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Path-Dependent Constrained Formation
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Abstract— Constrained formation problems, for quadrotors
and other systems, have been examined in various works in the
past decade. Nevertheless, most works only consider constant or
time-varying constraint functions, to be best of our knowledge.
In this work, we examine path-dependent constraint requirements
during formation tracking operations by a team of quadrotors,
where the constraints are functions on path parameters. Uni-
versal barrier functions are used to deal with path-dependent
constraint requirements, including constraints on distances with
desired paths and inter-vehicle distances. Furthermore, unknown
quadrotor’s mass, inertia, and disturbances are addressed using
an adaptive robust formation algorithm. The newly proposed
path-dependent constrained formation architecture can ensure
formation tracking errors converge exponentially to small
neighborhoods near the equilibrium, with all path-dependent
constraint requirements met. At the end, a simulation study
further illustrates the proposed scheme and demonstrates its
efficacy.

Index Terms— Path-dependent constraints, path-following for-
mation, multi-vehicle system, quadrotors, robust formation
tracking.

NOMENCLATURE

dei dei ≜ ||pi − pdi ||, i th quadrotor (i =

1, · · · , N ) distance tracking error.
dεei dεei ≜ dei − 2εei , εei being an arbitrarily

small positive constant.
di j di j ≜

∣∣∣∣pi − p j
∣∣∣∣, distance between the

i th and j th quadrotors (i = 1, · · · , N ,
j ∈ Ni ).

dei j dei j ≜ di j − L i j , relative distance tracking
error between the i th and j th quadrotors.

Edi j Edi j ≜ 1
di j
(pi − p j ), unit vector from the

j th quadrotor to the i th quadrotor.
Eei Eei ≜ 1

dei
(pi − pdi ), unit vector from

the i th quadrotor’s desired path to the i th
quadrotor.

ELi j ELi j ≜ 1
L i j
(pdi − pd j ), unit vector from

the j th quadrotor’s desired path to the i th
quadrotor’s desired path.

ez ez ≜ [0, 0, 1]T.
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Fi Thrust of the i th quadrotor.
g Gravitational acceleration.
Ji Inertia matrix of the i th quadrotor.
Kei , Ki j , Kvi , Positive control gains.
K2i , ν2i , Kωi ,

Ksi A positive design constant.
L i j L i j ≜

∣∣∣∣pdi − pd j
∣∣∣∣, desired relative dis-

tance between the i th and j th quadrotors.
mi Mass of the i th quadrotor.
Ni Neighbor set of the i th quadrotor (|Ni | =

2).
N Number of quadrotors (N ≥ 3).
nmi , nµmi , Adaptive control parameters.
nρ J i , nh J̄ i , nµJ i ,

σmi , σµmi ,

σρ J i , σh J̄ i , σµJ i ,

pdi , pd j pdi (si ), pd j (s j ) : R → R3, desired
paths of the i th and j th quadrotors,
respectively.

pi , p j pi ≜ [xi , yi , zi ]
T, p j ≜ [x j , y j , z j ]

T,
positions of the i th and j th quadrotors.

si Path parameter for the i th quadrotor.
vdi vdi (si ) : R → R, a desired speed

assignment for the i th quadrotor.
vi , v j Velocities of the i th and j th quadrotors.
αpi , α2i Stabilizing functions for position and

attitude of the i th quadrotor.
γ1i , γ2i Disturbances for the i th quadrotor.
ηei , ηi j Transformed errors defined in (14).
2i 2i ≜ [φi , θi , ψi ]

T, attitude of the i th
quadrotor in the inertial reference frame.

2di 2di ≜ [φdi , θdi , ψdi ]
T, desired attitude

of the i th quadrotor in the inertial refer-
ence frame.

τi Torques of the i th quadrotor.
�Hi �Hi (si ) : R → R+, path-dependent

constraint function for dei .
�dHi �dHi ≜ �Hi − 2εei , εei being an arbi-

trarily small positive constant.
�Hi j , �Li j �Hi j (si , s j ), �Li j (si , s j ) : R×R → R+,

path-dependent constraint functions for
dei j .

ωi Angular velocity of the i th quadrotor
with respect to the body-fixed frame.
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I. INTRODUCTION

FORMATION control of unmanned aerial vehicles (UAVs),
especially quadrotors, has many practical applications

in surveillance [1], [2], search and rescue [3], con-
tour mapping [4], [5], source locating [6], object lifting
and transporting [7], [8], [9], [10], [11], just to name
a few.

During UAV formations, various motion constraints need to
be guaranteed to ensure safety and performance of the system.
Common approaches in handling this UAV constrained for-
mation problem include artificial potential fields (APFs) [12],
[13], [14], [15], [16], [17], control barrier functions (CBFs)
[18], [19], [20], [21], [22], barrier functions/barrier Lyapunov
functions (BLFs) [23], [24], [25], [26], [27], [28], and model
predictive control (MPC) methods [29], [30], [31], [32], [33].
However, only constant or time-varying constraint functions
are discussed in the aforementioned works. In practice, there
are often situations in which the constraints are geometric or
spatial in nature. For example, for a team of small UAVs to
pass through a narrow window, the formation needs to be
more compact at the window compared with other locations.
In this example, the corresponding constraint requirements
on inter-UAV distances are spatial related (where the narrow
window is located), regardless of time (when the team is
pass through the narrow window). Defining such constraint
requirements as functions of time will put unnecessary tem-
poral restrictions on the system dynamics. Therefore, existing
constrained formation control algorithms in the literature are
not suitable for such path-dependent constrained formation
requirements.

Very recently, we have proposed a path-dependent con-
strained control algorithm for an autonomous vehicle on a 2-D
plane [34], where path-dependent constrained requirements
can be satisfied during operation. However, [34] focuses on
the operation of a single vehicle on a 2-D plane, hence not
suitable for multiple UAVs formation in a 3-D space.

In this paper, for the first time in the formation control lit-
erature, we investigate path-dependent constraints for UAV
formation operations. This is in contrast to most existing
works in the literature that can only handle constant or at best
time-varying constraint requirements, which can be conserva-
tive in constraint formulation and cannot respond well to the
operation environment. First, for the performance constraints,
the distance between each quadrotor and its desired path
should not be too large. Second, for the safety constraints, we
need to guarantee that the relative distance between any two
quadrotors cannot be either too small or too large. The main
technical difficulty is the fact that the constraint requirements
are not directly depending on the time variable. The design
is further complicated by system unknown parameters and
disturbances. To address these difficulties, a path parameter
timing law is designed and integrated into the constrained
formation control law, which updates path parameters based
on system states. This timing law serves as a bridge between
the temporal vehicle dynamics and the geometric/spatial con-
straint requirements. We adopt universal barrier functions to
address path-dependent constraints in this paper. The newly
proposed path-dependent constrained formation architecture
can ensure formation tracking errors converge exponentially

Fig. 1. Illustration of the inertial {I} and body-fixed {B} frames.

to arbitrarily small neighborhoods near the equilibrium, with
all path-dependent constraint requirements met.

We will use the following standard notations in this paper.
First, R is real number set, R+ is positive real number set, and
Im denotes the m × m identity matrix. Moreover, (·)T is the
transpose of (·), |·| represents the absolute value for scalars,
and ||·|| represents the Euclidean norm for vectors and induced
norm for matrices. Furthermore, we use cθ to denote cos θ ,
sθ to denote sin θ , and tθ to denote tan θ . We also write ˙(·)

as the first order time derivative of (·), if (·) is differentiable.
Besides, for any two vectors v1, v2 ∈ R3, the cross-product
operator S(·) gives S(v1)v2 = v1 × v2. It is also true that
S(v1)v2 = −S(v2)v1 and vT

1 S(v2)v1 = 0. Finally, SO(3) =

{X ∈ R3×3
:XT X = I3} is a set of orthogonal matrices in R3×3,

and S2
= {x ∈ R3

: ||x || = 1} is a set of unit vectors in R3.

II. PROBLEM FORMULATION

A. Basic Graph Theory and Notations

A weighted undirected graph is represented by G = (V, E),
where V = {1, · · · , N } is a nonempty set of nodes/agents,
and E ⊂ V×V is the set of edges/arcs. ( j, i) ∈ E implies that
agent i can receive information from its neighboring agent
j , and vice versa. In this case, agent j is called a neighbor
of agent i . Furthermore, Ni denotes the set of neighbors
of agent i and |Ni | represents the number of neighbors.
In this work, we consider the scenario where |Ni | = 2. The
topology of a weighted graph G is often represented by the
adjacency matrix A = [ai j ] ∈ RN×N , where ai j = 1 if
( j, i) ∈ E ; otherwise ai j = 0. It is assumed that ai i = 0,
and the topology is fixed, i.e., A is time invariant. Define
āi =

∑N
j=1 ai j as the weighted in-degree of node i and

Ā = diag(ā1, · · · , āN ) ∈ RN×N as the in-degree matrix. The
graph Laplacian matrix is L = Ā−A ∈ RN×N .

B. System Dynamics

Consider a group of N quadrotors (N ≥ 3), where, for the
i th quadrotor (i = 1, · · · , N ) shown in Figure 1, the position
and attitude in the inertial reference frame are represented
as pi (t) ≜ [xi (t), yi (t), zi (t)]T ∈ R3 and 2i (t) ≜
[φi (t), θi (t), ψi (t)]T ∈ R3, respectively. The translational
velocity with respect to the inertial reference frame is repre-
sented as vi (t) ∈ R3. Moreover, define a body-fixed frame
with the origin being at the center of mass for each quadrotor,
and the angular velocity with respect to this body-fixed frame
is denoted by ωi (t) ≜ [ωxi (t), ωyi (t), ωzi (t)]T ∈ R3. The
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kinematics for the i th quadrotor are expressed as

ṗi (t) = vi (t), (1)

2̇i (t) = T (2i (t))ωi (t), (2)

where pi (0) = pi0 ∈ R3 and 2i (0) = 2i0 ∈ R3, with
pi0 and 2i0 being initial conditions. Besides, T (2i (t)) is a
transformation matrix [35] that relates the angular velocity in
the body-fixed frame to the rate of change of Euler angles in
the inertial frame, and is given by

T (2i )=

 1 sφi tθi cφi tθi
0 cφi −sφi
0 sφi/cθi cφi/cθi

 , (3)

where we have ||T (2i (t))|| ≤ Tmax, with Tmax > 0 being a
known constant, when −

π
2 < φi (t) < π

2 and −
π
2 < θi (t) < π

2 .
The i th quadrotor (i = 1, · · · , N ) system dynamics are

represented by

mi v̇i (t) = mi gez − Fi R(2i (t))ez + γ1i (t), (4)
Ji ω̇i (t) = S(Jiωi (t))ωi (t)+ τi (t)+ γ2i (t), (5)

where vi (0) = vi0 ∈ R3 and ωi (0) = ωi0 ∈ R3. mi ∈ R,
mi > 0 is the mass of the i th quadrotor (i = 1, · · · , N ), and
Ji ∈ R3×3 is a symmetric positive definite matrix representing
the inertia of the i th quadrotor. Fi (t) ∈ R and τi (t) ∈ R3 rep-
resent the thrust and torques of the i th quadrotor, respectively.
γ1i (t) ∈ R3 and γ2i (t) ∈ R3 denote the external disturbances.
Furthermore, g ∈ R is the gravitational acceleration and
ez = [0, 0, 1]T ∈ S2 is a unit vector. R(2i (t)) ∈ SO(3) is a
rotation matrix [35], which translates the translational velocity
vector in the body-fixed frame into the rate of change of the
position vector in the inertial frame

R(2i )

=

 cθi cψi asφi sθi cψi − cφi sψi cφi sθi cψi + sφi sψi
cθi sψi sφi sθi sψi + cφi cψi cφi sθi sψi − sφi cψi
−sθi sφi cθi cφi cθi

 .
(6)

C. Performance and Safety Constraints
The coordinate of the desired path for the i th quadrotor

(i = 1, · · · , N ) pdi (si ) : R → R3 is denoted by pdi (si ) ≜
[xdi (si ), ydi (si ), zdi (si )]

T
∈ R3, where si ∈ R is a path

parameter of the i th quadrotor, and pdi (si ) is chosen to be
at least three-times continuously differentiable with bounded
derivatives. Note that pdi (si ) is any arbitrary point on the
desired path, not necessarily the vehicle’s closest/projection
point on the desired path.

The distance tracking error dei (t, si ) for the i th quadrotor
is defined as

dei (t, si ) ≜ ||pi (t)− pdi (si )|| . (7)

Furthermore, the desired relative distance between the i th
and j th (i = 1, · · · , N , j ∈ Ni ) quadrotors is defined as

L i j (si , s j ) ≜
∣∣∣∣pdi (si )− pd j (s j )

∣∣∣∣ , (8)

and the actual relative distance is given by

di j (t) ≜
∣∣∣∣pi (t)− p j (t)

∣∣∣∣ . (9)

During the formation tracking task, there are performance
and safety constraint requirements that need to be satisfied.
First, for i = 1, · · · , N , let �Hi (si ) : R → R+ be uniformly
bounded and at least three-times continuously differentiable
with bounded derivatives, and dei (0, si (0)) < �Hi (si (0)). The
distance tracking error for the i th quadrotor dei (t, si ) (i =

1, · · · , N ) has to satisfy the following performance constraint

dei (t, si ) < �Hi (si ). (10)

From (7), dei (t, si ) ≥ 0 at all time. However, in order to
avoid singularity in the controller later in the analysis, it is
needed for dei (t, si ) to be bounded away from the origin. Thus,
the constraint requirement (10) is modified as

0 < εei < dei (t, si ) < �Hi (si ), (11)

where εei is any arbitrarily small positive constant. Note that
(11) is equivalent to

−εei < dεei (t, si ) < �dHi (si ), (12)

where dεei (t, si ) ≜ dei (t, si )− 2εei and �dHi (si ) ≜ �Hi (si )−

2εei .
Remark 1: An example for �Hi (si ) can be

�Hi (si ) = dei (0, si (0))e−αHi (si−si (0))2 +�Hi∞,

where αHi > 0 is a selected constant to determine the
convergent speed of this constraint function, and �Hi∞ > 2εei .
Such a selection of �Hi (si ) tolerates a relatively larger initial
distance tracking error, but puts a tighter requirement on the
distance tracking error as the operation continues.

Remark 2: In the analysis to be presented later, we will
show that the distance tracking error dei (t, si ) will converge to
a small neighbourhood of 2εei , which is a shifted equilibrium
point bounded away from zero. This equilibrium shift method
to avoid singularity in the control design is common in
the literature [36], [37], [38]. More discussion on how the
modified constraint requirement (12) can help avoid singularity
in the control design can be seen in the later Remark 10.

Second, define the relative distance tracking error
between the i th and j th quadrotors (i = 1, · · · , N ,
j ∈ Ni ) as dei j (t, si , s j ) ≜ di j (t) − L i j (si , s j ). Let
�Hi j (si , s j ), �Li j (si , s j ) : R × R → R+ be uniformly
bounded and at least three-times continuously differentiable
with bounded partial derivatives, and −�Li j (si (0), s j (0)) <
dei j (0, si (0), s j (0)) < �Hi j (si (0), s j (0)). The safety con-
straint is

−�Li j (si , s j ) < dei j (t, si , s j ) < �Hi j (si , s j ), (13)

which requires that the inter-quadrotor distance cannot be
either too large or too small. For instance, when quadrotors
need to exchange information for coordination, the distances
between them should be within the effective communication
range. Besides, too small inter-quadrotor distance may lead to
collisions between quadrotors.
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Remark 3: An example for �Hi j (si , s j ) and �Li j (si , s j )

can be

�Hi j (si , s j ) = |dei j (0, si (0), s j (0))|
[
δi j e−αHi j (si−si (0))2

+ (1 − δi j )e−αHi j (s j−s j (0))2
]
+�Hi j∞,

�Li j (si , s j ) = |dei j (0, si (0), s j (0))|
[
δi j e−αLi j (si−si (0))2

+ (1 − δi j )e−αLi j (s j−s j (0))2
]
+�Li j∞,

where αHi j > 0 and αLi j > 0 are selected to determine
convergent speeds of safety constraint functions. Moreover,
�Hi j∞, �Li j∞ > 0, and 0 < δi j < 1. In this example,
�Hi j (si , s j ) and �Li j (si , s j ) tolerate a relatively larger initial
distance tracking error, but put a tighter requirement on the
relative distance tracking error as the operation continues.

D. Control Objective
The control objective for the path-following formation

tracking problem is to design a control framework such that:
1) The distance tracking error dei (t, si ) for the i th quadrotor

(i = 1, · · · , N ) can converge into an arbitrarily small neigh-
borhood of the equilibrium;

2) The relative distance tracking error dei j (t, si , s j ) between
the i th and j th (i = 1, · · · , N , j ∈ Ni ) quadrotors can
converge into an arbitrarily small neighborhood of zero;

3) For the i th quadrotor (i = 1, · · · , N ), the attitude
tracking error e2i ≜ [eφi , eθ i , eψi ]

T
= 2i −2di can converge

into an arbitrarily small neighborhood of zero, where 2di ≜
[φdi , θdi , ψdi ]

T is the desired attitude to be specified later;
4) The path speed error zsi ≜ ṡi−vdi (si ), can converge into

an arbitrarily small neighborhood of zero, where vdi (si ) : R →

R is at least twice continuously differentiable with bounded
derivatives;

5) The path-dependent performance and safety constraint
requirements (12) and (13) will not be violated during forma-
tion.

Remark 4: Note that the constraint requirements (12)
and (13) depend on the path parameters si (i = 1, · · · , N )
instead of the time variable t directly. The physical meaning
behind this new constraint formulation is that the constraint
requirements are geometrically/spatially related, not tempo-
rally defined. Similar to the control structures in [39] and [40],
timing laws will be introduced to connect these path-dependent
constraint requirements and temporal vehicle dynamics.

Define the unit vector between the i th quadrotor and its
desired path as Eei (i = 1, · · · , N ) and unit vectors between
the i th quadrotor and its neighboring agents Edi j ( j ∈ Ni )
as Eei ≜ 1

dei
(pi − pdi ) ∈ S2 and Edi j ≜ 1

di j
(pi − p j ) ∈ S2.

We will need the following assumptions for the analysis and
discussion of our main theoretical results.

Assumption 1: In this work, the system states including
position, velocity, attitude, and angular velocity can be accu-
rately measured for the controller design.

Remark 5: Addressing safety and performance constraints
with measurement uncertainties is in general a difficult task.
For example, if the system is subject to stochastic noise,
the constraint requirements can only be defined in terms of
probability, as in our prior work [41]. For the benefit of dis-
cussion and to focus our main contributions on path-dependent

constrained formation, sensor uncertainties are beyond the
scope of this work.

Assumption 2: For the i th quadrotor (i = 1, · · · , N ), the
unit vectors Eei and Edi j ( j ∈ Ni ) are not coplanar.

Remark 6: Geometrically, Assumption 2 requires that the
3D UAV formation problem should not be reduced onto a 2D
plane for any agent at all time. More discussion can be seen
in Remark 11.

Assumption 3: For the reference attitude of the i th quadro-
tor, we require that φdi ∈ (−π

2 ,
π
2 ), θdi ∈ (−π

2 ,
π
2 ), and

ψdi ∈ [−π, π], where ψdi is at least once continuously
differentiable with bounded ψ̇di .

Assumption 4 ([25], [42], [43]): The thrust Fi and exter-
nal disturbances γ1i and γ2i for the i th quadrotor are uniformly
bounded with unknown bounds.

Assumption 5 ([42]): The mass mi and inertia Ji for the
i th quadrotor are unknown, and the inverse of Ji is assumed
to be bounded, such that for any z ∈ R3, bJ i z

Tz ≤ zT J−1
i z ≤

b̄J i zTz, where b̄J i and bJ i are unknown positive constants.
Assumption 6 ([25]): The attitude of the i th quadrotor is

confined such that φi ∈ (−π
2 ,

π
2 ), θi ∈ (−π

2 ,
π
2 ), and ψi ∈

[−π, π].
Remark 7: The boundedness of φi and θi guarantees that

T (2i ) given in (3) is invertible during the operation.

III. UNIVERSAL BARRIER FUNCTION

Here we introduce the structure of universal barrier function
(UBF) [44] to address the issue of path-dependent constraint
requirements. Specifically, the following transformed error
variables are introduced

ηei =
�dHi dεei

(�dHi − dεei )(εei + dεei )
,

ηi j =
�Hi j�Li j dei j

(�Hi j − dei j )(�Li j + dei j )
. (14)

The universal barrier functions used to deal with the constraint
requirements (12) and (13) for the i th agent are then designed
as

Vei =
1
2
η2

ei , Vi j =
1
2
η2

i j . (15)

Remark 8: Compared with widely used BLFs, such as log-
type BLF [45] and tan-type BLF [46], the UBF first transforms
the original state with the constraint requirement into an
unconstrained one. Next, by keeping the UBF uniformly
bounded through closed-loop analysis, the transformed error
variable will also become bounded, therefore, the constraint
requirement can be guaranteed. UBFs can also deal with
symmetric and asymmetric constraints in a unified framework.
Due to the page limit, more details can refer to our earlier work
[44].

Remark 9: The UBF approach employed in this work
differs fundamentally from CBF-based approaches in the
following three aspects: 1) Computational demands: CBF
approaches are optimization-based algorithms that demand
significant computational power, which is often unrealistic
for small UAV platforms; 2) Analytic solutions: Unlike CBF
frameworks, which do not offer analytical solutions, our
algorithm provides explicit analytical controllers; 3) Feasibility
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Fig. 2. High-level block diagram of the overall control framework.

concerns: Unlike UBF approaches, optimization-based algo-
rithms face feasibility problems, as feasible solutions may or
may not exist.

IV. CONTROL DESIGN AND MAIN RESULTS

First, to provide a brief overview of the proposed control
framework, we present a high-level block diagram as Figure 2.

The following lemma is needed for the controller design
and theoretical analysis to be presented.

Lemma 1 ([47]): For any constant ε > 0 and any variable
z ∈ R, we have 0 ≤ |z| − z2

√
z2+ε2

< ε.

Detailed analysis is as follows.

A. Distance Control Design and Results
Step 1:
At this step, we consider the position kinematics of the

quadrotors. Let V1 =
∑N

i=1

(
Vei +

∑
j∈Ni

Vi j

)
, its derivative

with respect to time leads to

V̇1 =

N∑
i=1

(
ηei η̇ei +

∑
j∈Ni

ηi j η̇i j

)
. (16)

First we examine the dynamics for ηei (i = 1, · · · , N ).
From (14), we have

η̇ei =
∂ηei

∂si
ṡi +

∂ηei

∂dεei
ET

ei ṗi , (17)

where
∂ηei

∂si
=

∂ηei

∂�dHi

d�dHi

dsi
−
∂ηei

∂dεei
ET

ei
dpdi

dsi
∈ R,

∂ηei

∂dεei
=

�dHi (�dHiεei + d2
εei )

(�dHi − dεei )2(εei + dεei )2
> 0.

Hence for V̇ei (i = 1, · · · , N ) we get

V̇ei = ηei
∂ηei

∂si
ṡi + ηei

∂ηei

∂dεei
ET

ei ṗi . (18)

Similarly, for V̇i j (i = 1, · · · , N , j ∈ Ni ) we obtain

V̇i j = ηi j
∂ηi j

∂si
ṡi + ηi j

∂ηi j

∂s j
ṡ j

+ ηi j
∂ηei j

∂dei j
ET

di j ( ṗi − ṗ j ), (19)

where

∂ηi j

∂si
=

∂ηi j

∂�Hi j

∂�Hi j

∂si
+

∂ηi j

∂�Li j

∂�Li j

∂si

−
∂ηi j

∂dei j
ET

Li j
dpdi

dsi
∈ R,

∂ηi j

∂s j
=

∂ηi j

∂�Hi j

∂�Hi j

∂s j
+

∂ηi j

∂�Li j

∂�Li j

∂s j

+
∂ηi j

∂dei j
ET

Li j
dpd j

ds j
∈ R,

ELi j ≜
1

L i j
(pdi − pd j ) ∈ S2,

∂ηi j

∂dei j
=
�Hi j�Li j (�Hi j�Li j + d2

ei j )

(�Hi j − dei j )2(�Li j + dei j )2
> 0.

Hence, from (16), V̇1 yields to

V̇1 =

N∑
i=1

(
5T

pi3pi ET
pivi +5

T
pi gsi ṡi

)
, (20)

where

5pi ≜
[
ηei , ηi j︸︷︷︸

j ∈ Ni

]T
∈ R3,

3pi ≜ diag
(
∂ηei

∂dεei
, 2

∂ηi j

∂dei j︸ ︷︷ ︸
j ∈ Ni

)
∈ R3×3,

E pi ≜

[
Eei , Edi j︸︷︷︸

j ∈ Ni

]
∈ R3×3, gsi ≜

[
∂ηei

∂si
, 2

∂ηi j

∂si︸ ︷︷ ︸
j ∈ Ni

]T

∈ R3.

Next, define the fictitious velocity tracking error as evi =

ET
pivi − αpi , with the stabilizing function αpi ∈ R3 (i =

1, · · · , N ) designed as

αpi = −3−1
pi (gsivdi + Ki5pi ), (21)

where Ki ≜ diag
(
Kei , Ki j︸︷︷︸

j ∈ Ni

)
in which Kei > 0 and Ki j > 0

are the control gains. Besides, since 3pi is a diagonal matrix
with positive diagonal entries, 3pi is invertible and 3−1

pi =

diag
(

1
∂ηei
∂dεei

,
1

2 ∂ηi j
∂dei j︸ ︷︷ ︸

j ∈ Ni

)
. Thus, the proposed stabilizing function

αpi in (21) is non-singular.
Hence, (20) yields

V̇1 =

N∑
i=1

(
5T

pi3pi evi − Keiη
2
ei −

∑
j∈Ni

Ki jη
2
i j +5

T
pi gsi zsi

)
.

(22)

Step 2:
At this step, we consider the translational dynamics of the

quadrotors. Let V2 =
∑N

i=1
1
2 eT
vi evi , and its time derivative
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gives

V̇2 =

N∑
i=1

eT
vi

[
ET

pi gez −
1

mi
ui0 −

1
mi

ET
pi Fi (Ri − Rdi )ez

+
1

mi
ET

piγ1i + ĖT
pivi − α̇pi

]
, (23)

in which we denote ui0 = ET
pi ui ∈ R3, ui = Fi Rdi ez ∈ R3,

and

α̇pi =
∂αpi

∂si
ṡi +

∂αpi

∂(pi − pdi )
vi

+

∑
j∈Ni

[
∂αpi

∂(pi − p j )
(vi − v j )+

∂αpi

∂s j
ṡ j

]
, (24)

where ∂αpi
∂si

and ∂αpi
∂s j

are given in Appendix A (see (52)
and (53)). Moreover, ĖT

pivi in (23) can be expressed as

ĖT
pivi = ξT

ei

(
vi −

dpdi

dsi
ṡi

)
+

∑
j∈Ni

ξT
di j (vi − v j ), (25)

where

ξei = [QT
eivi , 03, 03] ∈ R3×3,

ξdi j = [03, QT
di jvi , 03] ∈ R3×3,

where 03 = [0, 0, 0]T ∈ R3, Qei =
dei I3−(pi−pdi )ET

ei
d2

ei
∈ R3×3,

and Qdi j =
di j I3−(pi−p j )ET

di j

d2
i j

∈ R3×3, i = 1, · · · , N , j ∈ Ni .

For ξdi j ( j ∈ Ni ), the
(
1 + Ii j

)
th column vector is QT

di jvi and
other columns are zero vectors, where Ii j is the index of j in
the set of neighbors of agent i .

Remark 10: In (25), singularity in Qei and Qdi j can only
happen when dei = 0 or di j = 0, i,= 1, · · · , N , j ∈ Ni .
However, in view of the performance and safety constraint
requirements (12) and (13), we have dei > εei > 0 and di j >

0, hence dei = 0 and di j = 0 will not happen if (12) and (13)
are satisfied. Therefore, singularity will not occur in (25).

Now, for the i th quadrotor (i = 1, · · · , N ), the control law
ui ∈ R3 is designed as

ui = E pi (ET
pi E pi )

−1ui0, ui0 = m̂i ūi0, (26)

ūi0 = 3pi5pi + ET
pi gez + Kvi evi +

(
ξT

ei −
∂αpi

∂(pi − pdi )

)
vi

+

∑
j∈Ni

[(
ξT

di j −
∂αpi

∂(pi − p j )

)
(vi − v j )−

∂αpi

∂s j
vd j

]

−

(
∂αpi

∂si
+ ξT

ei
dpdi

dsi

)
vdi + µ̂mi

ET
pi E pi evi√

eT
vi ET

pi E pi evi + ε
2
i

,

(27)

where Kvi > 0 is a control gain, εi > 0 is a design constant,
m̂i is the estimation of the unknown constant mi , and µ̂mi
is the estimation of the unknown constant µmi satisfying∣∣∣∣∣∣− 1

mi
Fi (Ri − Rdi )ez +

1
mi
γ1i

∣∣∣∣∣∣ ≤ µmi .
Remark 11: According to the definition of E pi in (20),

rank(E pi ) = 3 under Assumption 1. Therefore ET
pi E pi in (26)

is invertible.

Next, we substitute the control design (26) back into (23),
which yields

−
1

mi
eT
vi ui0 = −

m̂i

mi
eT
vi ūi0 = −eT

vi ūi0 −
m̃i

mi
eT
vi ūi0, (28)

where m̃i = m̂i − mi (i = 1, · · · , N ). Hence, (22) and (23)
lead to

V̇1 + V̇2

<

N∑
i=1

(
5T

pi3pi evi − Keiη
2
ei −

∑
j∈Ni

Ki jη
2
i j +5

T
pi gsi zsi

− eT
vi ūi0 + eT

vi ET
pi gez −

m̃i

mi
eT
vi ūi0 +

1
mi

eT
vi ET

piγ1i

− eT
vi α̇pi −

1
mi

eT
vi ET

pi Fi (Ri − Rdi )ez

)
. (29)

Note also that in (29), under Assumption 4 we have

−
1

mi
eT
vi ET

pi Fi (Ri − Rdi )ez +
1

mi
eT
vi ET

piγ1i

≤
∣∣∣∣E pi evi

∣∣∣∣ ∣∣∣∣∣∣∣∣− 1
mi

Fi (Ri − Rdi )ez +
1

mi
γ1i

∣∣∣∣∣∣∣∣
< εiµmi + µmi

eT
vi ET

pi E pi evi√
eT
vi ET

pi E pi evi + ε
2
i

. (30)

Therefore, it follows from (29) that

V̇1 + V̇2

<

N∑
i=1

[
−Keiη

2
ei −

∑
j∈Ni

Ki jη
2
i j − Kvi eT

vi evi

+

(
5T

pi gsi − eT
viξ

T
ei

dpdi

dsi
− eT

vi
∂αpi

∂si

)
zsi −

m̃i

mi
eT
vi ūi

− µ̃mi
eT
vi ET

pi E pi evi√
eT
vi ET

pi E pi evi + ε
2
i

+ εiµmi

]
, (31)

where µ̃mi = µ̂mi − µmi (i = 1, · · · , N ).
Next, design the adaptive laws for the estimators m̂i and

µ̂mi , and the path parameter timing law s̈i of the i th quadrotor
(i = 1, · · · , N ) as the following

˙̂mi = nmi eT
vi ūi0 − σmi m̂i , (32)

˙̂µmi = nµmi
eT
vi ET

pi E pi evi√
eT
vi ET

pi E pi evi + ε
2
i

− σµmi µ̂mi , (33)

s̈i = eT
viξ

T
ei

dpdi

dsi
+ eT

vi
∂αpi

∂si
−5T

pi gsi +
∑
j∈Ni

eT
v j
∂αpi

∂s j

− Ksi zsi +
dvdi

dsi
ṡi , (34)

where m̂i (0) = m̂i0, µ̂mi (0) = µ̂mi0, si (0) = si10, and
ṡi (0) = si20. nmi , nµmi , σmi , σµmi , and Ksi are positive design
constants. Let Vm =

∑N
i=1

1
2nmi mi

m̃2
i , Vµm =

∑N
i=1

1
2nµmi

µ̃2
mi ,

Vs =
∑N

i=1
1
2 z2

si . Denote Vpos = V1 + V2 + Vm + Vµm + Vs ,
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for its time derivative we can get

V̇pos <

N∑
i=1

(
−Keiη

2
ei −

∑
j∈Ni

Ki jη
2
i j − Kvi eT

vi evi − Ksi z2
si

−
σmi

2nmi mi
m̃2

i −
σµmi

2nµmi
µ̃2

mi + C1i

)
, (35)

where C1i =
σmi

2nmi
mi +

σµmi
2nµmi

µ2
mi + εiµmi . Hence,

V̇pos < −κ1Vpos + ϱ1, (36)

where κ1 ≜ mini, j (2Kei , 2Ki j , 2Kvi , 2Ksi , σmi , σµmi ), ϱ1 ≜∑N
i=1 C1i . The aforementioned design procedure leads to the

following theoretical result.
Theorem 1: For the i th quadrotor (i = 1, · · · , N ), with the

thrust law as (26) and (27), adaptive laws (32) and (33), and
the path parameter timing law (34), the quadrotor formation
system described by (1) and (4), under Assumptions 1-6 will
have the following results:

1) The path-dependent constraint requirements (12) and
(13) will be met during formation.

2) The transformed output tracking errors ηei and ηi j (i =
1, · · · , N , j ∈ Ni ) will converge into the set{

x = ηei , ηi j : |x | < εη, εη =

√
2ϱ1

κ1

}
, (37)

which implies that the output tracking errors dei and dei j
will converge into the following regions{

dei : max(εei , 2εei + εχLi ) < dei < 2εei + εχHi

}
,

(38){
dei j : −ειLi j < dei j < ειHi j

}
, (39)

where εχHi and εχLi are expressed as

εχHi =


[εη(�dHi − εei )−�dHi ]

+

√
[εη(�dHi−εei )−�dHi ]2

+4ε2
η�dHi εei


2εη

,

εχLi =


[εη(�dHi − εei )−�dHi ]

−

√
[εη(�dHi−εei )+�dHi ]2

+4ε2
η�dHi εei


2εη

.

Moreover, ειHi j and ειLi j can be written as

ειHi j =

−[�Hi j�Li j − εη(�Hi j −�Li j )]

+

√
�2

Hi j�
2
Li j+ε

2
η(�Hi j+�Li j )2

−2εη�Hi j�Li j (�Hi j−�Li j )


2εη

,

ειLi j =

−[�Hi j�Li j + εη(�Hi j −�Li j )]

+

√
�2

Hi j�
2
Li j+ε

2
η(�Hi j+�Li j )2

+2εη�Hi j�Li j (�Hi j−�Li j )


2εη

.

3) The i th quadrotor’s desired speed assignment along
the path vdi (i = 1, · · · , N ) can be satisfied, i.e.,
lim supt→∞ |ṡi − vdi | < εη.

4) The adaptive laws (32) and (33), and the path parameter
timing laws (34), are all uniformly bounded.

Proof: From (36) we have

Vpos(t) <
(

Vpos(0)−
ϱ1

κ1

)
e−κ1t

+
ϱ1

κ1
. (40)

The uniform boundedness of Vpos in turn implies boundedness
of ηei and ηi j (i = 1, · · · , N , j ∈ Ni ). Hence, the constraints
requirements (12) and (13) are both satisfied during the
operation.

Moreover, we have lim supt→∞ Vpos <
ϱ1
κ1

, hence 1
2η

2
ei <

ϱ1
κ1

when t → ∞, therefore ηei will converge to the
set (37). Similar relationship holds for ηi j . Furthermore, uni-
form boundedness of Vpos implies boundedness of the adaptive
estimates m̂i and µ̂mi , as well as boundedness of fictitious
errors evi (i = 1, · · · , N ).

Next, note that in the range −εei < dεei < �dHi , ηei is
a function in dεei . Recall that dεei ≜ dei − 2εei , with εei >

0 being an arbitrarily small constant. Hence, the range (12)
gives the range for dei given in (38). Besides, within the range
of (13), ηi j is quadratically related to dei j . Hence, satisfying
the constraints (12) and (13) means that the distance tracking
errors dei and dei j will be confined in the ranges defined by
(38) and (39).

Furthermore, since lim supt→∞
1
2 z2

si <
ϱ1
κ1

, the speed
assignment errors will satisfy |ṡi − vdi | < εη when t → ∞.
Besides, the boundedness of vdi will lead to the boundedness
of ṡi .

Finally, for the i th qudrotor, boundedness of the adaptive
estimates m̂i and µ̂mi , the path parameter speed ṡi , and the
fictitious error evi as well as the invertibility of ET

pi E pi can
be utilized to check that αpi , ui , ui0, and ūi0 are all uniformly
bounded. Hence, it is clear to imply that the adaptive laws (32)
and (33), and the path parameter timing law (34), are all
uniformly bounded.

Remark 12: In Theorem 1, using L’Hôpital’s rule we can
derive that

lim
εη→0

εχHi , εχLi , ειHi j , ειLi j = 0, (41)

for i = 1, · · · , N , j ∈ Ni . This implies that when the modified
error variables ηei and ηi j converge into small neighborhoods
of zero, the relative distance tracking error dei j will converge
to a region close to zero and the distance tracking error dei
will converge to a region arbitrarily close to 2εei , with εei >

0 being an arbitrarily small constant.
Remark 13: To reduce the size of the set in (37), we need

to select large κ1 and small ϱ1. To make κ1 large, we can
select large control gains Kei , Ki j , and Kvi , for i = 1, · · · , N ,
j ∈ Ni and large adaptive and path timing control parameters
σmi , σµmi , and Ksi . To make ϱ1 small, we can select small
εi , and large adaptive control parameters nmi and nµmi .

B. Attitude Control Design and Results

Step 3:
Next, we address the attitude kinematics of the quadrotors.

Let V3 =
∑N

i=1
1
2 eT
2i e2i . With some algebraic analysis shown

in Appendix B (see (54)-(59)), the stabilizing function α2i ∈
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R3 for the i th quadrotor (i = 1, · · · , N ) is designed as

α2i = −(K2i + νi )T−1
i e2i , (42)

where K2i > 0 is a control gain and νi > 0 is a design
constant.

Step 4:
At this step, let V4 =

∑N
i=1

1
2 eT
ωi eωi . With some algebraic

analysis shown in Appendix C (see (60)-(65)), the torque law
and adaptive laws for the i th quadrotor (i = 1, · · · , N ) are
designed as

τi = −
eωi τ̄

T
i τ̄i ρ̂

2
J i√

eT
ωi eωi τ̄

T
i τ̄i ρ̂

2
J i + ε

2
i

, (43)

τ̄i = (K2i + νi )
(d(T−1

i )

dt
e2i + ωi

)
+ Kωi eωi + T T

i e2i

+ µ̂J i
eωi√

eT
ωi eωi + ε

2
i

+ ĥ J̄ i
eωi ω̄

T
i ω̄i√

eT
ωi eωi ω̄

T
i ω̄i + ε

2
i

, (44)

˙̂ρJ i = nρ J i eT
ωi τ̄i − σρ J i ρ̂J i , (45)

˙̂h J̄ i = nh J̄ i
eT
ωi eωi ω̄

T
i ω̄i√

eT
ωi eωi ω̄

T
i ω̄i + ε

2
i

− σh J̄ i ĥ J̄ i , (46)

˙̂µJ i = nµJ i
eT
ωi eωi√

eT
ωi eωi + ε

2
i

− σµJ i µ̂J i , (47)

where ρ̂J i (0) = ρ̂J i0, ĥ J̄ i (0) = ĥ J̄ i0, and µ̂J i (0) = µ̂J i0
are the initial conditions. Kωi > 0 is a control gain. µ̂J i is
the estimator of the unknown constant µJ i expressed in (65),
ĥ J̄ i is the estimator of the unknown constant h̄ J̄ i expressed in
(61), and ρ̂J i is the estimator of the unknown constant ρJ i =

1
bJ i

. nρ J i , σρ J i , nh J̄ i , σh J̄ i , nµJ i , and σµJ i are positive design
constants.

Now, let Vρ J =
∑N

i=1
bJ i

2nρ J i
ρ̃2

J i , Vh J̄ =
∑N

i=1
1

2nh J̄ i
h̃2

J̄ i
,

VµJ =
∑N

i=1
1

2nµJ i
µ̃2

J i . Denote Vatt = V3 +V4 +Vρ J +Vh J̄ +

VµJ , after some algebraic manipulation, we can arrive at

V̇att <

N∑
i=1

(
−K2i eT

2i e2i − Kωi eT
ωi eωi −

bJ iσρ J i

2nρ J i
ρ̃2

J i

−
σh J̄ i

2nh J̄ i
h̃2

J̄ i −
σµJ i

2nµJ i
µ̃2

J i + C2i

)
, (48)

where C2i = εi (h̄ J̄ i + µJ i + bJ i ) +
bJ iσρ J i
2nρ J i

ρ2
J i +

σh J̄ i
2nh J̄ i

h̄2
J̄ i

+

σµJ i
2nµJ i

µ2
J i +

1
νi
2̄2

di . Hence, we can get

V̇att < −κ2Vatt + ϱ2, (49)

where κ2 ≜ mini (2K2i , 2Kωi , σρ J i , σh J̄ i , σµJ i ), ϱ2 ≜∑N
i=1 C2i . The above backstepping design for the attitude

leads to the following theorem.
The overall control algorithm can be summarized into the

block diagram in Figure 3.
Theorem 2: For the i th quadrotor (i = 1, · · · , N ), with

the torque law as (43) and (44), and adaptive laws (45),
(46), and (47), the quadrotor formation system described
by (2) and (5), under Assumptions 1–6, achieves the following
performance:

1) The attitude tracking error e2i (i = 1, · · · , N ) will
converge into the sets{

x = eφi , eθ i , eψi : |x | < εη, εη =

√
2ϱ2

κ2

}
, (50)

2) The control torque laws (43) and (44), and adaptive
laws (45), (46), and (47), are all uniformly bounded.

Proof: Following (49), we can conclude that the
Lyapunov function Vatt is bounded, since from (49) we can
get

Vatt(t) <
(

Vatt(0)−
ϱ2

κ2

)
e−κ2t

+
ϱ2

κ2
. (51)

The uniform boundedness of Vatt in turn implies boundedness
of eφi , eθ i , and eψi (i = 1, · · · , N ). Moreover, we have
lim supt→∞ Vatt <

ϱ2
κ2

, hence 1
2 e2
φi <

ϱ2
κ2

when t → ∞,
therefore eφi will converge to the set (50). Similar relationships
hold for eθ i and eψi . The boundedness of adaptive estimates
ρ̂J i , ĥ J̄ i , and µ̂J i , as well as boundedness of fictitious errors
eωi , can be concluded from the fact that Vatt is bounded.
This implies that the torque law (43) and (44), and adaptive
laws (45), (46), and (47), are all bounded.

V. SIMULATION STUDIES

We conduct a simulation with a team of N = 4
quadrotors. For i = 1, 2, 3, 4, the model parameters
of the quadrotors are mi = 4kg, g = 9.81m/s2,
Ji = diag(0.109, 0.103, 0.0625)kg · m2. Note that the
units of the position, attitude, translational and angular
velocities are m, rad, m/s, and rad/s, respectively. The
communication topology for the UAV team is selected
as N1 = {2, 3}, N2 = {1, 4}, N3 = {1, 4}, and
N4 = {2, 3}. The desired paths for vehicles are given
as pd1(s1) =

[
0.6 cos(0.7s1) + 0.015s1, 0.6 sin(0.7s1)

+ 0.015s1, −0.4s1 − 0.3
]T, pd2(s2) =

[
0.6 cos(0.7s2) +

0.015s2, 2.15 + 0.6 sin(0.7s2) + 0.015s2, −0.4s2 − 0.6
]T,

pd3(s3) =
[
2 + 0.6 cos(0.7s3), 0.6 sin(0.7s3), −0.4s3 −

0.4
]T, and pd4(s4) =

[
1.0 + 0.6 cos(0.7s4), 1.0 +

0.6 sin(0.7s4), −0.4s4 − 1
]T with reference yaw signal

ψdi = 0, i = 1, 2, 3, 4, and the desired speed assignment
is vdi =

∣∣∣∣∣∣ dpdi
dsi

∣∣∣∣∣∣. The constraint functions are selected

as �Hi (si ) = (3.0 − 0.25)e−1.1si + 0.25, �Hi j (si , s j ) =

(1.5 − 0.1) e−0.4si +e−0.4s j

2 + 0.1, and �Li j (si , s j ) = (0.7 −

0.1) e−0.2si +e−0.2s j

2 + 0.1, i = 1, 2, 3, 4, j ∈ Ni . The lower
bounds for the distance tracking errors are chosen as εei =

0.005, i = 1, 2, 3, 4.
Next, the design parameters are chosen as εi = 0.1, nmi =

1.59, nµmi = 2.0, nρ J i = 0.6, nh J̄ i = 0.6, nµJ i = 0.2, σmi =

0.1, σµmi = 0.1, σρ J i = 0.01, σh J̄ i = 0.01, σµJ i = 0.01,
and Ks = 50, i = 1, 2, 3, 4. The control gains are designed
as Kei = 0.8, Ki j = 0.55, Kvi = 5, νi = 0.5, K2i = 2,
and Kωi = 4, i = 1, 2, 3, 4, j ∈ Ni . The initial positions
of the quadrotor team are p1(0) = [0.25, 0, 1]T, p2(0) =

[0, 2, 1.5]T, p3(0) = [2, 0, 1.2]T, and p4(0) = [2, 2, 1.0]T.
The initial attitudes of quadrotors are 2i (0) = [0, 0, 0.1]T,
i = 1, 2, 3, 4. The initial conditions of translational and angu-
lar velocities of every agent are zero. The external disturbances
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Fig. 3. Block diagram of the overall control algorithm.

Fig. 4. The profile of distance tracking errors dei under the proposed
controller (M1) and trajectory-tracking formation controller (M2) [48] with
εei > 0 and path-dependent constraint functions �dHi .

are γ1i =
[
0.11 sin(0.2t), 0.06 cos(0.15t), 0.03 cos(0.12t)

]T

and γ2i =
[
0.03 sin(0.25t), 0.04 sin(0.2t), 0.06 cos(0.3t)

]T,
where i = 1, 2, 3, 4.

Fig. 5. The profile of relative inter-quadrotor distance tracking errors dei j
under the proposed controller (M1) and the trajectory-tracking formation
controller (M2) [48] with constraint functions �Hi j and �Li j .

In order to show the effectiveness of our proposed con-
trol framework, we conduct a comparative study with a
trajectory-tracking formation controller [48] which does not
account for path-dependent constraint requirements. In [48],
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Fig. 6. Trajectories of the quadrotors in 3D space.

Fig. 7. The profile of quadrotors’ attitude φi , θi , and ψi .

control gains and design parameters are K p = 0.8, Kv = 5,
Ka = 50, and Kq = 16. The model parameters of quadrotors
are selected the same as in our simulation. Moreover, both
controllers operate with identical external disturbances and
initial states for the UAV team. The simulation results are
presented in Figures 4-10. Distance tracking errors dei under
the proposed path-dependent constrained formation controller
(M1) and trajectory-tracking formation controller (M2) [48]
are shown in Figure 4. On the one hand, the performance
constraint requirements for all agents under the trajectory-
tracking formation controller (M2) [48] are violated when t ≥
3. On the other hand, under the proposed controller (M1), dei
can converge to small regions close to 2εei without violating
performance constraint requirements, which is not the case
with the trajectory-tracking formation controller (M2). Next,
Figure 5 gives the profile of inter-quadrotor distance tracking
errors dei j under the proposed path-dependent constrained
formation controller (M1) and trajectory-tracking formation
controller (M2) [48]. On the one hand, we can observe that
safety constraints are never violated during the formation
operation when applying the proposed controller (M1). On the
other hand, under the trajectory-tracking formation controller
(M2) [48], the higher safety constraint requirements �H24 and
�H34 for the relative distance tracking errors de24 and de34 are
violated when t ≥ 3.

The 3D trajectories of the four quadrotors are depicted
in Figure 6. The effectiveness of our proposed formation

Fig. 8. The profile of quadrotors’s thrust Fi .

Fig. 9. The profile of quadrotors’ torques τφi , τθ i , and τψi .

Fig. 10. Path speed errors zsi profile.

algorithm is evident in the precise path following of quadrotors
over time. The profile of quadrotor attitudes, φi , θi , and ψi
presented in Figure 7 shows the stabilization of the attitudes
despite the lack of model parameters and influence of the
external disturbance γ2i .

Moreover, the thrust Fi and torques τφi , τθ i , and τψi
are plotted in Figures 8 and 9, respectively. The thrust Fi
can converge to a region close to the gravitational force
of the quadrotor with system uncertainties and unknown
time-varying external disturbances. The torques can accom-
modate the disturbance γ2i despite the lack of accurate model
parameters. Finally, the path speed errors zsi are exhibited in
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Figure 10, which shows the path speed errors can converge
to neighborhoods of the origin. To summarize, the afore-
mentioned simulation results align with the theoretic analysis
discussed in Theorems 1 and 2.

VI. CONCLUSION

For the first time in the formation control literature, we
propose a new formulation of path-dependent constraints
during UAV formation operation. Specifically, we develop a
path-dependent constrained formation control framework to
address path-dependent performance and safety constraints.
Universal barrier functions are incorporated into the controller
design and analysis, to ensure that the constraint require-
ments on the distance tracking errors and relative distance
tracking errors are both satisfied during the operation. Under
the proposed constrained formation architecture, the distance
tracking errors and relative inter-quadrotor distance errors can
exponentially converge to small regions near the equilibrium,
meanwhile all constraint requirements can be guaranteed.
In the future, research directions include path-dependent
constrained formation control problems for UAVs with col-
laborate objectives, such as load lifting and transporting with
path-dependent system uncertainties.

APPENDIX A
STEP 2 OF BACKSTEPPING DESIGN

∂αpi

∂si
= −

∂αpi

∂(pi − pdi )

dpdi

dsi
+

∂αpi

∂�dHi

d�dHi

dsi
+
∂αpi

∂vdi

dvdi

dsi

+
∂αpi

∂(
d�dHi

dsi
)

d2�dHi

ds2
i

+
∂αpi

∂(
dpdi
dsi
)

d2 pdi

ds2
i

+

∑
j∈Ni

[
∂αpi

∂�Hi j

∂�Hi j

∂si
+
∂αpi

∂�Li j

∂�Li j

∂si

+
∂αpi

∂(
∂�Hi j
∂si

)

∂2�Hi j

∂s2
i

+
∂αpi

∂(
∂�Li j
∂si

)

∂2�Li j

∂s2
i

+
∂αpi

∂(pdi − pd j )

dpdi

dsi

]
, (52)

∂αpi

∂s j
= −

∂αpi

∂(pdi − pd j )

dpd j

ds j
+

∂αpi

∂�Hi j

∂�Hi j

∂s j

+
∂αpi

∂�Li j

∂�Li j

∂s j
+

∂αpi

∂(
∂�Hi j
∂si

)

∂2�Hi j

∂si∂s j

+
∂αpi

∂(
∂�Li j
∂si

)

∂2�Li j

∂si∂s j
. (53)

APPENDIX B
STEP 3 OF BACKSTEPPING DESIGN

First, we need to extract the reference attitude from the
position control design. Recall that ui = Fi Rdi ez , we have

ui = Fi

 cφdi sθdi cψdi + sφdi sψdi
cφdi sθdi sψdi − sφdi cψdi

cφdi cθdi

 , (54)

in which we recall that Fi is the thrust of the i th quadrotor.
Here, for any designated reference yaw signal ψdi satisfying
Assumption 1, we define ([25])

Fi = ||ui || , (55)

φdi = arcsin
(ui1sψdi − ui2cψdi

||ui ||

)
, (56)

θdi = arctan
(ui1cψdi + ui2sψdi

ui3

)
, (57)

where ui = [ui1, ui2, ui3]
T
∈ R3, with φdi and θdi satisfying

Assumption 2.
Let V3 =

∑N
i=1

1
2 eT
2i e2i , which has the following time

derivative

V̇3 =

N∑
i=1

eT
2i ė2i =

N∑
i=1

eT
2i (Ti eωi + Tiα2i − 2̇di ), (58)

where we define eωi = ωi − α2i (i = 1, · · · , N ), with
the stabilizing function α2i ∈ R3 designed in (42). Taking
derivative of φdi in (56) and θdi in (57) with respect to time
yields

φ̇di =
∂φdi

∂ui1
u̇i1 +

∂φdi

∂ui2
u̇i2 +

∂φdi

∂ui3
u̇i3 +

∂φdi

∂ψdi
ψ̇di ,

θ̇di =
∂θdi

∂ui1
u̇i1 +

∂θdi

∂ui2
u̇i2 +

∂θdi

∂ui3
u̇i3 +

∂θdi

∂ψdi
ψ̇di ,

where ui1, ui2, ui3, ψdi , and ψ̇di are all bounded according to
Theorem 1 and Assumption 2, such that terms ∂φdi

∂ui1
, ∂φdi
∂ui2

, ∂φdi
∂ui3

,
∂φdi
∂ψdi

, ∂θdi
∂ui1

, ∂θdi
∂ui2

, ∂θdi
∂ui3

, and ∂θdi
∂ψdi

are all bounded. The result of
differentiating ui in (26) with respect to time can be combined
with Theorem 1 to conclude the boundedness of u̇i1, u̇i2, and
u̇i3. Therefore, 2̇di is bounded, which satisfies

∣∣∣∣2̇di
∣∣∣∣ ≤ 2̄di ,

where 2̄di is an unknown positive constant. Note that for any
νi > 0,

eT
2i 2̇di ≤ ||e2i || 2̄di <

1
νi
2̄2

di + νi ||e2i ||
2 .

Therefore, from (58) we can get

V̇3 <

N∑
i=1

(
−K2i eT

2i e2i + eT
2i Ti eωi +

1
νi
2̄2

di

)
. (59)

APPENDIX C
STEP 4 OF BACKSTEPPING DESIGN

Taking derivative of V4 =
∑N

i=1
1
2 eT
ωi eωi with respect to

time yields

V̇4 =

N∑
i=1

eT
ωi (J

−1
i S(Jiωi )ωi + J−1

i τi − α̇2i + J−1
i γ2i ),

(60)

where, from (42), we can get

α̇2i = −(K2i + νi )

(
d(T−1

i )

dt
e2i + ωi − T−1

i 2̇di

)
.
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J̄i =
[
J̄1i , J̄2i , J̄3i , J̄4i , J̄5i , J̄6i

]
, (62)

with

J̄1i =

ςxyi Jzxi − ςxzi Jyxi
ςyyi Jzxi − ςyzi Jyxi
ςzyi Jzxi − ςzzi Jyxi

 , J̄2i =

−ςxxi Jzxi + ςxyi Jzyi + ςxzi (Jxxi − Jyyi )

−ςyxi Jzxi + ςyyi Jzyi + ςyzi (Jxxi − Jyyi )

−ςzxi Jzxi + ςzyi Jzyi + ςzzi (Jxxi − Jyyi )

 ,
J̄3i =

ςxxi Jyxi + ςxyi (Jzzi − Jxxi )− ςxzi Jyzi
ςyxi Jyxi + ςyyi (Jzzi − Jxxi )− ςyzi Jyzi
ςzxi Jyxi + ςzyi (Jzzi − Jxxi )− ςzzi Jyzi

 , J̄4i =

−ςxxi Jzyi + ςxzi Jxyi
−ςyxi Jzyi + ςyzi Jxyi
−ςzxi Jzyi + ςzzi Jxyi

 ,
J̄5i =

ςxxi (Jyyi − Jzzi )− ςxyi Jxyi + ςxzi Jxzi
ςyxi (Jyyi − Jzzi )− ςyyi Jxyi + ςyzi Jxzi
ςzxi (Jyyi − Jzzi )− ςzyi Jxyi + ςzzi Jxzi

 , J̄6i =

ςxxi Jyzi − ςxzi Jxzi
ςyxi Jyzi − ςyyi Jxzi
ςzxi Jyzi − ςzyi Jxzi

 ,
where

Ji =

Jxxi Jxyi Jxzi
Jyxi Jyyi Jyzi
Jzxi Jzyi Jzzi

 , J−1
i =

ςxxi ςxyi ςxzi
ςyxi ςyyi ςyzi
ςzxi ςzyi ςzzi

 ,
and

ω̄i =
[
ω2

xi , ωxiωyi , ωxiωzi , ω2
yi , ωyiωzi , ω2

zi

]T
. (63)

Hence V̇4 can be rewritten as

V̇4 =

N∑
i=1

eT
ωi

[
J−1

i S(Jiωi )ωi + J−1
i τi + J−1

i γ2i

+ (K2i + νi )

(
d(T−1

i )

dt
e2i + ωi − T−1

i 2̇di

)]
, (61)

where T−1
i 2̇di is bounded since 2̇di and

∣∣∣∣∣∣T−1
i

∣∣∣∣∣∣ are both
bounded. Note that we can further parameterize the term
eT
ωi J−1

i S(Jiωi )ωi as eT
ωi J−1

i S(Jiωi )ωi = eT
ωi J̄i ω̄i , where J̄i

and ω̄i for the i th quadrotor (i = 1, · · · , N ) are defined in
(62) and (63), as shown at the top of the page. Here J̄i is
an unknown constant matrix, and there exists an unknown
constant h̄ J̄ i satisfying wT

1 J̄iw2 ≤ ||w1|| h̄ J̄ i ||w2|| for any
w1 ∈ R3 and w2 ∈ R6.

Therefore, we have

eT
ωi J−1

i S(Jiωi )ωi ≤ ||eωi || h̄ J̄ i ||ω̄i ||

< εi h̄ J̄ i + h̄ J̄ i
eT
ωi eωi ω̄

T
i ω̄i√

eT
ωi eωi ω̄

T
i ω̄i + ε

2
i

. (64)

Besides,

eT
ωi

(
J−1

i γ2i − (K2i + νi )T−1
i 2̇di

)
≤ ||eωi ||µJ i < εiµJ i + µJ i

eT
ωi eωi√

eT
ωi eωi + ε

2
i

, (65)

where µJ i is an unknown constant satisfying∣∣∣∣∣∣J−1
i γ2i − (K2i + νi )T−1

i 2̇di

∣∣∣∣∣∣ ≤ µJ i .
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