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of an (G,~) coordinate pair in Cartesian space, (ii) Line entities that

represent the shortest path between two points, and (iii) Region

entities that represent the area inside a polyline joining several

points. Relationships between those entities can take the form of

(i) Metric relations that describe the distances between spatial enti-

ties (ten miles, near, far, etc.), (ii) Topological relations that describe

how regions, lines, and points interact (intersect, contain, touch,

etc), and (iii) Directional relations that describe how entities are

positioned relatively in space (north, left, behind, etc.), Most spatial

pattern matching methods formulate the problem as a qualitative

spatial reasoning (QSR) / constraint satisfaction problem (CSP) or a

subgraph-matching (SGM) problem.

Constraint Satisfaction Problems. CSP for spatial pattern

matching �nd an assignment of valid variables (database entities)

given the query constraints. Most CSP are exponential in the num-

ber of entities being searched. In the worst case, where constraints

are numerous and poorly ordered and speci�city is low, CSP ap-

proaches perform poorly.

Subgraph Matching. SGM approaches assume the database

is encoded as a graph of entities and relations, and queries are

encoded as a subgraph of entities and constraints of interest. These

methods seek to identify where the query pattern exists in the

database graph. Spatial SGM methods typically scale poorly on

large database and query graphs, or do not support complex spatial

relation types, like topological and directional relations [4, 15].

Algorithm Entities Met Top Dir Complexity

PQIS [11] P X X O(=2= )†

M-P Join [8–10] P X O(<Z=2 + =& )†

M-S Join [8–10] P X O(=4 +<=2 + =& )†

ESPM [4] P X O(=′& )†

QQESPM [15] P, L, R X X O(=′& )†

QSR [6] P X O(2= )

MSJ [19] P, L, R X X X O(=Q )

MSJ,' [19] P, L, R X X X O(=< )

MSJ�,' [19] P, L, R X X X O(=< )

SketchMapia [22] P, L, R X X O(=2<2 )

Table 1: Summary of spatial pattern matching algorithmic

complexities. Entity types are represented by P, L, and R for Point,

Line, and Regions, respectively. In our notation = is the number

of spatial entities or objects in the database,< is the number of

constraints or relations in the query, Q is the number of query

entities, =′ is a pruned subset of all possible entities =, and Z is

a sampling threshold in [0, 1]. The (†) denotes cases where the

original paper provided the worst-case complexity.

4 Theoretical Comparison

In this section we present the major graph-based spatial pattern

matching methods organized by the relation types they support. For

each method, we describe the complexity of the search technique,

which is summarized in Table 1.

4.1 Metric relations

Metric relations are spatial relations that describe the distances

between objects (ten miles, near, far etc.). Most of the methods we

outline in Table 1 support spatial pattern matching using metric

relations, including the work of Folkers et al. [11] and Papadias

et al. [19], and more recently Fang et al. [8–10], Chen et al. [4], and

Minervino et al. [15].

Spacekey [8–10] provides the Multi-Pair Join and Multi-Star Join

which use subgraph matching to enable search over metric relations

that are speci�ed as ranges of distances between graph-encoded

point entities. Their Multi-Pair-Join algorithm has a worst-case

complexity O(<Z |� |2 +b) where Z is a sampling threshold in range

[0, 1] and b is the maximal number of partial matches, which can-

not exceed =& . Their Multi-Star-Join algorithm has a worst-case

complexity of O(=4 +< |� |2 + b) time, but in practice is faster than

the Multi-Pair-Join because it uses additional pruning criteria to

eliminate partial matches during the join process [10].

ESPM: E�cient Spatial Pattern Matching [4] also performs SGM-

based spatial pattern matching over point entities with metric rela-

tions, but extends the work of Fang et al. [10] by adding a step that

uses a set of Inverted Linear Quadtrees, one per entity keyword, to

prune unpromising edges before running Multi-Star-Join. By elimi-

nating unpromising nodes early and carefully constructing the join

order, ESPM scales better than the original Multi-Star-Join in their

empirical testing, despite having a similar theoretical worst-case

complexity which is exponential in the number of query entities.

Othermethods, including Pictorial Query Trees [23],Multi-relation

Spatial Joins (MSJ) and their window reduction variants [19], and

QQESPM [15] also handle metric relations, with MSJ speci�cally

dealing with qualitative distance relations like ‘near’ and ‘far.’ How-

ever, the focus of these methods are topological and/or directional

relations, which are more challenging to search e�ciently, so we

discuss their complexities in those sections.

4.2 Topological relations

Topological relations are spatial relations that describe how points,

lines, and regions interact with one another, using topological prop-

erties like intersection, containment, touching, and covering. Most

of the methods in Table 1 that support topological relations use a

CSP-based formulation of spatial pattern matching, and can support

matching over point, line, and region entities.

Multi-relation Spatial Joins (MSJ) and their window reduction

variants [19] support the eight major topological relations, but re-

quire exponential time complexity in the number of relations or

query objects. Their Window Reduction (WR) approach is a CSP

forward checking algorithm that prunes the search space over time,

and their Joint Window Reduction (JWR) is a slightly more e�cient

version of WR that does not need to exhaustively search for a start-

ing point. More recent work [5] builds on Multi-relation spatial

joins, improving their e�ciency by parallelizing them, which im-

proves the runtime by one order of magnitude in their experiments.

However, even parallelized, these methods are slower than many

recent approaches that rely on pruning.

SketchMapia [13, 22] supports only four topological relations for

region and point data, since their system is based on street seg-

ments and disjoint city blocks that are formed as the area between

multiple connected street segments. City blocks can be touching or

disconnected, while landmarks (entities) can be inside or outside of

city blocks. Because SketchMapia solves a simpler version of the
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spatial pattern matching problem, its complexity is O(=2<2), which

is better than other methods supporting topological constraints.

QQESPM: Quantitative and Qualitative Spatial Pattern Match-

ing [15] extends the work of Chen et al. [4] to support topological

relations in addition to metric relations, checking both the quan-

titative and qualitative constraints at each step. The theoretical

complexity is the same as ESPM with an extra constant factor for

the additional qualitative checks at each step.

4.3 Directional relations

Directional relations are spatial relations that describe how objects

are positioned relative to one another in space (north, left, behind

etc.). These relations are typically measured using cardinal direction

or relative angle. Most recent work in directional spatial pattern

matching uses CSP approaches, operating either on point entities

or on all entity types.

Pictorial Queries Using Isomorphic Subgraphs [11] uses a bottom-

up subgraph matching approach that supports directional pattern

matching over point data. It simpli�es the problem of directional pat-

tern matching by treating directional constraints as angles between

vertices, and checking if they fall within some X of the query con-

straint, which requires accurate relative distances between query

objects. The exponential complexity in the number of database

objects makes this approach prohibitively slow, and the accurate

distance assumption on the query objects is unrealistic since hu-

mans are notoriously poor at estimating distance [22].

SketchMapia [22] only considers directional constraints for very

localized objects and bins them into eight segments (left, half left,

etc.), which limits the size of their qualitative constraint network.

By simplifying the problem formulation, SketchMapia achieves a

complexity of O(=2<2), which is better than recent methods that

support directional constraints.

Most recently, Duckham et al. developed a method for Qualita-

tive Spatial Reasoning with Uncertain Evidence [6], which addresses

probabilistic directional spatial reasoning by formulating the prob-

lem as a Markov Logic Network. Despite the noise-tolerance of this

approach, it remains exponential in complexity.

5 Discussion

Many spatial pattern matching methods leverage techniques and

tricks like binning and pruning to simplify the problem or quickly

reduce the search space to a smaller set of candidates that could

match the query pattern. We summarize these common techniques

into a few categories, described in greater detail below: discretizing

the problem to make it easier, pruning non-matches using pre-

computed data structures, using heuristic methods, and localizing

the scope to solve a small version of the same problem.

Discretizing and Binning Relations. For directional and met-

ric relations, binning can be used to make the relation values dis-

crete, enabling more e�cient search methods. The MSJ [19] ap-

proach bins metric distances between entities into qualitative dis-

tance relations like ‘near’ and ‘far,’ making the relations simpler to

encode and search over. Schwering et al. [22] bin directional rela-

tions into eight segments, which limits the size of their qualitative

constraint network and reduces the scope of the search. Topolog-

ical relations are already typically formulated as a discrete set of

relationships that can exist between a pair of entities, so binning

them is not useful.

Custom Data Structures and Pruning. Spatial keyword in-

dices constructed o� entity names are commonly used to prune

candidates for search across all types of spatial relations. In prac-

tice this limits the number of entities evaluated which reduces the

search space signi�cantly, leading to large speedups [4, 8–11, 15].

Some methods leverage Inverted Linear Quadtrees to prune un-

promising edges and carefully construct the join order for metric

and topological search, gaining e�ciency in practice despite a simi-

lar worst-case theoretical complexity to many other spatial pattern

matching algorithms [4, 15].

Heuristic methods. Depending on the framing of the problem

(subgraph matching or constraint satisfaction), heuristic methods

can sometimes be used to more e�ciently �nd entities and relations

that match the query constraints. For example, Schwering et al. use

a heuristic method that relies on an evaluation function to estimate

the quality of matchings and to �nd candidates with high overlap

to the query qualitative constraint network [22, 24].

Localizing the Scope. Reducing the scope of the search to only

consider very localized entities can also make the search time faster.

An example of this approach is shown by Schwering et al., who only

consider directional constraints for very localized entities, resulting

in a worst-case complexity that is only quadratic in the number

of database entities [22]. However, their framing of the problem is

speci�c to sketch map alignment to a road network.

6 Future Opportunities and Challenges

To advance the current spatial pattern matching methods and de-

velop new approaches that scale to handle large spatial datasets,

there are a few viable approaches. Reducing the scope of the search

to limit the number of neighbors on each candidate node in the

database is one approach that has been used in speci�c framings

of the spatial pattern matching problem [22]. By only considering

the directional spatial relationships between very localized entities,

Schwering et al. achieves quadratic complexity in the number of

database entities on the task of aligning a sketch map to a road net-

work [22]. A similar technique could be applied to broader spatial

pattern matching to reduce the number of edges in the database

graph by dynamically choosing the number of neighbors for each

node, depending on the density of entities in the spatial region (i.e.

a dense urban area would require more densely connected nodes

than a sparse rural area).

Alternatively, approximate methods have been discussed as a

potential avenue to address the complexity issues of spatial pattern

matching [21]. Tomatch queries against the rich spatial information

encoded by metric, topological, and directional relations between

each database entity, subgraph matching or constraint satisfaction

approaches are typically needed. One avenue to develop more ef-

�cient spatial pattern matching will be to leverage work towards

approximations to those underlying algorithms [28], including neu-

ral approximations [14, 20].

GraphNeural Networks (GNNs) have been used to approximately

solve generic subgraphmatching tasks [14, 20, 29], but most of these

methods are still too limited to apply to spatial pattern matching.

GNNs typically embed graphs using sampling via random walks
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to aggregate neighborhood information and learn the graph struc-

ture [12]. While this embedding mechanism is e�cient and enables

GNNs to learn the overall structure of an input graph, it is not suf-

�cient for subgraph matching, a substructure extraction task. Even

advanced sampling strategies that guarantee coverage of certain

properties are limited to target-oriented tasks like classi�cation of

a particular node in the graph [1]. To bridge this gap in embedding

methods, summarization (rather than sampling) has emerged as an

alternative to the typical embedding mechanisms [29].

Most GNN approaches, including the ones using summarization-

based embeddings, are limited to homogeneous graphs. Spatial

pattern matching inherently involves graphs with node and edge

attributes, which introduces additional complexity that only Het-

erogeneous GNNs (HGNNs) can handle. While HGNNs have been

successful in a variety of graph representation learning tasks [25–

27], they have yet to be applied to spatial pattern matching. While

applying GNNs to SGM-based spatial pattern matching would re-

quire �nding the right embedding method and model architecture,

it is a promising path towards developing a �exible approximate

approach to spatial pattern matching.

7 Conclusion

Spatial relations are highly descriptive of the world, which makes

them challenging to represent and search over e�ciently. This paper

presents a theoretical comparison of existing graph-based spatial

pattern matching approaches and a synthesis of the techniques

and heuristics they use to gain performance improvements. We

further suggest future work that could lead to meaningful speedups

in spatial pattern matching, including by leveraging approximate

solutions to the algorithm classes used by the current approaches.
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