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Abstract—The capability to autonomously track a non-
cooperative target is a key technological requirement for micro
aerial vehicles. In this paper, we propose an output feedback
control scheme based on deep reinforcement learning for con-
trolling a micro aerial vehicle to persistently track a flying target
while maintaining visual contact. The proposed method lever-
ages relative position data for control, relaxing the assumption
of having access to full state information which is typical of
related approaches in literature. Moreover, we exploit classical
robustness indicators in the learning process through domain
randomization to increase the robustness of the learned policy.
Experimental results validate the proposed approach for target
tracking, demonstrating high performance and robustness with
respect to mass mismatches and control delays. The resulting
nonlinear controller significantly outperforms a standard model-
based design in numerous off-nominal scenarios.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/22kI976fykA

I. INTRODUCTION

In recent years, Micro Aerial Vehicles (MAVs) like quadro-

tors have drawn significant attention for several applications

including transportation, exploration, and surveillance due to

their simplicity in design, agility, and low-cost [1]. A key

feature of MAVs is their ability to hover in place and move

in 3D which render them ideal platforms to persistently track

flying targets. The target tracking task requires a tracker to

follow a moving target while maintaining a suitable attitude

alignment (e.g., visual contact). This naturally leads to the

formulation of an output feedback control problem, in which

the relative position and the attitude motion are highly cou-

pled. The resulting problem is hard to solve within a model-

based control framework due to a number of factors. First,

model-based methods require access to an accurate model

of the MAV dynamics that is often hard to obtain. This is a

critical issue because MAVs are frequently affected by signif-

icant model uncertainties due to nonlinear effects generated

by aerodynamic forces and torques, propeller interactions,

payload variations, and communication delays [2]. Moreover,

model-based control approaches usually rely on full pose

information from an external motion capture system or an

onboard estimator (see, e.g., [3], [4], [5]). The former is only
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Fig. 1. Target tracking task. The tracker (blue) follows the target (red) while
maintaining attitude alignment.

available in specific environments, while the latter is subject

to non-negligible estimation errors that could significantly

affect the performance [6]. Finally, advanced techniques such

as model predictive control usually require prior knowledge

of the trajectory to be tracked [7], but this requirement is not

met for the application at hand. Due to these features and to

the lack of systematic design techniques addressing the robust

output feedback control problem for nonlinear systems, the

applicability of model-based control to the considered target

tracking task is currently limited to ad-hoc methods [8].

To alleviate this limitation, one can employ a model-free

control approach that directly leverages relative position mea-

surement data collected by the tracker MAV, in a similar spirit

to visual servoing [9]. In particular, an emerging paradigm

deals with control algorithms based on Reinforcement Learn-

ing (RL) [10], [11], [12]. While robustness has been deeply

analyzed in model-based control theory, only a few recent

studies have investigated the possibility of learning robust

controllers in a model-free fashion [13], [14], [15]. In this

paper, we exploit Deep Reinforcement Learning (DRL) to

synthesize a MAV controller for robust target tracking.

A. Related Work

Proportional-Integral-Derivative (PID) control is by far the

most commonly used control design for MAV applications,

thanks to its ease of implementation. Many PID variants

have been proposed in the literature, such as rotational and

hierarchical controllers [16], [17]. PID regulators provide

adequate performance for simple set-point stabilization, but

their application to more complex tasks, such as the one

considered in this work, requires a specialized design and a

careful selection of the tuning parameters. To overcome this

issue, more advanced control techniques have been proposed
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in the literature. Based on the required level of exploitation

of the vehicle dynamic model, these can be categorized into

model-based and model-free.

Model-based control techniques. Model-based control is

an attractive framework for MAV applications, as it allows

one to rigorously find stability certificates. Due to the highly

nonlinear dynamics of MAVs, the majority of the contribu-

tions have focused on nonlinear techniques. For example, [3]

employs a dynamic feedback linearization approach to solve

the trajectory tracking problem via state feedback. The main

advantage of this method is that the design of the control law

is carried out systematically, by exploiting results from linear

systems theory. However, the resulting control policy can lack

of robustness and this must be accounted for in the design

process [18], [19], [20]. Another viable solution is to adopt a

backstepping design, so as to avoid the cancellation of useful

nonlinearities [21]. Sliding mode control is a further design

option providing enhanced robustness [22]. More recently,

[4], [5] address the global stabilization problem by using

hybrid state feedback control laws that extend the results

in [23]. These methods do not typically provide an easy way

to optimize performance and to handle trajectory constraints.

To address this issue, [2], [7] propose a nonlinear model

predictive control. However, this solution is computationally

expensive and requires the reference trajectory to be available

for prediction.

All the aforementioned works deal with trajectory tracking,

i.e., with the problem of regulating the known MAV position

towards a given time-varying reference. This problem is

related to but simpler than the target tracking task considered

herein. Indeed, systematic design techniques able to handle

parametric uncertainty on the vehicle dynamics and stochastic

measurement noise are not currently available for the nonlin-

ear output feedback setting dictated by the considered task.

This restricts the design options to ad-hoc control methods

(see, e.g., [8], [24]), for which robustness specifications are

difficult to enforce at the synthesis level. One possibility to

amend this drawback is to adopt a model-free framework.

Model-free control techniques. Model-free control tech-

niques based on machine learning represent an emerging

trend in robotics. In particular, RL approaches have been

increasingly used in applications [25], [26], [27]) and several

recent works tackle the tracking problem for MAVs. [28]

couples a multi-layer perceptron with a low-level PID con-

troller to stabilize the MAV after starting from harsh initial

conditions. [29] combines a classical feedback control law

with a supplementary RL control policy. The control method

is validated based on the vehicle’s tracking performance.

While these works seek attitude stabilization through a stan-

dard controller, several approaches also consider learning

end-to-end control using RL. [30] proposes an end-to-end

approach where a cascade control architecture based on RL

is developed by linearizing the vehicle dynamics into six de-

coupled subsystems. While the linearization operation greatly

simplifies the training process, it also significantly limits

the maneuvering capability of the vehicle. Other approaches

address even more complex and dynamic tasks, such as

aggressive flight [31] and decentralized swarm control [32].

However, in these works, the input to the RL control policy

includes highly privileged information, which may not be

available in practice (e.g., absolute position) or need to be

estimated separately (e.g., vehicle attitude). This limitation

can be minimized by directly mapping on-board measure-

ments into actuator commands [10], [11], [12].

Existing RL-based approaches mainly focus on improving

the tracking performance, and only some recent works start

investigating the robustness of the learned policy to model

uncertainties. [13], [14] propose robustification strategies

based on domain randomization and max-min optimization,

whereas [15] employs the classical gain and delay margin

indicators to improve the robustness of state feedback control

design via RL.

B. Contribution

A great deal of research work has been devoted to tracking

problems involving MAVs. Model-free control via RL is still

a relatively new topic and, in particular, the robustness issue

has received less attention than the flight performance. Within

this context, this paper presents multiple contributions:

1) We propose a systematic approach based on DRL to

design a nonlinear output feedback control law for tar-

get tracking problems featuring visibility requirements.

The control law relies on relative position data that

can be provided by onboard sensors, such as optical

devices;

2) The DRL policy is made robust against parametric

uncertainties in the form of mass mismatches and time

delays, by exploiting classical robustness indicators in

the training process;

3) We extensively evaluate the DRL policy in several

tracking experiments and compare it to a baseline

design employing feedback linearization and Linear-

Quadratic-Gaussian (LQG) control. The proposed ap-

proach outperforms consistently the baseline in off-

nominal scenarios.

II. PRELIMINARY DEFINITIONS

We leverage simulation to learn the control policy. This

ensures unlimited training data, does not impose real-time

constraints, and most importantly poses no physical risk to

the robot. In particular, we consider a surrogate model in

which the tracker is controlled by thrust and angular velocity

inputs. Following [33], the training model is defined as

p̈(t) = R3(t)
f(t)

m
− g,

Ṙ(t) = R(t) [ω(t)]×,

(1)

where p(t), R(t) and ω(t) describe the tracker absolute

position, orientation and angular velocity, respectively, Rj(t)
denotes the j-th column of R(t), f(t) is total thrust, m is

the vehicle mass, g = [0 0 9.8]¦ms−2 is the gravity vector,

and [ω(t)]× is the skew-symmetric representation of ω(t).
Thrust saturation constraints are included in the model by

suitably clipping f(t). We find it convenient to treat the thrust
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variation λ(t) = ḟ(t) as a control input variable. Therefore,

system (1) is augmented with the integrator

f(t) = f0 +

∫ t

t0

λ(τ) dτ, (2)

where f0 is the integration constant and t0 = 0 is the initial

time. The integral action provided by eq. (2) is exploited

for controller design in order to reject constant disturbance

accelerations (such as g).

Model uncertainty is taken into account by defining m =
αm0 in eq. (1), where m0 is the nominal mass and α is an

uncertain gain parameter. Moreover, a time delay δ is added

at the control level. This corresponds to specifying the inputs

of the system eqs. (1)-(2) as follows
[

ω(t)
λ(t)

]

= u(t− δ) (3)

where u(t) is the command provided by the controller. The

choice of the control inputs in eq. (3) is found to be effective

for the design of high-performance controllers based on DRL

(see, e.g., [34]). The parameters α and δ will be used to

robustify the learned control policy.

The MAV dynamics are zero-order-hold discretized to

obtain a discrete-time transition model suitable for RL. The

sampling instants are denoted by k = its, where i is the

discrete-time step number and ts is the sampling time. The

motion of the target is modeled by a parameterized class

of trajectories denoted by pr(k). These include fixed points

and sampled sinusoidal signals with random amplitude, fre-

quency, and phase. The output of the model is specified as

y(k) = R(k)T [pr(k)− p(k)] (4)

and describes the target position relative to the tracker, as

seen from the tracker body-fixed frame. In the model-free

framework discussed hereafter, the learning agent has only

access to the output eq. (4) and does not require information

about the dynamic model presented in eq. (1). Notice that

the output eq. (4) can be measured by processing images

from a depth or a stereo camera installed onboard the

tracker with a suitable detection algorithm [35]. The image

detection process is not modeled in this paper. Instead, the

measurements are generated by corrupting eq. (4) with noise.

This is a simplifying assumption that allows us to focus

on the performance achievable by the controller. Moreover,

it provides some generality, since it does not confine the

analysis to a specific detector design.

III. LEARNING-BASED CONTROL APPROACH

A. Problem Formulation

The control objective for the tracker is to follow a moving

target in such a way that visual contact is maintained. We aim

at solving the target tracking problem with a controller driven

by measurements of the output vector eq. (4). The controller

must be robust to noise and model uncertainties. Moreover, it

must avoid collisions between the tracker and the target while

generating control commands compatible with the actuator

saturation limits.

A learning-based approach is adopted for controller design.

More specifically, the controller consists of a DRL agent that

interacts with the environment over a series of independent

episodes and, based on the current observation o(k), produces

an action u(k) and receives a reward r(k). The observation

o(k) consists of the error between a sequence of noisy

measurements of y(k) and a predefined constant set-point yr.

The vector yr specifies the desired relative position between

the target and the tracker, in the tracker body-fixed frame

(e.g., a given location in the camera frame). Formally, let us

define the tracking error

e(k) = yr − y(k), (5)

and the observation sequence

o(k)=













e(k) + w(k)

e(k − ts) + w(k − ts)

...

e(k −Hts) + w(k −Hts)













, (6)

where H is the length of the sequence and w(k) ∼ N (0, σ2

w)
is a Gaussian random noise. Then, the target tracking problem

is cast as follows: steer e(k) to zero, using the control law

u(k) = π(o(k)), (7)

where π(·) is a suitable control policy to be learned. The

control action u(k) is assumed to take values in a continuous

action space. The mapping between u(k) and the actual MAV

inputs is given by eqs. (2) and (3).

Remark 1: The considered target tracking task differs

from standard MAV trajectory tracking. In particular, the

latter requires regulating the known position vector p(k)
towards a given time-varying reference pr(k). In the target

tracking task considered, instead, one has access only to the

composite output y(k), while the individual components on

the right-hand side of eq. (4), as well as the future target

positions pr(k+1), pr(k+2), . . . , are unknown. It is worth

stressing that the relative position and the tracker attitude

information are merged in the output eq. (4). While this

makes the resulting output feedback control problem much

more challenging, it can be exploited to regulate the tracker

MAV position and attitude in a coordinated fashion, so as to

maximize the visibility of the target. Indeed, this corresponds

to driving e(k) in eq. (5) towards zero.

B. Reward Shaping

The reward signal r(k) is specifically designed to address

the target tracking task and accounts for the salient features of

the control problem. The main control objective is to steer the

tracking error described by eq. (5) to zero. To this purpose,

the following contribution is defined

re(k) = (rx(k) ry(k) rz(k))
β , (8)

where
rx(k) = max(0, 1− |e1(k)|),
ry(k) = max(0, 1− |e2(k)|),
rz(k) = max(0, 1− |e3(k)|),

(9)
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where ej(k) is the j-th entry of e(k), and β > 0 is a

suitable exponent. The value of re(k) is maximized when

the tracking error is zero and it is clipped in the interval

[0, 1] to favor the learning process. To ensure that the control

effort is also optimized and the maximum velocity remains

within reasonable limits while tracking, we define a velocity

penalty rv(k) and a control effort penalty ru(k) as follows

rv(k) =
∥ẏ(k)∥

1 + ∥ẏ(k)∥
, (10)

ru(k) =
∥u(k)∥

1 + ∥u(k)∥
. (11)

Collision avoidance constraints are included by penalizing

the RL agent with a very large negative reward whenever

∥y(k)∥ < ym, where ym is the minimum distance allowed.

The reward function is obtained by adding up all the above

contributions, which results in

r(k) =

{

re(k)−kvrv(k)−kuru(k) ∥y(k)∥ > ym

−c otherwise
,

(12)

where kv > 0 and ku > 0 are weighting parameters that

allow to trade-off between the reward terms, and c is a large

positive constant. Saturation limit constraints and robustness

specifications are taken into account in the architecture design

and learning phase as detailed next.

C. Deep Reinforcement Learning Strategy

In the considered scenario, the tracking agent is free to

operate in a three-dimensional space using continuous control

actions. Due to the conspicuous dimension of the state space

and the continuous nature of this problem, a classical tabular

RL approach cannot be applied. Instead, we employ a DRL

strategy that takes advantage of Deep Neural Network (DNN)

approximators. In order to develop an effective target tracking

policy we adopt an asymmetric actor-critic framework [36],

[37]. More specifically, according to this framework [38], we

design two DNN architectures: one for the actor (A-DNN)

and the other for the critic (C-DNN). The former learns the

optimal policy π(o(k)), while the latter is responsible for

evaluating such a policy during training.

The A-DNN is a Multi-Layer Perceptron (MLP) with three

hidden layers, each one composed of 256 neurons and ReLU

activations. The network input is a 3H-dimensional vector

obtained by flattening o(k) in eq. (6), while its output is

the four-dimensional vector u(k) representing the control

commands of the tracker MAV. The physical characteristics

of the MAV motors impose saturation limit constraints on the

control command. To enforce them on the A-DNN output,

we add a tanh function to the last layer of the network. This

keeps the action values computed by the actor in a fixed range

(saturation limits are reported in Table I).

The C-DNN acts only in the training phase and, due to

the asymmetric framework employed in this work, we are

allowed to provide it with more privileged information with

respect to that available to the A-DNN during inference. This

training procedure favors the development of an effective

TABLE I
HYPERPARAMETERS AND SETTINGS

Hyperparameter Value

Gain parameter α [0.6, 1.4]

Time delay δ [0, 50] ms

Sampling time ts 0.05 s

Nominal mass m0 1 kg

Reward exponent β 1/3

Reward coefficients kv , ku 0.4

Reward constant c 10

Desired set-point yr [75 0 0]T cm

Min. allowed distance ym 40 cm

Noise std. dev. σw 0.3 cm

Target spawn std. dev. σs 10 cm

Target traj. amplitude Ax, Ay , Az [1, 30] m

Target traj. frequency fx, fy , fz [0.002, 0.2] Hz

Target traj. phase φx, φy , φz [0, 2π]

Number of agents 8

Learning rate 0.0003

Batch size 256

Max. episode length 40 s

Replay buffer size 1, 000, 000 samples

Angular velocities ω saturation [−4, 4] rad/s

Thrust increment λ saturation [−20, 20] N/s

Observation sequence length H 15 steps

Discount factor γ 0.99

criterion for policy evaluation. In particular, we define the

observation oc(k) of the C-DNN as follows

oc(k)=







e(k)

R(k)T [ṗ(k)− ṗr(k)]

R(k)T [p̈(k)− p̈r(k)]






, (13)

to capture the instantaneous relative velocity and acceleration.

The action u(k) is also provided to the C-DNN in order

to estimate the action-value function Qπ(oc(k), u(k)). The

C-DNN has the same structure as the A-DNN, except for

two main differences: (i) the input is given by oc(k) in

eq. (13) concatenated with u(k) in eq. (7); (ii) the last layer

of the network has a linear activation with the scalar output

Qπ(oc(k), u(k)), i.e., the estimated action-value.

The A-DNN and C-DNN architectures are trained by using

the popular Soft Actor-Critic (SAC) algorithm [39]. In order

to achieve robustness with respect to the model uncertainties,

we employ domain randomization [40] and initialize the

parameters α and δ with random values at the beginning

of each episode. Note that, in the context of linear systems

theory, the latter parameters match the interpretation of the

gain and phase margins. As shown in [15], these indicators

are still meaningful for nonlinear control design via RL.

Therefore, it is expected that the learned policy exhibits

robustness to such parametric uncertainties. This is confirmed

by the results in Section IV-B.
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Fig. 2. Example of a MAV trajectory obtained by applying the DRL policy
in the nominal scenario α = 1, δ = 0 ms.
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Fig. 3. Evolution of the tracking error and of the relative distance obtained
by applying the DRL policy in the nominal scenario α = 1, δ = 0. The
keep-out radius is depicted in red (dashed).

IV. EXPERIMENTS

In this section, we provide details about the training of the

DRL agent and discuss the controller evaluation campaign.

A. Training Details

We trained the A-DNN and the C-DNN by using the

Stable-Baselines3 [41] implementation of SAC, which we

customized to implement the asymmetric actor-critic algo-

rithm1. The networks have been trained for a total of about

80, 000 episodes across 8 parallel environments, by using the

Adam optimizer with a learning rate of 0.0003 and a batch

size of 256.

The training session is structured in episodes and, at

the beginning of each one, the tracker is placed inside the

environment and starts from a hovering condition. During

the episode, the target moves along a sinusoidal trajectory

parameterized as follows

pr(k) = pr(0) +





Ax sin(2πfxk + φx)
Ay sin(2πfyk + φy)
Az sin(2πfzk + φz)



−





Ax sin(φx)
Ay sin(φy)
Az sin(φz)



 ,

1https://github.com/isarlab-department-engineering/trackingMAV

4
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-10
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10
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15

20
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0

Fig. 4. MAV trajectories obtained by applying the DRL and LQG policies
in the wort-case scenario α = 0.6, δ = 50 ms.
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0.6

0.8

Fig. 5. Evolution of the tracking error and of the relative distance obtained
by applying the DRL policy in the worst-case scenario α = 0.6, δ = 50
ms. The keep-out radius is depicted in red (dashed).

where pr(0) is the target initial position and (Ax, Ay , Az),

(fx, fy , fz), (φx, φy , φz) are respectively the amplitude, the

frequency, and the phase of the sinusoidal signals along the

three axes. To produce a different trajectory for each episode,

the trajectory parameters are randomized at the beginning and

kept fixed for the entire duration of the episode. In particular,

the target is spawned at the initial position pr(0) = p(0) +
R(0)yr + ws, where each entry of the random vector ws

follows the Gaussian distribution N (0, σ2

s). This promotes

the development of tracking behaviors that are invariant to

the initial condition. Furthermore, to achieve robustness to

model uncertainties, we randomize the parameters α and δ

by sampling them using a uniform distribution (see Table I

for a comprehensive list of the training hyper-parameters).

The episode ends when one of the following conditions is

met: (i) the step number k reaches a predefined maximum

limit; (ii) the collision constraint ∥y(k)∥ > ym is violated.

In the aforementioned setting, the optimization requires
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TABLE II
EXPERIMENTAL RESULTS FOR THE MEAN AND THE STD. DEV. OF THE TRACKING ERROR

Time Delay δ Method

Gain Parameter α

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

0 ms
RL 5.6 8.2 4.1 5.1 3.8 4.9 3.7 5.0 3.2 3.5 2.9 2.8 3.3 4.1 3.5 5.3 4.7 7.5

LQ 5.8 15.1 4.2 10.9 2.9 7.4 1.6 4.2 1.0 2.9 2.1 5.5 3.5 9.1 4.9 13.1 6.3 17.2

10 ms
RL 5.8 7.4 4.2 5.2 3.7 4.6 3.3 3.7 3.1 3.2 3.0 3.3 3.3 4.4 3.7 5.9 4.7 7.9

LQ 5.3 14.2 3.9 10.3 2.7 7.0 1.5 4.0 1.1 3.1 2.2 5.8 3.6 9.4 5.0 13.4 6.4 17.5

20 ms
RL 6.5 7.1 5.5 5.6 4.4 5.3 3.5 4.3 3.2 3.8 3.3 4.0 3.4 5.0 4.1 6.6 5.0 8.7

LQ 5.0 13.4 3.5 9.8 2.4 6.7 1.4 3.9 1.2 3.4 2.4 6.1 3.7 9.8 5.1 13.7 6.5 17.8

30 ms
RL 11.2 8.0 6.6 6.7 5.8 6.5 4.8 6.6 3.9 5.2 3.9 5.5 3.9 6.1 4.6 7.8 5.0 9.1

LQ 7.3 14.7 3.3 9.3 2.3 6.3 1.3 3.9 1.4 4.0 2.5 6.9 3.8 10.5 5.2 14.4 6.6 18.4

40 ms
RL 17.7 10.8 11.6 8.2 7.7 8.6 6.4 7.0 5.0 6.4 4.8 6.3 4.8 7.1 5.2 8.6 5.4 9.9

LQ 54.9 26.7 3.4 9.2 2.2 6.2 1.3 3.9 1.5 4.0 2.7 6.9 4.0 10.5 5.3 14.4 6.7 18.4

50 ms
RL 22.8 12.4 15.1 9.5 11.8 9.4 7.6 7.6 6.6 6.5 5.8 7.4 6.4 9.3 5.8 9.4 6.1 11.1

LQ 860.1 470.5 4.5 10.3 2.3 6.3 1.5 4.2 1.8 4.5 2.9 7.3 4.2 10.9 5.5 14.8 6.8 18.8

about 4 hours and 1.1GB of VRAM to converge on a

workstation equipped with NVIDIA Quadro GV100 with

32GB of VRAM, an Intel Xeon Silver processor (2.40GHz

×24) and 128 GB of DDR4 RAM. At inference time, the

VRAM required for the Actor Network is about 320kB, and

the time required to compute the action is approximately

0.001 s.

B. Controller Validation

In order to evaluate the performance and robustness of the

proposed DRL policy, we carried out an extensive simulation

campaign featuring both nominal and off-nominal scenarios.

To add more realism to the simulations, we defined a vali-

dation environment in which the system described by eq. (1)

is augmented by the angular velocity dynamics. These are

stabilized by a low-level proportional controller that tracks

the angular velocity command provided by the DRL agent.

The resulting simulation model is given by




p̈(t)

Ṙ(t)
ω̇s(t)



 =





1

m
(R3(t)f(t))− g

R(t) [ωs(t)]×
J−1(kω(ω(t)− ωs(t))− [ωs(t)]× Jωs(t))



 ,

where ωs(t) and J are the actual angular velocity and the

inertia matrix of the MAV, kω is the low-level controller

gain, while f(t) and ω(t) are the commanded total thrust and

body rate signals. Notice that the proposed architecture can be

deployed without the need for a dedicated attitude estimator

(i.e., using only relative position and gyro measurements),

as opposed to other RL-based schemes employing a separate

loop for attitude control (see, e.g., [28]). It is also worth

remarking that the validation environment differs from that

employed for training the DRL agent.

A first test has been carried out to verify how the controller

behaves in an ideal scenario featuring no measurement noise

(w = 0) and nominal model parameters (α = 1, δ = 0).

In this scenario, the parameters defining the target trajectory

are taken from the same distribution used during training.

Figure 2 displays the trajectory of the tracker for an example

simulation. It can be seen that the DRL agent has successfully

learned an effective tracking policy and it can follow the

target with a suitable heading. Figure 3 depicts the evolution

of the tracking error and of the distance between the target

and the tracker. The former is kept below 0.05 m at steady-

state, while the latter remains always above the minimum

allowed value of ym = 0.4 m (i.e., outside the keep-out

zone used for collision avoidance). It can be concluded that

the controller allows for precise and collision-free tracking

operations and that the proposed learning approach provides

an effective way to optimize the control performance.

A Monte Carlo simulation approach is adopted to verify

the robustness of the DRL policy in off-nominal scenarios

featuring measurement noise, model uncertainties, and un-

seen training data. In particular, we test different combi-

nations of the parameters α and δ, taken from a suitable

discretization grid. For each sampled pair of values, we

perform 20 runs (lasting 40 seconds), each one featuring a

different target trajectory. In order to validate our approach

also on target trajectories never experienced during training,

we extend the sinusoidal family in (IV-A) with ramp signals

(i.e., linear paths).

As a comparison baseline, we employ a model-based con-

troller that couples feedback linearization and LQG control.

We make this choice due to the lack of fully nonlinear

control methods addressing stochastic output feedback from

a systematic standpoint within the model-based context. The

LQG weights have been tuned extensively to achieve a fair

trade-off between performance and robustness. It is worth

noticing that the main idea behind the baseline approach is

to convert the target tracking problem into a simpler problem

in which the relative position and the heading angle are

controlled independently (see, e.g., [19], where a similar

approach is pursued). To enable such a design, the absolute

orientation of the tracker MAV must be known (in practice

we provide it with ground-truth attitude information). Hence,

the LQG strategy is favored in the comparison.

The metrics employed to compare the performance of the

two approaches are the mean and the variance of the tracking

error eq. (5), averaged over the Monte Carlo runs. These

quantify the tracker’s ability to maintain the desired config-

uration relative to the target. The results of the comparison
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(a) (b)

Fig. 6. Rendering of the two trajectories depicted in Figures 2 and 4: (a) nominal scenario α = 1, δ = 0. (b) worst-case off-nominal scenario α = 0.6,
δ = 50 ms. In both cases, the tracker MAV equipped with the DRL controller is colored in blue, while the target is colored in red. The third-person view
is edged in orange and the first-person view of the blue tracker is edged in green. In the third-person view corresponding to the off-nominal scenario, the
tracker MAV equipped with the baseline LQG controller is also depicted (in gray).

are reported in Table II. The LQG controller obtains a better

score on scenarios close to the nominal one. This is an

expected result since the LQG control strategy is optimal for

the nominal model and, as mentioned above, it has access to

privileged information, i.e., the attitude of the tracker MAV.

However, it should be noted that the DRL controller deviates

from the LQG performance only by a few centimeters,

which confirms the effectiveness of the proposed method.

On the other hand, the DRL policy obtains better results

when one looks at the table corners (i.e., for higher model

uncertainties). Indeed, under severe off-nominal conditions,

the DRL controller shows little performance degradation and

it can overcome the model-based counterpart. This is a direct

consequence of the robust policy learned. Furthermore, as

shown in Figure 4, in the worst-case off-nominal scenario

(corresponding to the lower left corner of Table II) the LQG

controller diverges while the tracking performance of the

DRL agent is still acceptable and the collision avoidance

constraints are met (see Figure 5).

To investigate the suitability of the proposed method for

vision-based target tracking, we rendered the same trajecto-

ries reported in Figures 2 and 4, by using the photo-realistic

graphics engine Unreal Engine 4 [42]. Figure 6 shows some

snapshots of the MAVs in the World frame (third-person

view), as well as the corresponding images of the target as

captured by a virtual camera installed onboard the tracker and

aligned with the tracker body-fixed frame (first-person view).

It can be seen that the choice of the error function eq. (5)

and the reward term in eqs. (8) and (9) allow the tracker to

maintain the target within the camera field of view even in

the worst-case off-nominal scenario.

V. CONCLUSION

In this paper, we presented a model-free control approach

based on deep reinforcement learning for target tracking

applications involving MAVs. This extends previous results

on robust state feedback to the nonlinear output feedback

framework. A Monte Carlo simulation campaign shows that

the proposed controller achieves a good tracking performance

across a wide variety of operating conditions, outperform-

ing LQG approaches in terms of robustness to uncertainty

and noise. In particular, we found out that the application

of domain randomization to the classical gain and delay

margin parameters provides an effective way to improve the

robustness of the learned policy, without penalizing too much

the flight performance. The obtained results are promising

and open up the way for numerous interesting research

avenues. Future work will focus on rigorously characterizing

the stability and robustness properties of the control policy

and on validating the controller in real-world settings.
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