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Bellman-Ford [7]. Dynamic variants of the classical algorithms are

also possible, such as the well-known D* algorithm that extends A*

using an incremental heuristic search process [14, 18, 28]. Several

studies suggest Reinforcement Learning (RL) as another viable ap-

proach to dynamic route planning [2, 6, 8, 33]. Recently, cooperative

multi-agent robot routing has been applied to the problem of dynamic

routing [20]. Some recent papers have discussed the importance of

safety considerations in navigation. Krumm and Horvitz attempt to

predict the likelihood of a crash occurring due to a number of safety

factors, including curvature of the roads, position of the sun, number

of vehicles on the road, and weather conditions [15]. They statically

learn the risk probabilities at each road segment, and then apply

Dijkstra’s algorithm to compute low-risk routes, trading speed for

safety. We extend this idea to envision future navigation strategies

that can dynamically account for these features along the route, rather

than learning a static representation of them upfront. A few other

approaches account for safety factors like weather [21], predicted

road risk index [17], and safety during evacuations [11]. Other work

has focused on generating risk-aware costmaps for routes [5, 29],

and navigating based off the generated costmaps. However, dynamic

safety-aware navigation that avoids glare remains an open problem.

1.3 Contribution

Avoiding sun glare while driving presents several challenges that

no existing algorithm or method has solved in a dynamic way. The

position of the sun and the position of the driver both change during

the course of driving, and both of these components can alter the level

of glare incident to the driver. This means accounting for sun glare

requires knowing the sun’s position and dynamically recalculating

the route as the state of the environment changes. In some cases,

sun glare may be unavoidable given the desired start and end points

and the time of day, such as trying to go west during sunset. In this

case, no good route can be found that reduces glare, unless some

environmental factors such as high building and tree coverage along

the road can mitigate it. In addition, even getting data for several

related factors, such as reflectivity of surfaces, may be impossible

without onboard sensors, which are not widely available.

To balance the risk associated with sun glare and other environ-

mental conditions that pose a danger to drivers, we envision new

approaches to navigation that can trade off between these dynamic

risks and the speed of the route. For instance, a driver who has par-

ticular sensitivity to the sun may sacrifice additional time or distance

to avoid driving directly into the sun at times of peak sun glare.

We make the first step by defining the sun glare reduction problem,

suggest several high level strategies for this problem, and investigate

a preliminary RL-based approach to the problem of sun glare reduc-

tion, describing areas of future work to pave the way for broader

safety-aware navigation approaches.

2 Sun Glare in Route Planning

In this section we lay out key factors affecting sun glare incident to

a driver and describe three strategies to account for some of them.

2.1 Factors Affecting Sun Glare Impact on Safety

The impact of sun glare on driver safety may be influenced by many

environmental factors, including (i) relative sun position, (ii) cloud

cover, (iii) atmospheric refraction, (iv) heights of buildings and trees

along the road(s) traveled, (v) road infrastructure like tunnels and

overpasses, (vi) reflectivity of the surrounding buildings and objects,

and (vii) reflectivity of the road’s surface.

In many cases, there does not exist adequate widely available data

to measure these factors precisely for any given location within a

road network, which is a key challenge in developing a complete

solution to the sun glare navigation problem. For the remainder of

this paper, we only address the sun glare avoidance problem from

the context of the worst case scenario, where environmental factors

such as cloud cover and surrounding buildings do not mitigate the

sun glare experienced.

2.2 Sun Glare Avoidance Strategies

Crowd-sourced navigation strategy. One approach to selecting

routes that avoid sun glare and other safety concerns is to rely on

crowd-sourced information. For example, platforms like Waze allow

users to report hazards in real time, for the benefit of the broader

community [30], which can be used to avoid certain roads to reduce

risk to other drivers. Similarly, knowledge can be extracted from

massive amounts of trajectory data to learn the routes that people

tend to take, even if they are not the shortest or fastest [13]. This

strategy does not explicitly account for any particular safety factors,

but relies on the fact that in the aggregate, the masses will choose

the best routes. However, this strategy requires a massive amount of

data, and there is no guarantee that it even tends to reduce sun glare,

as the average driver may ignore such factors.

Direct optimization strategy. To directly optimize the route for

minimal sun glare, a path finding algorithm like A* could be ad-

justed to consider the position of the sun at the start of the route.

An incremental approach could handle the dynamic nature of the

problem, by only traveling along a single edge (road link), and then

running the algorithm again using the new sun and car position,

accounting for the change since the previous run. However, a greedy

approach does not account for the temporal nature of the problem.

For example, on longer trips, timing the westward portion of the

travel before or after sunset may reduce the sun glare experienced.

RL-based strategy. An more flexible approach that still accounts

for sun glare directly could use reinforcement learning (RL). An

RL policy can be developed to optimize the path given a quantified

measurement of sun glare at any given point in time and space. The

benefit to an RL-based strategy is that it would adeptly handle the

uncertainty in the environment, by considering future states using

a discount factor based on how many iterations ahead are being

predicted. Other strategies such as transfer learning may also be

viable, but may not work well across vast changes in scenario with

different times of day and levels of sun glare. As a preliminary study,

we select an RL-based strategy that can consider future states and

directly encode safety considerations like sun glare. Our findings are

detailed in the following section.

3 Experiments

This section describes our experimental method and results using

an RL-based strategy to find sun glare-low routes, compared to the

standard shortest path approach.
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(a) Path length vs. sun glare avoidance (`) strength. (b) Total sun glare encountered (V) vs. sun glare avoidance (`)

strength. Negative ~ values indicate low glare exposure and pos-

itive values indicate high glare exposure.

Figure 1: Plots of route length and V parameter for different levels of sun glare avoidance reward. All paths start at 2200 Pennsylvania

Ave NW, Washington, DC.

3.1 Quantifying Sun Glare

The sun position relative to the driving direction can be determined

using measurements of the altitude and azimuth [12]. Azimuth mea-

sures the sun’s relative direction along the local horizon (the angle

on the xy plane), and Altitude measures the angle between the sun

and the local horizon (the elevation angle). Using the spherical coor-

dinate system where (G,~, I) = (d sinq cos\, d sinq sin\, d cosq),

the azimuthal angle is \ and the altitudinal angle is q .

3.2 Dataset

We use road network data from Open StreetMap (OSM) 3 [3] cap-

tured by the OSMnx tool [4]. The road network contains 554 nodes

and 1314 directional links, representing road intersections and road

segments in Washington D.C., USA. 4

3.3 Experimental Setup

For our experiments we frame the sun glare-low routing problem

as a Reinforcement Learning problem, using Q-Learning with a

multi-part objective function. Rewards are given proportional to the

progress towards the destination point, as measured by the projection

of the actual path onto the straight line connecting the source and

destination points. This is scaled down with a penalty proportional

to the sun glare exposure incurred by the given route segment. We

calculate the position of the sun using the Pysolar 5 package and

use the sun position to determine a quantity we call V, representing

the amount of sun glare incident to the driver, as measured by the

following equation:

V = cos\ cosq 1 (q) (1)

where

1 (q) =

{

1 0 ≤ q ≤ c
6

0 otherwise

3opentreetmap.org
4Bounding Box given by North: 38.9057, South: 38.89, West: -77.0516, East: -77.0123

(Latitude and Longitude Coordinates).
5https://pysolar.readthedocs.io/en/latest

We scale this sun glare penalty by multiplying it by an adjustable

hyperparameter `, where 0 ≤ ` ≤ 1. A value of ` = 0 means that

sun glare-heavy routes are not penalized at all and a value of ` = 1

means that sun-glare heavy routes are avoided as much as possible,

penalized using the value of V directly. This allows a user to directly

control how much they wish for their route to account for sun glare.

We combine these rewards and penalties to create the following

objective function:

'C = '((C , �C ) = ®� × (1 − `V) + n − h (2)

where ®� is the projection of the segment traveled onto the target

direction, n is an efficiency reward given when the destination is

reached, and h is a dead-end penalty.

Using this objective, we train a Q-learning agent, & , which reg-

isters a state B= and can choose an action 0= based off of the

state [31, 32]. Given a set of states S and a set of actions A, the

function & : S × A → R, represents the quality of a state-action

pair. At each iteration of the learning process =, the & function is

updated by:

&= (B=, 0=) = (1 − U)&=−1 (B=, 0=) + U (A= + W max
1

{&=−1 (~,1)}) .

where U is the learning rate, and W is the discount factor.

3.4 Results

We measure the lengths and weighted average of the beta parameters

for paths which attempt to reduce sun glare with varying sun glare

avoidance coefficients (`). The baseline is the path determined by

A*, which does not account for sun glare along the route. The RL

baseline, with ` = 0, represents the shortest route found by the

RL method, when sun glare is not considered in the objective (i.e.

the sun glare penalty is 0). If the base RL model is successful, we

expect it to find a route with similar distance to the baseline route

by A*. Figure 1(a) shows the length of paths generated. Figure 1(b)

shows the sun glare along each route, represented by the weighted

average of the beta parameter along the path. Some routes were

undefined due to paths not existing with low sun glare. The average
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is computed by summing the beta parameter for each path segment

times the segment length, and dividing by the total path length.

3.5 Discussion

From the results in Figure 1, we find the effectiveness of the sun

glare avoidance objective is mixed. For some routes, the same path is

selected by the model regardless of increases to the emphasis on the

sun glare avoidance parameter, `. These routes are characterized by

flat lines in both plots. On the other hand, for some origin-destination

pairs, the increased emphasis on the sun glare avoidance goal does

cause the model to output a different path. In these cases, the path

selected encounters less sun glare but is sometimes longer, which

aligns with our intuition for this problem, since avoiding sun glare

will likely mean taking a different path than the shortest one.

4 Challenges

Our results show that a reinforcement learning approach can discover

alternative paths that reduce the amount of sun glare incident to the

driver, at the cost of additional distance. While our results pave the

way for future safety-aware navigation approaches, they also reveal

several key challenges in the space. Accounting for the position

of the sun and explicitly considering sun glare in the RL objective

function does not guarantee that the resulting path the agent finds

has less sun glare than the optimal shortest path. Further, predicting

how cloud cover, atmospheric refraction, and reflective surfaces in

the environment will affect the level of glare a driver experiences is

challenging. These challenges generalize to the broader problem of

dynamic safety-aware navigation in that (i) it is difficult to guarantee

a ‘safer’ route can be found, and (ii) several dynamic factors affect

the safety of a route, and it can be difficult to measure all of them.

5 Opportunities

There are a number of opportunities in navigation to begin to address

the challenges we outline. To address the data availability issue for

safety-aware routing, we can borrow from traffic-avoidance data

sourcing strategies, which include crowd-sensed data. Vehicle sen-

sor data may also enable detection of sun glare and other safety

factors, which could be used in a feedback loop that allows the

route to dynamically adapt to environmental changes. In addition,

image data gathered from social media or street cameras could be

used to infer safety conditions like sun glare. With additional data,

sun glare and other safety factors could be learned in conjunction

with the routing policy (such as in Li et al. [16]), providing a fully

dynamic safety-aware navigation solution. Once well-established,

safety-aware navigation may be applicable to autonomous driving

scenarios, where exceptionally bright conditions pose a challenge

for the onboard systems that detect nearby vehicles and pedestrians.
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