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Learning to Fly in Seconds
Jonas Eschmann , Dario Albani , and Giuseppe Loianno , Member, IEEE

Abstract—Learning-based methods, particularly Reinforcement
Learning (RL), hold great promise for streamlining deployment,
enhancing performance, and achieving generalization in the con-
trol of autonomous multirotor aerial vehicles. Deep RL has been
able to control complex systems with impressive fidelity and agility
in simulation but the simulation-to-reality transfer often brings
a hard-to-bridge reality gap. Moreover, RL is commonly plagued
by prohibitively long training times. In this work, we propose a
novel asymmetric actor-critic-based architecture coupled with a
highly reliable RL-based training paradigm for end-to-end quadro-
tor control. We show how curriculum learning and a highly op-
timized simulator enhance sample complexity and lead to fast
training times. To precisely discuss the challenges related to low-
level/end-to-end multirotor control, we also introduce a taxonomy
that classifies the existing levels of control abstractions as well as
non-linearities and domain parameters. Our framework enables
Simulation-to-Reality (Sim2Real) transfer for direct Revolutions
Per Minute (RPM) control after only 18 seconds of training on
a consumer-grade laptop as well as its deployment on microcon-
trollers to control a multirotor under real-time guarantees. Finally,
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our solution exhibits competitive performance in trajectory track-
ing, as demonstrated through various experimental comparisons
with existing state-of-the-art control solutions using a real Crazyflie
nano quadrotor. We open source the code including a very fast
multirotor dynamics simulator that can simulate about 5 months
of flight per second on a laptop GPU. The fast training times and
deployment to a cheap, off-the-shelf quadrotor lower the barriers
to entry and help democratize the research and development of
these systems.

Index Terms—Aerial systems: applications, machine learning for
robot control, reinforcement learning.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/NRD43ZA1D-4

Code: https://github.com/arplaboratory/learning-to-fly

Parameters: {Code} → ./media/parameters.pdf

I. INTRODUCTION

W
ITH the availability of cheap Commercial Off-The-Shelf

(COTS) gyroscopes and accelerometers that are imple-

mented as Microelectromechanical Systems (MEMS), the large-

scale production of cheap Unmanned Aerial Vehicles (UAVs),

particularly quadrotors, became viable. Bearing Vertical Take-

Off and Landing (VTOL) as well as hovering capabilities a

myriad of use cases, such as search and rescue, infrastructure

inspection, or package delivery emerged. Leveraging classical,

cascaded control hierarchies, multirotors are able to perform

a variety of tasks. However, these control approaches require

domain expertise and engineering to be adapted to new platforms

and use cases. At the same time, the recent developments in

machine learning and particularly the success of deep learning

for supervised tasks like image classification [1], [2], raise the

question if these learning-based capabilities could be trans-

ferred to quadrotor control. In contrast to supervised learning,
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TABLE I
TRAINING TIMES

(multirotor) control is a decision-making problem that can be

phrased as a Markov Decision Process (MDP) where labels

usually do not directly exist. To solve MDPs, RL has been

employed to train policies for complex end-to-end continuous

control problems in simulation [3], [4], [5], [6]. However, while

the results attained in simulation are impressive, transferring

end-to-end control policies to real-world systems has proven

challenging. This is mainly due to model inaccuracies, partial

observation of the state, observation and action noise, and other

disturbances. Additionally, RL is well known to be sensitive

to the choice of hyperparameters and reward function design.

The requirement for hyperparameter tuning and reward function

design, in combination with long training times for end-to-end

control as shown in Table I, can prohibit fast iteration and

create a barrier to entry. To better highlight the challenges and

clarify the scope of true end-to-end control, we describe the

different levels of quadrotor dynamics and control by develop-

ing a taxonomy to categorize related work. We argue that the

abstractions in classic control stacks introduce information loss

(e.g., actuator constraints in differential flatness-based control)

and constrain the expressivity of the control policy. Due to

Bellman’s Principle of Optimality (BPO), the optimal policy

for a decision/control problem can be represented as a function

mapping from states/observations to actions. Hence, in theory,

the optimal policy can be expressed as a neural network which

in the limit is a general function approximator [7]. Compared to

general function approximators, classical control stacks (based

on multi-level abstractions) have limited expressivity and can

not necessarily represent the optimal policy, especially when

accounting for evermore (non-linear) factors in the simulation.

Optimization-based controllers can circumvent this limitation

but are usually too computationally expensive to run end-to-end

control under real-time constraints on microcontrollers. Hence,

we believe it can be desirable to design an end-to-end controller

using RL, directly mapping the quadrotor state to RPM outputs.

We observe that the end-to-end control of quadrotors using

state-of-the-art deep RL techniques (especially using off-policy

RL) is not well explored and documented. It is particularly

unclear which level of performance end-to-end policies can

achieve compared to classic controllers when deployed directly

on a real quadrotor under real-time constraints. With this work,

we aim to push the boundaries of deep RL-based end-to-end

quadrotor control and present the following contributions
� RL-based end-to-end controller design: We propose a

novel asymmetric actor-critic-based architecture coupled

Fig. 1. Taxonomy of multirotor dynamics and control.

with a highly reliable training paradigm for true end-to-end

quadrotor control (level 5.1 outputs, cf. Fig. 1 and Table I).

The proposed training paradigm takes advantage of the

ground truth available in the simulator while explicitly

accounting for the partial observability of the real system

using an action history.
� Best sample complexity: We devise a curriculum that

gradually increases the penalties in the reward function

leading to better sample complexity and more reliable

policies. We show the benefit of the components in our

proposed training paradigm by conducting an extensive

ablation study containing 300 real-world trajectories across

different configurations, seeds and tasks. In contrast to ex-

isting works, our training setup uses off-policy RL and we

demonstrate the training of an end-to-end quadrotor control

policy using the fewest number of environment interactions

reported.
� Fastest training time: By implementing a highly opti-

mized simulator, we demonstrate the fastest training of an

end-to-end quadrotor control policy that can be transferred

to a real system.
� Sim2Real: We conduct extensive experiments including

more than 300 flights across configurations, seeds and

tasks to test the Sim2Real transfer of end-to-end policies

for direct RPM control. We show that training a position

controller using our setup generalizes to other tasks like

(agile) trajectory tracking.
� Open Source1: We open-source our setup to facilitate re-

search, enabling everyone with a consumer-grade laptop to

train and deploy state-of-the-art quadrotor control policies

in a matter of seconds, greatly reducing the barriers to

entry in this research area and therefore contributing to

democratize the use of these approaches.

1https://github.com/arplaboratory/learning-to-fly
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II. MULTIROTOR DYNAMICS AND CONTROL TAXONOMY

In the following, we introduce a taxonomy classifying the

different abstraction levels in multirotor dynamics and control.

We believe this taxonomy to be beneficial to the discussion as

it allows for the precise categorization of different controllers,

particularly those that we analyze in the related work (see

Section III). Furthermore, it explicitly exposes at which levels

non-linearities and domain parameters exert an influence on the

motion of multirotors. We list the different control levels based

on the order of the system when expressed in terms of a flat

state [8]. The taxonomy shown in Fig. 1 is expressed from the

perspective of a position controller and each subsequent level

denotes a lower level of control inputs. The sub-bullets denote

non-linear transformations that allow expressing the dynamical

system using different inputs. These transformations are not only

challenging because of the non-linearity they bear but also due to

the additional system/domain parameters they might introduce

(marked in square brackets). It is worth noting that every layer

incorporates an additional level of indirection, manifesting in

the form of integrators. The lower the input level to the system

is chosen, the more detached the effect on the higher level

(e.g., the position) is from the cause (e.g., RPM setpoints). For

controllers on the lowest levels, the cause-effect relationship

traverses through up to five orders of integration and multiple

non-linear transformations that are dependent on system param-

eters. We would like to highlight that 3.1 Angular rate & thrust

inputs are commonly referred to as “low-level” commands but

from the taxonomy, we can see that there is only one domain

parameter (mass) and otherwise just the rotational kinematics of

a rigid body. Alternatively, 3.1 Angular rate & thrust inputs

are also commonly referred to as Collective Thrust and Body

Rates (CTBR) inputs. Compared to the CTBR level, the reality

gap and complexity of the system greatly increases towards the

lowest levels like 5.1 Motor commands/RPM setpoints which

is the level of control used in this work. The high order of inte-

gration between inputs and the desired output (position) poses

a great challenge for RL algorithms because the high-frequency

exploratory actions (from ε-greedy-like exploration schemes)

are already suppressed in the early layers and hence lead to

high-sample complexity and unreliable training behavior. In our

proposed architecture, we overcome this challenge by using

a combination of off-policy RL, curriculum learning, and by

scheduling the exploration noise. From Fig. 1, we can observe

that the complexity of the control problem and the size of the

reality gap, follows a superlinear scaling where most of the

non-linear dynamics and system parameters can be found in

the lower levels.

III. RELATED WORKS

Simulators: In the past, a large number of general robotics and

specifically quadrotor simulators have been proposed. Many of

these focus on visual fidelity and photo-realistic reproduction of

the environment (e.g., to enable realistic RGB camera percep-

tion) [9], [10], [11], [12]. Others, as the one presented in this

work, focus on the accurate implementation of quadrotor dy-

namics [11], [12], [13], [14]. Among the referenced simulators,

Flightmare [11] is the most related because it emphasizes the

simulation speed of the quadrotor dynamics for the sake of RL.

Our simulator also focuses on fast dynamics but since we are

concerned with low-level control we just provide a basic User

Interface (UI) instead of the photo-realism that is offered by

other simulators.

Reinforcement learning for quadrotor control: As described

in Section II, it is usually easier to learn controllers on the higher

levels, especially for Sim2Real transfer. Hence, a lot of work

that focuses on downstream tasks has been using CTBR and

higher-level control inputs to train RL based agents. The use of

velocity commands has been particularly common [15], [16],

[17], [18], [19], [20]. Fewer works also use orientation level

commands [21], [22] or angular rate commands (CTBR) [20],

[23], [24], [25]. The latter is usually used when increased agility

is required (e.g., for acrobatics, racing, or flying through a

narrow gap). We would like to highlight that, while impressive,

recent work on learned, champion-level drone racing [25] is

using higher-level control outputs (level 3.1 CTBR) and heavily

relies on classic lower-level controllers to bridge the Sim2Real

gap. In their work, the policy is only exposed to rotational

kinematics and uncertainty about the mass, which is easy to

identify (cf. Table I, Fig. 1). Our end-to-end policy (level 5.1

Motor commands) is faced with the full stack of non-linearities

and uncertainties about the dynamics parameters.

To use the quadrotor dynamic’s full potential, the focus

has been shifting to training agents outputting individual rotor

thrusts (also referred to as Single Rotor Thrusts (SRT)) [20],

[26], [27], [28], [29], [30]. The authors in [31] even go lower-

level, training a controller outputting RPM. These represent the

works that are closely related to our proposed solution. In the

following, we discuss their similarities and differences. One of

the earliest demonstrations of the successful application of deep

RL for quadrotor control has been presented in [26]. The authors

train a position controller that outputs individual rotor thrusts but

in contrast to our approach, they are using a complex training

procedure (exploration scheme) that requires a resettable simula-

tor and drives up the sample complexity to more than 100 million

environment steps. Additionally, they do not take into account

rotor delays and their code is not available. In [27], the authors

apply domain randomization to transfer a policy that outputs

SRT to different quadrotors but they require knowledge about the

particular thrust-to-weight ratio and thrust limits. In comparison,

our approach demonstrates Sim2Real transfer without domain

randomization and without modifications to the state estimation

in the firmware as well as much faster training times (comparison

in Table I). In [20] the authors perform a benchmark of training

controllers outputting velocity, CTBR and SRT commands but

in contrast to our work they do not manage to transfer the

low-level controller (SRT) to the real world. Moreover, in all of

the aforementioned works as well as in [20], [28], [29], [30], SRT

control outputs are used which simplify the learning problem

by not exposing the agent to the non-linear RPM ↔ thrust

relationship. Lastly in [31], RPM outputs are used but rather than

cutting out lower-level controls to simplify the learning problem

as commonly done and described in Section II, they discard the

higher-level control and take CTBR as input from a high-level
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Fig. 2. Overview of the training and inference setup with a view of the simulator UI (left).

controller. In addition, in contrast to our method, [31] requires

a state history and domain randomization as well as training

for 2 h and 100 M steps. Furthermore, [31] only works under

near-hover conditions and fails for agile trajectories (unlike ours,

cf. Table III, Fig. 5(c) and the video). Lastly, the complexity

of the method and the lack of an open-source implementation

inhibit replication. In contrast to all the most related work which

rely on on-policy, policy gradient RL algorithms (particularly

Proximal Policy Optimization (PPO) [6]), we use Twin Delayed

Deep Deterministic policy gradient (TD3) [32], an off-policy RL

algorithm which offers better sample complexity and achieves

very fast wall-clock training times.

IV. METHODOLOGY

To be able to take full advantage of the capabilities of the robot,

we phrase our control problem as an MDP where the policy di-

rectly maps states to motor commands in the form of RPMs. We

select quaternions to represent orientation as they are a compact

and global representation. However, for the observations fed

into the actor and critic, we convert them to rotation matrices to

remove the ambiguity stemming from the quaternion’s double

coverage of the space of rotations. Since we model the motors

as a first-order low-pass filter, RPMs are also part of the state.

This makes the state 17 dimensional with the following structure

s = {p,q,v,ω,ωm}, consisting of position, orientation, linear

and angular velocity and motor speeds respectively. We imple-

ment the standard dynamics of a quadrotor subject to motor

delays (please refer to e.g. [11], [20], [25] or our parameter

reference link). On real platforms, motor speeds are usually not

observable and RPM setpoints are fed to the Electronic Speed

Controller (ESC) in a feed-forward, one-way fashion through

Pulse-Width Modulation (PWM). Hence, we implement an

asymmetric actor-critic scheme [33], where the critic, being only

required during training, has access to privileged information

from the simulator as shown in Fig. 2. In particular, we let the

critic access the RPMs and a random force fr and torque τ r

disturbance that are sampled at the beginning of each episode

to increase the robustness of the trained policies. Hence, the

privileged observations of the critic are represented by a 28

dimensional vector oc = {p,R,v,ω,ωm, fr, τ r} consisting

of position, orientation, linear velocity, angular velocity, rotor

speeds, force disturbance, and torque disturbance respectively.

We also notice that the delay in the step-response is sig-

nificant and caused by the motors’ low-pass behavior. This

behavior also strongly impacts the dynamics of the 27 g nano

quadrotor (Crazyflie) used in this work. Common values for

the RC equivalent time constant (1− e−1 ≈ 63% step response)

are between 0.05 s and 0.25 s. We empirically find 0.15 s to be

suitable for Sim2Real transfer which is also supported by the

manufacturers measurements.2 These delays are significantly

larger than the usual control interval of low-level controllers

which usually run at around hundreds of Hz. Therefore, these

delays lead to actions only impacting the state after 5 to 25

control steps. To mitigate this large level of partial observability,

we add a history of control actions to the actor’s observation.

The action history is a proprioceptive measurement that can be

trivially implemented in software on any real-world platform

without requiring additional hardware (in contrast to direct RPM

feedback measurements). Therefore, the actor’s observations are

18 +NH · 4 dimensional, where NH is the length of the action

history, and are defined as follows: oa = {p,R,v,ω,H} with

H being the action history.

While the critic observes the ground truth state, the actor’s

observations are additionally perturbed using observation noise

to account for imperfections in the sensors (the scale of the noise

components is described with all other parameters in the supple-

mentary material). The actions consist of the RPM setpoints as

a = {ωsp1, ωsp2, ωsp3, ωsp4} which places our policy/controller

on the lowest order (level 5.1) of the taxonomy described in

Section II.

For the initial state distribution, we sample from a diverse

set of positions, orientations, linear and angular velocities as

well as rotor speeds. We use a negative squared cost with an

additive constant incentivizing survival to mitigate the “learning

2Crazyflie motor step response: https://web.archive.org/web/
20220309092320/https://www.bitcraze.io/wp-content/uploads/2015/02/M1-
step-response.png
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to terminate” problem [34]

r(s,a, s′) = − Crp‖p‖
2

2
− Crq

(

1− qw
2
)

− Crv‖v‖
2

2

− Crω‖ω‖2
2
− Cra‖a− Crab‖

2

2
+ Crs.

The values of the constantsC∗ are supplied in the supplementary

material. Additionally, we find that a simple curriculum that is

transitioning from an initial set of constants Cinit,∗ to a more re-

strictive Ctarget,∗ (punishing position errors and particularly con-

trol actions more harshly) benefits the sample complexity and

Sim2Real transfer (as described in Section V). Every 100 000

steps the weights are adjusted by multiplying them by the Cp∗

factors described in the supplementary material until they reach

the Ctarget,∗ values, where they remain constant. We also decay

the exploration noise using the same exponential scheme as

in the curriculum of the reward function.

We would also like to highlight that we train a position

controller, not merely a stabilizing controller that only works

around a particular state. The goal of our position controller

is to return to the origin point with zero linear velocity from

any initial conditions (within reasonable bounds described in

the parameters in the supplementary material). Hence, we train

a policy that can go to any position or velocity setpoint by

shifting the current position and velocity (so there is no need

to apply goal-conditioned RL). For stable behavior, the position

and velocity errors induced by the shifted setpoints should not

exceed the errors seen during training which can easily be

accommodated for by clipping.

To facilitate fast training times we implement a highly op-

timized simulator for multirotor dynamics. A sample view of

the interface is shown in Fig. 2 (left). By leveraging C++

template metaprogramming the simulation code can be highly

optimized by the compiler and can be tightly integrated into the

RLtools [35] deep RL framework.

V. EXPERIMENTAL SETUP

Simulation: We run our multirotor dynamics simulator on a

Nvidia T2000 laptop GPU and attain 1284 million steps/s. To

reach this level of performance, 64 blocks of 128 threads are

each executing the forward dynamics in parallel. This amounts

to 8192 environments in total which are run for 1 000 000 steps

each. The required execution time of the GPU kernel is 6380ms
amounting to 1284 million steps/s. At a simulation frequency

of 100Hz this is about 5 months of simulated flight per second.

Compared to Flightmare [11] which is the state of the art in

terms of dynamics simulation speed with a reported frequency

of 200 000 steps/s on a laptop, our simulation is about 6420×
faster.

Training: Leveraging the training setup described in

Section III and using the RLtools RL framework [35], we train

a low-level quadrotor control policy. Fig. 3 shows the learning

curve in terms of the returns (sum of rewards per episode). Purely

looking at the reward/returns, it is hard to judge the level of flying

capabilities of a particular policy because it is highly dependent

on the reward function formulation. We believe the episode

length is a more understandable measure than the return because

if the agent crashes or flies away from a tight box around the

Fig. 3. Episode return (µ and σ over 50 runs with different initial seeds).

Fig. 4. Episode lengths (µ and σ over 50 runs with different initial seeds).
Note, compared to Fig. 3 the horizontal axis is zoomed in to highlight the initial
phase.

origin, the episode is terminated. Hence, from Fig. 4 we can see

that after about 300 000 steps (total number of interactions with

the environment) or 18 s of training on a 2020 MacBook Pro,

the policy has learned to fly relatively reliably. In comparison

to related work (listed in Table I) our approach is substantially

faster and requires an order of magnitude less samples when

compared to learned policies on a similar level of control outputs.

We investigate the 50 differently seeded training runs by

selecting the 5 seeds with the worst cumulative number of steps

over the whole training run (area under the curve) shown in

Fig. 4. We notice that even the worst 5 runs learn to fly rapidly.

This shows the remarkable reliability of our training approach

which is not commonly expected from RL training pipelines

(e.g., in [27] the authors state that cherry-picking across many

seeds is required to find a policy that can fly). This remarkable

level of reliability is also confirmed by real-world experiments

that are described in the following.

VI. RESULTS

Ablation study: To show the impact of the different com-

ponents of the training setup (as shown in Fig. 2) on the
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TABLE II
ABLATION STUDY

performance during training and real-world deployment, we

conduct a large-scale ablation study and present the results in

Table II. To account for the inherent stochasticity of the observa-

tion noise and training process, we take a moving average over

the previous 10 evaluations for the episode return and length met-

rics. The evaluation takes place every 1000 steps, hence the mov-

ing window covers 10 000 steps. We train each configuration for

up to 3 000 000 steps using 50 different initial seeds each. Figs. 3

and 4 are generated from the 50 runs of the baseline configura-

tion (containing all components). Furthermore, we execute the

resulting policy after 300 000 and 3 000 000 steps of training

using the first 10 different seeds of each configuration on a real

Crazyflie quadrotor. We manually terminate the position control

episodes after 20 s of flying because in our experience, at this

level, policies can fly without crashing until the battery runs

out. In the case of the trajectory tracking task, we complete 4

subsequent cycles or report a failed attempt if the quadrotor

crashes beforehand. We report the mean and median as well

as the minimum of the position error across the 10 runs/seeds.

The minimum positional error is a particularly interesting metric

because it corresponds to cherry-picking which is common in

related works (e.g., [27]). Since the curriculum entails changes

in the reward function and we apply reward recalculation of

all rewards in the replay buffer after each modification of the

reward function, we also ablate the setup without reward recalcu-

lation. Note that the configurations differ in the added/removed

complexity. The components observation noise, reward recal-

culation, exploration noise decay, and disturbances are minor

changes, while the asymmetric actor-critic structure, action

history as well as rotor delay, and the curriculum are larger

modifications.

From the results in Table II, we can see that overall (and

particularly when executed on the real system) the baseline

is the most reliable with no crashes in any of the tasks/seed

combinations. In general, we can observe a trend that removing

the smaller modifications still yields reliable policies (early

during the training as well as after convergence). In contrast,

when removing the more complex components, we can see a

more pronounced drop in reliability as well as tracking perfor-

mance. Here, we can observe that the curriculum indeed strongly

impacts the training speed. Without the curriculum, the policies

are not able to fly early on while after convergence they reach

a comparable performance to the baseline. We can observe a

similar behavior when removing the Asymmetric Actor-Critic

(AAC) and hence also ablate removing both, the asymmetric

actor-critic and the curriculum and find that the training takes

considerably longer and even after 3 000 000 steps most of the

policies are crashing. As deduced from first principles, we can

also confirm that training without simulating the rotor delay

leads to no usable policy. When simulating the rotor delays but

not including the action history we can still see a considerable

drop in reliability and positional accuracy, particularly after

3 000 000 steps where the policy seems to be overfitting the

system dynamics. This validates the need for an action history

to account for the partial observability in our training setup.

When taking into account the average episode lengths and

returns achieved by the different configurations during training

in simulation we can only observe a loose correlation between

simulation and real-world performance. As described earlier, the

episode lengths appear to be a better gauge for the real-world

performance as well.

We conclude that overall the baseline configuration with all

components and the configurations with minor ablations yield

the best performance when taking into account the speed of

training (sample complexity) and position error. We observe

that the baseline configuration yields the most reliable policies

at all stages and anecdotally is also most robust with respect to

e.g. turbulent wind (cf. the supplementary video). For trajectory

tracking, after 3 000 000 steps in particular, we find that the

configuration without exploration noise gives the lowest tracking
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Fig. 5. Real-world tracking of a Lissajous trajectory with different cycle times (reference trajectory in black).

Fig. 6. Long exposure photo of the real-world tracking of a Lissajous trajectory
with a 5.5 s cycle time.

error among the tested seeds and hence chose it for the trajectory

tracking experiments in the next section.

Trajectory tracking: In addition, even though we train a

position controller, we find that the resulting policies can track

trajectories like the Lissajous in Fig. 5 when deployed on the real

quadrotor. This is obtained by feeding into the policy an offset.

We test the tracking performance using a figure-eight Lissajous

trajectory p(t) =
[

cos(2πt/T ) sin(4πt/T )/2 const
]�

with

varying cycle times T and show the tracking performance in

Fig. 5. We conduct the experiments in a flying space of 10×
6× 4m3 at the Agile Robotics and Perception Lab (ARPL) at

New York University (equipped with a Vicon motion capturing

system). We can see that our trained policy is able to track

even agile trajectories like in Fig. 5(c) where it reaches up to

3ms−1 and accelerations of up to 0.9 g. In Fig. 6, we show a

long-exposure photo of the trajectory in Fig. 5(b) being tracked

by one of our policies.

We execute the same trajectory using different types of

classical controllers: Proportional-Integral-Derivative (PID),

geometric [8], nonlinear [36] and Incremental Non-Linear Dy-

namic Inversion (INDI) [37]. We report the results in Table III.

Additionally, we also compare the proposed solution to addi-

tional RL baselines. We replicate the related works [27] and [30].

In accordance with the original work (cf. Table I), we train them

for 84 000 000 and 16 000 000 steps respectively. In the case

of [27], we find that none out of 10 seeds leads to a policy that

can fly the real drone. We extracted a trained checkpoint from

the firmware provided by the authors. We found this checkpoint

to be able to fly the trajectories but exhibit major oscillations

and tracking error for the normal and fast trajectories. Based

on the authors’ instructions we believe this checkpoint was

cherry-picked across even more seeds. In comparison, we found

the method by [30] to train more reliably and to result in low

TABLE III
REAL-WORLD TRAJECTORY TRACKING

position error for the slow trajectory. On the other hand, the

policies trained using [30] exhibited poor yaw control (spinning

around z while tracking the trajectory) and crashed for the

normal-speed trajectory for 7/10 seeds and for 10/10 seeds in

the fast case. We also test training [27] and [30] for only 300 000

and 3 000 000 steps for 10 seeds each (same as our method) but

none of the resulting policies were able to fly. Across the classic

controllers, we find that for slow trajectories, the geometric

controller [8] achieves lower tracking error than our method.

While for normal-speed trajectories our method is on par with

the best classic controllers, it outperforms other approaches in

the fast case.

VII. CONCLUSION

In this letter, we presented an unprecedentedly fast end-to-end

RL architecture for quadrotor control that directly outputs RPMs

and can be trained to fly a real quadrotor in 18 s on consumer-

grade laptops. The approach directly transfers to real-world

platforms even without domain randomization. Compared to

prior work, our approach leads to very reliable training behavior

and does not require the cherry-picking of trained policies.

Furthermore, we conducted a large ablation study validating

our design decisions and found that our method is competitive

with other classic and learned controllers. We open-source our

approach and simulator setup to the community to democratize

learning-based quadrotor control. Due to the curse of dimension-

ality, the design space (in terms of hyperparameters and other

design decisions) of RL-based end-to-end quadrotor control is

still sparsely explored and we believe that our experimental

results constitute a foundation that future research can build
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upon. Our proposed training paradigm and the resulting highly

optimized implementation allow for greatly reduced training

times and hence more rapid iteration. Furthermore, the Crazyflie

quadrotor uses open-source firmware, is widely available and

inexpensive.

Future works will push the training speed and robustness as

well as the tracking performance of learned low-level controllers

through automatic hyperparameter optimization. Furthermore,

we are interested in extending the policy to be adaptive to chang-

ing system or environment parameters like battery levels or wind,

possibly using integral compensation [38] or meta-RL [39].
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