are chosen randomly in the flying arena.
In the example shown Fig. 7, two scenarios are tested. In the first
one, all robots can communicate and in the second one, 73 can
only communicate with ;. In both cases, each robot effectively
computes the optimal assignment.

VI. CONCLUSION AND FUTURE WORKS

In this work, we presented a novel DGNN-GA architecture
to solve the decentralized LSAP for multi-robot systems. Inter-
robot communication and goal assignments are modeled by one
heterogeneous graph and the optimal solution is learned by imi-
tating the expert Hungarian algorithm. The approach optimizes
the information sharing process between the robots, leveraging
the structure knowledge of the graph, to generate assignment
predictions with restricted communication exchanges. We ana-
lyzed its zero-shot generalizability for team sizes up to 50 robots.
The DGNN-GA was deployed in simulation and real-world for
a multi-robot minimum distance traveled squared objective. It
demonstrates competitive performances compared to existing
approaches with a fixed number of communication rounds. Com-
pared to LH and D-CAPT, it is devoid of the assumption to have
an initial one-to-one assignment. It outperforms CBAA in every
scenario and DHBA when the number of communication rounds
is minimal. DGNN-GA can be used for multiple applications.

In the future, DGNN-GA will be combined with a local
motion planner to optimize the robots’ motion considering their
dynamics and ensuring safe navigation. Moreover, the method
will be extended considering more goals than robots.
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