6336

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

Learning to Fly in Seconds

Jonas Eschmann

, Dario Albani

After training for 18s

Abstract—Learning-based methods, particularly Reinforcement
Learning (RL), hold great promise for streamlining deployment,
enhancing performance, and achieving generalization in the con-
trol of autonomous multirotor aerial vehicles. Deep RL has been
able to control complex systems with impressive fidelity and agility
in simulation but the simulation-to-reality transfer often brings
a hard-to-bridge reality gap. Moreover, RL is commonly plagued
by prohibitively long training times. In this work, we propose a
novel asymmetric actor-critic-based architecture coupled with a
highly reliable RL-based training paradigm for end-to-end quadro-
tor control. We show how curriculum learning and a highly op-
timized simulator enhance sample complexity and lead to fast
training times. To precisely discuss the challenges related to low-
level/end-to-end multirotor control, we also introduce a taxonomy
that classifies the existing levels of control abstractions as well as
non-linearities and domain parameters. Our framework enables
Simulation-to-Reality (Sim2Real) transfer for direct Revolutions
Per Minute (RPM) control after only 18 seconds of training on
a consumer-grade laptop as well as its deployment on microcon-
trollers to control a multirotor under real-time guarantees. Finally,

Manuscript received 18 November 2023; accepted 3 April 2024. Date of
publication 1 May 2024; date of current version 31 May 2024. This letter was
recommended for publication by Associate Editor E. Johns and Editor A. Faust
upon evaluation of the reviewers’ comments. This work was supported in part by
the Technology Innovation Institute, the NSF CAREER under Grant 2145277,
and in part by the DARPA YFA under Grant D22AP00156-00. (Corresponding
author: Jonas Eschmann.)

Jonas Eschmann is with the New York University, Tandon School of Engi-
neering, Brooklyn, NY 11201 USA, and also with the Autonomous Robotics
Research Center, Technology Innovation Institute, Abu Dhabi, UAE (e-mail:
jonas.eschmann@nyu.edu).

Dario Albani is with the Autonomous Robotics Research Center, Technology
Innovation Institute, Abu Dhabi, UAE (e-mail: dario.albani @tii.ae).

Giuseppe Loianno is with the New York University, Tandon School of
Engineering, Brooklyn, NY 11201 USA (e-mail: loiannog @nyu.edu).

Giuseppe Loianno serves as consultant for the Technology Innovation In-
stitute. This arrangement has been reviewed and approved by the New York
University in accordance with its policy on objectivity in research.

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2024.3396025, provided by the authors.

Digital Object Identifier 10.1109/LRA.2024.3396025

, and Giuseppe Loianno

, Member, IEEE

Deployment

our solution exhibits competitive performance in trajectory track-
ing, as demonstrated through various experimental comparisons
with existing state-of-the-art control solutions using a real Crazyflie
nano quadrotor. We open source the code including a very fast
multirotor dynamics simulator that can simulate about 5 months
of flight per second on a laptop GPU. The fast training times and
deployment to a cheap, off-the-shelf quadrotor lower the barriers
to entry and help democratize the research and development of
these systems.

Index Terms—Aerial systems: applications, machine learning for
robot control, reinforcement learning.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/NRD43ZA1D-4
Code: https://github.com/arplaboratory/learning-to-fly
Parameters: {Code} — ./media/parameters.pdf

I. INTRODUCTION

ITH the availability of cheap Commercial Off-The-Shelf

(COTS) gyroscopes and accelerometers that are imple-
mented as Microelectromechanical Systems (MEMS), the large-
scale production of cheap Unmanned Aerial Vehicles (UAVs),
particularly quadrotors, became viable. Bearing Vertical Take-
Off and Landing (VTOL) as well as hovering capabilities a
myriad of use cases, such as search and rescue, infrastructure
inspection, or package delivery emerged. Leveraging classical,
cascaded control hierarchies, multirotors are able to perform
a variety of tasks. However, these control approaches require
domain expertise and engineering to be adapted to new platforms
and use cases. At the same time, the recent developments in
machine learning and particularly the success of deep learning
for supervised tasks like image classification [1], [2], raise the
question if these learning-based capabilities could be trans-
ferred to quadrotor control. In contrast to supervised learning,

2377-3766 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

ESCHMANN et al.: LEARNING TO FLY IN SECONDS

TABLE I
TRAINING TIMES

Publication Level Time Samples
2019 271t 4.2/51 30h 84 x 10°
2020 [28] 43 N/A 10 x 106
2021 [29] 43 ~ 2h N/A
2021 [23] 2.1 27m 1x106
2022 (301t 4.2/51 1.2h 16 x 10°
2023 [25] 3.1 50m 100 x 106
Ours 5.1 18s 0.3 x 108

4.2/5.1: Policy outputs 4.2, simulation 5.1. ": Used as a
baseline in Table III.

(multirotor) control is a decision-making problem that can be
phrased as a Markov Decision Process (MDP) where labels
usually do not directly exist. To solve MDPs, RL has been
employed to train policies for complex end-to-end continuous
control problems in simulation [3], [4], [5], [6]. However, while
the results attained in simulation are impressive, transferring
end-to-end control policies to real-world systems has proven
challenging. This is mainly due to model inaccuracies, partial
observation of the state, observation and action noise, and other
disturbances. Additionally, RL is well known to be sensitive
to the choice of hyperparameters and reward function design.
The requirement for hyperparameter tuning and reward function
design, in combination with long training times for end-to-end
control as shown in Table I, can prohibit fast iteration and
create a barrier to entry. To better highlight the challenges and
clarify the scope of true end-to-end control, we describe the
different levels of quadrotor dynamics and control by develop-
ing a taxonomy to categorize related work. We argue that the
abstractions in classic control stacks introduce information loss
(e.g., actuator constraints in differential flatness-based control)
and constrain the expressivity of the control policy. Due to
Bellman’s Principle of Optimality (BPO), the optimal policy
for a decision/control problem can be represented as a function
mapping from states/observations to actions. Hence, in theory,
the optimal policy can be expressed as a neural network which
in the limit is a general function approximator [7]. Compared to
general function approximators, classical control stacks (based
on multi-level abstractions) have limited expressivity and can
not necessarily represent the optimal policy, especially when
accounting for evermore (non-linear) factors in the simulation.
Optimization-based controllers can circumvent this limitation
but are usually too computationally expensive to run end-to-end
control under real-time constraints on microcontrollers. Hence,
we believe it can be desirable to design an end-to-end controller
using RL, directly mapping the quadrotor state to RPM outputs.
We observe that the end-to-end control of quadrotors using
state-of-the-art deep RL techniques (especially using off-policy
RL) is not well explored and documented. It is particularly
unclear which level of performance end-to-end policies can
achieve compared to classic controllers when deployed directly
on a real quadrotor under real-time constraints. With this work,
we aim to push the boundaries of deep RL-based end-to-end
quadrotor control and present the following contributions
® RL-based end-to-end controller design: We propose a
novel asymmetric actor-critic-based architecture coupled

Difficulty & Uncertainty

Y

Fig. 1.

6337

0. Position

1. Velocity

2. Acceleration

2.1 Attitude/orientation & thrust: Non-linear orienta-
tion — acceleration transfer function [mass]

3. Jerk

3.1 Angular rate & thrust (CTBR): Non-linear rota-
tional kinematics

4. Snap

4.1 Body torque & thrust: Rotational dynamics [iner-
tia

4.2 Int]lividual rotor thrusts (SRT): [vehicle geometry]

4.3 RPMs: Non-linear torque/thrust curves
[torque/thrust model parameters]

5. Crackle

5.1 Motor commands/RPM setpoints: [first-order low-
pass time constant (motor delay)]
5.2 Motor effort: [battery level]

Taxonomy of multirotor dynamics and control.

with a highly reliable training paradigm for true end-to-end
quadrotor control (level 5.1 outputs, cf. Fig. 1 and Table I).
The proposed training paradigm takes advantage of the
ground truth available in the simulator while explicitly
accounting for the partial observability of the real system
using an action history.

Best sample complexity: We devise a curriculum that
gradually increases the penalties in the reward function
leading to better sample complexity and more reliable
policies. We show the benefit of the components in our
proposed training paradigm by conducting an extensive
ablation study containing 300 real-world trajectories across
different configurations, seeds and tasks. In contrast to ex-
isting works, our training setup uses off-policy RL and we
demonstrate the training of an end-to-end quadrotor control
policy using the fewest number of environment interactions
reported.

Fastest training time: By implementing a highly opti-
mized simulator, we demonstrate the fastest training of an
end-to-end quadrotor control policy that can be transferred
to a real system.

Sim2Real: We conduct extensive experiments including
more than 300 flights across configurations, seeds and
tasks to test the Sim2Real transfer of end-to-end policies
for direct RPM control. We show that training a position
controller using our setup generalizes to other tasks like
(agile) trajectory tracking.

Open Source’: We open-source our setup to facilitate re-
search, enabling everyone with a consumer-grade laptop to
train and deploy state-of-the-art quadrotor control policies
in a matter of seconds, greatly reducing the barriers to
entry in this research area and therefore contributing to
democratize the use of these approaches.

Thttps://github.com/arplaboratory/learning-to-fly

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

6338

II. MULTIROTOR DYNAMICS AND CONTROL TAXONOMY

In the following, we introduce a taxonomy classifying the
different abstraction levels in multirotor dynamics and control.
We believe this taxonomy to be beneficial to the discussion as
it allows for the precise categorization of different controllers,
particularly those that we analyze in the related work (see
Section III). Furthermore, it explicitly exposes at which levels
non-linearities and domain parameters exert an influence on the
motion of multirotors. We list the different control levels based
on the order of the system when expressed in terms of a flat
state [8]. The taxonomy shown in Fig. 1 is expressed from the
perspective of a position controller and each subsequent level
denotes a lower level of control inputs. The sub-bullets denote
non-linear transformations that allow expressing the dynamical
system using different inputs. These transformations are not only
challenging because of the non-linearity they bear but also due to
the additional system/domain parameters they might introduce
(marked in square brackets). It is worth noting that every layer
incorporates an additional level of indirection, manifesting in
the form of integrators. The lower the input level to the system
is chosen, the more detached the effect on the higher level
(e.g., the position) is from the cause (e.g., RPM setpoints). For
controllers on the lowest levels, the cause-effect relationship
traverses through up to five orders of integration and multiple
non-linear transformations that are dependent on system param-
eters. We would like to highlight that 3.1 Angular rate & thrust
inputs are commonly referred to as “low-level” commands but
from the taxonomy, we can see that there is only one domain
parameter (mass) and otherwise just the rotational kinematics of
a rigid body. Alternatively, 3.1 Angular rate & thrust inputs
are also commonly referred to as Collective Thrust and Body
Rates (CTBR) inputs. Compared to the CTBR level, the reality
gap and complexity of the system greatly increases towards the
lowest levels like 5.1 Motor commands/RPM setpoints which
is the level of control used in this work. The high order of inte-
gration between inputs and the desired output (position) poses
a great challenge for RL algorithms because the high-frequency
exploratory actions (from e-greedy-like exploration schemes)
are already suppressed in the early layers and hence lead to
high-sample complexity and unreliable training behavior. In our
proposed architecture, we overcome this challenge by using
a combination of off-policy RL, curriculum learning, and by
scheduling the exploration noise. From Fig. 1, we can observe
that the complexity of the control problem and the size of the
reality gap, follows a superlinear scaling where most of the
non-linear dynamics and system parameters can be found in
the lower levels.

III. RELATED WORKS

Simulators: In the past, a large number of general robotics and
specifically quadrotor simulators have been proposed. Many of
these focus on visual fidelity and photo-realistic reproduction of
the environment (e.g., to enable realistic RGB camera percep-
tion) [9], [10], [11], [12]. Others, as the one presented in this
work, focus on the accurate implementation of quadrotor dy-
namics [11], [12], [13], [14]. Among the referenced simulators,

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

Flightmare [11] is the most related because it emphasizes the
simulation speed of the quadrotor dynamics for the sake of RL.
Our simulator also focuses on fast dynamics but since we are
concerned with low-level control we just provide a basic User
Interface (UI) instead of the photo-realism that is offered by
other simulators.

Reinforcement learning for quadrotor control: As described
in Section II, it is usually easier to learn controllers on the higher
levels, especially for Sim2Real transfer. Hence, a lot of work
that focuses on downstream tasks has been using CTBR and
higher-level control inputs to train RL based agents. The use of
velocity commands has been particularly common [15], [16],
[17], [18], [19], [20]. Fewer works also use orientation level
commands [21], [22] or angular rate commands (CTBR) [20],
[23], [24], [25]. The latter is usually used when increased agility
is required (e.g., for acrobatics, racing, or flying through a
narrow gap). We would like to highlight that, while impressive,
recent work on learned, champion-level drone racing [25] is
using higher-level control outputs (level 3.1 CTBR) and heavily
relies on classic lower-level controllers to bridge the Sim2Real
gap. In their work, the policy is only exposed to rotational
kinematics and uncertainty about the mass, which is easy to
identify (cf. Table I, Fig. 1). Our end-to-end policy (level 5.1
Motor commands) is faced with the full stack of non-linearities
and uncertainties about the dynamics parameters.

To use the quadrotor dynamic’s full potential, the focus
has been shifting to training agents outputting individual rotor
thrusts (also referred to as Single Rotor Thrusts (SRT)) [20],
[26], [27], [28], [29], [30]. The authors in [31] even go lower-
level, training a controller outputting RPM. These represent the
works that are closely related to our proposed solution. In the
following, we discuss their similarities and differences. One of
the earliest demonstrations of the successful application of deep
RL for quadrotor control has been presented in [26]. The authors
train a position controller that outputs individual rotor thrusts but
in contrast to our approach, they are using a complex training
procedure (exploration scheme) that requires aresettable simula-
tor and drives up the sample complexity to more than 100 million
environment steps. Additionally, they do not take into account
rotor delays and their code is not available. In [27], the authors
apply domain randomization to transfer a policy that outputs
SRT to different quadrotors but they require knowledge about the
particular thrust-to-weight ratio and thrust limits. In comparison,
our approach demonstrates Sim2Real transfer without domain
randomization and without modifications to the state estimation
in the firmware as well as much faster training times (comparison
in Table I). In [20] the authors perform a benchmark of training
controllers outputting velocity, CTBR and SRT commands but
in contrast to our work they do not manage to transfer the
low-level controller (SRT) to the real world. Moreover, in all of
the aforementioned works as well as in [20], [28], [29], [30], SRT
control outputs are used which simplify the learning problem
by not exposing the agent to the non-linear RPM <« thrust
relationship. Lastly in [31], RPM outputs are used but rather than
cutting out lower-level controls to simplify the learning problem
as commonly done and described in Section II, they discard the
higher-level control and take CTBR as input from a high-level

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

ESCHMANN et al.: LEARNING TO FLY IN SECONDS

6339

RPM setpoints Wsp1, Wsp2, Wsp3 ;s Wspa

state-action value

R oo o 0 action history
v R | °%°0 ¢ b4 Y . >
lo S Ly SIS 9, 0
29 / q S o0& S0 0
S B PR % .
oFe Q‘ 06670%7° cuol\\ o 08 030 % noise
Y o O
ote Oog\g 2? Qo\\ d°i° e 9 ;’Oo£°¢ DU”;I
oo G o Ao VG D00 Teglofe
°9 0° %28 o WiyeSe wgdf DE i~
N = 8 0,1\ NS =30 /
2P Seiol % 2R (°FFo —
N of ¥ / - O o V. W
N Sn 4 = 2% p,q,V,
Ss oo Q 00 0 . D y = -
ao g) o MY Yo Y
o5 O o S o [\
o o Yo = Y
o o)
o oZo' o, %
o
N @ w17w27w37w47f7‘777“
N Vi '
ﬂ% -
reward
Fig. 2. Overview of the training and inference setup with a view of the simulator UT (left).

controller. In addition, in contrast to our method, [31] requires
a state history and domain randomization as well as training
for 2h and 100 M steps. Furthermore, [31] only works under
near-hover conditions and fails for agile trajectories (unlike ours,
cf. Table III, Fig. 5(c) and the video). Lastly, the complexity
of the method and the lack of an open-source implementation
inhibit replication. In contrast to all the most related work which
rely on on-policy, policy gradient RL algorithms (particularly
Proximal Policy Optimization (PPO) [6]), we use Twin Delayed
Deep Deterministic policy gradient (TD3) [32], an off-policy RL
algorithm which offers better sample complexity and achieves
very fast wall-clock training times.

IV. METHODOLOGY

To be able to take full advantage of the capabilities of the robot,
we phrase our control problem as an MDP where the policy di-
rectly maps states to motor commands in the form of RPMs. We
select quaternions to represent orientation as they are a compact
and global representation. However, for the observations fed
into the actor and critic, we convert them to rotation matrices to
remove the ambiguity stemming from the quaternion’s double
coverage of the space of rotations. Since we model the motors
as a first-order low-pass filter, RPMs are also part of the state.
This makes the state 17 dimensional with the following structure
s ={p,q, v,w,w,, }, consisting of position, orientation, linear
and angular velocity and motor speeds respectively. We imple-
ment the standard dynamics of a quadrotor subject to motor
delays (please refer to e.g. [11], [20], [25] or our parameter
reference link). On real platforms, motor speeds are usually not
observable and RPM setpoints are fed to the Electronic Speed
Controller (ESC) in a feed-forward, one-way fashion through
Pulse-Width Modulation (PWM). Hence, we implement an
asymmetric actor-critic scheme [33], where the critic, being only
required during training, has access to privileged information
from the simulator as shown in Fig. 2. In particular, we let the
critic access the RPMs and a random force f, and torque 7,
disturbance that are sampled at the beginning of each episode
to increase the robustness of the trained policies. Hence, the
privileged observations of the critic are represented by a 28

dimensional vector o, = {p,R,v,w,wy,, ., 7.} consisting
of position, orientation, linear velocity, angular velocity, rotor
speeds, force disturbance, and torque disturbance respectively.

We also notice that the delay in the step-response is sig-
nificant and caused by the motors’ low-pass behavior. This
behavior also strongly impacts the dynamics of the 27 g nano
quadrotor (Crazyflie) used in this work. Common values for
the RC equivalent time constant (1 — e~! ~ 63% step response)
are between 0.05s and 0.25s. We empirically find 0.15s to be
suitable for Sim2Real transfer which is also supported by the
manufacturers measurements.> These delays are significantly
larger than the usual control interval of low-level controllers
which usually run at around hundreds of Hz. Therefore, these
delays lead to actions only impacting the state after 5 to 25
control steps. To mitigate this large level of partial observability,
we add a history of control actions to the actor’s observation.
The action history is a proprioceptive measurement that can be
trivially implemented in software on any real-world platform
without requiring additional hardware (in contrast to direct RPM
feedback measurements). Therefore, the actor’s observations are
18 4+ Ny - 4 dimensional, where Ny is the length of the action
history, and are defined as follows: 0, = {p, R, v, w, H} with
H being the action history.

While the critic observes the ground truth state, the actor’s
observations are additionally perturbed using observation noise
to account for imperfections in the sensors (the scale of the noise
components is described with all other parameters in the supple-
mentary material). The actions consist of the RPM setpoints as
a = {wp1, Wsp2, Wep3, Wepa } Which places our policy/controller
on the lowest order (level 5.1) of the taxonomy described in
Section II.

For the initial state distribution, we sample from a diverse
set of positions, orientations, linear and angular velocities as
well as rotor speeds. We use a negative squared cost with an
additive constant incentivizing survival to mitigate the “learning

2Crazyflie motor step response: https://web.archive.org/web/
20220309092320/https://www.bitcraze.io/wp-content/uploads/2015/02/M1-
step-response.png

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

6340

to terminate” problem [34]
r(s,a, S,) = = 7p||pH§ - Orq (1 - QWQ) - C’!'U”VH%
- Tw”“"”g _CmHa_CmbH%‘i‘Ors-

The values of the constants C. are supplied in the supplementary
material. Additionally, we find that a simple curriculum that is
transitioning from an initial set of constants Cip;;,« to a more re-
strictive Crarget,» (punishing position errors and particularly con-
trol actions more harshly) benefits the sample complexity and
Sim2Real transfer (as described in Section V). Every 100000
steps the weights are adjusted by multiplying them by the C,.
factors described in the supplementary material until they reach
the Clarger,« values, where they remain constant. We also decay
the exploration noise using the same exponential scheme as
in the curriculum of the reward function.

We would also like to highlight that we train a position
controller, not merely a stabilizing controller that only works
around a particular state. The goal of our position controller
is to return to the origin point with zero linear velocity from
any initial conditions (within reasonable bounds described in
the parameters in the supplementary material). Hence, we train
a policy that can go to any position or velocity setpoint by
shifting the current position and velocity (so there is no need
to apply goal-conditioned RL). For stable behavior, the position
and velocity errors induced by the shifted setpoints should not
exceed the errors seen during training which can easily be
accommodated for by clipping.

To facilitate fast training times we implement a highly op-
timized simulator for multirotor dynamics. A sample view of
the interface is shown in Fig. 2 (left). By leveraging C++
template metaprogramming the simulation code can be highly
optimized by the compiler and can be tightly integrated into the
RLtools [35] deep RL framework.

V. EXPERIMENTAL SETUP

Simulation: We run our multirotor dynamics simulator on a
Nvidia T2000 laptop GPU and attain 1284 million steps/s. To
reach this level of performance, 64 blocks of 128 threads are
each executing the forward dynamics in parallel. This amounts
to 8192 environments in total which are run for 1000000 steps
each. The required execution time of the GPU kernel is 6380 ms
amounting to 1284 million steps/s. At a simulation frequency
of 100 Hz this is about 5 months of simulated flight per second.
Compared to Flightmare [11] which is the state of the art in
terms of dynamics simulation speed with a reported frequency
of 200000 steps/s on a laptop, our simulation is about 6420 x
faster.

Training: Leveraging the training setup described in
Section III and using the RLtools RL framework [35], we train
a low-level quadrotor control policy. Fig. 3 shows the learning
curve in terms of the returns (sum of rewards per episode). Purely
looking at the reward/returns, it is hard to judge the level of flying
capabilities of a particular policy because it is highly dependent
on the reward function formulation. We believe the episode
length is a more understandable measure than the return because
if the agent crashes or flies away from a tight box around the

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

300 r
c
—
2 of
3}
—
S
o —300
n
o1
L
—600
1 1 1 1
0 1.0x10° 2.0x10° 3.0x10°
Os 60s 120s 180s
Step
Wall-clock time [s]
Fig. 3. Episode return (1 and o over 50 runs with different initial seeds).
500 f m e e e e e e e e e e —
== ==Max Episode Length
Mean & Standard Deviation
400 f Worst 5 Runs
<
+J
[S)
c
2 300
[J)
°
o
L2200
o
L
100 |
0 1.0x10° 2.0x10° 3.0x10°
Os 6s 12s 18s
Step
Wall-clock time [s]
Fig. 4. Episode lengths (1 and o over 50 runs with different initial seeds).

Note, compared to Fig. 3 the horizontal axis is zoomed in to highlight the initial
phase.

origin, the episode is terminated. Hence, from Fig. 4 we can see
that after about 300000 steps (total number of interactions with
the environment) or 18s of training on a 2020 MacBook Pro,
the policy has learned to fly relatively reliably. In comparison
to related work (listed in Table I) our approach is substantially
faster and requires an order of magnitude less samples when
compared to learned policies on a similar level of control outputs.

We investigate the 50 differently seeded training runs by
selecting the 5 seeds with the worst cumulative number of steps
over the whole training run (area under the curve) shown in
Fig. 4. We notice that even the worst 5 runs learn to fly rapidly.
This shows the remarkable reliability of our training approach
which is not commonly expected from RL training pipelines
(e.g., in [27] the authors state that cherry-picking across many
seeds is required to find a policy that can fly). This remarkable
level of reliability is also confirmed by real-world experiments
that are described in the following.

VI. RESULTS

Ablation study: To show the impact of the different com-
ponents of the training setup (as shown in Fig. 2) on the

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

ESCHMANN et al.: LEARNING TO FLY IN SECONDS 6341
TABLE II
ABLATION STUDY
Training (Simulation) Inference (Real World)
Task Position Control Position Control Trajectory Tracking
Checkpoint [steps] 300000 ‘ 3000 000 300000 3000 000

Ablation N R N R # € €med Cmin # e €med Cmin # e €med Cmin

All Components 444 -171 366 296 | 10/10 026 024 0.1 10/10 034 038 0.18 10/10 027 026 021
Observation Noise 446 -195 364 294 | 10/10 026 027 0.1 8/10 033 031 023 10/10 0.21 021 0.16
Reward Recalculation 442 311 397 325 | 9/10 0.24 0.15 0.07 9/10 034 03 025 7/10 022 022 02
Exploration Noise Decay | 444 -171 351 285 9/10 025 022 008 810 031 03 019 10/10 0.21 0.18 0.15
Disturbances 446 -146 379 316 | 9/10 028 027 0.08 810 033 032 021 10/10 0.21 021 0.17
Asymmetric Actor-Critic | 290 -313 431 268 | 6/10 028 0.29 0.08 4/10 04 034 032 9/10 025 026 0.19
Action History 173 -355 300 38 5/10 1.18 141 025 5/10 063 0.6 025 0/10 00 o0 [e'e)
Curriculum 444 340 450 -285 | 1/10 0.8 0.18 0.18 1/710 023 023 023 9/10 0.2 02 0.15

Rotor Delay 46 207 44 -195 | 0/10 o0 [e'e) 0 0/10 [e'e) oo (%) 0/10 00 o0 [e'e)

AAC & Curriculum 296 -341 428 -540 | 0/10 00 e’} 00 0/10 e’} 00 00 2/10 026 0.26 0.23

The Ablation column describes the component that is removed, except for the first row which contains all components. Returns R and number of steps per episode (V) are
mean over 50 training runs with different seeds each. The mean(e)/median(e,,.q)/minimum(e,,;,) of the position error (in the xy-plane) are statistics over 10 flights of the
real quadrotor with policies from different seeds each (no cherry-picking, seeds are the first 10 of the 50 trained in simulation). The # column shows the number of successful
flights (without crashing). For the trajectory tracking task we use the figure-eight trajectory shown in Fig. 5Sb with an interval of 7= 5.5 s. For each metric, the best value is
marked in bold. The best values of the real-world tests are awarded provided that at least 5/10 of the runs/seeds of a particular configuration are successful for each of the

three tests.

performance during training and real-world deployment, we
conduct a large-scale ablation study and present the results in
Table II. To account for the inherent stochasticity of the observa-
tion noise and training process, we take a moving average over
the previous 10 evaluations for the episode return and length met-
rics. The evaluation takes place every 1000 steps, hence the mov-
ing window covers 10000 steps. We train each configuration for
up to 3000000 steps using 50 different initial seeds each. Figs. 3
and 4 are generated from the 50 runs of the baseline configura-
tion (containing all components). Furthermore, we execute the
resulting policy after 300000 and 3000000 steps of training
using the first 10 different seeds of each configuration on a real
Crazyflie quadrotor. We manually terminate the position control
episodes after 20s of flying because in our experience, at this
level, policies can fly without crashing until the battery runs
out. In the case of the trajectory tracking task, we complete 4
subsequent cycles or report a failed attempt if the quadrotor
crashes beforehand. We report the mean and median as well
as the minimum of the position error across the 10 runs/seeds.
The minimum positional error is a particularly interesting metric
because it corresponds to cherry-picking which is common in
related works (e.g., [27]). Since the curriculum entails changes
in the reward function and we apply reward recalculation of
all rewards in the replay buffer after each modification of the
reward function, we also ablate the setup without reward recalcu-
lation. Note that the configurations differ in the added/removed
complexity. The components observation noise, reward recal-
culation, exploration noise decay, and disturbances are minor
changes, while the asymmetric actor-critic structure, action
history as well as rotor delay, and the curriculum are larger
modifications.

From the results in Table II, we can see that overall (and
particularly when executed on the real system) the baseline
is the most reliable with no crashes in any of the tasks/seed
combinations. In general, we can observe a trend that removing

the smaller modifications still yields reliable policies (early
during the training as well as after convergence). In contrast,
when removing the more complex components, we can see a
more pronounced drop in reliability as well as tracking perfor-
mance. Here, we can observe that the curriculum indeed strongly
impacts the training speed. Without the curriculum, the policies
are not able to fly early on while after convergence they reach
a comparable performance to the baseline. We can observe a
similar behavior when removing the Asymmetric Actor-Critic
(AAC) and hence also ablate removing both, the asymmetric
actor-critic and the curriculum and find that the training takes
considerably longer and even after 3000000 steps most of the
policies are crashing. As deduced from first principles, we can
also confirm that training without simulating the rotor delay
leads to no usable policy. When simulating the rotor delays but
not including the action history we can still see a considerable
drop in reliability and positional accuracy, particularly after
3000000 steps where the policy seems to be overfitting the
system dynamics. This validates the need for an action history
to account for the partial observability in our training setup.
When taking into account the average episode lengths and
returns achieved by the different configurations during training
in simulation we can only observe a loose correlation between
simulation and real-world performance. As described earlier, the
episode lengths appear to be a better gauge for the real-world
performance as well.

We conclude that overall the baseline configuration with all
components and the configurations with minor ablations yield
the best performance when taking into account the speed of
training (sample complexity) and position error. We observe
that the baseline configuration yields the most reliable policies
at all stages and anecdotally is also most robust with respect to
e.g. turbulent wind (cf. the supplementary video). For trajectory
tracking, after 3000000 steps in particular, we find that the
configuration without exploration noise gives the lowest tracking

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

6342

x [m]
x [m]

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 7, JULY 2024

=
N

S speed Pm/sT
P

S & &
o 9 o
IR
o
speed [m/s]

o
N
g

o
o

1.0 0.5 0.0

y [m]

(a) Slow (T'=155)

1.0 0.5 0.0

Fig. 5.

Fig.6. Longexposure photo of the real-world tracking of a Lissajous trajectory
with a 5.5 s cycle time.

error among the tested seeds and hence chose it for the trajectory
tracking experiments in the next section.

Trajectory tracking: In addition, even though we train a
position controller, we find that the resulting policies can track
trajectories like the Lissajous in Fig. 5 when deployed on the real
quadrotor. This is obtained by feeding into the policy an offset.
We test the tracking performance using a figure-eight Lissajous
trajectory p(t) = [cos(2nt/T) sin(4nt/T)/2 const] " with
varying cycle times 7" and show the tracking performance in
Fig. 5. We conduct the experiments in a flying space of 10 x
6 x 4m? at the Agile Robotics and Perception Lab (ARPL) at
New York University (equipped with a Vicon motion capturing
system). We can see that our trained policy is able to track
even agile trajectories like in Fig. 5(c) where it reaches up to
3ms ! and accelerations of up to 0.9 g. In Fig. 6, we show a
long-exposure photo of the trajectory in Fig. 5(b) being tracked
by one of our policies.

We execute the same trajectory using different types of
classical controllers: Proportional-Integral-Derivative (PID),
geometric [8], nonlinear [36] and Incremental Non-Linear Dy-
namic Inversion (INDI) [37]. We report the results in Table III.
Additionally, we also compare the proposed solution to addi-
tional RL baselines. We replicate the related works [27] and [30].
In accordance with the original work (cf. Table I), we train them
for 84000000 and 16000000 steps respectively. In the case
of [27], we find that none out of 10 seeds leads to a policy that
can fly the real drone. We extracted a trained checkpoint from
the firmware provided by the authors. We found this checkpoint
to be able to fly the trajectories but exhibit major oscillations
and tracking error for the normal and fast trajectories. Based
on the authors’ instructions we believe this checkpoint was
cherry-picked across even more seeds. In comparison, we found
the method by [30] to train more reliably and to result in low

y [m]

(b) Normal (7" = 5.55)

-0.5 1.0 0.5 0.0

y [m]

(c) Fast (T'=3.55)

-0.5

Real-world tracking of a Lissajous trajectory with different cycle times (reference trajectory in black).

TABLE III
REAL-WORLD TRAJECTORY TRACKING

Interval Slow (155s) Normal (5.5s) Fast (3.55)
Controller e €xy € €y e €y
PID 0.23 0.22 0.72 0.72 0.88 0.87
Geometric [8] 0.06 0.04 | 0.16 0.16 0.36 0.36
Nonlinear [36] 0.29 0.11 0.38 0.32 00 0o
INDI [37] 0.21 0.21 1.13 1.13 1.04 1.04
Baseline [27] 0.15 0.13 0.25 0.24 0.52 0.50
Baseline [30] 0.06 0.05 0.23 0.21) [e'S)
Ours 0.08 0.08 0.17 0.15 0.24 0.22

Error € (RMSE including z in meter) and €,, (RMSE excluding
z in meter) when tracking the Lissajous trajectory in Fig. 5 using
different controllers.

position error for the slow trajectory. On the other hand, the
policies trained using [30] exhibited poor yaw control (spinning
around z while tracking the trajectory) and crashed for the
normal-speed trajectory for 7/10 seeds and for 10/10 seeds in
the fast case. We also test training [27] and [30] for only 300000
and 3000000 steps for 10 seeds each (same as our method) but
none of the resulting policies were able to fly. Across the classic
controllers, we find that for slow trajectories, the geometric
controller [8] achieves lower tracking error than our method.
While for normal-speed trajectories our method is on par with
the best classic controllers, it outperforms other approaches in
the fast case.

VII. CONCLUSION

In this letter, we presented an unprecedentedly fast end-to-end
RL architecture for quadrotor control that directly outputs RPMs
and can be trained to fly a real quadrotor in 18 s on consumer-
grade laptops. The approach directly transfers to real-world
platforms even without domain randomization. Compared to
prior work, our approach leads to very reliable training behavior
and does not require the cherry-picking of trained policies.
Furthermore, we conducted a large ablation study validating
our design decisions and found that our method is competitive
with other classic and learned controllers. We open-source our
approach and simulator setup to the community to democratize
learning-based quadrotor control. Due to the curse of dimension-
ality, the design space (in terms of hyperparameters and other
design decisions) of RL-based end-to-end quadrotor control is
still sparsely explored and we believe that our experimental
results constitute a foundation that future research can build

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

ESCHMANN et al.: LEARNING TO FLY IN SECONDS

upon. Our proposed training paradigm and the resulting highly
optimized implementation allow for greatly reduced training
times and hence more rapid iteration. Furthermore, the Crazyflie
quadrotor uses open-source firmware, is widely available and
inexpensive.

Future works will push the training speed and robustness as
well as the tracking performance of learned low-level controllers
through automatic hyperparameter optimization. Furthermore,
we are interested in extending the policy to be adaptive to chang-
ing system or environment parameters like battery levels or wind,
possibly using integral compensation [38] or meta-RL [39].

REFERENCES

[11 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp- 84-90, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

[3] V.Mnihetal., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529-533, 2015.

[4] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” in Proc. Int. Conf. Learn. Representations, 2016.

[5] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proc. Int. Conf. Learn. Representations, 2016.

[6] J.Schulman, FE. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv:1707.06347.

[71 K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359-366, 1989.

[8] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in Proc. IEEE Int. Conf. Robot. Automat., 2011,
pp. 2520-2525.

[9] S. Kohlbrecher, J. Meyer, T. Graber, K. Petersen, U. Klingauf, and O.
von Stryk, “Hector open source modules for autonomous mapping and
navigation with rescue robots,” in Proc. RoboCup 2013: Robot World Cup
XVII, 2014, vol. 8371, pp. 624-631.

[10] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Proc. Field Serv.
Robot.: Result 11th Int. Conf., 2018, vol. 5, pp. 621-635.

[11] Y. Song, S. Naji, E. Kaufmann, A. Loquercio, and D. Scaramuzza, “Flight-
mare: A flexible quadrotor simulator,” in Proc. Conf. Robot Learn., 2020,
pp. 1147-1157.

[12] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig,
“Learning to fly—A gym environment with PyBullet physics for rein-
forcement learning of multi-agent quadcopter control,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., 2021, pp. 7512-7519.

[13] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “RotorS—A modular
gazebo MAV simulator framework,” in Proc. Robot Operating Syst.:
Complete Reference, 2016, pp. 595-625.

[14] G. Li, X. Liu, and G. Loianno, “RotorTM: A flexible simulator for
aerial transportation and manipulation,” IEEE Trans. Robot., vol. 40,
pp. 831-850, 2024.

[15] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” in Proc. Robotics: Sci. Syst., 2017.

[16] R.Polvaraetal., “Toward end-to-end control for UAV autonomous landing
via deep reinforcement learning,” in Proc. In. Conf. Unmanned Aircr. Syst.,
2018, pp. 115-123.

[17] C. Sampedro, A. Rodriguez-Ramos, I. Gil, L. Mejias, and P. Campoy,
“Image-based visual servoing controller for multirotor aerial robots using
deep reinforcement learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2018, pp. 979-986.

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

(37]

(38]

[39]

6343

S. Belkhale, R. Li, G. Kahn, R. McAllister, R. Calandra, and S. Levine,
“Model-based meta-reinforcement learning for flight with suspended
payloads,” IEEE Robot. Automat. Lett., vol. 6, no. 2, pp. 1471-1478,
Apr. 2021.

B. Rubi, B. Morcego, and R. Pérez, “Deep reinforcement learning for
quadrotor path following with adaptive velocity,” Auton. Robots, vol. 45,
no. 1, pp. 119-134, 2021.

E. Kaufmann, L. Bauersfeld, and D. Scaramuzza, “A benchmark compar-
ison of learned control policies for agile quadrotor flight,” in Proc. [EEE
Int. Conf. Robot. Automat., 2022, pp. 10504-10510.

P. Becker-Ehmck, M. Karl, J. Peters, and P. van der Smagt, “Learning to
Fly via deep model-based reinforcement learning,” Aug. 2020.

J. Lin, L. Wang, E. Gao, S. Shen, and F. Zhang, “Flying through a narrow
gap using neural network: An end-to-end planning and control approach,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2019, pp. 3526-3533.
J. E. Kooi and R. Babuska, “Inclined quadrotor landing using deep re-
inforcement learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2021, pp. 2361-2368.

E. Kaufmann, A. Loquercio, R. Ranftl, M. Miiller, V. Koltun, and D.
Scaramuzza, “Deep drone acrobatics,” in Proc. Robotics: Sci. Syst., 2020.
E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun, and
D. Scaramuzza, “Champion-level drone racing using deep reinforcement
learning,” Nature, vol. 620, no. 7976, pp. 982-987, 2023.

J. Hwangbo, 1. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor
with reinforcement learning,” IEEE Robot. Automat. Lett., vol. 2, no. 4,
pp. 2096-2103, Oct. 2017.

A. Molchanov, T. Chen, W. Honig, J. A. Preiss, N. Ayanian, and G.
S. Sukhatme, “Sim-to-(Multi)-Real: Transfer of low-level robust control
policies to multiple quadrotors,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2019, pp. 59-66.

C.-H. Pi, K.-C. Hu, S. Cheng, and I.-C. Wu, “Low-level autonomous
control and tracking of quadrotor using reinforcement learning,” Control
Eng. Pract., vol. 95,2020, Art. no. 104222.

Y. Song, M. Steinweg, E. Kaufmann, and D. Scaramuzza, “Autonomous
drone racing with deep reinforcement learning,” in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., 2021, pp. 1205-1212.

S. Gronauer, M. Kissel, L. Sacchetto, M. Korte, and K. Diepold, “Us-
ing simulation optimization to improve zero-shot policy transfer of
quadrotors,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2022,
pp- 10170-10176.

D. Zhang, A. Loquercio, X. Wu, A. Kumar, J. Malik, and M. W. Mueller,
“Learning a single near-hover position controller for vastly different quad-
copters,” in Proc. IEEE Int. Conf. Robot. Automat., 2023, pp. 1263-1269.
S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1587-1596.

L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel,
“Asymmetric actor critic for image-based robot learning,” in Proc.
Robotics: Sci. Syst. X1V, 2018.

J. Eschmann, “Reward function design in reinforcement learning,” in Proc.
Reinforcement Learn. Algorithms: Anal. Appl., 2021, pp. 25-33 .

J. Eschmann, D. Albani, and G. Loianno, “RLtools: A fast, portable
deep reinforcement learning library for continuous control,” 2023,
arXiv:2306.03530.

D. Brescianini, M. Hehn, and R. D’Andrea, “Nonlinear quadrocopter
attitude control: Technical report,” ETH Zurich, Tech. Rep., 2013. [On-
line]. Available: https://doi.org/10.3929/ethz-a-009970340

E. J. J. Smeur, Q. Chu, and G. C. H. E. de Croon, “Adaptive incremental
nonlinear dynamic inversion for attitude control of micro air vehicles,” J.
Guid., Control, Dyn., vol. 39, no. 3, pp. 450-461, 2016.

J. Xu et al., “Learning to fly: Computational controller design for hybrid
UAVs with reinforcement learning,” ACM Trans. Graph., vol. 38, no. 4,
pp. 1-12, 2019, doi: 10.1145/3306346.3322940.

J. Eschmann, “Partially unsupervised deep meta-reinforcement learning,”
Master’s thesis, Technical University of Darmstadt, Darmstadt, Germany,
2021. [Online]. Available: https://thesis.jonas.es

Authorized licensed use limited to: New York University. Downloaded on December 01,2024 at 09:51:33 UTC from IEEE Xplore. Restrictions apply.

