
Visual Environment Assessment for Safe Autonomous

Quadrotor Landing

Mattia Secchiero1,2, Nishanth Bobbili1, Yang Zhou1, and Giuseppe Loianno1

Abstract— Autonomous identification and evaluation of safe
landing zones are of paramount importance for ensuring
the safety and effectiveness of aerial robots in the event of
system failures, low battery, or the successful completion of
specific tasks. In this paper, we present a novel approach for
detection and assessment of potential landing sites for safe
quadrotor landing. Our solution efficiently integrates 2D and
3D environmental information, eliminating the need for external
aids such as GPS and computationally intensive elevation maps.
The proposed pipeline combines semantic data derived from a
Neural Network (NN), to extract environmental features, with
geometric data obtained from a disparity map, to extract critical
geometric attributes such as slope, flatness, and roughness. We
define several cost metrics based on these attributes to evaluate
safety, stability, and suitability of regions in the environments
and identify the most suitable landing area. Our approach runs
in real-time on quadrotors equipped with limited computational
capabilities. Experimental results conducted in diverse environ-
ments demonstrate that the proposed method can effectively
assess and identify suitable landing areas, enabling the safe
and autonomous landing of a quadrotor.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/3tH621vF8LM

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have become increas-

ingly popular platforms to assist humans in several com-

plex and dangerous applications such as surveillance, law

enforcement, mapping, search and rescue, delivery ser-

vices and precision agriculture [1], [2]. The development

of novel autonomous algorithms coupled with the drop in

price–performance ratio of processors and sensors supported

also the execution of complex tasks such as collaborative

transportation [3], autonomous flight [4], collision avoid-

ance [5], exploration [6] as well as shipping and delivery [7]

or industrial inspection [8]. To ensure the safety of individ-

uals, structures, and overall mission success in the afore-

mentioned applications it is commonplace to equip aerial

robots with intelligent landing capabilities [9]–[11]. These

mitigate the risks posed by mechanical and sensory failures,

ensuring secure operations in challenging scenarios. This not

only minimizes potential threats posed to individuals and

structures, but also enables the successful execution of tasks

1The authors are with the New York University, Tandon School of
Engineering, Brooklyn, NY 11201, USA. email:{ms15143, nb3553,

yangzhou, loiannog}@nyu.edu.
2The author is with the Department of Information

Engineering, University of Padua, 35131 Padua, Italy.
email:{mattia.secchiero}@studenti.unipd.it.

This work was supported by the NSF CAREER Award 2145277, the
DARPA YFA Grant D22AP00156-00, Qualcomm Research, Nokia, and
NYU Wireless.

Fig. 1: Top: our drone navigating and mapping the environ-

ment. Bottom: the associated 2D binary map of the safe and

unsafe landing locations (left) and the chosen safe landing

spot in the 2D map (right). The black areas are the safe

landing locations, while the gray ones are unsafe.

that require such capabilities. For example, in the case of a

drone delivery system that operates in urban environments,

the ability to accurately identify suitable landing zones

becomes crucial for the successful delivery of packages. In

agriculture, drones play a pivotal role in monitoring crops,

assessing plant health, and optimizing agricultural practices.

Upon completing these tasks, the drone requires a reliable

and safe landing procedure.

However, current state-of-the-art solutions tend to be frag-

ile and computationally intensive, often require preliminary

environment knowledge and still offer limited autonomy.

Similarly, the majority of commercially available landing

solutions often relies on manually designed, pre-defined

navigation policies to aid humans in guiding the robots to

land near the intended or required location, therefore offering

minimal or no autonomy also for the landing process.

This paper presents several significant contributions. First,

we propose a novel visual environment detection and as-

sessment approach for the safe autonomous landing of

aerial robots. Compared to the state-of-the-art solutions,

our method efficiently combines metric and semantic in-

formation, leveraging both RGB images and the disparity

maps extracted from the environment. Specifically, the 3D

points of the environment, generated from the disparity map,

are projected onto the segmented RGB image to efficiently

process only the ones associated with safe regions, obtaining

an effective and efficient solution. Furthermore, our method

does not need to build and store computationally intensive20
24

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 U

nm
an

ne
d

Ai
rc

ra
ft

Sy
st

em
s (

IC
UA

S)
 |

 9
79

-8
-3

50
3-

57
88

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IC
UA

S6
08

82
.2

02
4.

10
55

70
78

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:45:44 UTC from IEEE Xplore. Restrictions apply.

elevation maps. Instead it directly generates and updates a

2D binary map of safe and unsafe landing zones, without

sacrificing any relevant information compared to existing

approaches. Second, we define several cost metrics based

on critical geometric attributes such as slope, flatness, and

roughness, extracted from the visual information to assess

potential viable landing areas. Finally, our pipeline operates

on-board, without relying on any off-board streaming of data,

GPS or pre-obtained information. We demonstrate that our

framework successfully enables safe quadrotor landings in

multiple and challenging indoor environments.

II. RELATED WORKS

Several works address the problem of identifying a safe

landing zone and implementing autonomous landing pro-

cedures. The vast majority of the existing approaches are

vision-based, given the Size, Weight, and Power (SWaP)

constraints of small-size aerial robots. For example in [12]

the authors compute the local slope and roughness of a

Digital Elevation Model (DEM) to detect and avoid hazards

such as steep slopes, rocks, cliffs, and gullies. Another

approach, as described in [13], defines a cost function that

evaluates the physical properties of the local neighborhood

within an elevation map region to identify safe landing

areas, using a robot-centric fixed size map. This, however,

confines the environmental knowledge exclusively to the

region beneath the drone. The solution proposed in [10]

instead infers a safe landing zone by evaluating slope and

roughness from the DEM of the environment, obtained using

a Structure from Motion (SfM) algorithm. Conversely, the

authors in [9] apply a slope and roughness threshold to the

DEM image gradient, to only retain flat terrains. Since the

elevation maps are pre-determined, a Neural Network (NN)

segments the RGB images of the possible landing area as

a final evaluation step. The semantic information is used

to asses the validity of the area and to overcome the fact

that the maps could be outdated. Other works such as [11]

and [14] directly implement semantic segmentation on a

DEM. Segmentation is employed to classify hazardous and

safe landing locations without resorting to plane fitting tech-

niques or gradient thresholding. However, these approaches

rely on pre-collected LiDAR data to get the elevation models,

which may not be suitable for small-size UAVs and might

not always have access to up-to-date maps.

Yet, it is essential to develop general-purpose solutions that

do not rely on GPS [9], [12] or pre-determined maps [9],

[11], [14]. The former would be unsuitable for indoor or

GPS-denied environments, while the latter’s reliance on pre-

defined environment poses a challenge in dynamic settings,

potentially leading to catastrophic outcomes. [13] and [10]

further illustrate this by employing a fixed-size map, limiting

environmental awareness to the area directly below the drone,

thus disregarding a big portion of the overflown area. In [15],

the 3D information are lacking, consequently failing to

comprehensively address crucial factors like slope, flatness,

and roughness.

Compared to the aforementioned existing solutions, we

directly construct a variable dimension 2D binary map to

guide the drone toward a safe landing location. In such a

way, our approach does not need to derive any elevation

map, resulting in a lighter and more efficient implementation,

while still evaluating all the relevant aspects related to the

safe site detection. In addition, our pipeline stands out by

its independence from external aids such as GPS, off-board

or pre-obtained geometric information and autonomously

implements inspection and landing behaviours.

III. METHODOLOGY

Figure 2 gives an overview of the entire system’s pipeline.

The drone leverages a stereo camera pair combined with

data coming from an Inertial Measurement Unit (IMU)

to compute Visual-Inertial Odometry (VIO). The real-time

estimation of the drone’s position and orientation, with

respect to the fixed world reference frame (FW), is essential

for autonomous flight capabilities such as exploration and

autonomous landing. The 2D occupancy grid, on the other

hand, is generated considering the segmented RGB images

and the disparity maps obtained from a stereo pair. This

occupancy grid directly embeds both semantic and geometric

information, representing the safe and unsafe landing regions

of the environment. At the perception level, one key distinc-

tion between our approach and other methodologies lies in

the way we generate the map of safe and unsafe landing

locations. In most other approaches, the workflow involves

the initial construction of a DEM or an elevation map. Sub-

sequently, a binary map of the environment is created, and

safe landing areas are identified within this map. In contrast,

our method simplifies this process by directly creating a

2D variable-dimension occupancy grid, without the need for

elevation maps. This grid encodes a binary classification,

distinguishing safe and unsafe landing locations, while still

retaining the essential 3D information. Furthermore, it also

employs both metric and semantic information, unlike many

other approaches that rely solely on one type of information,

increasing the robustness of the overall solution. The grid is

dynamically updated based solely on the safe point cloud

data that meet all the safe site criterion.

Finally, based on this representation, in the evaluation

step we find the actual landing zone. From the 2D map

and the drone’s position we locate the best landing zone by

minimizing a cost function that considers (a) the drone’s

distance from a potential safe area and (b) the distance

of the closest unsafe point to a possible safe area. This

process is iterated across the entire map to find a safe

zone, large enough to accommodate the drone during landing

while also ensuring a safety margin. Once the inspection

behaviour concludes, or the necessity of landing arises,

the safe landing coordinates are retrieved and the landing

behaviour is performed autonomously.

A. Safe Site Detection

1) Semantic Information: The RGB images are seg-

mented through BiSeNetV2 [16], a real-time semantic seg-

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:45:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Overview of our autonomous safe site detection and landing system: we use our quadrotor with a NVIDIA Jetson

NX for computation and a stereo camera for VIO & mapping the environment. All our algorithms run in real-time onboard.

mentation neural network. Compared to an encoder-decoder

structure or the pyramid pooling modules often used in

semantic segmentation, this network proposes a bilateral

structure, namely treats the spatial details and categorical

semantics separately to achieve high accuracy and high

efficiency for real-time segmentation tasks. The features

extracted by the two branches of the dual-pathway back-

bone are then merged together by an aggregation layer.

Additionally, to enhance the inference time of the network,

we leverage the trained BiSeNetV2 model and we opti-

mize it through the NVIDIA TensorRT library [17]. This

significantly accelerates the network’s performance and also

reduces the model dimensions. The goal of the network is

to recognize image regions that are suitable for landing such

as grass fields, pavements, roads, floors, etc. For each pixel

in the image the NN associates a semantic meaning to it

f : (u, v) 7→ C (1)

where at each location (u, v) the pixel is characterized by

a label C. Knowing the relation between the label C ∈ R
+

and the corresponding class (e.g., C : 0 7→ safe landing,

C : 1 7→ people, C : 2 7→ obstacles, ...) we are able to infer

if the region is suitable for landing.

2) Geometric Information: From the stereo pair instead

we derive a disparity map. Utilizing the camera intrinsic and

extrinsic parameters, we calculate the Cartesian coordinates

(x, y, and z) of each point, generating the associated point

cloud. Subsequently, we re-project the point cloud on the

segmented image to only keep the points associated to a

safe landing region as








u′

v′

w

∗









=









fx 0 cx 0
0 fy cy 0
0 0 1 0
0 0 0 1









[

RRGB
SL tRGB

SL

0 1

]









x

y

z

1









, (2)

where fx and fy represent the focal length and cx and cy are

the optical center coordinates. Starting from a point (x, y,

and z) we determine its corresponding pixel coordinate (u,

v), using the transformation equations u = u′

w
and v = v′

w
.

It is important to note that in our case, the RGB camera

frame (FRGB) and the left stereo camera frame (FSL)

are not perfectly aligned. Thus, we account for the rigid

transformation between the two frames (HRGB
SL ∈ SE(3)),

as indicated in the second term of the right-hand side of

eq. (2). This adjustment ensures the accurate projection of

3D points onto the 2D image. Once we have the pixel

coordinates (u, v), we check if the corresponding image

location falls within a safe landing region. In the positive

case, the 3D point is retained; otherwise, it is flagged as

unsafe and discarded. By only considering the safe points

we speed-up the computation, improving the performance of

the algorithm.

Subsequently, the point cloud is filtered and down-sampled

to enhance its quality and suitability for safe landing site

detection. The point cloud is initially down-sampled using

a voxel grid filter. The ”leaf size” parameter controls the

voxel size, with larger values resulting in greater down-

sampling. In our case, we choose to retain one point each

0.1 × 0.1 m2, striking a balance between processing speed

and accuracy. Then, a statistical outlier removal filter is

applied in order to remove the points that significantly

deviate from the heuristic distribution of the point cloud.

To further improve the point cloud quality, we employ a

Moving Least Square (MLS) smoothing filter, resulting in a

smoother point cloud less affected by noise. Finally, a plane

fitting algorithm [18] is executed to identify planar regions

within the point cloud. This allows to retain only the points

associated to a flat surface, that also satisfy predefined slope

and roughness thresholds. However, to correctly assess the

metric properties of the scene, we first have to ensure that the

point cloud is aligned with the world reference frame (FW),

which conveniently coincides with our map reference frame

(F2DM). To this end we consider the rigid transformation

between the left stereo frame and the world frame HW
SL ∈

SE(3), since the point cloud is originally aligned with FSL.

By leveraging the drone’s odometry, we can compute HW
SL

and apply the necessary compensation to get the true plane’s

inclination. Moreover, in this way we also compensate for

the drone’s Roll, Pitch, and Yaw (RPY) rotation since it can

be tilted with respect to the surface. Subsequently, the plane

inclination can be computed considering the angle between

its normal vector n̂ = (nx,ny,nz) and the z-axis of the

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:45:44 UTC from IEEE Xplore. Restrictions apply.

world frame (parallel to the gravity vector ĝ) as

φx = atan2(z,ny), φy = atan2(z,nx). (3)

In our specific setup, any planes with inclinations exceeding

15° are considered unsafe. Furthermore, we can establish

whether a point qualifies as a plane inlier or not by evaluating

its distance to the fitted plane, thus defining the maximum

roughness admitted. To retrieve the distance of a point

from the fitted plane, we compute the magnitude of the

perpendicular vector connecting the point to the plane as

dist =
|Ax+By + Cz +D|√

A2 +B2 + C2
, (4)

where x, y and z are the point’s coordinates and A,B,C and

D are the plane coefficients. In our case if a point is more

than 0.05 m away from the plane it is considered unsafe. The

map is a composition of processed images and point clouds

that satisfy the safe site criteria detailed in this section.

B. Environment Assessment and Autonomous Landing

1) Environment Assessment: Up to this point, our knowl-

edge has provided us with a general understanding of the dis-

tribution of safe and unsafe points across the map. However,

our objective is to pinpoint the optimal landing location. To

achieve this, we search for a patch on the map that spans

an area approximately 1.85 times the size of the drone.

This patch must be a sufficiently large region consisting

exclusively of safe points and accounting for an additional

safety margin. The patch is considered safe when every cell

within it has a safety probability ”p” of 95% or higher. This

means that we ensure all cells in the designated patch are

highly likely to be safe, with safety probabilities ranging

from 0% to 100%, where 100% indicates complete safety.

The probability ”p” of each cell is computed as done in [19].

Once this area is found, we compute the associated cost

J = α · Jd + β · 1

Jun
, (5)

with α+β = 1 and α, β ∈ [0, 1], Jd is the distance between

the center of the safe zone and the drone while Jun is the

distance between the center of the safe zone and the closest

unsafe point. Jd and Jun are both computed as Euclidean

distances.

This approach prioritize landing zones that are not only

closer to the drone, but also farther away from unsafe

areas. Fine-tuning the parameters α and β enables us to

adjust the behavior for identifying the safest landing zone.

By increasing α and reducing β, the algorithm tends to

find a safe landing zone that is closer to the drone, but

potentially nearer to obstacles, and vice versa. Additionally,

our final evaluation takes into account the drone’s battery

consumption, which is influenced by the Euclidean distance

between the drone and the 3D landing location, as shown

in [20]. By iterating this last step over the whole map we

aim to minimize the cost function and only keep the safest

landing zone, namely the one associated to the lowest cost

possible. Whenever new areas are overflown or the drone

changes its position, the environment is re-perceived, the

map is updated accordingly and the best safe landing zone

is published.

In summary, our safe site detection pipeline employs a

comprehensive evaluation of region safety, taking into ac-

count both semantic information and geometric information,

including flatness, roughness, steepness, a distance transform

and the drone size.

2) Autonomous Landing: The landing step is pretty

straightforward and doesn’t require any particular process to

be involved. Once the landing is required, a minimum snap

trajectory generation algorithm [21], [22] is used to find a

path from the drone’s actual position to the safe landing spot.

When initiated, the drone follows this two-step behaviour:

• Fly above the safe landing zone, utilizing the minimum

snap trajectory.

• Decrease the height until it reaches the ground level.

This approach is employed since no collision avoidance

behaviour has been utilized, thus prioritizing safety and

avoiding any possible crash.

IV. RESULTS

To validate the proposed approach, we execute a series of

real experiments in a challenging, large indoor environment

measuring 26 × 10 × 4 m3, situated at the Agile Robotics

and Perception Lab (ARPL, New York University). In par-

ticular, our validation process involved two key aspects: (a)

environmental changes, to simulate different evaluation and

landing scenarios; (b) waypoints diversification, to simulate

different inspection strategies.

A. System Setup

Our drone is a compact and versatile system, with a

diameter of 0.27 m and a weight of 1.1 kg. It is equipped

with a PX4 Autopilot flight controller, for high level position

control, and a Nvidia Jetson NX computing board. For

convenience, without loss of generality of our approach, we

employ two stereo cameras to decouple the localization and

safe landing evaluation due to the camera characteristics,

introducing as well some redundancy in the system. The

first one, a RealSense T265 tracking camera, employed to

obtain a robust VIO and the second one, responsible for

mapping the environment and detecting the safe landing

zone. Depending on mission requirements and constraints,

it is also possible to effectively operate with a single stereo

camera, either pointing directly downward or tilted at a

45-degrees angle, not affecting the approach and results of

this work. The system relies on the ROS middleware [23],

facilitating communication and integration among the various

modules. Considering the real-time and resource-constrained

applications, these modules are managed by a nodelet, that

reduces computation and latency by sharing memory space

and avoiding inter-process communication overhead.

B. Neural Network Training and Evaluation

To train our network, we leverage the ADE20K semantic

scene parsing dataset [24], since it provides a wide set of

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:45:44 UTC from IEEE Xplore. Restrictions apply.

indoor and outdoor environments, covering a wide range of

classes and examples relevant for addressing the safe landing

task. However, rather than using the original 150 classes, we

have manually clustered them into 11: water, people/animals,

sky, trees, man-made obstacles, nature obstacles, safe land-

ing site, light, vehicles, background, buildings. In such a way

we enhance the inference time simplifying the problem and

allowing the segmentor to generalize better, as done in [9].

Our training pipeline is based on the PyTorch framework

developed by openMMLab [25]. It consists in an iteration-

based training process using a Stochastic Gradient Descent

(SGD) optimizer for 160 K iterations, and two NVIDIA

GPUs with batch size equal to 8. The optimizer parameters

are reported in Table I.

Optimizer parameters Value

Learning Rate 0.05

Momentum 0.9

Weight Decay 0.0005
Decay Type Polynomial Decay

Polynomial Decay parameters Value

Learning Ratemin 1× 10−4

Power 0.9

TABLE I: NN Training parameters

To improve the quality of our segmentation results, we

performed a fine-tunig on the NN using a custom indoor

dataset. The dataset includes approximately 1.2 K images

of common scenes within our lab environment. Notably, the

environments created for testing differ from the ones used

during the fine-tuning phase, since they incorporate new

scenes and objects for evaluation. Since manual labeling is a

very time-consuming activity, the Segment Anything Model

(SAM) [26] is used to facilitate the mask creation process.

SAM is designed to address the challenges of creating high-

quality masks for various objects in images. It is trained on

11M images with over 1B masks and can produce valid seg-

mentation masks in real-time, when prompted with different

types of inputs such as points, boxes, and text. Once the

masks are retrieved, we can assign the correct labels to each

one of them, thus identifying the ground truth of each image.

Furthermore, during training we employ a data augmentation

pipeline to increase the dataset size. This pipeline is based

on random resizing, random cropping, random flipping and

photometric distortion. The fine-tuning parameters coincide

with the one specified in Table I, with the exception that

training continued for another 80 K iterations. This resumed

from LR = 10−4 and finished with LRmin = 1× 10−5.

The NN runs on-board the Jetson NX at 7.1 Hz and

obtains a mean Intersection over Union (mIoU) of 67.51%
and a mean Accuracy (mAcc) of 85.21%. For a qualitative

evaluation of the segmentation results, please refer to Fig. 3.

C. Environment Assessment and Autonomous Landing

In our test scenario, we operate with a map resolution of

0.1 meters, while the designated safe landing zone measures

0.5×0.5 m2. The acquisition of RGB images and the stereo

pair occurs at a rate of 30 Hz, whereas the disparity maps

runs at 3 Hz, which suffices for our operational speeds. The

Fig. 3: Segmentation results in three different scenarios: on

the left column the RGB images, on the right column the

segmentation results. The green areas are considered unsafe.

processed point clouds and the safe landing locations are

instead published at a frequency of 1.1 Hz. However, if better

performances are required, we have the flexibility to increase

the updating frequency of the processed points. Finally, VIO

runs at 100 Hz.

For our tests, we select α = 0.65 and β = 0.35. As

detailed in eq. (5), we empirically observe that these settings

prioritize the term related to the drone’s proximity to the safe

landing area over the distance between the safe landing site

and obstacles. Moreover, the slope and roughness thresholds

are set respectively to 15° and 0.05 m.

The proposed pipeline is tested in several scenarios, in-

cluding different obstacle heights and densities and different

navigation patterns and speeds. In Fig. 4, we showcase the

mapping process and a full experiment in a low height,

middle density obstacles environment. After take-off, the

drone follows an ”8” navigation pattern and performs a

couple of flight runs over the environment. As we can see

from the succession of images in Fig. 4(b), each time the

drone perceives new areas, by following its path, the map

is updated accordingly. When the navigation behaviour is

concluded, the 2D occupancy grid is fully updated and the

drone can implement the final environmental assessment.

Once the safest landing area is identified, the drone finally

implements the autonomous landing. The last picture in

Fig. 4(b) shows the whole map with the safe landing zone

location and the drone’s path. Out of 7 tests performed

in different challenging environments, the drone is able to

safely land 6 times, showing its capability to detect a safe

landing zone with an overall success rate of 85.71%. The

unsuccessful landing is not attributed to any errors in seg-

mentation or metric data but rather to the grid discretization.

In this specific experiment, the grid size was excessively

large in comparison to certain low-height obstacles. Through

testing with a slightly smaller grid, we can effectively address

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:45:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: (a) Data acquisition & processing pipeline for the map creation and (b) Site evaluation and safe autonomous landing

experiment in a low height, middle density environment scenario with an ”8” navigation pattern.

(a) High density, low height obsta-
cles scenario. Acc = 76.5%.

(b) Long waypoints navigation pat-
tern scenario. Acc = 82.6%.

(c) Medium density, medium height
obstacle scenario 1. Acc = 91.4%.

(d) Medium density, medium height
obstacle scenario 2. Acc = 75.1%.

Fig. 5: 2D binary map of safe and unsafe landing locations,

overlayed to the real environment. The light green regions

are unsafe while the dark green are unknown and still to be

explored. Both of them are hazardous areas for landing.

this issue without impacting computational efficiency. By

overlaying the created 2D occupancy grid with the top view

of the environment, we can also quantitatively evaluate the

number of zones correctly ”classified” as safe or unsafe. We

evaluate the classification accuracy as

Acc =
TP + TN

TP + FP + FN + TN
, (6)

where TP are the true positive, TN the true negative, FP

the false positive and FN the false negative. In Fig. 5, we

show some of the results obtained during testing in four

environments, considering different obstacles heights, den-

sities, and navigation patterns. The mean accuracy (mAcc)

in identifying safe landing zones is approximately 81.4%.

V. CONCLUSION

In this work, we have presented a visual approach to

autonomously detect safe landing sites on-board a quadro-

tor, with limited SWaP resources. The proposed approach

allows accurate and efficient safe landing detection since it

combines both semantic and metric information and directly

computes a 2D binary map of the overflown environment,

thus avoiding the creation of expensive elevation maps.

Furthermore, we have also shown its ability to guarantee real-

time, safe autonomous landing in real-world environments.

In the future, we are considering to enhance the NN

performances by adopting more sophisticated architectures,

such as DeeplabV3+ [27]. In such a way we could improve

the accuracy in identifying a safe landing zone, since this

will in part be limited by the maximum network accuracy.

However, optimization is needed to obtain similar inference

times, given the higher model complexity. Moreover, we

aim to enhance the point cloud processing and the mapping

procedure. In particular, our current setup does not in-

corporate Simultaneous Localization and Mapping (SLAM)

capabilities, therefore we are prone to drift over large scale

environments. We are also thinking of using a monocular

camera and learning-based, efficient depth estimation tech-

niques for perceiving the environment, therefore avoiding

the use of stereo cameras. Additionally, we would like to

develop autonomous exploration environment strategies. This

process can still leverage multiple cost metrics employed in

this work. By prioritizing areas with lower costs, we can

autonomously guide the drone to directly explore areas that

appears to be safer, making our drone entirely self-sufficient.

ACKNOWLEDGMENT

We would like to thank Luca Morando and Pratyaksh P.

Rao for their contributions and support to this project.

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:45:44 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. A. Laghari, A. K. Jumani, R. A. Laghari, and H. Nawaz, “Un-
manned aerial vehicles: A review,” Cognitive Robotics, vol. 3, pp.
8–22, 2023.

[2] A. Otto, N. Agatz, J. Campbell, B. Golden, and E. Pesch, “Opti-
mization approaches for civil applications of unmanned aerial vehicles
(uavs) or aerial drones: A survey,” Networks, vol. 72, no. 4, pp. 411–
458, 2018.

[3] G. Li, X. Liu, and G. Loianno, “Safety-aware human-robot collabo-
rative transportation and manipulation with multiple mavs,” 2023.

[4] M. Morita, H. Kinjo, S. Sato, T. Sulyyon, and T. Anezaki, “Au-
tonomous flight drone for infrastructure (transmission line) inspec-
tion (3),” in International Conference on Intelligent Informatics and

Biomedical Sciences (ICIIBMS), 2017, pp. 198–201.

[5] N. Gageik, P. Benz, and S. Montenegro, “Obstacle detection and
collision avoidance for a uav with complementary low-cost sensors,”
IEEE Access, vol. 3, pp. 599–609, 2015.

[6] A. Devo, J. Mao, G. Costante, and G. Loianno, “Autonomous single-
image drone exploration with deep reinforcement learning and mixed
reality,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp.
5031–5038, 2022.

[7] C. S. Tang and L. P. Veelenturf, “The strategic role of logistics in
the industry 4.0 era,” Transportation Research Part E: Logistics and

Transportation Review, vol. 129, pp. 1–11, 2019.

[8] H.-W. Choi, H.-J. Kim, S.-K. Kim, and W. S. Na, “An overview of
drone applications in the construction industry,” Drones, vol. 7, no. 8,
2023.

[9] C. Symeonidis, E. Kakaletsis, I. Mademlis, N. Nikolaidis, A. Tefas,
and I. Pitas, “Vision-based uav safe landing exploiting lightweight
deep neural networks,” in Proceedings of the 2021 4th International

Conference on Image and Graphics Processing, ser. ICIGP ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
13–19.

[10] P. Schoppmann, P. F. Proença, J. Delaune, M. Pantic, T. Hinzmann,
L. Matthies, R. Siegwart, and R. Brockers, “Multi-resolution elevation
mapping and safe landing site detection with applications to plane-
tary rotorcraft,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2021, pp. 1990–1997.

[11] R. Moghe and R. Zanetti, “A deep learning approach to hazard detec-
tion for autonomous lunar landing,” The Journal of the Astronautical

Sciences, vol. 67, pp. 1–20, 10 2020.

[12] A. Johnson, J. Montgomery, and L. Matthies, “Vision guided landing
of an autonomous helicopter in hazardous terrain,” in IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2005, pp.
3966–3971.

[13] C. Forster, M. Faessler, F. Fontana, M. Werlberger, and D. Scaramuzza,
“Continuous on-board monocular-vision-based elevation mapping ap-
plied to autonomous landing of micro aerial vehicles,” in IEEE

International Conference on Robotics and Automation (ICRA), 2015,
pp. 111–118.

[14] K. Tomita, K. A. Skinner, and K. Ho, “Bayesian deep learning
for segmentation for autonomous safe planetary landing,” Journal of

Spacecraft and Rockets, vol. 59, no. 6, pp. 1800–1808, 2022.

[15] X. Guo, S. Denman, C. Fookes, L. Mejias, and S. Sridharan, “Au-
tomatic uav forced landing site detection using machine learning,”
in International Conference on Digital Image Computing: Techniques

and Applications (DICTA), 2014, pp. 1–7.

[16] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang, “Bisenet
v2: Bilateral network with guided aggregation for real-time semantic
segmentation,” International Journal of Computer Vision (IJCV), vol.
129, pp. 3051–3068, 2021.

[17] Nvidia tensorrt documentation. [Online]. Available: https://docs.nvidi
a.com/deeplearning/tensorrt/

[18] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, p. 381–395,
jun 1981.

[19] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees,” Autonomous Robots, 2013, software
available at http://octomap.github.com. [Online]. Available: http:
//octomap.github.com

[20] J. Park, Y. Kim, and S. Kim, “Landing site searching and selection
algorithm development using vision system and its application to

quadrotor,” IEEE Transactions on Control Systems Technology, vol. 23,
no. 2, pp. 488–503, 2015.

[21] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation,
control, and planning for aggressive flight with a small quadrotor with
a single camera and imu,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 404–411, April 2017.

[22] J. Mao, S. Nogar, C. M. Kroninger, and G. Loianno, “Robust active
visual perching with quadrotors on inclined surfaces,” IEEE Transac-

tions on Robotics, vol. 39, no. 3, pp. 1836–1852, 2023.
[23] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: An open-source robot operating
system,” 2009.

[24] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and
A. Torralba, “Semantic understanding of scenes through the ade20k
dataset,” International Journal of Computer Vision (IJCV), vol. 127,
pp. 302–321, 2019.

[25] M. Contributors, “MMSegmentation: Openmmlab semantic segmen-
tation toolbox and benchmark,” https://github.com/open-mmlab/mms
egmentation, 2020.

[26] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Gir-
shick, “Segment anything,” 2023.

[27] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Computer Vision – ECCV 2018, V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer
International Publishing, 2018, pp. 833–851.

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:45:44 UTC from IEEE Xplore. Restrictions apply.

