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Fig. 1: From cluttered indoor to urban and rural outdoor settings, our foundation detector precisely detects a range of objects

from humans to pigeons and custom drones (white). The tracker, initially prompted by the user, maintains visibility of the

desired object (red), while the visual controller swiftly navigates the quadrotor toward the target.

Abstract— Visual control enables quadrotors to adaptively
navigate using real-time sensory data, bridging perception
with action. Yet, challenges persist, including generalization
across scenarios, maintaining reliability, and ensuring real-time
responsiveness. This paper introduces a perception framework
grounded in foundation models for universal object detection
and tracking, moving beyond specific training categories. Inte-
gral to our approach is a multi-layered tracker integrated with
the foundation detector, ensuring continuous target visibility,
even when faced with motion blur, abrupt light shifts, and
occlusions. Complementing this, we introduce a model-free
controller tailored for resilient quadrotor visual tracking. Our
system operates efficiently on limited hardware, relying solely
on an onboard camera and an inertial measurement unit.
Through extensive validation in diverse challenging indoor and
outdoor environments, we demonstrate our system’s effective-
ness and adaptability. In conclusion, our research represents a
step forward in quadrotor visual tracking, moving from task-
specific methods to more versatile and adaptable operations.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/35sX9C1wUpA

I. INTRODUCTION

Unmanned aerial vehicles, especially quadrotors, have

recently proliferated across multiple applications like search

and rescue, transportation, and inspections thanks to their

agility, affordability, autonomy, and maneuverability [1]–[7].

These advantages catalyzed research in control algorithms,

with visual navigation as an emerging paradigm [8]–[10].

Historically, quadrotor control relied on trajectory-tracking

methods from predetermined waypoints [11]–[15]. Although

rooted in physics, these methods posed challenges due to the

∗These authors contributed equally.
The authors are with the New York University, Tandon School of En-

gineering, Brooklyn, NY 11201, USA. email: {as16054, pr2257,

vr2171, jx1190, loiannog}@nyu.edu.
This work was supported by the NSF CAREER Award 2145277, the

DARPA YFA Grant D22AP00156-00, Qualcomm Research, Nokia, and
NYU Wireless.

transformation of sensory data through multiple abstraction

levels. This often led to computational burdens and latency,

especially in dynamic conditions [16]–[19].

Addressing these challenges, visual control methods have

emerged, unifying perception and control. By process-

ing real-time sensory data directly for robotic control,

these methods offer improved performance in dynamic set-

tings [20]–[23]. However, their initial dependency on hand-

designed features and rigorous calibration made them less

effective in unpredictable settings [24]–[27].

The advent of deep learning has dramatically improved

this area, making it more precise and adaptable [28]–[35].

However, ensuring consistent performance across diverse

environments remains challenging. The segment-anything

model (SAM) shows promise with its zero-shot generaliza-

tion [36]. However, the real-time inference capability of this

foundation model limits its usability in robotics, a limitation

that persists even in its recent adaptations [37]–[39].

Our research delves into visual control for quadrotors,

focusing on controlling the robot to detect, track, and fol-

low arbitrary targets with ambiguous intent in challenging

conditions. We chose this task to validate the real-time data

processing and generalization of this technique. Effective

target tracking under complex flight conditions requires real-

time sensory data processing and robust generalization across

scenarios. Our contributions are threefold: (i) Development

of a perception framework optimized for real-time monocular

detection and tracking. Our approach integrates foundation

models for detecting and tracking beyond predefined cat-

egories. We introduce a tracker utilizing spatial, temporal,

and appearance data to ensure continuous target visibility,

even when faced with motion blur, abrupt light shifts, and

occlusions. (ii) Introduction of a model-free controller for

quadrotor visual tracking that ensures the target remains in

the camera’s view while minimizing the robot’s distance

from the target. Our controller relies solely on an onboard

camera and inertial measurement unit, providing effective
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operation in GPS-denied environments. (iii) Comprehensive

validation of our system across varied indoor and outdoor

environments, emphasizing its robustness and adaptability.

II. RELATED WORKS

Detection and Tracking. Historically, object detection

and tracking predominantly depended on single-frame de-

tections [40]–[43]. Within this paradigm, unique features

were extracted from bounding boxes in isolated frames to

identify and track objects across temporal video sequences

consistently. Among them, YOLO-based models were the

most popular detectors adopted, thanks to their exceptional

accuracy and efficiency [44]–[47].

A recent innovation is the SAM model [36], which is rec-

ognized for its superior generalization capability. Although

its capabilities were unparalleled, SAM’s architecture is

inherently computationally demanding, making it suboptimal

for real-time applications. This drove the development of the

optimized FastSAM [37], which integrated YOLO to offset

SAM’s computational constraints.

Despite the advantages of these methods, they faced sig-

nificant challenges with rapid object motion and occlusions,

resulting in trajectory prediction inaccuracies. Therefore,

several studies leveraged tracking algorithms’ temporal data

to enhance object detection [48]–[50]. For instance, hybrid

approaches such as TAM [38] and SAM-PT [39] were devel-

oped by combining the high-performance SAM detector with

state-of-the-art trackers such as XMem and PIPS [51], [52].

Though effective, these approaches compromised real-time

processing, a critical attribute for deployment on embedded

platforms such as quadrotors.

Visual Control. Visual control refers to the use of vi-

sual feedback to control the motion of robots [23], [53].

Historically, advancements in visual control for robotics

were linked to the principles of image-based visual servoing

(IBVS) [54]. IBVS generated control commands for the

robot by evaluating the differences between the current and

a reference image. Early results in IBVS showed promise in

achieving precise control in various robotic applications [55],

[56]. Specifically for quadrotors, [57]–[59] introduced IBVS

methods for target tracking and maintaining positions over

landmarks like landing pads.

Recent research in aerial vehicle visual control focuses on

target tracking in dynamic 3D environments. Multiple studies

investigate model-based and robust visual control [60]–[64]

and develop control policies using imitation and reinforce-

ment [65]–[72]. For instance, [16] proposes a visual control

method that enables a quadrotor to fly through multiple open-

ings at high speeds. Concurrently, [73] and [74] demonstrate

methods for landing on moving platforms. Recently, [75]

presents a visual control mechanism tailored for tracking

arbitrary aerial targets in 3D settings.

Yet, many of these techniques presuppose specific knowl-

edge about the system, targets, or environmental conditions,

which restricts their broader adaptability. In contrast, our

methodology abstains from modeling assumptions. Through

the integration of foundation vision models, we maximize

generalization, ensuring our system’s adaptability and effi-

cacy across diverse scenarios, and bolstering its applicability

and robustness in real-world settings.

III. METHODOLOGY

The objective is to enable a quadrotor to detect, track, and

follow an arbitrary target with ambiguous intent in challeng-

ing conditions (Figure 2). We tackle this by integrating: (i) a

universal detector with real-time accuracy. Unlike traditional

models, ours harnesses foundation models, detecting objects

beyond predefined categories; (ii) a tracker to synergize with

our foundation detector. It leverages spatial, temporal, and

appearance data, ensuring target visibility despite challenges

like motion blur, sudden lighting alterations, and occlusions;

(iii) a model-free visual controller for quadrotor tracking.

This optimizes the target’s presence within the camera’s field

while minimizing distance from the target.

A. Target-Agnostic Real-Time Detection

Ensuring model generalization on unseen data is essential

in diverse, real-world settings. While conventional models

excel in specific conditions, they might struggle in unpre-

dictable environments. Foundation models, with their vast

datasets, cover a wider array of feature representations.

Building on SAM [36] and FastSAM [37], we utilize the

YOLACT architecture [44] integrated with foundation model

strengths. The detector employs a ResNet-101 backbone with

a feature pyramid network for multi-scale feature maps. For

an image sized (H,W, 3), it produces bounding boxes B =
b1, . . . , bn, where bi = (xi, yi, wi, hi) denotes the bounding

box’s top-left coordinate, width, and height.

B. Multi-layered Tracking

Initialization. To initiate tracking at time t = 0, a user

identifies a point (px, py) on the image to signify the target.

The L2 distance between this point and the center of each

bounding box is calculated as

di = ∥(px, py)− (xi + wi/2, yi + hi/2)∥2. (1)

The bounding box closest to this point is the initial target

bt=0

target = arg min
bt
i
∈B

di. (2)

Once initialized, tracking bt=0

target amid challenges like motion

blurs, occlusions, and sensor noise is vital.

Tracking. The objective is selecting the optimal bounding

box encapsulating the target from the detector’s outputs at

each time t. This is defined as a maximization problem

bttarget = argmax
bt
i
∈B

starget

(

bti
)

, (3)

where the combined score for bounding box bti is

starget

(

bti
)

= λIOUsIOU

(

bti
)

+ λEKFsEKF

(

bti
)

+ λMAPsMAP

(

bti
)

,

(4)

where scores sIOU, sEKF, and sMAP represent spatial coher-

ence (intersection over union, IOU), temporal prediction via
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Fig. 2: Our proposed framework for detecting (white), tracking (red), and following arbitrary targets using quadrotors. The

user-prompted target is detected and tracked over time by combining a real-time foundation detector with our novel multi-

layered tracker. The quadrotor is continually controlled to navigate toward the target while maintaining it in the robot’s view.

an extended Kalman filter (EKF), and appearance stabil-

ity (through cosine similarity of multi-scale feature maps,

MAP), respectively. The associated weights, λIOU, λEKF, and

λMAP, determine each metric’s priority.

1) Spatial Coherence: Consistent correspondence be-

tween the target’s bounding box at consecutive frames is

essential. The IOU metric measures this consistency. For

bounding boxes b1 and b2, the IOU is

IOU (b1, b2) =
area(b1 ∩ b2)

area (b1 ∪ b2)
, (5)

where ∩ and ∪ denote intersection and union, and area of a

bounding box is its width times height. For each bounding

box bti in the frame, its IOU score to the last target bounding

box is

sIOU(b
t
i) = IOU

(

bt−1

target, b
t
i

)

. (6)

2) Temporal Consistency: Spatial coherence can be in-

sufficient, especially with occlusions or inconsistencies. To

enhance tracking, we combine spatial data with kinematic

information using an EKF with a constant velocity model

and gyroscope compensation.

Given an image sized (H,W, 3) with target’s bounding

box btarget = (x, y, w, h), and gyroscope’s angular velocity

in the camera frame,
[

ωx ωy ωz
]¦

, we define state and

control input vectors as

x =
[

x y w h ẋ ẏ
]¦

and u =
[

ωx ωy ωz
]¦
. (7)

The target’s motion and covariance are modeled through

a nonlinear stochastic equation, with constant velocity and

angular velocity compensation to be robust to fast camera

rotations. For details, the reader can refer to [76]. Our model

augments states w, h, consistent in the process model.

Each gyroscope measurement lets the EKF predict b̂target

for the visual controller. This operation lets the controller

function at gyroscope speed, independent of camera and

detector rates.

Upon receiving a frame, each bounding box bti receives an

EKF score, computed as

sEKF(b
t
i) = IOU

(

b̂target, b
t
i

)

. (8)

Following the optimization in eq. (3), the EKF updates

state and covariance vectors as in [76].

3) Appearance Robustness with Memory: In tracking with

unlabeled bounding boxes across frames, the object’s ap-

pearance is crucial for consistency. Feature maps from the

detector capture object variations as continuous descriptors.

These maps help re-identify objects during occlusions or

detector inconsistencies.

For each bounding box, our tracker extracts appearance

information from feature maps. Each box is associated with

feature vectors from the detector’s features at its center.

To enhance appearance tracking, we integrate a memory

mechanism using a complementary filter (CF). At each itera-

tion, the tracker computes the appearance score, sMAP (b
t
i), as

the cosine similarity between the CF memory-stored features

and the features of the current bounding box

sMAP

(

bti
)

=
Ftmemory · Fbt

i

∥Ftmemory∥2 × ∥Fbt
i

∥2
, (9)

where Ftmemory and Fbt
i

are the feature vectors from the CF’s

memory and the current bounding box. The CF memory

update is

Ftmemory ← αFt−1

memory + (1− α)Fttarget, (10)

where α ∈ [0, 1] and Fttarget is the feature from the predicted

target bounding box. To avoid biases, we obscure areas

outside the target box, re-feed this masked image to the

detector, and re-extract the center feature values. This ensures

that the retained memory mainly comes from the target. This

operation is batch-parallelized, not affecting the detector’s

inference time.
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C. Visual Control

Inspired by admittance control and SE(3) group theory,

we formulate a model-free visual controller that processes

raw data from the camera and inertial sensors to reduce its

distance to the target while keeping it in its field of view.

In the dynamics of quadrotors, forward movement results

in pitching. This pitching action can change the target’s po-

sition on the camera plane. Notably, the pitch predominantly

influences the vertical position of the target, emphasizing the

need to center the target in the image for optimal tracking.

To account for this, the vertical setpoint sy is adjusted by the

current pitch angle, θ. For an image of dimensions (H,W, 3),
the setpoints are

sx =
W

2
and sy =

H

2
− 2

θ

v
, (11)

with v as the vertical field of view obtained through cam-

era calibration [77]. Then, the position errors between the

setpoint (sx, sy) and target’s predicted location (px, py) are

ew = sx − px and eh = sy − py. (12)

These errors drive the desired force in the world frame

f td = m



R





âtθ
kpφew + kdφėw
kpτeh + kdτ ėh



+ g



 , (13)

where kpφ, kdφ, kpτ , kdτ are respectively proportional and

derivative gains for roll and thrust, m is the quadrotor’s mass,

R is the current rotation of the quadrotor obtained by the

inertial measurement unit, and g =
[

0 0 −9.81
]¦

represents

the gravity vector. The desired pitch acceleration at each step

is determined by

âtθ = βât−1

θ + (1− β)āθ, (14)

with β ∈ [0, 1] modulating rise time and āθ representing

a fixed pitch acceleration. The CF is essential for limiting

quadrotor jerks during initial tracking phases.

Through these equations, the controller derives the desired

force based on the error between the detector’s prediction and

the setpoints. Subsequently, using e3 =
[

0 0 1
]¦

, this force

is converted into thrust

τd = (R−1fd)
¦e3. (15)

To find the desired orientation, we first compute the

desired yaw ψd using

ψd = ψ + (kpψew + kdψ ėw)δt, (16)

with ψ as the quadrotor’s current yaw and kpψ and kdψ
proportional and derivative gains for yaw. Then, the desired

orientation matrix Rd is

Rd =
[

r1 r2 r3
]

, (17)

with column vectors (following the ZYX convention)

r3 = fd/∥fd∥,

r2 =
[

cos(ψd) sin(ψd) 0
]¦
,

r1 = r2 × r3.

(18)

Finally, the controller’s thrust and orientation predictions

guide an attitude PID controller in generating motor com-

mands. For the mathematical formulation of the PID con-

troller [78].

IV. EXPERIMENTAL RESULTS

Our evaluation procedure addresses the following ques-

tions: (i) How does our perception framework generalize

to common and rare object categories? (ii) Is the tracker

resilient to occlusions and detection failures? (iii) What is

the dependency of the tracker parameters? (iv) How reliable

is the approach across challenging flight conditions? For a

comprehensive understanding, we encourage the reader to

consult as well the attached multimedia material.

A. Setup

System. Our quadrotor, with a mass of 1.3 kg, is powered

by a 6S battery and four motors. It uses an NVIDIA Jetson

Xavier NX for processing and captures visual data through

an Arducam IMX477 at 544× 960. The framework operates

in real-time: the controller processes at 100 Hz with each

inertial measurement, while the perception framework is at

60 Hz with each camera frame. Tests occurred at New York

University in a large indoor environment measuring 26 ×
10 × 4 m3, situated at the Agile Robotics and Perception

Lab (ARPL) and in large outdoor fields in New York State.

Perception. We utilize the Ultralytics repository [79] for

implementing the foundation detector, modifying the code

to extract feature maps at scales of 1/4, 1/8, 1/16, and

1/32, and efficiently exporting the model through Ten-

sorRT [80]. Our designed tracker uses weights λIOU = 3,

λEKF = 3, λMAP = 4, CF rise time α = 0.9, and

EKF process and measurement noise matrices respectively

Q = diag(
[

0.01 0.01 0.01 0.01 0.1 0.1
]

) and R =
diag(

[

0.5 0.5 0.5 0.5
]

).
Control. For target distance, indoor and outdoor quadrotor

pitch accelerations are āθ = 0.5 m/s2 and āθ = 5 m/s2. The

controller uses gains kpφ = 0.05, kdφ = 0.001, kpτ = 0.08,

kdτ = 0.00025, kpψ = 0.095, kdψ = 0.0004, and β = 0.15.

B. Perception Generalization Performance

Common Categories. We test our perception framework

with drone-captured videos of common objects [81] and

compare it to a YOLO baseline model [79]. We initiate

our tracker using the baseline’s first detected object. Each

indoor video features a stationary target, including TV, table,

and umbrella, against cluttered backgrounds. Outdoor videos

capture moving targets like a car on an asphalt road or a

human running in a park. Our drone maintains its tracking

with no target occlusions. For evaluation, we employ several

metrics. The IOU assesses the overlap between our predic-

tions and the YOLO baseline. Overlap measures how often

our model’s predictions align with the baseline’s predictions,

Tracked represents the proportion of frames where the target

was consistently tracked to the video’s conclusion.

The results, detailed in Table I, indicate that our model

tracks closely to the YOLO baseline with an overlapping
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TABLE I
TRACKING COMMON OBJECT CATEGORIES

Category # Frames IOU [%] Overlap [%] Tracked [%]

Human 1763 42 91 100
Car 2120 54 95 100
Tv 890 90 98 100

Table 2304 92 97 100
Umbrella 791 31 88 100

TABLE II
TRACKER ABLATION STUDY

λIOU λEKF λMAP
Human Drone

Tracked [%] Tracked [%]

3 0 0 8 2
3 3 0 49 11
3 0 4 100 24
3 3 4 100 100

Fig. 3: Despite the YOLO baseline’s extensive training on 80 categories, it struggles to recognize custom drones, irregular

trash cans, and pool noodles. In contrast, our foundation detector showcases significant adaptability and robustness, accurately

identifying these unique objects without prior specific training.

Fig. 4: Our detection and tracking algorithm’s resilience and accuracy. Top row: Indoor spatial-temporal tracking of a human

against occlusions. Bottom row: Tracking of our custom-made drone, highlighting re-identification capabilities.

frequency of about 94%. However, the IOU score is roughly

62%. This discrepancy is attributed to our foundation model’s

non-target-aware nature during its training phase. As a result,

it occasionally recognizes multiple bounding boxes for a

singular target, which impacts the IOU score negatively.

Rare Categories. We evaluate the generalization capa-

bilities of our perception framework to rare categories of

objects, including custom-made drones, irregularly shaped

trash cans, and soft pool noodles. The results, illustrated

in Figure 3, qualitatively compare the performance of our

foundation detector with the YOLO baseline. Even though

the baseline is comprehensively trained on 80 categories,

the rare characteristics and shapes of the considered objects

make the baseline fail in detecting the instances in the

scene. On the contrary, our foundation detector demonstrates

high generalization capabilities, successfully detecting and

tracking these rare objects with consistent and remarkable

accuracy. Despite not being specifically trained for these

categories, the inherent flexibility and adaptive nature of

our perception framework allow it to generalize beyond

its training set. These results validate the adaptability to

different and novel object categories of our model.

C. Tracking Resiliency Post-Disruption

Our comprehensive analysis further investigates the re-

identification ability of our approach after potential detection

failure and target occlusions. As shown in Figure 4, we

conduct our experiments in a controlled indoor setting. Both

the camera and the targets are actively moving, and there are

multiple instances where the target is strategically occluded.

First, we track a human target. The results show that our

system can effectively track even when the target is briefly

occluded, without needing specific category training.

Then, we track a custom-made drone in the same complex

indoor environment. Due to its distinct irregular shape, the

drone had a notably higher rate of false positives compared to

the human. However, our approach still manages to track the

drone with accuracy, re-identifying it even after brief periods

of misclassification, thanks to the deep feature similarity

embedded in our tracker.
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Fig. 5: Demonstrating our system’s ability to detect, track, and navigate toward an asymmetrically shaped trash can within

a featureless narrow corridor, hence highlighting the efficacy of our visual control method.

Fig. 6: The human target transitions from outdoor to indoor settings, showcasing our system’s ability to adapt to rapid

lighting shifts and maintain consistent tracking.

D. Tracker Ablation Study

We conduct an ablation study to evaluate each weight in

our perception framework, particularly in conditions of in-

door clutter and target occlusions. For these experiments, we

use human and drone video data from previous experiments,

as illustrated in Figure 4. The results are reported in Table II.

In the human dataset, relying on spatial data is inadequate

as occlusions or failed detections cause tracking failure. Even

adding temporal consistency does not compensate due to the

target’s unpredictable motion. Prioritizing appearance robust-

ness alone ensures tracking by facilitating re-identification

after uncertain motions and occlusions, but the best accuracy

is achieved when all components are combined.

For the drone dataset, depending solely on spatial coher-

ence or combining it with temporal consistency is ineffective

due to false positive detections. Emphasizing only appear-

ance robustness is also ineffective. Because it depends on

the smooth motion of the quadrotor, a feature only temporal

consistency provides. Thus, successful tracking for the drone

dataset is achieved when all mechanisms are integrated.

E. Flight Through Narrow Featureless Corridors

We assess our system’s ability to detect, track, and nav-

igate toward an asymmetric trash can within a featureless

corridor (Figure 5). During the flight, our system is capable

of reaching speeds up to 4 m/s. This task demonstrates the

superiority of our visual control methodology over traditional

strategies. Conventional control methods would falter in such

corridors due to their reliance on global state estimations that

require unique landmarks. Conversely, our method leverages

relative image-based localization, foregoing the need for

global positional data. This boosts quicker adaptive responses

and resilience in featureless settings. The illustrated results

validate the system’s capability to accurately track the target

in this challenging environment, underscoring the prowess of

visual control.

F. Human Tracking Through Forests and Buildings

We tested our approach in diverse outdoor settings, track-

ing a human target while sprinting on a road, moving through

a building, and running in a dense forest (see Figure 1 and

Figure 6), with target speeds up to 7 m/s. Humans were

chosen due to their unpredictable movement and no bat-

tery dependencies. Transitions, such as entering a building,

introduce lighting changes, requiring quick adaptation. The

forest environment presented issues with foliage and varied

light. Despite these challenges, our quadrotor consistently

tracked the human, showcasing our system’s adaptability and

robustness.

V. CONCLUSION AND FUTURE WORKS

Although promising, visual control faces challenges in

generalization and reliability. Addressing this, we introduced

a visual control methodology optimized for target tracking

under challenging flight conditions. Central to our innovation

are foundation vision models for target detection. Our break-

through hinges on our novel tracker and model-free con-

troller, designed to integrate seamlessly with the foundation

model. Through experimentation in diverse environments, we

showed that our approach not only addresses the challenges

of visual control but also advances target tracking, moving

from task-specific methods to versatile operations.

Moving forward, leveraging the detector’s dense predic-

tions will allow us to learn our robot’s dynamics with respect

to the target and its environment. To ensure safe navigation,

we aim to incorporate a learning-based reactive policy in

the controller, mitigating collision risks while maintaining

target tracking. Furthermore, it is crucial to guarantee that the

target remains within the camera’s view. As such, we intend

to explore predictive control solutions using control barrier

functions. These enhancements will optimize our system’s

performance, fortifying its capability for intricate real-world

applications.
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[41] G. Brasó and L. Leal-Taixé, “Learning a neural solver for multiple
object tracking,” in IEEE/CVF International Conference on Computer

Vision and Pattern Recognition (CVPR), 2020, pp. 6247–6257.

[42] H.-K. Jung and G.-S. Choi, “Improved yolov5: Efficient object detec-
tion using drone images under various conditions,” Applied Sciences,
vol. 12, no. 14, p. 7255, 2022.

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:49:16 UTC from IEEE Xplore.  Restrictions apply. 



[43] D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-time flying object
detection with yolov8,” arXiv preprint arXiv:2305.09972, 2023.

[44] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance
segmentation,” in IEEE/CVF International Conference on Computer

Vision (CVPR), 2019, pp. 9157–9166.

[45] Q. Song, S. Li, Q. Bai, J. Yang, X. Zhang, Z. Li, and Z. Duan, “Object
detection method for grasping robot based on improved yolov5,”
Micromachines, vol. 12, no. 11, p. 1273, 2021.
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