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Fig. 1: AutelPL Dataset: Examples from AutelPL Synthetic (left), Aute]PL Real (right), and ground truth (bottom).

Abstract— Accurately identifying Power Lines (PLs) is cru-
cial for ensuring the safety of aerial vehicles. Despite the
potential of recent deep learning approaches, obtaining high-
quality ground truth annotations remains a challenging and
labor-intensive task. Unsupervised Domain Adaptation (UDA)
emerges as a promising solution, leveraging knowledge from
labeled synthetic data to improve performance on unlabeled
real images. However, existing UDA methods often suffer of
huge computation costs, limiting their deployment on real-time
embedded systems commonly utilized on aerial vehicles. To
mitigate this problem, this paper introduces QuadFormer, a
real-time framework designed for unsupervised semantic seg-
mentation within the UDA paradigm. QuadFormer integrates a
lightweight transformer-based segmentation model with a cross-
attention mechanism to narrow the gap between a labelled
synthetic domain and unlabelled real domain. Furthermore, we
design a novel pseudo label scheme to enhance the segmentation
accuracy of the unlabelled real data. To facilitate the evaluation
of our framework and promote reserach in PL segemntation, we
present two new datasets: AutelPL Synthetic and AutelPL Real.
Experimental results demonstrate that QuadFormer achieves
state-of-the-art performance on both AutelPL Synthetic —
TTPLA and AutelPL Synthetic — AutelPL Real tasks. We will
publicly release the dataset to the research community.

SUPPLEMENTARY MATERIAL
Video: https://youtu.be/7h-IgGbQCSg

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have gained
widespread usage in diverse fields such as photography,
commercial, agriculture, and exploration. One of the major
challenges during UAV flight is their inability to detect
widespread PLs. Collision with PLs would not only damage
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the UAV but can adversely affect power grids. Therefore,
the development of accurate PL detection methods assumes
paramount importance. However, the segmentation of PLs
presents several challenges. Their geometric structure is
thin, occupying only a tiny portion of the image, making
detection intricate. Additionally, the presence of cluttered
backgrounds with similar-looking edges, low contrast
scenarios, or barely visible thickness further complicates
their identification. Recently, numerous deep learning
methods have emerged for semantic segmentation and shown
promising results [1]-[3]. Particularly, transformer-based
models [4]-[6] have achieved remarkable generalization
performance on segmentation tasks. However, these methods
demand heavy computational resources, posing practical
deployment challenges, especially for real-time applications.
Real-time segmentation of PLs is crucial to provide drones
with sufficient time to avoid potential collisions effectively.
Furthermore, these approaches rely on extensive annotated
datasets, which are not easily available. The process of
collecting them can also be cumbersome and expensive.
Particularly, there is a scarcity of high-quality open-source
datasets with labeled PL segmentation data. Hence, finding
efficient and resource-friendly solutions for PL detection
becomes essential to ensure the safe operation of UAVs.
UDA presents a promising approach to address the chal-
lenges outlined above. This technique aims to bridge the
domain gap between a labeled source domain and an unla-
beled target domain. Although potentially promising, existing
UDA methods often face limitations in real-time inference
capabilities. These techniques often utilize large models that
are unable to run on real-time systems commonly utilized
by UAVs. Our research seeks to overcome this critical
limitation by proposing and evaluating a real-time UDA
framework designed to enhance the precision of PL detection
on embedded systems. The contributions can be summa-
rized as follows. First, we adapt a lightweight SegFormer
model [5] for robust real-time PL detection without the
need for annotated data, addressing the problem within the
context of unsupervised domain adaptation. Second, our pro-
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TABLE I: Comparison of major powerline segmentation datasets with AutelReal and AutelSynthetic dataset

Dataset Images# Resolution Zoom Tovel D}ﬁil;rsllitgation Angle Manual Annotation  Synthetic  Real
PLID [7] 2000 128 x 128 X X X
PLDU [8] 573 540 x 360 X X
PLDM [8] 287 540 x 360 X X X
TTPLA [9] 1100 3840 x 2160 X
AutelReal (ours) 4000 3840 x 2160 X
WDD [10] 67000 640 x 480 - X
AutelSynthetic (ours) 7000 3840 x 2160 - X

posed framework integrates cross-attention and self-attention
mechanisms, facilitating the learning of robust feature repre-
sentations. Third, we enhance detection precision by incor-
porating self-training [11] and pseudo-label correction [12]
mechanisms. This novel pseudo-label scheme estimates the
reliability of the pseudo ground truth labels for the target
domain and denoises them by leveraging class representa-
tions learned using the two attention mechanisms. Finally,
to advance research in PL segmentation, we introduce two
publicly available datasets: AutelPL Synthetic, featuring 4K
resolution images with annotations from AirSim [13], and
AutelPL. Real, comprising 4K resolution images obtained
from flight videos with precise ground truth annotations.
Compared to many existing datasets, which often suffer
from limitations such as a limited number of images, sparse
annotations, and low resolution (see Table I), our datasets
offer significant advantages. They address the scarcity of
high-quality data for PL segmentation and also ensure that
our models are well-equipped to handle various real-world
challenges and operating conditions effectively.

II. RELATED WORKS
A. Powerline Segmentation

The landscape of PL detection methods has evolved
over time, transitioning from early utilization of traditional
computer vision techniques to the recent advancements in
deep learning-based approaches. Earlier works, exemplified
by [14], employ sub-pixel edge detection combined with
thresholded Hough transform, and [15] applies a Canny
detector with subsequent post-processing refinement. These
methods rely on handcrafted features and predefined hyper-
parameters, limiting their adaptability to diverse aerial con-
ditions. Conversely, contemporary methods leverage deep
learning for PL segmentation. [16] partitions images into
sub-regions, classifying patches with PLs. [17] and [18] in-
vestigate the effectiveness of Convents for PL detection. [19]
introduced a two-phase weakly supervised detection method
for PL extraction. Their approach involved a Convolutional
Neural Network (CNN) for approximate positioning and a
subsequent refinement algorithm to connect broken lines.
While general CNN-based semantic segmentation models [1]
exhibit promise in various segmentation tasks, they fall
short for PL segmentation due to information loss during
pooling and downsampling. In contrast, transformer-based
models [4]-[6], are recognized for their proficiency in lever-
aging long-term spatial contextual dependencies, resulting

in state-of-the-art performance. However, they rely heavily
on substantial annotated datasets and are computationally
expensive. In this work, we adapt a lightweight transformer-
based model, SegFormer-b0 [5], for PL segmentation in the
context of unsupevised domain adaptation, circumventing the
need for manual annotations.

B. Poweline Segmentation Datasets

Generating segmentation datasets with pixel-level anno-
tations is a laborious and costly endeavor. This challenge
is further compounded for PL detection due to the inherent
difficulty in capturing images in close proximity to power
grids while UAVs are in flight [18]. Despite these difficulties,
a handful of publicly available datasets for PL detection
do exist. For instance, the PLID dataset [7] comprises
2000 low-resolution images featuring PLs. Similarly, [8]
contribute two datasets, PLDU and PLDM, covering urban
and mountain scenarios. However, these datasets still have
limitations in terms of diversity, quantity, and image reso-
lution of annotated PLs. Addressing these gaps, the TTPLA
dataset [9] introduces 1100 4K resolution images with metic-
ulous annotations. Nevertheless, this dataset is subject to bias
stemming from city-specific image acquisition. A promising
alternative is to use synthetic images. The wire detection
dataset (WDD) [10] overlays synthetic wires onto 67K aerial
images. Yet, a notable drawback lies in the non-photorealistic
quality of the synthetic wires. In this work, we present a
novel synthetic dataset, AutelPL Synthetic, which simulates
high-quality urban scenes with diverse PL scenarios and au-
tomatically generated annotations. Furthermore, to advance
PL segmentation research, we introduce AutelPL Real, a
real-world PL segmentation dataset comprising 4000 4K
resolution images showcasing PL instances. Both datasets
offer a broad range of images with significant variability,
encompassing changes in illumination, textures, and camera
perspectives.

C. Unsupervised Domain Adaptation

Recent UDA developments are primarily divided into two
categories: adversarial training, aligning source and target
domain distributions using techniques like [20]-[22], and
self-training, which labels target domain data, either pre-
computed offline and retrained [23] or dynamically during
training with adaptive thresholds [24]. Regularization meth-
ods, including pseudo-label prototypes [12] and consistency
regularization [25], enhance training. DACS [26] combines
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domain data with labels and pseudo-labels. Transformer-
based models, like DAFormer [27] and HRDA [28], have
shown promise in UDA, utilizing the Segformer as the
base model and specialized training strategies to bridge the
domain gap. However, most UDA techniques rely on large
models that are impractical for real-time embedded systems.
Our work focuses on leveraging cross-domain contextual in-
sights, inspired by BCAT [29], with a lightweight Segformer,
achieving real-time and accurate segmentation in the target
domain. Differently, we align relative feature distances based
on an augmented representation that integrates in-domain and
cross-domain contextual information. Moreover, the BCAT
method was designed specifically for classification tasks. In
this work, we demonstrate the applicability of our approach
on a class-imbalanced segmentation task.

ITI. THE AUTEL DATASET

We introduce two PL datasets: the Aute]lPL Synthetic and
AutelPL Real datasets, each equipped with detailed segmen-
tation annotations. These datasets have been carefully curated
to serve as valuable resources for advancing PL segmentation
tasks. The AutelPL Synthetic dataset comprises a collection
of photorealistic frames generated from four distinct urban
scenarios, created using the Unreal Engine 5. Each frame
is enriched with pixel-level semantic annotations obtained
through the AirSim [13] plugin. To simulate real-world
conditions and enhance the complexity of detection tasks,
scenes are populated with elements commonly encountered
during UAV flights, such as trees, lamp poles, buildings,
etc. The virtual environment’s flexibility allows for seamless
placement and annotation of these elements, facilitating the
creation of diverse urban landscapes. Moreover, the ability
to manipulate attributes such as textures, colors, and shapes
adds visual variety to the dataset. The AutelPL Synthetic
dataset includes 7000 frames, each accompanied by ground
truth annotations of resolution 3840 % 2160. These frames are
captured from a virtual array of cameras, moving randomly
throughout the scene while adhering to a height range of
10 to 15 meters from the ground. Within each camera
pose, multiple frames are captured, introducing variations in
dynamic objects, scene illumination, and aerial background
textures. A minimum separation of 5 m between camera
positions ensures enhanced visual diversity.

The AutelPL Real dataset is obtained using a UAV which
is flown over different cities, ensuring a mix of scenes. We
choose locations within the city randomly to avoid any bias
or manipulation of backgrounds. The UAV is equipped with
a 4K camera with lossless zoom capabilities. This zooming
feature is used while collecting video data to make sure we
get detailed images of PLs without needing to manually crop
them. All the aerial videos are in 3840 x 2160 resolution
at 30 Hz. We carefully check the dataset and remove any
unclear images to maintain its quality. The AutelPL Real
dataset consists of 4000 images, each matched with accurate
annotations, all at the resolution of 3840 x 2160. PLs have
a distinct appearance, being long and thin, so differences in
backgrounds and lighting play a significant role in detecting

them. Hence, the dataset covers a range of backgrounds,
zoom levels, and various weather and lighting conditions.
Understanding the importance of capturing different angles
for reliable data collection and ensuring the trained deep
learning model is view invariant, we capture videos from
various viewpoints. These include front, top, and side views.

IV. METHODOLOGY
A. Overview

For a UDA problem, we are given a source dataset X =
{zs}72, with ground truth labels Vs = {ys}"<,, and unla-
belled target dataset X; = {z;}};.,. The two distributions
suffer from a domain shift. The goal of UDA is to train a
segmentation model that can provide accurate predictions for
X;. Our training objective can be divided into two stages.
First, motivated by the recent success of self-training [30],
we generate pseudo labels Y;** for X,. Then, during the
domain adaptation stage, the segmentation model is retrained
with the labelled source dataset, target images, and pseudo
labels. Figure 2 illustrates the proposed UDA framework.
The QuadFormer consists of a cross-domain transformer en-
coder (Section IV-B) for generating self-attentive and cross-
attentive multi-scale features, and a cross-domain decoder
(Section IV-C) for predicting segmentation masks for the
source and target domain. Additionally, we implement a
pseudo label correction mechanism to online denoise the
noisy pseudo ground truth labels.

B. Cross-Domain Transformer Encoder

Segformer [5] has achieved remarkable performance on
semantic segmentation. The hierarchically structured trans-
former encoder outputs multiscale features. Inspired by this,
the QuadFormer combines two self-attention and two cross-
attention modules to design the four-branch transformer
encoder. Given an image pair (one from the source domain
and one from the target domain), images are divided into
patches of size 4 x 4. The image patches are transformed
into three vectors, namely queries @, keys K, and values V.
The self-attention is formulated as

Attngserr(Qs, Ks, Vs) = Softmax (QSI{E)V (1)
self sydrsy Vs m R

QK]
V dhead

where djeqq indicates the vector dimension, Qs, K, V; are
queries, keys, and values from the patches of image I, and
Q:, K3, V; are queries, keys, and values from the patches of
image ;. The cross-attention operation is derived from the
self-attention operation. We leverage this module to generate
mix-up features and is formulated as

Attnge r(Qy, K, Vi) = Softmax ( ) Vi, (2

QsK{
Attncross (Q57 Kt» V;f) = Softmax \/ﬁ Vvta (3)

Attn (Q¢, K5, V5) = Softmax (M) V. 4)
cross tydfrsy Vs \/m s-
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Domain Decoder, and Pseudo Label Correction mechanism.

The proposed hierarchical cross-contextual transformer block
consists of four branches: (a) the source-aware branch, (b) the
target-aware source branch, (c) the target-aware branch, and
(d) the source-aware target branch. The self-attention module
extracts hierarchical source-aware features represented as
F? and hierarchical target-aware features represented as F.
Moreover, the cross-attention module produces hierarchical
target-aware source features denoted as F'_, and source-
aware target features denoted as Fy_,. These hierarchical
feature maps are expressed as Fi € RH/2 xW/2xC;
with ¢ =10,1,2,3.

C. Cross-Domain Decoder

To achieve consistency in channel dimensions, we process
multi-scale features from each branch of the quadruple
transformer encoder through an MLP layer, followed by up-
sampling to ensure resolution harmonization. Subsequently,
we enhance the source-aware features and target-aware
source features by concatenating the corresponding feature
maps to create Fi,4_ . Similarly, we generate augmented
features for the target domain as Fy,4—;. These augmented
features then pass through an additional MLP layer to
generate the final segmentation masks namely My for the
source domain and M; for the target domain.

D. Pseudo Label Correction

To address self-training challenges, particularly the gen-
eration of accurate pseudo-labels for the target dataset,
we introduce a dynamic pseudo-label correction mechanism
inspired by ProDA [12]. This mechanism estimates pseudo-
label reliability by measuring the relative distance between
features and representative prototypes, which are centroids
of semantic classes. In a departure from traditional pro-
totype calculation methods using target domain features,
we propose the generation of cross-attentive prototypes de-
rived from augmented representations, Fy,4—. These cross-

attentive prototypes amalgamate semantic information from
both domains. For each class c, a cross-attentive prototype is
computed as a weighted sum of features from the augmented
representation for the target domain. These weights are
determined by the softmax probability of the corresponding
pixel j, as provided by the pseudo-labels. To mitigate the
computational burden of prototype calculation, we estimate
them as a moving average of semantic cluster centroids
within mini-batches. The likelihood of a given pseudo label
is estimated by the following weighting scheme

oxp(=|[Fug—s = nll/7)
Zc' exp(_HFgugft - W(CI)H/T

where, 7(°) is the cross-attentive prototype for a given class
¢, and 7 is the softmax temperature set to 7 = 1.

W = 5)

E. Training Objective

The proposed methodology contains a segmentation loss
Lseq and an adversarial loss L£,4,. The segmentation loss of
M, is formulated as

HxW C
['seg(MS; Y:e) = Z Z Y;Z’c log M;)Ca (6)
i=1
where C' is the total number of semantic classes. Similarly,
segmentation loss Lg.q(M;, Y ") is defined for the target
segmentation mask. Furthermore, in order to adapt the struc-
tured output space [21], we utilize a discriminator to make
the source and target masks indistinguishable from each
other. To achieve this, we utilize an adversarial loss

Laav(Ms, My, D) = E[log D(Ms)] + Ellog 1 — D(M,)],
)

c=1

Therefore, the total loss is

Etotal = ACseg(]\4sy Y;) + 51 * ACseg(<]\4ty YrtSt)) + 52 * E@dy,
(8)

Authorized licensed use limited to: New York University. Downloaded on1 gé‘cember 01,2024 at 11:18:01 UTC from IEEE Xplore. Restrictions apply.



Ground Truth

DAFormer
Fig. 3: Qualitative analysis of validation images from TTPLA
(first two rows) and AutelPL Real (last two rows), when
training models on the AutelPL Synthetic datset. The red
circle indicates incorrect predictions and the green circle
indicates true positives.

where 81 and B are set to 0.1, and 1 respectively.

F. Inference for Target Domain

During the inference process on the target distribution after
the UDA stage, the inference scheme needs to use the source
data. However, there is a storage cost to access the source
data. Additionally, it is possible that the source data is not
always available to us during inference. Hence, we propose
an inference process that is independent of the source data.
Since the QuadFormer cannot combine the augmented target
feature representation without the source data, we combine
the target-aware features with themselves, to predict the
segmentation mask M, during inference.

V. EXPERIMENTS
A. Implementation Details

Datasets For the target domain, we utilize the AutelPL Real
dataset containing 2800 training and 1200 validation images
with resolution 3840 x 2160, and the TTPLA dataset [9]
which contains 1004 training images and 217 testing images
with resolution 3840 x 2160. For the source domain, we use
the AutelPL Synthetic dataset, which contains 7000 synthetic
images of resolution 3840 x 2160. As a common practice in
UDA, we resize the images to 1024 x 512.

Training Similar to [5], the QuadFormer is trained with
AdamW [31], a learning rate of Mpese = 6 x 107°, a
weight decay of 0.01, linear learning rate warmup (t,qrm =
1.5K), followed by a linear decay. During training, data
augmentation is applied through random horizontal flipping,
photometric distortion, and random cropping to 512 x 512.
The model is trained for 80K iterations. A is set to 0.1. All
experiments are conducted on 4 NVIDIA GeForce RTX 3090
with PyTorch implementation.

B. Performance Comparison

Although the prevalent choice for UDA has been
DeepLabV2 [2] with a ResNet-101 backbone, recent de-
velopments highlight the potential of Transformer-based
SegFormer in UDA [27], [28]. Notably, while prior UDA
approaches have displayed impressive results on various

TABLE II: Comparision results of AutelPL Synthetic —
TTPLA.

Method Architecture ~ Params (M) ToU
DAFormer [27] MiT-BO 3.8 36.43
HRDA [28] MiT-BO 3.8 38.36
Source-only MiT-BO 3.8 28.93
QuadFormer MiT-B0 3.8 40.35

TABLE III: Comparision results of AutelPL Synthetic —
AutelPL Real.

Method Architecture ~ Params (M) ToU
DAFormer [27] MiT-BO 3.8 35.22
HRDA [27] MiT-BO 3.8 37.46
Source-only MiT-BO 3.8 25.67
QuadFormer MiT-B0 3.8 39.65

autonomous driving datasets, their computational demands
render them unsuitable for real-time hardware configura-
tions. To ensure a fair evaluation, we benchmark our ap-
proach against two contemporary SegFormer-based UDA
methods, DAFormer [27], and HRDA [28]. For both these
methods, we use the MiT-BO encoder for training. Lastly,
we conduct an exhaustive evaluation of the proposed
QuadFormer on synthetic-to-real domain adaptation scenar-
ios, specifically AutelPL Synthetic—+TTPLA and AutelPL
Synthetic—AutelPL. Real. Extensive experiments and abla-
tion studies substantiate the superiority of our model, with
performance measured using the Intersection over Union
(IoU) metric.

AutelPL Synthetic—TTPLA We first evaluate our method
by utilizing AutelPL Synthetic as the source domain and
TTPLA as the target domain. The performance is assessed
based on the model’s ability to predict pixels corresponding
to the PL class on the TTPLA validation set. Our method is
compared with existing state-of-the-art models by using MiT-
BO as the backbone architecture. As indicated in Table. II,
the QuadFormer achieves a state-of-the-art performance of
40.35 IoU, outperforming other baselines. Compared to
other transformer-based UDA models [27], [28], our method
gains up to 9% IoU improvement by utilizing cross-attentive
features, revealing that domain discrepancy can be reduced
by considering context adaptation.

AutelPL. Synthetic—AutelPL. Real The domain gap be-
tween AutelPL Synthetic and AutelPL Real is greater than
AutelPL Synthetic and TTPLA due to the highly diverse na-
ture of the AutelPL Real dataset. In Table. III, we present the
adaptation results on the AutelPL Real validation set, where
QuadFormer exhibits considerable improvement. Our method
achieves an IoU of 39.65 and outperforms all baselines by
upto 6%.

C. Real-time performance

This experiment serves to demonstrate the real-time ca-
pability of our approach, making it well-suited for online
operations, particularly in embedded systems. To enhance
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Ground Truth Source-Only Self-Training

Fig. 4: QuadFormer Component Analysis comparing TTPLA
(top two rows) and AutelPL Real (bottom two rows). Source-
only model predictions reveal a domain gap, while self-
training leveraging cross-domain features enhances predic-
tion accuracy. Optimal results are achieved with pseudo-label
correction using all three components.

inference speed, we optimized the model using TensorRT.
We conducted testing on the NVIDIA Jetson NX platform,
known for its compact footprint, which renders it suitable
for deployment in aerial vehicles. Table IV illustrates the in-
ference speed of the model with different image resolutions.

TABLE IV: Inference Speed on NVIDIA Jetson NX for
Different Image Resolutions

Image Size 512 x 256 512 x 512 1024 x 512 1024 x 1024

Speed (Hz) 42.36 36.75 24.68 16.14

D. Ablation study

We perform extensive ablation studies to demonstrate the
key components of our proposed UDA model. In the ablation
studies, we train the model for 40K iterations and validated
our approach on AutelPL. Synthetic—AutelPL Real.

Effect of cross-attention. In Table. V, we perform ablation
studies to study the effect of source and target features using
only the self-attention and using both the self-attention and
cross-attention. In contrast to only self-attentive features in
both domains, incorporating cross-attention in the source
features or target features improves the ToU by 1.72% and
2.86%, respectively. By introducing cross-attention in both
domains, we achieve 39.65 IoU. While the self-attentive
prototypes are able to correct the noisy pseudo labels up to
some extent, the cross-attentive prototypes are less sensitive
to outliers due to context adaptation. Hence, the cross-
domain context at the feature level is important to understand
the semantic distribution in both domains and reduces the
discrepancy in data distributions.

Effect of key components of the UDA framework. Ta-
ble VI indicates an ablation study of each proposed compo-
nent. The source-only model gives 25.67 IoU on the target
domain. Initialized by the source-only model, self-training
with pseudo-labels achieves an ToU gain of 30%. Adding
the adversarial loss brings a 38% IoU gain. Finally, with

TABLE V: Ablation study on the AutelPL
Synthetic—AutelPL. Real adaptation to understand the
contribution of context adaptation.

Source features  Target features TIoU

self-attention self-attention 34.62
cross-attention self-attention 36.34
self-attention cross-attention ~ 37.48
cross-attention cross-attention  39.65

TABLE VI: Ablation study of each proposed component on
the AutelPL Synthetic—AutelPL Real adaptation.

Self Adversarial ~ Pseudo Label TIoU
Training Loss Correction
25.67
33.5
35.56
39.65

cross-attentive prototypes for online pseudo-label correction
and all other components, our model achieves 39.65 IoU.
Figure. 4 illustrates the effect of key components of the
proposed QuadFormer.

VI. CONCLUSIONS

In this study, we introduced QuadFormer, a real-time
approach tailored for unsupervised PL segmentation within
the UDA framework. Our proposed solution effectively lever-
ages information from both a labeled source domain and
an unlabeled target domain, utilizing transferable context to
enhance segmentation accuracy. The framework integrates
cross-attention and self-attention mechanisms, enabling ro-
bust feature representations to handle domain shifts. Addi-
tionally, we incorporate self-training and pseudo-label cor-
rection mechanisms to further improve detection accuracy.
To advance research in PL segmentation and evaluate our
framework, we introduced two new datasets: AutelPL Syn-
thetic and AutelPL Real. Experimental results demonstrate
that QuadFormer achieves state-of-the-art performance on
both AutelPL Synthetic — TTPLA and AutelPL Synthetic
— AutelPL Real tasks, validating the efficacy and potential
of our proposed approach for real-time PL segmentation.
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