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Abstract

Spatial Pattern Matching is an important search problem that in-
volves reasoning about the relative position, distance, and orien-
tation of objects with respect to one another. Spatial relationships
between objects contain a lot of information about the world, which
makes them useful in applications like Point of Interest (POI) re-
trieval and location-based services. However, spatial pattern match-
ing is an NP-hard problem in the worst case. This paper presents
a theoretical comparison of spatial pattern matching approaches,
showing how the prominent methods compare for each type of
spatial relation they support. We further highlight the common
techniques used to gain performance improvements and provide
suggestions towards developing approximate solutions to this form
of spatial search.
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1 Introduction

Spatial Pattern Matching is a form of spatial search that seeks all
combinations of database objects that satisfy a set of spatial query
constraints. The constraints can include directional, topological,
and metric relations, which convey critical spatial information, but
present computational challenges for search.

Spatial relations are typically encoded using a graph, where
nodes represent objects and (possibly multiple) edges between
nodes represent the spatial relations or constraints between those
objects. The quantity of spatial relationships that exist between
objects is quadratic in the number of objects, making the process of
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matching query and data patterns NP-hard [10]. There are no good
approximate methods that reduce the complexity of spatial pattern
matching without altering the problem fundamentally [17, 18].

State of the art spatial pattern matching approaches typically
use initial filtering steps, including using keyword-based spatial
indices, to prune the set of candidates before the more costly spa-
tial pattern matching algorithms are performed [4, 15, 22]. Binning
methods and other tricks, like localizing the search to a very limited
scope, can also make the problem more tractable by substantially
reducing the number of comparisons needed to identify matching
patterns. However, directly comparing these approaches against
each other in a rigorous way is difficult to achieve. Different spa-
tial pattern matching approaches frame the problem differently,
typically supporting different combinations of spatial entity and
relation types, and empirically testing the performance of their
techniques in an ad-hoc manner, which makes comparison difficult
since graph algorithms are sensitive to the size and shape of the
graph [16].

To address this issue, we present a comparison of the complex-
ities of the prominent graph-based spatial pattern matching ap-
proaches, discussing for each the techniques or heuristics used to
gain performance improvements. Finally, we provide suggestions
for future work that could lead to meaningful speedups in spatial
pattern matching, including by leveraging approximate solutions
to the algorithm classes typically used by the current approaches.

2 Related Work

There are several survey papers that discuss the recent approaches
to spatial pattern matching and other forms of spatial search. Many
of these provide useful taxonomies to organize the types of spatial
queries that are possible, covering the major relations like metric,
topological, and directional [2, 3]. Other surveys focus only on one
type of spatial relation, such as Dylla et al., which surveys topolog-
ical relations captured by qualitative spatial calculi [7]. However,
existing surveys do not provide any theoretical comparison of the
methods surveyed to enable a thorough understanding of the state
of the problem. To fill this gap, we provide a comparison of many
of the popular spatial pattern matching approaches based on the
type of spatial relation that can be supported by each, finding that
most methods have exponential worst-case complexity. We further
synthesize the common techniques these methods share that enable
them to gain performance speedups in their empirical testing.

3 Spatial Pattern Matching

Spatial pattern matching is often defined as a graph matching prob-
lem, where vertices have keyword labels and edges have distance
intervals and signs {exclusion in, exclusion out, mutual exclusion
and mutual inclusion} [10]. Spatial pattern matching can be per-
formed over spatial entities, including (i) Point entities that consist
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of an (x, y) coordinate pair in Cartesian space, (ii) Line entities that
represent the shortest path between two points, and (iii) Region
entities that represent the area inside a polyline joining several
points. Relationships between those entities can take the form of
(i) Metric relations that describe the distances between spatial enti-
ties (ten miles, near, far, etc.), (ii) Topological relations that describe
how regions, lines, and points interact (intersect, contain, touch,
etc), and (iii) Directional relations that describe how entities are
positioned relatively in space (north, left, behind, etc.), Most spatial
pattern matching methods formulate the problem as a qualitative
spatial reasoning (QSR) / constraint satisfaction problem (CSP) or a
subgraph-matching (SGM) problem.

Constraint Satisfaction Problems. CSP for spatial pattern
matching find an assignment of valid variables (database entities)
given the query constraints. Most CSP are exponential in the num-
ber of entities being searched. In the worst case, where constraints
are numerous and poorly ordered and specificity is low, CSP ap-
proaches perform poorly.

Subgraph Matching. SGM approaches assume the database
is encoded as a graph of entities and relations, and queries are
encoded as a subgraph of entities and constraints of interest. These
methods seek to identify where the query pattern exists in the
database graph. Spatial SGM methods typically scale poorly on
large database and query graphs, or do not support complex spatial
relation types, like topological and directional relations [4, 15].

Algorithm |Entities| Met Top Dir Complexity
PQIS [11] P X X O(n2™)t
M-P Join [8-10] P X O(min? +n9)"

M-S Join [8-10] P X O(n* + mn? +n9)"

ESPM [4] P X o(n'Q)t
QQESPM[15] | PL,R | X X om9)t

QSR [6] P X o)

MSJ [19] PLR| X X X 0(n9)
MSjwr[19] | PLR| X X X o(n™)
MSJ]WR [19] P,L,R X X X O(I'lm)

SketchMapia [22]] P, L, R X X O(n*m?)

Table 1: Summary of spatial pattern matching algorithmic
complexities. Entity types are represented by P, L, and R for Point,
Line, and Regions, respectively. In our notation n is the number
of spatial entities or objects in the database, m is the number of
constraints or relations in the query, Q is the number of query
entities, n’ is a pruned subset of all possible entities n, and { is
a sampling threshold in [0, 1]. The (}) denotes cases where the
original paper provided the worst-case complexity.

4 Theoretical Comparison

In this section we present the major graph-based spatial pattern
matching methods organized by the relation types they support. For
each method, we describe the complexity of the search technique,
which is summarized in Table 1.

4.1 Metric relations

Metric relations are spatial relations that describe the distances
between objects (ten miles, near, far etc.). Most of the methods we
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outline in Table 1 support spatial pattern matching using metric
relations, including the work of Folkers et al. [11] and Papadias
et al. [19], and more recently Fang et al. [8-10], Chen et al. [4], and
Minervino et al. [15].

Spacekey [8-10] provides the Multi-Pair Join and Multi-Star Join
which use subgraph matching to enable search over metric relations
that are specified as ranges of distances between graph-encoded
point entities. Their Multi-Pair-Join algorithm has a worst-case
complexity O(m{|D|? + ) where { is a sampling threshold in range
[0,1] and ¢ is the maximal number of partial matches, which can-
not exceed n€. Their Multi-Star-Join algorithm has a worst-case
complexity of O(n* + m|D|? + £) time, but in practice is faster than
the Multi-Pair-Join because it uses additional pruning criteria to
eliminate partial matches during the join process [10].

ESPM: Efficient Spatial Pattern Matching [4] also performs SGM-
based spatial pattern matching over point entities with metric rela-
tions, but extends the work of Fang et al. [10] by adding a step that
uses a set of Inverted Linear Quadtrees, one per entity keyword, to
prune unpromising edges before running Multi-Star-Join. By elimi-
nating unpromising nodes early and carefully constructing the join
order, ESPM scales better than the original Multi-Star-Join in their
empirical testing, despite having a similar theoretical worst-case
complexity which is exponential in the number of query entities.

Other methods, including Pictorial Query Trees [23], Multi-relation
Spatial Joins (MS]) and their window reduction variants [19], and
QQESPM [15] also handle metric relations, with MS]J specifically
dealing with qualitative distance relations like ‘near’ and ‘far’ How-
ever, the focus of these methods are topological and/or directional
relations, which are more challenging to search efficiently, so we
discuss their complexities in those sections.

4.2 Topological relations

Topological relations are spatial relations that describe how points,
lines, and regions interact with one another, using topological prop-
erties like intersection, containment, touching, and covering. Most
of the methods in Table 1 that support topological relations use a
CSP-based formulation of spatial pattern matching, and can support
matching over point, line, and region entities.

Multi-relation Spatial Joins (MSJ) and their window reduction
variants [19] support the eight major topological relations, but re-
quire exponential time complexity in the number of relations or
query objects. Their Window Reduction (WR) approach is a CSP
forward checking algorithm that prunes the search space over time,
and their Joint Window Reduction (JWR) is a slightly more efficient
version of WR that does not need to exhaustively search for a start-
ing point. More recent work [5] builds on Multi-relation spatial
joins, improving their efficiency by parallelizing them, which im-
proves the runtime by one order of magnitude in their experiments.
However, even parallelized, these methods are slower than many
recent approaches that rely on pruning.

SketchMapia [13, 22] supports only four topological relations for
region and point data, since their system is based on street seg-
ments and disjoint city blocks that are formed as the area between
multiple connected street segments. City blocks can be touching or
disconnected, while landmarks (entities) can be inside or outside of
city blocks. Because SketchMapia solves a simpler version of the
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spatial pattern matching problem, its complexity is O (n?m?), which
is better than other methods supporting topological constraints.

QQESPM: Quantitative and Qualitative Spatial Pattern Match-
ing [15] extends the work of Chen et al. [4] to support topological
relations in addition to metric relations, checking both the quan-
titative and qualitative constraints at each step. The theoretical
complexity is the same as ESPM with an extra constant factor for
the additional qualitative checks at each step.

4.3 Directional relations

Directional relations are spatial relations that describe how objects
are positioned relative to one another in space (north, left, behind
etc.). These relations are typically measured using cardinal direction
or relative angle. Most recent work in directional spatial pattern
matching uses CSP approaches, operating either on point entities
or on all entity types.

Pictorial Queries Using Isomorphic Subgraphs [11] uses a bottom-
up subgraph matching approach that supports directional pattern
matching over point data. It simplifies the problem of directional pat-
tern matching by treating directional constraints as angles between
vertices, and checking if they fall within some § of the query con-
straint, which requires accurate relative distances between query
objects. The exponential complexity in the number of database
objects makes this approach prohibitively slow, and the accurate
distance assumption on the query objects is unrealistic since hu-
mans are notoriously poor at estimating distance [22].

SketchMapia [22] only considers directional constraints for very
localized objects and bins them into eight segments (left, half left,
etc.), which limits the size of their qualitative constraint network.
By simplifying the problem formulation, SketchMapia achieves a
complexity of O(n?m?), which is better than recent methods that
support directional constraints.

Most recently, Duckham et al. developed a method for Qualita-
tive Spatial Reasoning with Uncertain Evidence [6], which addresses
probabilistic directional spatial reasoning by formulating the prob-
lem as a Markov Logic Network. Despite the noise-tolerance of this
approach, it remains exponential in complexity.

5 Discussion

Many spatial pattern matching methods leverage techniques and
tricks like binning and pruning to simplify the problem or quickly
reduce the search space to a smaller set of candidates that could
match the query pattern. We summarize these common techniques
into a few categories, described in greater detail below: discretizing
the problem to make it easier, pruning non-matches using pre-
computed data structures, using heuristic methods, and localizing
the scope to solve a small version of the same problem.
Discretizing and Binning Relations. For directional and met-
ric relations, binning can be used to make the relation values dis-
crete, enabling more efficient search methods. The MSJ [19] ap-
proach bins metric distances between entities into qualitative dis-
tance relations like ‘near’ and ‘far, making the relations simpler to
encode and search over. Schwering et al. [22] bin directional rela-
tions into eight segments, which limits the size of their qualitative
constraint network and reduces the scope of the search. Topolog-
ical relations are already typically formulated as a discrete set of
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relationships that can exist between a pair of entities, so binning
them is not useful.

Custom Data Structures and Pruning. Spatial keyword in-
dices constructed off entity names are commonly used to prune
candidates for search across all types of spatial relations. In prac-
tice this limits the number of entities evaluated which reduces the
search space significantly, leading to large speedups [4, 8-11, 15].
Some methods leverage Inverted Linear Quadtrees to prune un-
promising edges and carefully construct the join order for metric
and topological search, gaining efficiency in practice despite a simi-
lar worst-case theoretical complexity to many other spatial pattern
matching algorithms [4, 15].

Heuristic methods. Depending on the framing of the problem
(subgraph matching or constraint satisfaction), heuristic methods
can sometimes be used to more efficiently find entities and relations
that match the query constraints. For example, Schwering et al. use
a heuristic method that relies on an evaluation function to estimate
the quality of matchings and to find candidates with high overlap
to the query qualitative constraint network [22, 24].

Localizing the Scope. Reducing the scope of the search to only
consider very localized entities can also make the search time faster.
An example of this approach is shown by Schwering et al., who only
consider directional constraints for very localized entities, resulting
in a worst-case complexity that is only quadratic in the number
of database entities [22]. However, their framing of the problem is
specific to sketch map alignment to a road network.

6 Future Opportunities and Challenges

To advance the current spatial pattern matching methods and de-
velop new approaches that scale to handle large spatial datasets,
there are a few viable approaches. Reducing the scope of the search
to limit the number of neighbors on each candidate node in the
database is one approach that has been used in specific framings
of the spatial pattern matching problem [22]. By only considering
the directional spatial relationships between very localized entities,
Schwering et al. achieves quadratic complexity in the number of
database entities on the task of aligning a sketch map to a road net-
work [22]. A similar technique could be applied to broader spatial
pattern matching to reduce the number of edges in the database
graph by dynamically choosing the number of neighbors for each
node, depending on the density of entities in the spatial region (i.e.
a dense urban area would require more densely connected nodes
than a sparse rural area).

Alternatively, approximate methods have been discussed as a
potential avenue to address the complexity issues of spatial pattern
matching [21]. To match queries against the rich spatial information
encoded by metric, topological, and directional relations between
each database entity, subgraph matching or constraint satisfaction
approaches are typically needed. One avenue to develop more ef-
ficient spatial pattern matching will be to leverage work towards
approximations to those underlying algorithms [28], including neu-
ral approximations [14, 20].

Graph Neural Networks (GNNs) have been used to approximately
solve generic subgraph matching tasks [14, 20, 29], but most of these
methods are still too limited to apply to spatial pattern matching.
GNN:ss typically embed graphs using sampling via random walks
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to aggregate neighborhood information and learn the graph struc-
ture [12]. While this embedding mechanism is efficient and enables
GNN s to learn the overall structure of an input graph, it is not suf-
ficient for subgraph matching, a substructure extraction task. Even
advanced sampling strategies that guarantee coverage of certain
properties are limited to target-oriented tasks like classification of
a particular node in the graph [1]. To bridge this gap in embedding
methods, summarization (rather than sampling) has emerged as an
alternative to the typical embedding mechanisms [29].

Most GNN approaches, including the ones using summarization-
based embeddings, are limited to homogeneous graphs. Spatial
pattern matching inherently involves graphs with node and edge
attributes, which introduces additional complexity that only Het-
erogeneous GNNs (HGNNs) can handle. While HGNNs have been
successful in a variety of graph representation learning tasks [25-
27], they have yet to be applied to spatial pattern matching. While
applying GNNs to SGM-based spatial pattern matching would re-
quire finding the right embedding method and model architecture,
it is a promising path towards developing a flexible approximate
approach to spatial pattern matching.

7 Conclusion

Spatial relations are highly descriptive of the world, which makes
them challenging to represent and search over efficiently. This paper
presents a theoretical comparison of existing graph-based spatial
pattern matching approaches and a synthesis of the techniques
and heuristics they use to gain performance improvements. We
further suggest future work that could lead to meaningful speedups
in spatial pattern matching, including by leveraging approximate
solutions to the algorithm classes used by the current approaches.
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