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ABSTRACT

Currently doctors rely on tools such as the Unified Parkinson’s Dis-
ease Rating Scale (MDS-UDPRS) and the Scale for the Assessment
and Rating of Ataxia (SARA) to make diagnoses for movement disor-
ders based on clinical observations of a patient’s motor movement.
Observation-based assessments however are inherently subjective
and can differ by person. Moreover, different movement disorders
show overlapping symptoms, challenging neurologists to make a
correct diagnosis based on eyesight alone. In this work, we create
an intelligent interface to highlight movements and gestures that
are indicative of a movement disorder to observing doctors. First,
we analyzed the walking patterns of 43 participants with Parkin-
son’s Disease (PD), 60 participants with ataxia, and 52 participants
with no movement disorder to find ten metrics that can be used
to distinguish PD from ataxia. Next, we designed an interface that
provides context to the gestures that are relevant to a movement
disorder diagnosis. Finally, we surveyed two neurologists (one who
specializes in PD and the other who specializes in ataxia) on how
useful this interface is for making a diagnosis. Our results not only
showcase additional metrics that can be used to evaluate movement
disorders quantitatively but also outline steps to be taken when
designing an interface for these kinds of diagnostic tasks.
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1 INTRODUCTION

For most movement disorders there is no definitive test to verify a
prognosis for the disorder, and for Parkinson’s disease (PD) there is
no standardized test at all. Doctors currently rely on tools such as
the Unified Parkinson’s Disease Rating Scale (MDS-UDPRS) [10, 33]
to make diagnoses based on clinical observations of a patient’s
motor movement, rated on a scale from łNormalž to łSeverež on one
out of four checkboxes. Similarly, the Scale for the Assessment and
Rating of Ataxia (SARA) rubric [31] measures a patient’s observed
performance on a series of tasks, generating a total score between
0 and 40.

Basing patient diagnosis on human eyesight alone can be prob-
lematic and often leads to misdiagnosis or a waste of resources. One
challenge is the use of Likert rating scales by physicians, whose
interpretations of the scale are inherently subjective and may vary
on a doctor-by-doctor basis. What one doctor sees as łModeratež
another might see as łSeverež and can change a patient’s diagnostic
outcome. This problem is made worse when considering that the
tremors appearing with Parkinson’s disease can appear to be visu-
ally indistinguishable from those of another movement disorder
like Ataxia. Ataxias have been known to be misdiagnosed for other
disorders that have similar forms of seizures, such as epilepsy [34].
Similarly, 15% of patients with tremors have been misdiagnosed as
having PD when they did not fully meet the clinical criteria for the
disease [32], while in other studies as many as one in three patients
met the criteria for PD but were diagnosed with something else
[13].

Measuring the subtlety of motions associated with movement
disorders based on eyesight alone is not sufficient for what can
be a life-altering diagnosis. Previous studies have tried to address
this issue with on-body sensors or computer vision to unilaterally
distinguish between people who have a movement disorder and
people who do not, but these systems are not designed to cate-
gorize between multiple movement disorders. To the best of our
knowledge, there is no prior work that investigates comparing the
movements of patients against multiple movement disorders and a
baseline control group (no movement disorder).
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We propose creating an interface that can provide objective gait
metrics during the assessment process and high-level interpreta-
tions of those metrics. We seek to amplify the ability of experienced
specialists by showing them physiological information about the
patient, in the context of how similar their gestures are to those of a
patient with a particular movement disorder. This allows patients to
be more informed about their diagnosis with more transparency in
how a doctor could have arrived at a diagnosis and helps to support
an objective standard for movement disorder diagnoses.

In this paper, we explore how an interface can assist diagnostic
practitioners when making a diagnosis for a particular movement
disorder. We describe our contributions as follows:

(1) We report metrics, grounded in clinincal literature, for distin-
guishing patients with Parkinson’s disease, ataxia, or neither
(Control), that can be found with computer vision, but may
be difficult to distinguish observationally.

(2) We create an interface that helps the physician visualize
the distinguishing metrics and insights about the patient’s
diagnostic task.

(3) We assess howuseful this interface is by interviewing doctors
who are specialized in diagnosing Parkinson’s disease and
ataxia about their experience with it.

2 RELATED WORK

2.1 Movement Disorders and their Tools for
Diagnosis

Parkinson’s Disease is a neurodegenerative disorder marked by
involuntary tremors and limb stiffness [5, 8, 17]. Bradykinesia, the
slow movements such as dragging of feet or freezing of facial ex-
pressions, is known to be a parkinsonian trait, and this stiffness is
expected to be present when diagnosing a patient for the disease [5].
To diagnose a patient with Parkinson’s Disease, specialized doctors
utilize the criteria created by the International Parkinson and Move-
ment Disorder Society (MDS), known as the MDS-UPDRS [10, 33].
The MDS-UPDRS provides questions to evaluate the motion of a
patient and rate it on a five-point scale ranging from łNormalž to
łSeverež.

There are several kinds of Ataxias, each with its own grouping
of symptoms, however, they all are degenerative diseases that affect
the central nervous system [4]. They generally affect gait, balance,
and can progressively cause nerve damage [4, 23]. To evaluate a
patient’s likelihood of Ataxia, diagnosticians use the SARA scale
[31] which measures a patient on 8 categories (Gait, Stance, Sitting,
Speech Disturbance, Finger Chase, Nose-finger test, Fast alternating
hand movement, Heel-shin slide) on a Likert scale (either four, six,
or eight choices depending on the category).

When evaluating a patient for either Parkinson’s disease or
Ataxia, the MDS-UPDRS and SARA criteria respectively assist in
deciding how severe a patient’s symptoms are, relative to a patient
who does not have a movement disorder. These criteria however
do not rule out the possibility of another movement disorder (i.e., a
patient who is being tested for Parkinson’s disease but has Ataxia).
While there are distinctive traits for these movement disorders,
such as Ataxia causing the gait cycle to be more variable [11] and
Parkinson’s disease-causing more rigidity in movement [5], it can
be difficult for doctors to notice the subtle differences in movement

tremors. The difficulty in noticing these differences can lead to
misdiagnosis, and in one study 15% of patients were misdiagnosed
for Parkinson’s disease when they did not fully meet the criteria
for the disease [32].

2.2 Automated Tools for Diagnosis of
Movement Disorders

To compensate for the disadvantages that come with making a
diagnosis with eyesight alone, researchers have explored using
computer vision [12, 20, 27] and sensors [7, 22] to make assessments
on the severity of movement disorders or to predict the movement
disorder altogether [2, 3, 29]. On-body sensors provide a means to
get information about a diagnostic task in real-time. To evaluate its
use for classifying Friedreich’s Ataxia, LeMoyne et al. [16] measured
gait with inertial sensors. Another study done by Phan et al. [26]
placed IMU sensors on the chest and ankles of 29 ataxia patients,
to generate an Ataxia severity score.

The ubiquity of smartphones has prompted studies to also look at
how they can be used to detect Movement Disorders. The GEORGE
smartphone application [35] used sensor data to assess individuals
for Huntington’s disease by using chorea, finger tap rate, and step
count. Similarly, the Roche PD Mobile app [18] passively used the
phone’s gyroscopes and accelerometers to distinguish between
participants with Parkinson’s disease and participants who did not.

As Work-from-Home becomes a growing option for employees,
at-home testing looks to be the next trend of diagnostic procedures.
Liu et al. [19] explored using radio waves, similar to that of a Wi-Fi
router, to passively monitor a patient’s movement trajectories and
gait speeds as they move around their home. This tool was able
to successfully keep track of patients and found gait speed to be
correlated to Parkinson’s Disease severity.

Langevin et al. [15] addressed individuals’ inability to see a neu-
rologist by creating a tool to let participants receive a remote diagno-
sis at home using a webcam. The framework assesses participants’
facial features and motor movements, such as finger tapping and
hand movements, to study which traits were closely associated
with Parkinson’s disease and provide analysis on the usability of a
web-based application for diagnosis.

Our approach builds on these concepts by distinguishing be-
tween the two movement disorders and presenting relevant move-
ment information to make it easier to infer which is more likely,
rather than classifying a patient as one or another. Unlike previous
work, our dataset uses videos from a frontal plane, similar to how
a specialist would observe a patient in a clinical setting. Similarly,
rather than provide an immediate classification of a patient’s move-
ments, our work quantifies a patient’s gestures and objectively
conveys that evidence in an assistive format. Lastly, to the best
of our knowledge, there is no other work that creates diagnostic
interfaces for movement disorder specialists and evaluates them.

In the following sections, we describe our study in full. In section
3 we outline our dataset and the demographics that constitute it.
In section 4 we describe how we created features to distinguish
patients and the interface we designed to show those features. In
section 5 we report our findings and provide more context to them
in section 6.
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3 DATA

3.1 Data Overview

Our initial dataset is made up of two groups of patients doing a
diagnostic task for either Parkinson’s disease or Ataxia. In total, we
have 45 minutes (13 minutes [23,439 frames] PD, 32 minutes [57,733
frames] Ataxia/Control) of videos of patients doing the same task
of walking back and forth down a hallway, recorded from a frontal
perspective. On average, these videos are 5.6 seconds long. The
patients are recorded at different intervals of time (e.g. 6 months,
12 months, 24 months) since their initial visit.

Working with doctors from two major medical centers in the
USA, we obtained a dataset of patients with Parkinson’s disease. The
initial dataset of videos of patients with Parkinson’s disease is made
up of 129 videos of 51 patients who were completing a diagnostic
gait task which is evaluated by the criteria in sections ł3.10 - Gaitž
and ł3.11 - Freezing of Gaitž of the MDS-UPDRS [10, 33]. After
excluding videos that did not fully contain the patient completing
the walking task and splitting the videos based on the direction the
patient was walking, as described in section 3.3, we had 65 videos
of patients walking towards the camera and 64 videos of patients
walking away from the camera, for Parkinson’s disease.

For our Ataxia dataset, we worked with 11 clinical sites across
eight states in the United States to collect videos of patients doing
a diagnostic gait task. These walks were evaluated against the
łGaitž section SARA rating scale [33] which, like the MDS-UPDRS,
is evaluated via eyesight alone. The videos were processed using
the same methods as the Parkinson’s disease dataset’s videos, as
described in section 3.3, and from the initial 177 videos recorded, we
obtained 98 videos walking away from the camera and 95 walking
towards the camera.

Lastly, we used the same methods above to create a dataset of
Control diagnostic walks (patients who were not observed to have
any movement disorder), which was gathered in the same settings
as the Ataxia dataset. This resulted in 71 videos of patients walking
away from the camera and 71 videos of a patient walking towards
the camera.

3.2 Data Acquisition

The patients for the Parkinson’s dataset group were recruited via
clinician referrals, registry postings, and flyers. Participants who
left their contact information were then screened over the phone
for eligibility, and if eligible, were invited to an in-person screening
visit where they completed an informed consent form. This study
and its data security procedures were reviewed and approved by
our institution’s Human Subjects Review Board (IRB).

When recording patients completing the walking task in a clinic,
we specified a study-specific video camera to be used, and that as
much of the patient’s body should be recorded. For virtual visits, the
same recording procedures are used and are recorded over Zoom.
The videos are captured and handled by the clinical coordinator
and stored securely on the secure data storage service Box 1.

For our Ataxia dataset group, we used data from a prior study
where patients were recorded during their annual visits with a neu-
rologist during which they completed the SARA Gait task[28]. The

1https://box.com

participants involved in the study were diagnosed with Spinocere-
bellar Ataxia types 1 or 3 (SCA1 and SCA3). Criteria concerning
genotypes consistent with inherited ataxia, diseases that may affect
Ataxia diagnosis, and changes in physical and occupational ataxia
therapy, were used to assess eligibility for the study. Patients were
recorded in a clinical setting. After recording, the participants’ faces
are blurred in the video using Google’s Mediapipe mesh tool to
prevent identification.

3.3 Data Cleaning

To get the videos of patients into a format for analyzing their move-
ments, we broke the data-cleaning task into several steps. First, we
manually clip the full-length videos into sections based on whether
the patient is walking towards the camera or away from it. Sec-
ond, we use a DeepSort-YOLOv3 Model 2 trained on humans to
identify people in the video and use that information to remove
everything in the video that is not the detected person. Next, to
filter out which detected person was the patient we measure how
the area of the bounding box around the person changed during
the video, with the person who had the largest decrease being cat-
egorized as the łpatientž. This step was necessary as the doctor
or several nurses could sometimes be seen standing in the video,
watching the patient complete the diagnostic walking task. To en-
sure the filtering method worked correctly, the resulting videos
were manually checked against the originals to confirm only the
patients were selected. Finally, we then run CMU Openpose [6] on
each frame of the video to record the movements of the patient in
each frame of the video. Our study was run on the resulting key
point information that was found for the patient.

4 METHODS

In this section, we describe the features that were found to distin-
guish patients of PD/Ataxia/Control groups, and how the interface
was designed to show this information to diagnosticians.

4.1 Computed Features

To find features that are relevant to the diagnostic process to help
distinguish between movement disorders with visually indistin-
guishable tremors, we consulted previous studies, clinical literature,
and current rubrics to find attributes relevant to detecting Parkin-
son’s disease [5, 8, 14, 17, 23] and Ataxia [1, 4, 25, 30]. We found
most visual features were related to the rigidity or range of motion
associated with a patient’s limbs. We ran a trial and error process
of finding statistically significant features that would distinguish
patients of certain groups from other groups. These features were
curated by evaluating statistical significance across all six patient
groups (PD/Ataxia/Control and Away/Towards) and evaluated via
a series of ANOVA tests to assert their effectiveness when distin-
guishing patients from different groups. To verify these results
were not biased by individual patients, we repeated this statistical
analysis five times with a random 20% of each participant group of
videos removed from the compared videos, which led to the same
conclusions.

We found ten features that are statistically significant to compute
to diagnostic specialists:

2https://github.com/anushkadhiman/ObjectTracking-DeepSORT-YOLOv3-TF2
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Figure 1: Interface to see information about the participant’s

diagnostic task.(1) A view to watch the participant’s walk

with 3 different kinds of overlays, (2) Controls to speed up,

slow down, or step through the video, (3) A panel contain-

ing natural language descriptions of significant attributes of

the patient’s diagnostic walk, (4) A panel containing demo-

graphic information about the participant and the direction

the participant is walking in, (5) A panel containing com-

puted statistics about the participant’s walk.

Left/RightWrist Movements - The difference of the Euclidean
distance of the movement of the patient’s wrist, relative to their
shoulder width

Foot Crossover Count - The number of times the patient’s foot
crosses in front of the other in the X-axis.

Right/Hip Angle - The average angle between the knee and
mid-waist key points (i.e. the hip), for every ten frames.

Knee Gait - The distance between the patient’s knees, relative
to the width of the person’s waist.

Pause time while Walking - The number of frames a patient
stopped walking. This was computed for videos with at least 30
frames.

Shoulder Waist Alignment - The average distance between
the mid-shoulder and mid-hip of the patient’s body.

Left/Right Foot relative Travel - The height of the person’s
foot relative to their body height. This was computed for videos
with at least 30 frames.

The first three could be found with just eyesight alone to assist
when making a diagnosis while the remaining features require a
computer to find the values.

4.2 Interface Design

We designed a web page interface to show a diagnostician the
values of features described in Section 4.1 which can be used to
distinguish patients who have PD, Ataxia, or neither. The interface
displays information for one patient at a time and only displays
videos and statistics for that patient. Our interface’s design was
based on the principles of presenting all of the information about a
patient’s walk in one central location. We also included the video
of the patient walking, as we were inspired by the aid that visual
representations of the data can provide during a diagnosis [9].

The center of the interface shows a video of a patient in one
of four perspectives: the unaugmented video of the patient walk-
ing (łOriginalž), walking with an Openpose skeleton overlay (łFull

Figure 2: The interface tool shows the video of the patient’s

movements in three different perspectives: łLagged Arm

Swingž, łAnkle Viewž and łFull Posež, shown here from left

to right respectively. In the interface, this annotated video

would appear in part (1) of Figure 1.

Posež), with a line drawn between the patient’s ankles (łAnkle
Viewž), and with a colored overlay of the range of the last five loca-
tions of the patient’s arms (łLagged Arm Swingž). The Mediapipe
framework [21] was used to overlay the highlights used in the Full
Pose and Lagged Arm Swing views. These views were added to
give a diagnostician a visual interpretation of how the patient’s
walking changes during the diagnostic walking task. If the diagnos-
tician wants to look at these videos more closely, they also have
the controls to speed up (1.5x, 2x, or 3x), slow down (0.25x or 0.5x),
or step frame-by-frame through the video.

The left column of the interface contains three collapsible sec-
tions with information related to the patient and their walking task:
łHighlightsž, łPatient Infož and łGait Statisticsž.

The Highlights section provides full-sentence interpretations of
distinguishing features for the observed patient. For example, if the
patient had a knee gait width that is more like that of a patient with
Ataxia, the phrase łKnee Gait - Higher value is more indicative of
Ataxiaž would be automatically added to the section.

The Patient Info section provides demographic information about
the patient, including age (if available) and gender, and video in-
formation such as the direction that the patient is walking in the
video.

The Gait Statistics section outlines the values for the features
found in Section 4.1 along with the ranges of those values for
PD, Ataxia, and Control Patients. For each instance where a foot
crossover occurs, the interface also displays the frame numbers
where that occurs, which the user can jump to in the patient’s video.

To add additional transparency, if the user hovers over a feature’s
value for the given patient, the interface will display information
about how that feature was calculated.

5 RESULTS

We evaluated our computed features against all six categories of
video (PD/Ataxia/Control, walking away or towards the camera).
The t-test comparisons of these features are shown in Table 1.
Further, we measured the effectiveness of these features in distin-
guishing these patient groups by computing an ANOVA test for
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Figure 3: Normalized features for all of the patients as they

completed their gait tasks walking towards (Top) and Away

(Bottom) from the camera

each feature, the results of which can be seen below in Table 2, and
a Kruskal test which can be seen in Table 3. For all of our statistical
tests, we used a significance threshold of 𝑝 < 0.05.

We additionally evaluated the video based on the number of
times one of a patient’s feet crossed in front of another. A chi-
square test was used under the hypothesis that the proportions of
patients surveyed who had one foot cross in front of the other while
walking at least once was equal. We looked at this for the group
of patients walking towards the camera, away from the camera,
and the entire set of patients as a whole. We found the proportions
to be unequal for the patients who were walking away from the
camera (𝑝 = 0.000138) and for the entire population of the patients
(𝑝 = 7.190822e−05), but not for the participants who were walking
towards the camera (𝑝 = 0.067138). The plots for the observed and
expected values of these tests can be found in Figure 4.

6 DISCUSSION

6.1 Finding Features to Differentiate Movement
Disorders

Our study found different features that can be used for detecting
Parkinson’s disease from Ataxia, and both movement disorders
from a control group. We sought out features that would be con-
sistently significant (𝑝 < 0.05) when a participant was walking
towards a camera or away from it. This occurred for Control/PD

Control No Crossover

PD No Crossover

Ataxia No Crossover

Control W
ith Crossover

PD W
ith Crossover

Ataxia W
ith Crossover

0

10

20

30

40

50

60

N
um

be
r o

f V
id

eo
s

Observed Values
Expected Values

Control No Crossover

PD No Crossover

Ataxia No Crossover

Control W
ith Crossover

PD W
ith Crossover

Ataxia W
ith Crossover

0

10

20

30

40

50

60

70

N
um

be
r o

f V
id

eo
s

Observed Values
Expected Values

Control No Crossover

PD No Crossover

Ataxia No Crossover

Control W
ith Crossover

PD W
ith Crossover

Ataxia W
ith Crossover

0

20

40

60

80

100

120

140

N
um

be
r o

f V
id

eo
s

Observed Values
Expected Values

Figure 4: Chi-Squared test of participants having one foot

cross in front of the other while walking at least once when

walking towards the camera (Top), away from the camera

(Middle), or both sets of videos together (Bottom).

with the Average Knee Gait and relative travel with the patient’s
left foot. We also saw the patient’s hip movements as a relevant
statistic when comparing Control/Ataxia in either direction. The
most attributes that could be used to distinguish between the pa-
tient groups in either direction were found between the PD/Ataxia
groups, where four features (Left wrist movements, Average Knee
Gait, and left/right relative foot travel) could be used to distinguish
patients in either direction.

When looking at the ability to distinguish the patients when
moving away from the camera we found Average Knee gait to be a
successful metric. We attribute this to participants in the control
group having a significantly lower mean knee gait relative to their
body size, represented by shoulderwidth. This could be explained by
the smaller stance that is needed to attain better balance, as would be
the opposite case with a movement disorder that is prone to rigidity
and stiffness. Similarly, the consistency of relative foot travel as a
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Away Towards

Control
PD

Control
Ataxia

PD
Ataxia

Control
PD

Control
Ataxia

PD
Ataxia

Left Wrist Movements 0.055 0.311 0.000766 0.0191 0.75 0.01

Right Wrist Movements 0.182 0.448 0.00168 0.329 0.634 0.113

Average Right Hip Angle 0.532 0.0537 1.75 0.029 0.0248 2.18

Average Left Hip Angle 2.43 0.00592 0.000147 0.784 1.24 0.162

Average Knee Gait 2e-12 0.123 8.23e-10 3.25e-18 0.403 1.02e-14

Left Foot Pause Length 0.982 0.964 0.0902 0.00232 2.88 0.00127

Right Foot Pause Length 2.96 0.414 0.224 0.00251 1.45 0.000518

Left foot relative travel 6.39e-06 2.01 3.17e-06 0.00522 1.91 0.000206

Right foot relative travel 2.3e-05 2.61 1.78e-06 0.395 1.23 0.0247

Foot Crossovers 0.000409 0.177 1.04e-05 2.12 0.0111 0.0365

Table 1: Bonferroni corrected p-values of t-tests comparing computed features against different groups of patients.

Away Towards

Left Wrist Movements 0.00356 0.0238

Right Wrist Movements 0.00826 0.105

Average Right Hip Angle 0.115 0.00636

Average Left Hip Angle 0.000166 0.19

Average Knee Gait 1.05e-18 2.39e-23

Left Foot Pause Length 0.114 0.000365

Right Foot Pause Length 0.162 2.31e-06

Left foot relative travel 2.59e-08 0.000307

Right foot relative travel 8.22e-08 0.0504

Foot Crossovers 0.00011 0.00507

Table 2: One way ANOVA test p-values for relevance of fea-

tures between Away/Towards groups, for all three patient

categories.

Away Towards

Left Wrist Movements 0.000112 2.31e-08

Right Wrist Movements 2.33e-05 9.03e-10

Average Right Hip Angle 0.0126 0.00769

Average Left Hip Angle 1.78e-05 0.00514

Average Knee Gait 1.72e-15 4.83e-18

Left Foot Pause Length 0.0608 6.79e-05

Right Foot Pause Length 0.0385 4.62e-07

Left foot relative travel 3.2e-07 0.00017

Right foot relative travel 4.44e-07 0.0129

Foot Crossovers 4.98e-05 0.0384

Table 3: Kruskal test for relevance of features between

Away/Towards groups, for all three patient categories.

distinguisher of Parkinson’s disease from other groups highlights
how patients with PD raise their feet higher than participants from
other groups

In the videos where patients walked toward a camera, we ob-
served higher mean values for the pause lengths for the left and
right feet for the participants in the Parkinson’s group. These de-
tected longer pauses alignwith the symptoms of Parkinson’s disease

and can be attributed as another marker for distinguishing it from
Ataxia (an average step by a left foot was longer by 0.0634 seconds;
right foot was longer by 0.1067 seconds) or a Control group (an
average step by a left foot was longer by 0.0643 seconds; right foot
was longer by 0.1180 seconds).

Our evaluation of how foot crossovers affected the distribution
of our dataset showed how the number of participants from each
movement disorder category (PD/Ataxia/Control) who had one foot
cross in front of the other at least once during their diagnostic task
was unequal. If we consider passing one foot in front of the other
as a means to catch oneself when losing balance, it is understand-
able that we would have more occurrences with PD which notes
impaired balance as a symptom. Another interesting finding is that
the number of occurrences where a patient with Ataxia has at least
no foot crossovers during their walk is higher than expected. We
can generalize this result as patients who have Ataxia have a better
ability to maintain balance when doing a diagnostic walking task.

6.2 Diagnostician Survey

We interviewed two doctors who diagnose patients with Movement
disorders, specifically one who specializes in Ataxia and another
who specializes in Parkinson’s disease, on the usefulness of our
interface. Due to COVID restrictions, the interviews took place
over video calls (Zoom), but we gave the interviewees screen share
control to interact with the web interface. Our interviews were
structured in two parts: first, we presented our tool, toured the
interface, and explained how to navigate the tool to get information
about the patient’s diagnostic task; Next, we reviewed the moti-
vation for using an automated tool such as ours, asked about the
usefulness of our tool in their line of work, and discussed what
improvements they believed should be included in this tool and
other automated systems in their discipline. After reviewing the
audio-recorded feedback, we identified two main themes:

First, we consistently heard back that doctors generally do not
want another system to learn or an additional device to add to their
already large set of tools to learn. What would be more useful is a
łcheck engine lightž platform with no buttons to press, like ours, to
make a doctor aware of high-risk patients before doing complex
procedures. For example, with orthopedic surgery, there is use in
showing this patient-derived data if it can highlight gait statistics
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that are related to the operation such as łFive times more likely to
have a fall risk. Should not do the operationž. In its current form,
video perspectives such as łAnkle Viewž and the Openpose skeleton
give ła helpful initial insightž to that. A key statement was łI’m
less interested in the individual biomarkers and more interested in
the interpretation; This is a patient who falls or is more likely to
fallž.

Second, a key point of feedback we heard was the ease of use of
the tool and its applicability for more movement-based disciplines.
Being able to view the same patientwith overlaid informationwould
be łvery very usefulž when looking at movement disorders that
have overlapping symptoms. One doctor noted they appreciated
łhow easy it is to get to the highlights so I don’t have to spend time
reading all of the stats to see the stand-out stuffž.

6.3 Limitations

An important consideration of this work is the accuracy of the
OpenPose tool when detecting human joints and measuring their
associatedmovements.We sought to use a keypoint detection frame-
work that was both easily available, to ensure reproducibility, and
widely adopted across the academic community. We also chose to
use CMU Openpose [6] as it was more consistent in accuracy [24]
as opposed to alternatives such as Blazepose (Google’s MediaPipe)
and PoseNet.

An additional limitation would be the perspective of the videos
in our dataset. We only had access to the frontal plane of patient
movement, as opposed to the sagittal plane (side view), which can
provide a clearer view of the patient’s stride and gait, and therefore
more information to distinguish the movement disorders that the
patients may have been diagnosed with. This did not however
prevent us from being able to detect the gait cycle or movements
associated with it. In an extension of this work, we plan to validate
the findings as outlined in previous sections from a sagittal plane
and use a larger group of participants to see how our results are
reflected on a larger population.

6.4 Future Work

In a future study, we see a strong benefit in exploring how this work
can be applied to different disciplines. Based on the feedback from
the doctors we surveyed, looking into providing natural language
interpretations and highlights on the full gait cycle would be useful
in multiple disciplines for identifying high-risk patients. Being able
to highlight and explain the walking task as it happened could
let doctors make key decisions before fully performing surgery or
engaging in another invasive task.

Similarly, we would be interested in extending this quantification
of movement disorders to a different plane of view and validating
the results against a series of wireless sensors or motion capture
tools.

7 CONCLUSION

In this work, we found metrics that can be used to distinguish
patients with a movement disorder or from a control group and
designed an intelligent assistive interface to show this information
to doctors who might be diagnosing a patient. After building this
tool we showed it to doctors and got feedback on its ease of use and

potential place in a doctor’s office. We see this as a foundational
step to building interfaces that can alert doctors to abnormalities
in gait and general movement. With additional information about
the diagnostic task being available, we see the opportunity to add
more transparency to the diagnostic process and allow patients the
opportunity about what parts of their diagnostic task were most
relevant. From the feedback we have received and the ability to
distinguish movement disorders beyond eyesight alone, it is clear
that this is the first step to assistive interfaces in the future.
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