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Fig. 1: AutelPL Dataset: Examples from AutelPL Synthetic (left), AutelPL Real (right), and ground truth (bottom).

Abstract— Accurately identifying Power Lines (PLs) is cru-
cial for ensuring the safety of aerial vehicles. Despite the
potential of recent deep learning approaches, obtaining high-
quality ground truth annotations remains a challenging and
labor-intensive task. Unsupervised Domain Adaptation (UDA)
emerges as a promising solution, leveraging knowledge from
labeled synthetic data to improve performance on unlabeled
real images. However, existing UDA methods often suffer of
huge computation costs, limiting their deployment on real-time
embedded systems commonly utilized on aerial vehicles. To
mitigate this problem, this paper introduces QuadFormer, a
real-time framework designed for unsupervised semantic seg-
mentation within the UDA paradigm. QuadFormer integrates a
lightweight transformer-based segmentation model with a cross-
attention mechanism to narrow the gap between a labelled
synthetic domain and unlabelled real domain. Furthermore, we
design a novel pseudo label scheme to enhance the segmentation
accuracy of the unlabelled real data. To facilitate the evaluation
of our framework and promote reserach in PL segemntation, we
present two new datasets: AutelPL Synthetic and AutelPL Real.
Experimental results demonstrate that QuadFormer achieves
state-of-the-art performance on both AutelPL Synthetic →

TTPLA and AutelPL Synthetic → AutelPL Real tasks. We will
publicly release the dataset to the research community.

SUPPLEMENTARY MATERIAL

Video: https://youtu.be/7h-lqGbQCSg

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have gained

widespread usage in diverse fields such as photography,

commercial, agriculture, and exploration. One of the major

challenges during UAV flight is their inability to detect

widespread PLs. Collision with PLs would not only damage
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the UAV but can adversely affect power grids. Therefore,

the development of accurate PL detection methods assumes

paramount importance. However, the segmentation of PLs

presents several challenges. Their geometric structure is

thin, occupying only a tiny portion of the image, making

detection intricate. Additionally, the presence of cluttered

backgrounds with similar-looking edges, low contrast

scenarios, or barely visible thickness further complicates

their identification. Recently, numerous deep learning

methods have emerged for semantic segmentation and shown

promising results [1]–[3]. Particularly, transformer-based

models [4]–[6] have achieved remarkable generalization

performance on segmentation tasks. However, these methods

demand heavy computational resources, posing practical

deployment challenges, especially for real-time applications.

Real-time segmentation of PLs is crucial to provide drones

with sufficient time to avoid potential collisions effectively.

Furthermore, these approaches rely on extensive annotated

datasets, which are not easily available. The process of

collecting them can also be cumbersome and expensive.

Particularly, there is a scarcity of high-quality open-source

datasets with labeled PL segmentation data. Hence, finding

efficient and resource-friendly solutions for PL detection

becomes essential to ensure the safe operation of UAVs.

UDA presents a promising approach to address the chal-

lenges outlined above. This technique aims to bridge the

domain gap between a labeled source domain and an unla-

beled target domain. Although potentially promising, existing

UDA methods often face limitations in real-time inference

capabilities. These techniques often utilize large models that

are unable to run on real-time systems commonly utilized

by UAVs. Our research seeks to overcome this critical

limitation by proposing and evaluating a real-time UDA

framework designed to enhance the precision of PL detection

on embedded systems. The contributions can be summa-

rized as follows. First, we adapt a lightweight SegFormer

model [5] for robust real-time PL detection without the

need for annotated data, addressing the problem within the

context of unsupervised domain adaptation. Second, our pro-
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TABLE I: Comparison of major powerline segmentation datasets with AutelReal and AutelSynthetic dataset

Dataset Images# Resolution
Diversity

Manual Annotation Synthetic Real
Zoom Level Illumination Angle

PLID [7] 2000 128× 128 6 : 6 : : 6

PLDU [8] 573 540× 360 6 : 6 6 : 6

PLDM [8] 287 540× 360 6 : : 6 : 6

TTPLA [9] 1100 3840× 2160 6 6 6 6 : 6

AutelReal (ours) 4000 3840× 2160 6 6 6 6 : 6

WDD [10] 67000 640× 480 6 6 6 − 6 :

AutelSynthetic (ours) 7000 3840× 2160 6 6 6 − 6 :

posed framework integrates cross-attention and self-attention

mechanisms, facilitating the learning of robust feature repre-

sentations. Third, we enhance detection precision by incor-

porating self-training [11] and pseudo-label correction [12]

mechanisms. This novel pseudo-label scheme estimates the

reliability of the pseudo ground truth labels for the target

domain and denoises them by leveraging class representa-

tions learned using the two attention mechanisms. Finally,

to advance research in PL segmentation, we introduce two

publicly available datasets: AutelPL Synthetic, featuring 4K

resolution images with annotations from AirSim [13], and

AutelPL Real, comprising 4K resolution images obtained

from flight videos with precise ground truth annotations.

Compared to many existing datasets, which often suffer

from limitations such as a limited number of images, sparse

annotations, and low resolution (see Table I), our datasets

offer significant advantages. They address the scarcity of

high-quality data for PL segmentation and also ensure that

our models are well-equipped to handle various real-world

challenges and operating conditions effectively.

II. RELATED WORKS

A. Powerline Segmentation

The landscape of PL detection methods has evolved

over time, transitioning from early utilization of traditional

computer vision techniques to the recent advancements in

deep learning-based approaches. Earlier works, exemplified

by [14], employ sub-pixel edge detection combined with

thresholded Hough transform, and [15] applies a Canny

detector with subsequent post-processing refinement. These

methods rely on handcrafted features and predefined hyper-

parameters, limiting their adaptability to diverse aerial con-

ditions. Conversely, contemporary methods leverage deep

learning for PL segmentation. [16] partitions images into

sub-regions, classifying patches with PLs. [17] and [18] in-

vestigate the effectiveness of Convents for PL detection. [19]

introduced a two-phase weakly supervised detection method

for PL extraction. Their approach involved a Convolutional

Neural Network (CNN) for approximate positioning and a

subsequent refinement algorithm to connect broken lines.

While general CNN-based semantic segmentation models [1]

exhibit promise in various segmentation tasks, they fall

short for PL segmentation due to information loss during

pooling and downsampling. In contrast, transformer-based

models [4]–[6], are recognized for their proficiency in lever-

aging long-term spatial contextual dependencies, resulting

in state-of-the-art performance. However, they rely heavily

on substantial annotated datasets and are computationally

expensive. In this work, we adapt a lightweight transformer-

based model, SegFormer-b0 [5], for PL segmentation in the

context of unsupevised domain adaptation, circumventing the

need for manual annotations.

B. Poweline Segmentation Datasets

Generating segmentation datasets with pixel-level anno-

tations is a laborious and costly endeavor. This challenge

is further compounded for PL detection due to the inherent

difficulty in capturing images in close proximity to power

grids while UAVs are in flight [18]. Despite these difficulties,

a handful of publicly available datasets for PL detection

do exist. For instance, the PLID dataset [7] comprises

2000 low-resolution images featuring PLs. Similarly, [8]

contribute two datasets, PLDU and PLDM, covering urban

and mountain scenarios. However, these datasets still have

limitations in terms of diversity, quantity, and image reso-

lution of annotated PLs. Addressing these gaps, the TTPLA

dataset [9] introduces 1100 4K resolution images with metic-

ulous annotations. Nevertheless, this dataset is subject to bias

stemming from city-specific image acquisition. A promising

alternative is to use synthetic images. The wire detection

dataset (WDD) [10] overlays synthetic wires onto 67K aerial

images. Yet, a notable drawback lies in the non-photorealistic

quality of the synthetic wires. In this work, we present a

novel synthetic dataset, AutelPL Synthetic, which simulates

high-quality urban scenes with diverse PL scenarios and au-

tomatically generated annotations. Furthermore, to advance

PL segmentation research, we introduce AutelPL Real, a

real-world PL segmentation dataset comprising 4000 4K

resolution images showcasing PL instances. Both datasets

offer a broad range of images with significant variability,

encompassing changes in illumination, textures, and camera

perspectives.

C. Unsupervised Domain Adaptation

Recent UDA developments are primarily divided into two

categories: adversarial training, aligning source and target

domain distributions using techniques like [20]–[22], and

self-training, which labels target domain data, either pre-

computed offline and retrained [23] or dynamically during

training with adaptive thresholds [24]. Regularization meth-

ods, including pseudo-label prototypes [12] and consistency

regularization [25], enhance training. DACS [26] combines
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domain data with labels and pseudo-labels. Transformer-

based models, like DAFormer [27] and HRDA [28], have

shown promise in UDA, utilizing the Segformer as the

base model and specialized training strategies to bridge the

domain gap. However, most UDA techniques rely on large

models that are impractical for real-time embedded systems.

Our work focuses on leveraging cross-domain contextual in-

sights, inspired by BCAT [29], with a lightweight Segformer,

achieving real-time and accurate segmentation in the target

domain. Differently, we align relative feature distances based

on an augmented representation that integrates in-domain and

cross-domain contextual information. Moreover, the BCAT

method was designed specifically for classification tasks. In

this work, we demonstrate the applicability of our approach

on a class-imbalanced segmentation task.

III. THE AUTEL DATASET

We introduce two PL datasets: the AutelPL Synthetic and

AutelPL Real datasets, each equipped with detailed segmen-

tation annotations. These datasets have been carefully curated

to serve as valuable resources for advancing PL segmentation

tasks. The AutelPL Synthetic dataset comprises a collection

of photorealistic frames generated from four distinct urban

scenarios, created using the Unreal Engine 5. Each frame

is enriched with pixel-level semantic annotations obtained

through the AirSim [13] plugin. To simulate real-world

conditions and enhance the complexity of detection tasks,

scenes are populated with elements commonly encountered

during UAV flights, such as trees, lamp poles, buildings,

etc. The virtual environment’s flexibility allows for seamless

placement and annotation of these elements, facilitating the

creation of diverse urban landscapes. Moreover, the ability

to manipulate attributes such as textures, colors, and shapes

adds visual variety to the dataset. The AutelPL Synthetic

dataset includes 7000 frames, each accompanied by ground

truth annotations of resolution 3840×2160. These frames are

captured from a virtual array of cameras, moving randomly

throughout the scene while adhering to a height range of

10 to 15 meters from the ground. Within each camera

pose, multiple frames are captured, introducing variations in

dynamic objects, scene illumination, and aerial background

textures. A minimum separation of 5 m between camera

positions ensures enhanced visual diversity.

The AutelPL Real dataset is obtained using a UAV which

is flown over different cities, ensuring a mix of scenes. We

choose locations within the city randomly to avoid any bias

or manipulation of backgrounds. The UAV is equipped with

a 4K camera with lossless zoom capabilities. This zooming

feature is used while collecting video data to make sure we

get detailed images of PLs without needing to manually crop

them. All the aerial videos are in 3840 × 2160 resolution

at 30 Hz. We carefully check the dataset and remove any

unclear images to maintain its quality. The AutelPL Real

dataset consists of 4000 images, each matched with accurate

annotations, all at the resolution of 3840 × 2160. PLs have

a distinct appearance, being long and thin, so differences in

backgrounds and lighting play a significant role in detecting

them. Hence, the dataset covers a range of backgrounds,

zoom levels, and various weather and lighting conditions.

Understanding the importance of capturing different angles

for reliable data collection and ensuring the trained deep

learning model is view invariant, we capture videos from

various viewpoints. These include front, top, and side views.

IV. METHODOLOGY

A. Overview

For a UDA problem, we are given a source dataset Xs =
{xs}ns

j=1 with ground truth labels Ys = {ys}ns

j=1, and unla-

belled target dataset Xt = {xt}nt

j=1. The two distributions

suffer from a domain shift. The goal of UDA is to train a

segmentation model that can provide accurate predictions for

Xt. Our training objective can be divided into two stages.

First, motivated by the recent success of self-training [30],

we generate pseudo labels Y st
t for Xt. Then, during the

domain adaptation stage, the segmentation model is retrained

with the labelled source dataset, target images, and pseudo

labels. Figure 2 illustrates the proposed UDA framework.

The QuadFormer consists of a cross-domain transformer en-

coder (Section IV-B) for generating self-attentive and cross-

attentive multi-scale features, and a cross-domain decoder

(Section IV-C) for predicting segmentation masks for the

source and target domain. Additionally, we implement a

pseudo label correction mechanism to online denoise the

noisy pseudo ground truth labels.

B. Cross-Domain Transformer Encoder

Segformer [5] has achieved remarkable performance on

semantic segmentation. The hierarchically structured trans-

former encoder outputs multiscale features. Inspired by this,

the QuadFormer combines two self-attention and two cross-

attention modules to design the four-branch transformer

encoder. Given an image pair (one from the source domain

and one from the target domain), images are divided into

patches of size 4 × 4. The image patches are transformed

into three vectors, namely queries Q, keys K, and values V .

The self-attention is formulated as

Attnself (Qs,Ks, Vs) = Softmax

(

QsK
T
s√

dhead

)

Vs, (1)

Attnself (Qt,Kt, Vt) = Softmax

(

QtK
T
t√

dhead

)

Vt, (2)

where dhead indicates the vector dimension, Qs, Ks, Vs are

queries, keys, and values from the patches of image Is, and

Qt, Kt, Vt are queries, keys, and values from the patches of

image It. The cross-attention operation is derived from the

self-attention operation. We leverage this module to generate

mix-up features and is formulated as

Attncross(Qs,Kt, Vt) = Softmax

(

QsK
T
t√

dhead

)

Vt, (3)

Attncross(Qt,Ks, Vs) = Softmax

(

QtK
T
s√

dhead

)

Vs. (4)
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Fig. 2: QuadFormer components include Overlapping Patch Embedding, Hierarchical Cross-Contextual Transformer, Cross-

Domain Decoder, and Pseudo Label Correction mechanism.

The proposed hierarchical cross-contextual transformer block

consists of four branches: (a) the source-aware branch, (b) the

target-aware source branch, (c) the target-aware branch, and

(d) the source-aware target branch. The self-attention module

extracts hierarchical source-aware features represented as

F i
s and hierarchical target-aware features represented as F i

t .

Moreover, the cross-attention module produces hierarchical

target-aware source features denoted as F i
s−t and source-

aware target features denoted as F i
t−s. These hierarchical

feature maps are expressed as F i ∈ R
H/2i+1

×W/2i+1
×Ci

with i = 0, 1, 2, 3.

C. Cross-Domain Decoder

To achieve consistency in channel dimensions, we process

multi-scale features from each branch of the quadruple

transformer encoder through an MLP layer, followed by up-

sampling to ensure resolution harmonization. Subsequently,

we enhance the source-aware features and target-aware

source features by concatenating the corresponding feature

maps to create Faug−s. Similarly, we generate augmented

features for the target domain as Faug−t. These augmented

features then pass through an additional MLP layer to

generate the final segmentation masks namely Ms for the

source domain and Mt for the target domain.

D. Pseudo Label Correction

To address self-training challenges, particularly the gen-

eration of accurate pseudo-labels for the target dataset,

we introduce a dynamic pseudo-label correction mechanism

inspired by ProDA [12]. This mechanism estimates pseudo-

label reliability by measuring the relative distance between

features and representative prototypes, which are centroids

of semantic classes. In a departure from traditional pro-

totype calculation methods using target domain features,

we propose the generation of cross-attentive prototypes de-

rived from augmented representations, Faug−t. These cross-

attentive prototypes amalgamate semantic information from

both domains. For each class c, a cross-attentive prototype is

computed as a weighted sum of features from the augmented

representation for the target domain. These weights are

determined by the softmax probability of the corresponding

pixel j, as provided by the pseudo-labels. To mitigate the

computational burden of prototype calculation, we estimate

them as a moving average of semantic cluster centroids

within mini-batches. The likelihood of a given pseudo label

is estimated by the following weighting scheme

W
(j,c)
t =

exp(−||F j
aug−t − η(c)||/τ)

∑

c′ exp(−||F j
aug−t − η(c

′ )||/τ
, (5)

where, η(c) is the cross-attentive prototype for a given class

c, and τ is the softmax temperature set to τ = 1.

E. Training Objective

The proposed methodology contains a segmentation loss

Lseg and an adversarial loss Ladv . The segmentation loss of

Ms is formulated as

Lseg(Ms, Ys) = −
H×W
∑

i=1

C
∑

c=1

Y i,c
s logM i,c

s , (6)

where C is the total number of semantic classes. Similarly,

segmentation loss Lseg(Mt, Y
st
t ) is defined for the target

segmentation mask. Furthermore, in order to adapt the struc-

tured output space [21], we utilize a discriminator to make

the source and target masks indistinguishable from each

other. To achieve this, we utilize an adversarial loss

Ladv(Ms,Mt, D) = E[logD(Ms)] + E[log 1−D(Mt)],
(7)

Therefore, the total loss is

Ltotal = Lseg(Ms, Ys) + β1 ∗ Lseg((Mt, Y
st
t )) + β2 ∗ Ladv,

(8)
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Fig. 3: Qualitative analysis of validation images from TTPLA

(first two rows) and AutelPL Real (last two rows), when

training models on the AutelPL Synthetic datset. The red

circle indicates incorrect predictions and the green circle

indicates true positives.

where β1 and β2 are set to 0.1, and 1 respectively.

F. Inference for Target Domain

During the inference process on the target distribution after

the UDA stage, the inference scheme needs to use the source

data. However, there is a storage cost to access the source

data. Additionally, it is possible that the source data is not

always available to us during inference. Hence, we propose

an inference process that is independent of the source data.

Since the QuadFormer cannot combine the augmented target

feature representation without the source data, we combine

the target-aware features with themselves, to predict the

segmentation mask Mt during inference.

V. EXPERIMENTS

A. Implementation Details

Datasets For the target domain, we utilize the AutelPL Real

dataset containing 2800 training and 1200 validation images

with resolution 3840 × 2160, and the TTPLA dataset [9]

which contains 1004 training images and 217 testing images

with resolution 3840× 2160. For the source domain, we use

the AutelPL Synthetic dataset, which contains 7000 synthetic

images of resolution 3840× 2160. As a common practice in

UDA, we resize the images to 1024× 512.

Training Similar to [5], the QuadFormer is trained with

AdamW [31], a learning rate of ηbase = 6 × 10−5, a

weight decay of 0.01, linear learning rate warmup (twarm =
1.5K), followed by a linear decay. During training, data

augmentation is applied through random horizontal flipping,

photometric distortion, and random cropping to 512 × 512.

The model is trained for 80K iterations. λ is set to 0.1. All

experiments are conducted on 4 NVIDIA GeForce RTX 3090
with PyTorch implementation.

B. Performance Comparison

Although the prevalent choice for UDA has been

DeepLabV2 [2] with a ResNet-101 backbone, recent de-

velopments highlight the potential of Transformer-based

SegFormer in UDA [27], [28]. Notably, while prior UDA

approaches have displayed impressive results on various

TABLE II: Comparision results of AutelPL Synthetic →
TTPLA.

Method Architecture Params (M) IoU

DAFormer [27] MiT-B0 3.8 36.43

HRDA [28] MiT-B0 3.8 38.36

Source-only MiT-B0 3.8 28.93

QuadFormer MiT-B0 3.8 40.35

TABLE III: Comparision results of AutelPL Synthetic →
AutelPL Real.

Method Architecture Params (M) IoU

DAFormer [27] MiT-B0 3.8 35.22

HRDA [27] MiT-B0 3.8 37.46

Source-only MiT-B0 3.8 25.67

QuadFormer MiT-B0 3.8 39.65

autonomous driving datasets, their computational demands

render them unsuitable for real-time hardware configura-

tions. To ensure a fair evaluation, we benchmark our ap-

proach against two contemporary SegFormer-based UDA

methods, DAFormer [27], and HRDA [28]. For both these

methods, we use the MiT-B0 encoder for training. Lastly,

we conduct an exhaustive evaluation of the proposed

QuadFormer on synthetic-to-real domain adaptation scenar-

ios, specifically AutelPL Synthetic→TTPLA and AutelPL

Synthetic→AutelPL Real. Extensive experiments and abla-

tion studies substantiate the superiority of our model, with

performance measured using the Intersection over Union

(IoU) metric.

AutelPL Synthetic→TTPLA We first evaluate our method

by utilizing AutelPL Synthetic as the source domain and

TTPLA as the target domain. The performance is assessed

based on the model’s ability to predict pixels corresponding

to the PL class on the TTPLA validation set. Our method is

compared with existing state-of-the-art models by using MiT-

B0 as the backbone architecture. As indicated in Table. II,

the QuadFormer achieves a state-of-the-art performance of

40.35 IoU, outperforming other baselines. Compared to

other transformer-based UDA models [27], [28], our method

gains up to 9% IoU improvement by utilizing cross-attentive

features, revealing that domain discrepancy can be reduced

by considering context adaptation.

AutelPL Synthetic→AutelPL Real The domain gap be-

tween AutelPL Synthetic and AutelPL Real is greater than

AutelPL Synthetic and TTPLA due to the highly diverse na-

ture of the AutelPL Real dataset. In Table. III, we present the

adaptation results on the AutelPL Real validation set, where

QuadFormer exhibits considerable improvement. Our method

achieves an IoU of 39.65 and outperforms all baselines by

upto 6%.

C. Real-time performance

This experiment serves to demonstrate the real-time ca-

pability of our approach, making it well-suited for online

operations, particularly in embedded systems. To enhance
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Fig. 4: QuadFormer Component Analysis comparing TTPLA

(top two rows) and AutelPL Real (bottom two rows). Source-

only model predictions reveal a domain gap, while self-

training leveraging cross-domain features enhances predic-

tion accuracy. Optimal results are achieved with pseudo-label

correction using all three components.

inference speed, we optimized the model using TensorRT.

We conducted testing on the NVIDIA Jetson NX platform,

known for its compact footprint, which renders it suitable

for deployment in aerial vehicles. Table IV illustrates the in-

ference speed of the model with different image resolutions.

TABLE IV: Inference Speed on NVIDIA Jetson NX for

Different Image Resolutions

Image Size 512× 256 512× 512 1024× 512 1024× 1024

Speed (Hz) 42.36 36.75 24.68 16.14

D. Ablation study

We perform extensive ablation studies to demonstrate the

key components of our proposed UDA model. In the ablation

studies, we train the model for 40K iterations and validated

our approach on AutelPL Synthetic→AutelPL Real.

Effect of cross-attention. In Table. V, we perform ablation

studies to study the effect of source and target features using

only the self-attention and using both the self-attention and

cross-attention. In contrast to only self-attentive features in

both domains, incorporating cross-attention in the source

features or target features improves the IoU by 1.72% and

2.86%, respectively. By introducing cross-attention in both

domains, we achieve 39.65 IoU. While the self-attentive

prototypes are able to correct the noisy pseudo labels up to

some extent, the cross-attentive prototypes are less sensitive

to outliers due to context adaptation. Hence, the cross-

domain context at the feature level is important to understand

the semantic distribution in both domains and reduces the

discrepancy in data distributions.

Effect of key components of the UDA framework. Ta-

ble VI indicates an ablation study of each proposed compo-

nent. The source-only model gives 25.67 IoU on the target

domain. Initialized by the source-only model, self-training

with pseudo-labels achieves an IoU gain of 30%. Adding

the adversarial loss brings a 38% IoU gain. Finally, with

TABLE V: Ablation study on the AutelPL

Synthetic→AutelPL Real adaptation to understand the

contribution of context adaptation.

Source features Target features IoU

self-attention self-attention 34.62

cross-attention self-attention 36.34

self-attention cross-attention 37.48

cross-attention cross-attention 39.65

TABLE VI: Ablation study of each proposed component on

the AutelPL Synthetic→AutelPL Real adaptation.

Self Adversarial Pseudo Label IoU

Training Loss Correction

25.67

6 33.5

6 6 35.56

6 6 6 39.65

cross-attentive prototypes for online pseudo-label correction

and all other components, our model achieves 39.65 IoU.

Figure. 4 illustrates the effect of key components of the

proposed QuadFormer.

VI. CONCLUSIONS

In this study, we introduced QuadFormer, a real-time

approach tailored for unsupervised PL segmentation within

the UDA framework. Our proposed solution effectively lever-

ages information from both a labeled source domain and

an unlabeled target domain, utilizing transferable context to

enhance segmentation accuracy. The framework integrates

cross-attention and self-attention mechanisms, enabling ro-

bust feature representations to handle domain shifts. Addi-

tionally, we incorporate self-training and pseudo-label cor-

rection mechanisms to further improve detection accuracy.

To advance research in PL segmentation and evaluate our

framework, we introduced two new datasets: AutelPL Syn-

thetic and AutelPL Real. Experimental results demonstrate

that QuadFormer achieves state-of-the-art performance on

both AutelPL Synthetic → TTPLA and AutelPL Synthetic

→ AutelPL Real tasks, validating the efficacy and potential

of our proposed approach for real-time PL segmentation.
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