
Relating Memory Performance Data to Application Domain
Data using an Integration API

Benafsh Husain
Clemson University

bhusain@g.clemson.edu

Alfredo Giménez
University of California, Davis
alfredo.gimenez@gmail.com

Joshua A. Levine
Clemson University

levinej@clemson.edu
Todd Gamblin

Lawrence Livermore National
Laboratory

tgamblin@llnl.gov

Peer-Timo Bremer
Lawrence Livermore National

Laboratory
bremer5@llnl.gov

ABSTRACT
Understanding performance data, and more specifically mem-
ory access pattern is essential in optimizing scientific appli-
cations. Among the various factors affecting performance,
such as the hardware architecture, the algorithms, or the
system software stack, performance is also often related to
the applications’ physics. While there exists a number of
techniques to collect relevant performance metrics, such as
number of cache misses, traditional tools almost exclusively
present this data relative to the code or as abstract tuples.
This can obscure the data dependent nature of performance
bottlenecks and make root-cause analysis difficult. Here we
take advantage of the fact that a large class of applications
are defined over some domain discretized by a mesh. By
projecting the performance data directly onto these meshes,
we enable developers to explore the performance data in the
context of their application resulting in more intuitive vi-
sualizations. We introduce a lightweight, general interface
to couple a performance visualization tool, MemAxes, to an
external visualization tool, VisIt. This allows us to har-
ness the advanced analytic capabilities of MemAxes to drive
the exploration while exploiting the capabilities of VisIt to
visualize both application and performance data in the ap-
plication domain.

1. INTRODUCTION
Among the several strategies explored by programmers to
optimize their simulation performances, one popular approach
is to optimize the layout of the data and reduce memory
access times. Data-centric performance analysis is becom-
ing important as bandwidth from the processor to memory
is increasingly small relative to processor performance, and
data movement is expected to become a performance and
power bottleneck on future machines. Understanding the
access patterns of data structures for physics simulations,
and their relation to performance, provides the opportunity
to optimize the layout of the data structure. Most scientific

c©2015 Association for Computing Machinery. ACM acknowledges that this con-
tribution was authored or co-authored by an employee, contractor or affiliate of the
United States government. As such, the United States Government retains a nonexclu-
sive, royalty-free right to publish or reproduce this article, or to allow others to do so,
for Government purposes only.
VPA2015 November 15-20, 2015, Austin, TX, USA
c©2015 ACM

ACM 978-1-4503-4013-7/15/11 ...$15.00.
DOI: http://dx.doi.org/10.1145/2835238.2835243

applications are aimed at solving some physical process in a
specified domain, for example examining the material behav-
ior in a shock hydrodynamics application implemented over
LULESH [1], where LULESH is a typical shock hydrocube.
This hydrocube is depicted by a collection of volumetric el-
ements defined by a mesh. This underlying physical domain
of the application is referred to as the domain space, and in
the case of LULESH is represented by an unstructured mesh
comprising of connected elements.

Many modern physics algorithms are adaptive or data de-
pendent, and computation is not uniform across the mesh.
For example, an equation of state calculation may use very
different interpolation methods depending on the type of
material contained by particular mesh cells. Similarly, for
an Adaptive Mesh Refinement (AMR) code, a mesh may
be adaptively refined at various points as we later discuss
in the application Chombo [2]. Also, in higher-order hydro-
dynamics codes, computation may depend on the order of a
particular mesh cell. Therefore, studying the performance of
algorithms on progressively higher-order cells becomes rele-
vant.

Hence, it is beneficial to have the ability to view performance
based on memory access of the data structure directly re-
lated to the domain space mesh. A context is provided to
the programmer to relate variability in performance based
on the underlying physics simulation. Achieving the projec-
tion of memory over the domain mesh can be particularly
challenging since data from two different aspects of the sim-
ulation performance data and mesh data need to be related.
In this paper we propose a lightweight technique to map
performance data to the domain space mesh by integrat-
ing performance visualization tool to a mesh visualization
tool through a lightweight API without requiring the user
to modify their original data files.

Most scientific applications write out their application data
files or visual data files with mesh information along with
physics variables. These files are commonly in a format read-
able by visualization tools. Adding performance variables to
these visual data files, during the run of the simulation can
often times be difficult to achieve. Some of the techniques of
achieving this projection of performance data over the mesh
cells include: (1) Modify the visual data files read in by the
visualization tool to include performance data, or (2) Create

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2835238.2835243&domain=pdf&date_stamp=2015-11-15

Figure 1: MemAxes application window upon loading the memory access data. (A) is the source code view,
which visualizes the source files (not utilized for VisIt integration), (B) is the memory topology view, which
shows accesses mapped onto a hardware layout, consisting of Sunburst and Icicle plots (Sunburst shown in
the figure), (C), is the parallel coordinate view, depicting all attributes of the data as a high dimensional
visualization. All these views have capabilities for interactive linking and brushing.

a visualization tool specifically for your performance visual-
ization application. Option 1 can be challenging if the user
is trying to add performance variables to the visual data
files on the fly during simulation run. Post processing of the
visual data files might be easier than during simulation run,
but it requires the user to be familiar with several vis data
formats. Both these techniques can prove to be cumber-
some, and since performance visualization tools with a built
in spatial domain representation are rare, the onus now lies
on the programmer to construct one. Given that there are
a wide variety of mesh formats, such as ALE, structured,
unstructured, low and high order, AMR, non-AMR, etc. we
reuse existing visualization tools and leverage their capabil-
ities.

The contributions of this paper are as follows:

1. Provide a tool to record information required for the
mapping, such as mesh coordinate information from
visual data files.

2. Add multiple performance variables to the mesh on
the fly without requiring modifications to the original
visual data files

3. A general API and communication protocol that allows
performance tools to integrate with scientific vis tools.

Our API does not require the programmer to decipher com-
plicated visual file formats or implement a mesh viewer from
scratch. To demonstrate this API we utilize the performance
vis tool, MemAxes [3], and the visualization tool, VisIt [4].

MemAxes provides us with performance data including sev-
eral data fields and an association to hardware topology to
investigate the ease of integration, and effective data analy-
sis, with a performance visualization tool. Using an existing
visualization tool such as VisIt saves time and effort in re-
building an existing vis tool, and user can effectively utilize
all the interaction and analysis capabilities available in the
vis tool.

2. RELATED WORKS
There are several applications catering towards visualizing
performance data by itself. Rutar et al. [5] takes an ap-
proach similar to the data collected by Mitos [3] in our pa-
per to focus on data centric mapping instead of being code
centric. Their visualization techniques thus provides no con-
text to data structure or to the application space. We try to
mitigate their limitations by using a profiler collecting data
for both code centric and data centric mapping.

Fewer efforts have been focused towards directly mapping
performance over spatial or logical domain. Having said
that, our work is not unique in concept, since past works
have achieved similar results, but unique in its implementa-
tion methodology. We attempt to build on previously imple-
mented ideas to mitigate their shortcomings. Schulz et al.
[6] demonstrated mapping of performance hardware coun-
ters to the hardware and communication domains. They
also utilize VisIt to map performance parameters directly
over the application space, which is similar to the basis of
our implementation. Once we achieve direct mapping over

the application domain we extend the implementation to
further provide context with an external performance visu-
alization tool.

Bohme’s thesis [7] presents methods to extract performance
problems generated by MPI that are load and communica-
tion imbalance related. They project wait-time propagation
of Community Earth System Model (CESM) ice-sea model
onto a 2D process grid using Cube 3D. Results published in
the thesis iterate that mapping performance over a physical
domain can lead to interesting insight. Although it lacks
information required to extend similar mapping to a more
general scenario. Huck et al. [8] has an approach simi-
lar to Bohme’s thesis, where they use TAU [9] as a perfor-
mance profiling toolkit and VisIt to visualize performance
and metadata of The Model for Prediction Across Scales
(MPAS) [10] application in the application domain space.
They achieve this by creating an external performance data
file collected by TAU and creating a new VisIt reader to aug-
ment reading the application data. Their implementation
could re-create results similar to the ones described in this
paper, but are limited to using TAU as a profiler. Switching
to another profiler would essentially require re-writing of a
VisIt reader to decipher the performance data and augment
to the application data.

3. MEMAXES
We use MemAxes [3] as our performance visualization tool
to integrate with VisIt. MemAxes is an interactive system
aimed at visualizing and analyzing fine-grained memory ac-
cess data on complex many-core architectures to support
software and hardware developers in improving memory per-
formance.

3.1 MemAxes Data
The data represented by MemAxes is collected via the appli-
cation Mitos [3], which acquires fine-grained memory access
samples during the simulation. MemAxes visualizes high-
dimensional, multivariate instruction data with the ability
to associate memory problems on aspects such as physical
machine, the source code, and even within application data
structures. The profiler involves the programmer specify-
ing a set of data objects for which the attributes will be
recorded. On a higher level, each memory access resolves to
an event containing information such as: instruction pointer,
data address, cache level accessed, processor id, number of
clock cycles (latency) etc. On a finer level, the attributes
include: 1) Source code line, 2) Source code file, 3) Data
Symbol, 4) Buffer Size, 5) Element Size, 6) Access Index, 7)
Accessed Value, 8) Resources Used, along with additional
attributes defined by the user. A combination of high level
information and finer level attributes form the tuple of data
collected by Mitos.

The Access index attribute refers to a 1-dimensional index,
obtained by the element size, start address, and data ad-
dress. The 1-dimensional index is then resolved into spatial
coordinates such as xid, yid, and zid. The xid, yid, and zid
values correspond to the x, y, and z coordinates of the mesh
in the visual data files read in by VisIt. Thus an instruction
is resolved into several attributes of performance data, and
when applicable correspond to mesh cell ids.

Figure 2: Memory topology, represented by the Ici-
cle view and Sunburst view, which shows accesses
mapped onto a hardware layout.

3.2 MemAxes Views
There are several views which are depicted in the MemAxes
application such as source code view or selection statistics
view. In this paper we focus on views which are integral in
mapping data onto the domain space. We refer the reader
to [?] for an in-depth insight into navigating the MemAxes
tool along with interpreting the represented data.

The primary view representing all the contextual data for
a particular application is represented by the parallel co-
ordinates depicted in the bottom half of Figure 1. This
view displays all the data types and their ranges and can be
viewed for our purposes as a extensive selection tool. The
parallel coordinates view depicts all the attributes of the
Mitos output file and presents them at each coordinate and
displays the min and max values. The user can use this
view to navigate through MemAxes to obtain the hardware
context of the performance data. Other relevant views of
MemAxes include the Sunburst and Icicle views depicted
by Figure 2, which are used to map the performance data
onto a topological mapping of the hardware. The Icicle lay-
out represents the CPUs, L1, L2, L3 caches and main node
connectivity along with latency (or number of samples) data
mapped onto it in an hierarchical manner. It also represents
the allocations to CPU to their corresponding cache levels,
i.e. which CPUs share a common L1 cache and so forth.
The Sunburst plot has a similar representation in concentric
circles. The upper semi-circle represents the Node 0, and the
lower representing Node 1. We focus on these views since
they provide a selection criteria for our API.

4. VISIT
VisIt [4] is an open source, turnkey application for large scale
simulated and experimental data sets. The application is
an infrastructure for parallelized, general post-processing of
extremely massive data sets. VisIt can read several data for-
mats, therefore the scientific application under consideration
can generate visual data files for any pre-defined visual data
formats. VisIt contains a rich set of visualization features to
enable users to view a wide variety of data including scalar
and vector fields defined on two- and three-dimensional (2D
and 3D) structured, adaptive and unstructured meshes. Due
to the implementations of VisIt plugins, it permits several
external linking abilities, such as an extensive Python inter-
face. We utilize this Python interface to implement our API.
The combined advantages of using VisIt with its several in-

herent capabilities along with a performance tool results in
integrating two different aspects of the data rarely viewed
in conjunction.

The domain space representation in VisIt can display the
physics data associated to the scientific application such as
pressure, temperature, velocity vector, etc, but additionally,
we provide the ability of mapping memory access data to
the cells of the domain. In this paper we have mapped
the latencies in clock cycles associated to each instruction
if that instruction is resolved on a domain cell. Instead of
latencies, other parameters such as number of samples, or
average latency per sample can be mapped with minor mod-
ifications.

5. INTEGRATION API
In this paper we provide an integration API for the user
to link performance data to the domain space. We demon-
strate this by utilizing the two applications described above,
MemAxes and VisIt. Figure 3 represents a flow diagram
which describes the lightweight API, where modules in blue
depict the existing application data file requirements and
their inherent application capabilities, and modules in red
represent the implementation of the API. As shown by the
figure, MemAxes reads in the hardware topology along with
memory access data, and is capable of displaying and analyz-
ing memory access patterns in the context of the hardware
architecture. As one of the views in MemAxes is the par-
allel coordinates, it serves as an elaborate list of collected
data fields and their available ranges. Selecting a variable
and a particular range will affect the corresponding display
in VisIt. MemAxes thus provides a selection tool for the
data to be displayed in VisIt, specifically in context to per-
formance data correlated to the hardware topology. VisIt
tools also provide selection techniques, but the key differ-
ence in utilizing MemAxes is that VisIt tools alone will lose
any context to hardware topology or the source code.

VisIt also reads in the same Mitos output file (memory ac-
cess data), along with visual data files representing under-
lying domain structure. Visual data files with data formats
such as .vtk or .silo can be generated during the application
simulation independent of collection of performance data.
Visual file dumps for an application can be also collected
intermittently during the run such as at a particular time
interval or for every iteration. These visual data files depict
the domain mesh structure of the application along with rep-
resenting the data of the physical attributes such as pressure,
temperature, etc, evolution during the course of the simula-
tion run.

The output file of Mitos is generally a list of tuples and
their corresponding values for every recorded memory ac-
cess. The xid, yid, and zid are a part of the tuples, which
refer to mesh cell coordinates. Visual data files read by
VisIt generally do not contain any performance information
themselves, but contain the mesh cell structure and physical
variable data for each cell. By reading in the Mitos output
file in VisIt, we provide VisIt with the information regarding
the cell ids which have latencies associated to them. We can
now replace physical variables displayed on the mesh by a
performance variable for these cell ids, details for which are
discussed in detail below. We essentially construct a data

table of the Mitos data in VisIt. Therefore, when the user
selects a data field and its ranges in MemAxes, VisIt cor-
respondingly does a table look up for that data field and
its range to determine the cell ids which fall under this se-
lection. It then displays performance data (e.g.,latency) for
those selected cells. Our technique thus also allows addition
of variables associated to each cell of the mesh without the
user having to modify the visual data files. Multiple per-
formance variables can now be associated to the mesh cells,
which is difficult to achieve while collecting visual data files
during the simulation run.

Our lightweight API does not disrupt or reduce any of the
builtin capabilities of the two applications, and therefore,
MemAxes and VisIt are launched and run independently in
the regular manner. All communication between MemAxes
and VisIt goes through a local socket. A significant advan-
tage of exchanging messages via sockets is the ability of the
user to split the two applications over two machines instead
of restricting viewing both the applications on the same ma-
chine. Since the primary aim is to link the two applications
without affecting any of their inherent capabilities, we have
minimized the modifications required to the actual source
codes to both MemAxes and VisIt. Hence, permitting even-
tual developments of an API between any two performance
visualization and mesh visualization tools.

5.1 MemAxes modifications
The modifications implemented to the original MemAxes
application source code are limited to ensure that original
capabilities of the application remain unchanged. The API
intercepts any selection made by the user in the performance
visualization tool, which is beneficial to conceptually inte-
grate any performance tool into VisIt for performance data
projection on domain space.

We implement the integration with the MemAxes applica-
tion as a client. The MemAxes application keeps track of
most of the selection and de-selection within its tool so as
to enable interactivity between its various views. Thus, the
modifications include tracking the current selection, storing
the selection in a specified data structure, and sending the
data structure message as a client through its port to the
server. For example, in the Parallel Coordinate making a
selection would create a client message of dimension num-
ber , min value , and max value . Since VisIt has also read
in the same Mitos output file, the dimension numbers and
min and max values are meaningful to VisIt. Similar mes-
sages are created on making a selection in the other views of
MemAxes. Our API adds a new context to the users on the
basis of memory access data projected over the simulation
mesh. This allows users to not only evaluate the perfor-
mance data based on the distribution over hardware but
forms a basis of evaluation on the physics of the scientific
application.

5.2 VisIt API
The visual file dumps of the scientific application run are di-
rectly read into VisIt and can be displayed and manipulated
through the known VisIt interactions as represented by Fig-
ure 3. The Mitos output file on the other hand can be read
into VisIt using the PythonExpression Editor interface,
which is a Python interface for VisIt to manipulate visual

Figure 3: Control flow diagram representing the Integration API.

data files by external parameters. A manner of describing
the expression editor is the ability to manipulate the physical
data (e.g. pressure) in some mathematical form and display-
ing that manipulated result over the domain mesh.

The PythonExpression Editor interface is implemented
as a server, which receives messages from the client (MemAxes),
in the form of a data structure with information resembling:
dimension and minimum and maximum values. The default
values on the initialization of the data structure are the en-
tire range of that data types, for example for data type CPU
number, the default min would be 0 and default max, 31 (in
the case of 32 CPU processes). We prove the capability to
the user of sub-selection, that is if the user wants to select
a CPU between CPU 1 and CPU 10, and within that se-
lection observe only latencies above certain clock cycles, it
is possible, and that every message received by the server
does not reset all the other selections. The API on the VisIt
interface recognizes the messages received from which of the
corresponding views on the MemAxes side, and accordingly
pushes those messages on the data structure.

One of the capabilities implemented in VisIt’s PythonEx-
pression Editor is the ability to extract information from
the visual data files loaded into VisIt in a fine grained man-
ner. This refers to accessing the desired cell coordinate for
a particular iteration and their corresponding physical vari-
ables. This capability is interesting since data fields cap-
tured in the Mitos output files is the mapping of memory
access data to a mesh cell location whenever applicable. This
allows for representation of memory data directly over each
cell of the mesh. We utilize the capability of VisIt to obtain
per cell information to extract cell coordinate information
and create a new variable alongside the physical variable,
namely PerfVar . In this case PerfVar corresponds to la-
tencies in clock cycles. This implies that during the dis-
playing of the domain space of the application, instead of
displaying physical variables over the mesh, we assign a la-
tency value to each of the cell coordinate.

Determining the latency values which are needed to be as-
signed to PerfVar is based on the selections sent through

the client side of MemAxes. For example, if the selections
from the memory topology view restricts the CPU number to
CPU 1, the mesh displays only the cells which have accessed
CPU 1 and their corresponding latencies. The selections can
be further restricted, for example within CPU 1, only the
latencies of cells of x coordinate value less than 15. We uti-
lize the MemAxes views to achieve these selections. Based
on the user analysis of interesting memory levels, selection
of any memory levels in the Sunburst or the Icicle plot will
restrict the display on VisIt to only that memory level. For
the parallel coordinates view, any combination of variable
ranges displayed by the parallel coordinates in MemAxes is
correspondingly represented in VisIt. Since the parallel co-
ordinates display all data fields, the user can restrict the
data projected onto the mesh, for e.g., selecting xid values
between 0 - 15, will display performance data on mesh cells
only with xid values less than 15.

Although we are demonstrating this API by projecting la-
tency information, it can be extended to any performance
factor, such as number of memory accesses per cell, or the
average latency per access for each cell. A new variable
over the mesh cells can be created for every performance
factor. Since VisIt now considers the performance variables
the same as the physical variables in the original visual data
files, all of the capabilities available in VisIt can now be uti-
lized to further analyze performance data in context to the
physical mesh. These capabilities may include determining
the cells with maximum latency, or number of accesses, or
the iteration with high memory accesses etc. This forms
an important basis to utilize our API for memory−mesh in-
tegration, rather than the user developing a mock up of a
mesh visualization tool. Existing mesh visualization tools
are well developed with user supportive, and ample analysis
capabilities.

Therefore, the output file of Mitos, which contains memory
access performance data along with xid, yid, and zid (for
each applicable event) is associating performance data to
mesh cells ids. Utilizing these mesh cell ids in VisIt and re-
placing the physics variables with performance data allows
us to project performance over the domain mesh. The API

Figure 4: Hydrocube mesh of LULESH dis-
played in VisIt representing the speed vari-
able.

Figure 5: MemAxes Data field: CPU number selected
from the parallel coordinate view used to restrict the
latencies between CPU 0 to CPU 10. Latencies are
projected over the LULESH shock hydrocube.

demonstrates the capability of projecting performance data
of any performance profiler which is capable of linking data
to mesh information. The mesh information can be in var-
ious levels of granularity, such as cell level or domain level
mapping. We have designed the API in a lightweight man-
ner to make the concept easily migrated between any perfor-
mance visualization to visualization tools. Our API also per-
mits easy modifications of the performance variables based
on the requirements and specifications of the user.

6. APPLICATIONS
To demonstrate the integration of a performance visualiza-
tion tool, MemAxes with physical simulation data, VisIt, we
utilize two applications, LULESH and Chombo. Both these
application are based on modeling hydrodynamics. These
applications have an underlying domain space, which have
memory accesses associated to them.

6.1 LULESH
Computer simulations of a wide variety of science and en-
gineering problems require modeling hydrodynamics, which
describes the motion of materials relative to each other when
subject to forces. LULESH [1] represents a typical shock
hydrocode, depicted by Figure 4 that approximates the hy-
drodynamics equations discretely by partitioning the spatial
problem domain into a collection of volumetric elements de-
fined by a mesh. LULESH is a highly simplified application,
hard-coded to only solve a simple Sedov blast problem with
analytic answers, but represents the numerical algorithms,
data motion, and programming style typical in scientific C
or C++ based applications.

6.1.1 Application View
On launching the VisIt application, the LULESH mesh rep-
resented by Figure 4 is displayed with physical variable speed.
Our API does not restrict any capabilities of VisIt, and the

user can independently maneuver through the displays. On
any interaction with MemAxes, the API is initiated, where
each cell of the mesh takes on the value of latencies associ-
ated with it throughout the simulation. Selecting a particu-
lar range of values in MemAxes, correspondingly limits the
range of data displayed over the mesh.

Since LULESH represents an evolving mesh, each iteration
of the simulation creates a separate visual data file. Visu-
alization tools represent these groups of files as incremental
time steps, which depicts the evolution of the mesh through
the steps of the simulation. This is relevant to our API since
we want the capability to map performance data onto the
mesh at every iteration (’time step’ in the case of VisIt) of
the simulation. This API provides the capability to view
latencies on the mesh cells (1) irrespective to the iteration
of the visual data file, i.e. latencies are aggregated for the
entire simulation run and projected over the mesh (2) ag-
gregation only up to the iteration of the mesh currently dis-
played, i.e. at every time step of the iteration the latencies
associated to each cell increases, (3) latencies per cell dis-
played only for that iteration. This assists the programmer
in utilizing both a global view of the latency distribution or
to identify a particularly offending iteration cycle.

6.1.2 Case Study
One approach to analyzing performance data is to determine
the distribution of memory accesses between CPU cores. In
Figure 5, on selecting the CPU ranges from 0 to 10 we ob-
serve that a contiguous numbers of cores relate to a con-
tiguous array of mesh cells. By the principle of spatial
locality, caches are more efficiently utilized when they are
used to access data elements which are grouped closely to-
gether. Therefore, ideally these contiguous cores should be
in close proximity to each other to access closely grouped
data. Therefore, by placing colossally grouped data on lo-

Figure 6: AMRGogunov example visual data file us-
ing Chombo library, representing a mesh with three
domains of varying granularity.

cally spatial cores, one might observe improve in perfor-
mance.

6.2 Chombo
In scientific applications, partial differential equation prob-
lems such as multiple length scales and strong spatial lo-
calizations are commonly occurring problems. Examples
include Nonlinear systems of hyperbolic PDEs in combus-
tion problems. Finite difference calculation using block-
structured adaptive mesh refinement (AMR) is a powerful
tool for computing solutions to partial differential equations
involving such multiple scales. In one particular approach,
the domain space is converted into a rectangular grid by dis-
cretization, and the solution is then composed on the regular
grid. It identifies regions requiring additional resolution by
a local measure of original error. A new solution is then
calculated on the composite grid structure. Chombo [2] uti-
lizes this approach of computing time-dependent solutions
to hyperbolic partial differential equations in multiple di-
mensions with an implementation of C++ classes designed
to support block structured AMR applications. Chombo is
based in part on the BoxLib toolkit.

Applications involving AMR are interesting from a perfor-
mance stand point since a particular cell can be associated
to memory accesses at various granularity levels. Hence, op-
timized data-structure layout becomes essential. From the
extensive library of Chombo we select the AMRGodunov ex-
ample to demonstrate the relation between adaptive mesh
calculation and performance. The AMRGodunov example
uses the unsplit, second-order Godunov method for integrat-
ing systems of conservation laws, such as the Euler equations
of gas dynamics, on an AMR grid hierarchy. We observe the
output of the application in Figure 6, where there are three
granularities of the mesh overlaid on top of each other. Each
granularity is referred to as the domain of the mesh, and
each domain contain their individual cell ids and values. On

annotating the AMRGodunov example with the Mitos API,
we obtain the Mitos output file with tuples similar to the
one described for LULESH. One major difference being that
ever xid, yid recorded also has the domain level information
associated to it.

6.2.1 Case Study
In our API we have implemented the capability to extract
domain level information for the mesh. VisIt, on reading
the data associate the cell ids recorded in the Mitos file to
the corresponding domain level mesh id in the visual data
files. In Figure 7 we show distribution of latencies over the
three domains of the AMR mesh. This allows the user to
relate latency distribution over the physics simulation of a
high resolution grid. The figure represented is displayed as
a logarithmic color scale to allow the users to identify lower
latency cells. We utilize our API to define a new variable
of average latency per access which is depicted in Figure 8.
Since all VisIt capabilities are available to the user, they
can select their desired display specifications. Figure 8 is
obtained by restricting the display of latencies to CPU 0-
14. Similar to the case displayed in LULESH, the domain
of the finest granularity has latencies projected in a more
concentrated manner over the bottom left of the domain.
This refers to neighboring cell ids in this region perform
multiple memory accesses for the 0-14 CPUs. The CPUs
can be so adjusted to achieve spatial locality.

7. DISCUSSION AND FUTURE WORK
There are several directions intended to improve the inte-
gration API. Firstly, we intend to explore more applica-
tions that would benefit from performance mapping on to
the mesh structure. To achieve this we aim to modify the
API to a more general implementation using Conduit [11].
Conduit is an intuitive model for describing hierarchical sci-
entific data in C, C++, python, Fortran etc. It creates nodes
consisting of the memory data structure defined by the user.
The novelty of Conduit lies in the sharing of nodes between
different applications, written in different programming lan-
guages, where each application with the same node would
resolve the same data structure. Hence, Conduit will permit
the VisIt API to receive the node in the same data struc-
ture, as when it is created by MemAxes. The node permits
generalization to the degree where our API does not need
to have prior knowledge of the data fields or the data struc-
ture.

Another interesting modification can include two way com-
munication between the MemAxes and VisIt. In the cur-
rent implementation, although MemAxes is able to receive
messages from VisIt, we are not sending any meaningful
data. Interesting messages to send to MemAxes could in-
clude, selecting clusters of cells or domains based on mem-
ory data and correspondingly the views in MemAxes get
updated. Similarly, utilizing builtin VisIt (or any mesh vi-
sualization tool) operations, such as histograms or correla-
tion and projecting the results in MemAxes over hardware
topology. Part of our research efforts are also focused to-
wards determining if there exists a meaningful correlation
between performance data and physical variables. Although
this correlation metric is a challenging issue in itself, our
API provides a strong basis for representing the correlation
visually.

Figure 7: Latency data represented over an AMR
mesh consisting of three domains.

Figure 8: Defining a new variable: Latency per
sample for the AMR mesh.

8. CONCLUSION
Application performance are dependent on the layout of
data-structures and their memory access pattern. Relat-
ing the data-structures to the application physics provides
insight to the programmer for optimizations, which can be
achieved by projecting performance data onto the applica-
tion domain mesh. These projections can be achieved by
either building a user specific visualization tool or modi-
fying visual data files to include performance data. Both
these techniques can be cumbersome, and future extensions
may prove to be difficult. In this paper we have demon-
strated a lightweight API which integrates the memory per-
formance visualization tool, MemAxes, to an existing visu-
alization tool, VisIt. Using the Python interface of VisIt, we
utilize local sockets to map performance data to the cells of
the domain mesh. This API allows users to use performance
tools as a navigation mechanism to view performance over
the interesting mesh cells.

9. ACKNOWLEDGEMENT
This material is based upon work supported by the National
Science Foundation under Grant No. IIS-1314757.

This work was also performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory (LLNL-PROC-678035).

References
[1] Hydrodynamics Challenge Problem, Lawrence Liver-

more National Laboratory. Technical Report LLNL-
TR-490254.

[2] M. Adams et al. Package for AMR Applications - De-
sign Document, Lawrence Berkeley National Laboratory
Technical Report LBNL-6616E.

[3] Alfredo Giménez, Todd Gamblin, Barry Rountree, Ab-
hinav Bhatele, Ilir Jusufi, Peer-Timo Bremer, and

Bernd Hamann. Dissecting on-node memory access
performance: A semantic approach. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14,
pages 166–176, Piscataway, NJ, USA, 2014. IEEE
Press.

[4] Hank Childs. Visit: An end-user tool for visualizing
and analyzing very large data. 2013.

[5] Nick Rutar and Jeffrey K. Hollingsworth. Data centric
techniques for mapping performance data to program
variables. Parallel Computing, 38(1âĂŞ2):2 – 14, 2012.
Extensions for Next-Generation Parallel Programming
Models.

[6] M. Schulz, J.A. Levine, P.-T. Bremer, T. Gamblin, and
V. Pascucci. Interpreting performance data across in-
tuitive domains. In Parallel Processing (ICPP), 2011
International Conference on, pages 206–215, Sept 2011.

[7] David Böhme. Characterizing load and communi-
cation imbalance in parallel applications, volume 23.
Forschungszentrum Jülich, 2014.

[8] Kevin A. Huck, Kristin Potter, Doug W. Jacobsen,
Hank Childs, and Allen D. Malony. Linking perfor-
mance data into scientific visualization tools. In Pro-
ceedings of the First Workshop on Visual Performance
Analysis, VPA ’14, pages 50–57, Piscataway, NJ, USA,
2014. IEEE Press.

[9] S. Shende and A. D. Malony. The tau parallel perfor-
mance system. In International Journal of High Perfor-
mance Computing Applications, vol. 20, page 287?311,
2006.

[10] Lanl and ncar. MPAS, http://mpas-dev.github.io.

[11] Conduit. Technical Report LLNL-CODE-666778.

