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Abstract—Spatial Pattern Matching is an important problem
in information retrieval that involves reasoning about the relative
position, distance, and orientation of objects with respect to
each other. Most spatial pattern matching approaches use large,
complex graphs or multigraphs to explicitly encode rich spatial
information. The downside of this complexity is that search over
spatial patterns remains badly constrained by computationally
intensive classes of algorithms, like subgraph matching and con-
straint satisfaction. This paper highlights the recent approaches
to graph-based spatial pattern matching, and presents a vision
of the way forward, using graph-based Artificial Intelligence as
a flexible, approximate approach to the otherwise intractable
problem.

I. INTRODUCTION

Many information retrieval problems in the spatial domain
involve Spatial Pattern Matching (SPM), the task of selecting
entities that match a given set of spatial constraints. Per-
forming spatial pattern matching requires automatically and
efficiently reasoning over complex spatial data, including the
relative position, distance, and orientation of objects with
respect to one another. For future systems to answer complex
queries with spatial components that require spatial pattern
matching, the underlying pattern matching algorithms will
need to be efficient enough to support response times within
a few seconds. Recent work successfully applies neural ap-
proaches to related spatial problems, like geospatial factoid
question answering, by leveraging spatial semantic graph
representations [1]. However, no existing neural methods can
handle the complexity of spatial pattern matching.

Most of the existing spatial pattern matching approaches use
graphs to encode the data, since they are a natural structure
to capture the complex pairwise spatial constraints that apply
to a set of entities in space. The downside of this complexity
is that search over spatial patterns remains badly constrained
by computationally intensive algorithm classes like subgraph
matching (SGM) and constraint satisfaction problems (CSP),
which are broadly intractable for any reasonable number of
database objects and query constraints. The tension between
the natural expressiveness of graphs for encoding spatial
relationships and the intractability of resolving queries against
them for large collections of spatial data prevents modern
search engines from supporting complex spatial queries at
scale.
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Recent graph-based spatial pattern matching approaches
tend to leverage heuristic methods, custom data structures,
pruning, and early stopping to achieve better than exponential
complexity in practice [2]-[5]. However, even these improve-
ments are not sufficient to support real-time spatial pattern
matching. Machine learning has sped up many on-the-fly
search tasks involving geospatial data [6] but has yet to reach
spatial pattern matching. To bridge this gap, we propose lever-
aging graph-based machine learning algorithms, which align
well with the naturally graph-based spatial pattern matching
task. In particular, Graph Neural Networks (GNNs) offer a
promising avenue to improve the efficiency of spatial pattern
matching. Recent work applies GNNs to general subgraph
matching problems as an efficient, noise-resistant approximate
method [7], [8], and we envision extending this to spatial
pattern matching.

We must address a few challenges to make GNN-based
spatial pattern matching possible. GNN subgraph matching
methods show promise on synthetically generated undirected
graphs, but spatial pattern matching requires matching on
complex spatial relations represented by (possibly multiple)
directed edges between nodes. More work remains to extend
the flexibility of GNN-based methods, especially to include
matching on more complicated edge relations. Likewise, clas-
sical graph theoretic methods offer correctness guarantees
that neural methods lack. There are many avenues of active
research aiming to address the lack of guarantees, including by
devising hybrid approaches, improving model explainability,
and adding confidence scores and alignment witnesses to
model output [9].

This paper presents a vision of the way forward for spatial
pattern matching, highlighting many of the key challenges and
opportunities associated with applying graph-based machine
learning to the problem. The rest of this paper describes the
relevant background on spatial search and pattern matching in
sections II and III. Then section IV presents an overview of
recent state of the art spatial pattern matching approaches,
focusing on subgraph matching and constraint satisfaction
approaches. Finally, in section V we provide a vision for the
future of graph-based spatial pattern matching that draws on
recent GNN subgraph matching methods, before concluding
in section VL.



II. SPATIAL ENTITIES AND RELATIONS

We begin by defining the core concepts of spatial data and
spatial pattern matching.

A. Graph Encoding

Many classical and recent spatial pattern matching ap-
proaches represent spatial data using graphs. A graph G
consists of a set of nodes or vertices V' and edges E such
that G = {V, E'}. Edges connect Nodes and possess one or
many labels, representing spatial relations (defined below).

B. Spatial Entities (Nodes)

Spatial entities are the basic elements of spatial data, and
are typically encoded as nodes in the graph. They fall into
three main classes: (i) Points, which consist of an (z,y)
coordinate pair in Cartesian space, (ii) Lines, which represent
the shortest path between two points, and (iii) Regions, which
represent the area inside a polyline joining several points.
Typically, points represent objects in the world, like trees,
fire hydrants, and street signs, lines represent ways, like
roadways, waterways, and railways, and regions represent the
extent of lakes, stadiums, large buildings, and counties. Most
graph-based spatial pattern matching methods operate on point
entities, with a few also supporting line and region data.

C. Spatial Relations (Edges)

Points, lines and regions relate to each other spatially
through the following types of relationships, (typically en-
coded as edges in the graph [10]-[12]): (i) Metric relations
that describe the distances between spatial entities (ten miles,
near, far, etc.), (ii) Topological relations that describe how
regions, lines, and points interact (intersect, contain, touch,
etc.), and (iii) Directional relations that describe how entities
are positioned relative to each other in space (north, left,
behind, etc.).

Some methods also address Order relations [5], which
describe the cyclic order in which objects appear with respect
to their centroid. Hybrid relations that combine two or more of
the primitive spatial relations are also possible [12]. To encode
spatial relations, most methods [3]-[5], [13], [14] create a
Graph or Qualitative Constraint Network to explicitly encode
pairwise spatial relations between objects as edges. More
complex spatial relations, like directional relations, require a
fully connected graph or multigraph to capture all the relevant
relations.

III. SPATIAL PATTERN MATCHING

Spatial search is the task of retrieving spatial entities from
a database that meet the constraints specified by a spatial
query. Spatial pattern matching is a type of spatial search
that is often defined as a graph matching problem, where
nodes have keyword labels representing objects in the world
or points of interest (POIs) and edges represent desired spatial
relationships between the nodes. Most spatial pattern matching
methods formulate the problem as a constraint satisfaction
problem or a subgraph-matching problem, both of which

scale poorly with the number of relations in the database and
constraints in the query.

A. Constraint Satisfaction Problems (CSP)

Constraint satisfaction problems for spatial pattern match-
ing seek an assignment of valid variables (database objects)
given the query constraints, typically using backtracking or
forward-checking approaches. Most CSPs are exponential in
the number of objects, the number of constraints, or the
number of query terms. In the worst case, where constraints
are numerous, specificity is low, and constraints are poorly
ordered, CSP approaches prove intractable.

B. Subgraph Matching (SGM)

Subgraph matching approaches encode the database as a
graph of objects and relations, and queries as a subgraph of
objects and constraints. These methods then seek to identify
where the query pattern exists in the database graph, often us-
ing tree search, look-ahead functions, and aggressive pruning
to avoid exponential worst-case complexity [2]-[4]. However,
even recent methods are prohibitively slow on large database
and query graphs, or do not support complex spatial relation
types, like topological and directional relations [2], [3].

C. Other Methods

A few spatial pattern matching methods that have been
proposed avoid using graphs or qualitative constraint networks
entirely. These methods typically encode the data by segment-
ing space and indexing each object along with the set of ob-
jects that it relates to spatially [15]-[18]. Set intersection [15],
[16], [19], star calculus [17], or recursive matrix search [18]
then identify candidates matching the query pattern. None of
these methods overcome the complexity barrier of the graph-
based methods without reducing the problem to a “find any
matching pattern” rather than the standard “find all matching
patterns” [18].

IV. CURRENT SPATIAL PATTERN MATCHING APPROACHES

Researchers have been applying CSP and SGM approaches
to graph-based spatial pattern matching for several decades.
In this section we give an overview of the prominent methods
which captures the trajectory of the two main threads of work.

A. Constraint Satisfaction Problem Approaches

Multi-relation Spatial Joins (MSJ) [13] and their window
reduction variants are early methods that enable spatial pattern
matching over point, line, and region data. They support the
eight major topological relations and handle both qualitative
metric relations and directional relations for richer constraints.
Their spatial join constraint satisfaction methods are expo-
nential in complexity, and even when run in parallel using
distributed in-memory computation, response times are on the
order of minutes for large datasets [20].

SkectchMapia [5], [21] takes a simplified sketch-map
approach, performing spatial pattern matching over point and
limited line and region data consisting of street segments
and disjoint city blocks. Their CSP method supports some



topological constraints and directional constraints for very
localized objects, which limits the size of their qualitative
constraint network. They further use a heuristic method to find
candidates with high overlap to the query qualitative constraint
network, which is sub-exponential in time complexity, but it
remains intractable for large sets of objects.

Qualitative Spatial Reasoning with Uncertain Evi-
dence [22] addresses probabilistic directional spatial reasoning
by formulating the problem as a Markov Logic Network.
Despite the noise-tolerance of this approach, it remains ex-
ponential in complexity, and does not handle topological or
metric relations.

B. Subgraph Matching Approaches

Pictorial Queries Using Isomorphic Subgraphs [14] uses
a bottom-up subgraph matching approach that supports metric
and directional spatial pattern matching over point data. It
simplifies the problem of directional pattern matching by treat-
ing directional constraints as angles between vertices, which
requires accurate relative distances between query objects. The
exponential complexity in the number of database objects
makes this approach prohibitively slow, and the accurate
distance assumption on the query objects proves unrealistic
given humans are notoriously poor at estimating distance [5].

Spacekey [4] provides the SGM-based Multi-Pair Join and
Multi-Star Join algorithms which enable spatial pattern match-
ing over point data and metric relations defined by a distance
interval and a sign. Their Multi-Pair-Join and Multi-Star-Join
algorithms use multi-way distance joins to find matching edges
and join them to find matching subgraphs. Their evaluation
shows that both of their approaches are faster to execute than
generic subgraph matching algorithms, but further testing on
large datasets show response times greater than 11 minutes [3],
which is too slow for real-time spatial reasoning.

ESPM: Efficient Spatial Pattern Matching [3] extends
the work of Fang et al. [4] by adding a step that uses a
set of Inverted Linear Quadtrees, one per object keyword, to
prune unpromising edges before running Multi-Star-Join. By
eliminating unpromising nodes early and carefully construct-
ing the join order, ESPM scales much better than the original
Multi-Star-Join in practice, despite having a similar theoretical
worst-case complexity. Although ESPM achieves five second
response times on databases of 10,000,000 objects, their tests
use queries of size six nodes or smaller, and their approach
only supports metric relations.

QQESPM [2] extends the work of Chen et al. [3] to account
for topological relations in addition to metric relations, check-
ing both the quantitative (metric) and qualitative (topological)
constraints at each step. The theoretical complexity is the
same as ESPM with an extra constant factor for the additional
qualitative checks, but the response time in practice is not
known for databases larger than 40,000 objects.

V. OPPORTUNITIES IN SPATIAL PATTERN MATCHING

In this section we describe the common threads in recent
spatial pattern matching approaches and describe opportunities

to incorporate spatial pattern matching into future Al pipelines
by solving the problem approximately using graph AL

A. Common Threads and Observations

Spatial pattern matching is becoming more efficient as
newer approaches leverage heuristic methods, custom data
structures, pruning, and early stopping to improve response
times in practice. The recent SGM-based spatial pattern
matching works build off the work of Fang et al. [4], using
Inverted Linear Quadtrees [3], and new methods follow a
similar approach but support additional spatial relations (i.e.
topological in addition to metric) [2]. The recent CSP-based
work can account for uncertain information using probabalistic
methods, but remains bounded by exponential complexity [22].
Even the most recent spatial pattern matching approaches do
not support all four spatial relation types (metric, topological,
directional, and order relations), and have not been shown to
be efficient on large databases and large query patterns.

To push spatial pattern matching forward substantially
enough to support applications that require real-time spatial
reasoning, approximate solutions offer a promising direction
to explore. In addition to efficiency, approximate solutions
are more robust to noise in the database and query graphs,
returning valuable partial matches when an exact match cannot
be found, a characteristic that is critical when operating on
noisy real-world geodata, where tags are sometimes missing
or inaccurate. The obvious downside to approximate methods
is the lack of correctness guarantees. For spatial pattern
matching, the consequence of an incorrect or incomplete result
is minimal, given that the alternative exact methods remain
prohibitively slow, making them unusable for live systems.
Further, hybrid methods can be devised, wherein we find an
initial approximate solution optimized for recall, and then use
an exact method to verify the correctness of the results, since
the candidate pool is greatly reduced by the initial search.

B. Graph Al for Spatial Pattern Matching

Since we already typically formulate spatial pattern match-
ing as a graph problem and solve it either using subgraph
matching or constraint satisfaction approaches, a natural ex-
tension to the existing line of work is to apply graph-based
Al as an approximate solution to one of those formulations
of the problem. The obvious choice, Graph Neural Networks
(GNNs), are traditionally good at similarity measurement
tasks, like finding the similarity between two graphs [23],
[24]. However, they do not perform as well at substructure
extraction problems like shortest path extraction or subgraph
matching (which is how spatial pattern matching is typically
formulated). Some work uses GNNs to approximately solve
subgraph matching tasks on synthetically generated graphs,
starting with a simple node classification framing of the
problem, where each node is classified as a match or non-
match with the query graph [7], [24]. Early methods require
access to the query graph during training, but more recent
approaches overcome this limitation [8], [25]. Foundational
node embedding methods sample the graph using random



walks and aggregate neighborhood information, enabling fast
inference (classifying 80,000 nodes in about one second) [25].
However, even the most promising approaches cannot support
large directed graphs with multiple edge labels [8], [9], which
is required for spatial pattern matching.

We envision the path to using GNNs for spatial subgraph
matching involves further improvement in the flexibility of
the current methods, especially to include matching on mul-
tiple directed edges. To address these challenges, GNN-based
SPM approaches will likely need community and edge-level
embeddings in addition to the common node and graph-
level embeddings. Further, additional strategies for efficiently
generating embeddings of unseen nodes on the fly without
aggressive sampling should be explored.

Beyond the benefits of speed and flexibility, we envision
that GNN and other graph Al-based spatial pattern matching
approaches will integrate into existing learned information
retrieval pipelines and systems as a step towards achieving
general spatial reasoning. Such systems could leverage pre-
trained models that already contain geographic world knowl-
edge, and enable powerful spatial reasoning over that infor-
mation. Further work in multi-modal learning could enable
reasoning over multiple modalities of geospatial data, like
remote sensing imagery (RSI), structured geodatabase tables,
eyewitness video recordings of world events, and so on. Mod-
els could combine and synthesize diverse sources of geospatial
data that are traditionally treated separately to perform spatial
pattern matching and other spatial reasoning tasks over them,
unlocking a wealth of spatial knowledge.

VI. CONCLUSION

This paper highlights recent trends in graph-based spatial
pattern matching, describing how constraint satisfaction and
subgraph matching approaches currently solve the problem.
We present our vision of future graph Al-based spatial pattern
matching, and detail how the proposed way forward could
enable spatial pattern matching in systems already excelling
at standard reasoning tasks. Realizing this vision would en-
able systems and search engines to support queries involving
complex spatial patterns at scale, which is a key step toward
achieving broader spatial reasoning over the wealth of geodata
presently available.
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