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Abstract

Sun glare during driving poses a significant threat to driver and
pedestrian safety. Navigation and route planning typically seeks to
minimize the distance or time between the desired origin and desti-
nation, accounting for traffic patterns and other heuristics like mini-
mizing the number of stoplights or left turns encountered on a route.
However, current navigation methods do not support avoidance of
complicated, temporally-dependent safety factors, like adverse road
and environmental conditions. We take avoiding incident sun glare
to the driver as an example of dynamic safety-aware navigation and
lay out potential strategies for addressing this previously unexplored
problem. We present a reinforcement learning-based method for
computing sun glare-low routes through an elastic function that ac-
counts for the direct angle between the sun and the driving direction.
Our preliminary work shows that in some cases it is possible to re-
duce the sun glare exposure on a route by trading off additional travel
distance. We envision future safety-aware navigation approaches that
can automatically balance this trade-oft and account for additional
dynamic spatially and temporally-dependent safety-related environ-
mental factors, like road and weather conditions, to determine the
safest and most efficient route between any two given points.
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1 Safety-Aware Navigation

Navigation and route planning typically seek to minimize the dis-
tance [22-27] or time [1, 9, 10] between the desired origin and des-
tination, but do not account for complicated, temporally-dependent
safety factors like sun glare incident to the driver’s eyes.
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1.1 Motivation

Safety-Aware Navigation. When choosing one of many possible
routes between a given origin and destination, the most convenient
path is typically the shortest or fastest one. However, one might also
consider the quality of the route itself. The quality of a route might
encompass many subjective factors that a driver implicitly considers
when deciding which route to take. For example, a driver might
consider if a route suggested to them includes a road with hills and
sharp turns, where additional concentration is required to navigate
safely, or includes a road without a shoulder, guardrail, or other
desirable safety feature. Static road conditions like those listed above
are often known to local drivers, which makes their chosen routes a
valuable source of implicit information about a road network [13].
Drivers may also avoid left turns or highways, but ultimately, such
considerations are generally static in nature and do not change with
individual decisions (i.e. a driver who avoids left turns will always
have to avoid them throughout the route, not just in certain parts of
the route). More difficult to quantify are safety-related factors that
change dynamically over time, such as environmental conditions
like weather and sun glare. These are particularly relevant to many
drivers who may be hesitant to drive when such conditions are poor.
The dynamic nature of such factors make them hard to account for.
Since weather patterns are typically localized, their interaction with
aroute is fairly simple, as a route either passes through bad weather
or not. On the other hand, the degree of sun glare experienced by a
driver depends on many factors, including the time of day and the
direction of travel at any given point along the route.

Sun Glare Avoidance. In this paper we envision new approaches
to account for safety-related factors in navigation, taking sun glare
as an example. Excessive sun glare during driving poses a significant
threat to driver and pedestrian safety [19], especially during the hours
surrounding sunrise and sunset. One study finds that the risk of a
life-threatening crash is 16% higher during bright sunlight compared
to normal weather '. The dangers of sun glare can be combated
on an individual basis, such as by wearing specially-designed eye-
wear or installing a protective glare coating or shield on the vehicle,
but it would be preferable to avoid glare altogether. 2 Alternatively,
drivers may reschedule their travel time to avoid sun glare-heavy
hours, but doing so requires a willingness to alter plans, which may
not be possible. This leaves sun glare as a continued problem for
drivers, and one that is not addressed in any of the industrial software
systems typically used for navigation.

1.2 Related Work

Most work in navigation focuses on shortest path finding. Static
approaches typically use classical algorithms like Dijkstra, A*, and
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Bellman-Ford [7]. Dynamic variants of the classical algorithms are
also possible, such as the well-known D* algorithm that extends A*
using an incremental heuristic search process [14, 18, 28]. Several
studies suggest Reinforcement Learning (RL) as another viable ap-
proach to dynamic route planning [2, 6, 8, 33]. Recently, cooperative
multi-agent robot routing has been applied to the problem of dynamic
routing [20]. Some recent papers have discussed the importance of
safety considerations in navigation. Krumm and Horvitz attempt to
predict the likelihood of a crash occurring due to a number of safety
factors, including curvature of the roads, position of the sun, number
of vehicles on the road, and weather conditions [15]. They statically
learn the risk probabilities at each road segment, and then apply
Dijkstra’s algorithm to compute low-risk routes, trading speed for
safety. We extend this idea to envision future navigation strategies
that can dynamically account for these features along the route, rather
than learning a static representation of them upfront. A few other
approaches account for safety factors like weather [21], predicted
road risk index [17], and safety during evacuations [11]. Other work
has focused on generating risk-aware costmaps for routes [5, 29],
and navigating based off the generated costmaps. However, dynamic
safety-aware navigation that avoids glare remains an open problem.

1.3 Contribution

Avoiding sun glare while driving presents several challenges that
no existing algorithm or method has solved in a dynamic way. The
position of the sun and the position of the driver both change during
the course of driving, and both of these components can alter the level
of glare incident to the driver. This means accounting for sun glare
requires knowing the sun’s position and dynamically recalculating
the route as the state of the environment changes. In some cases,
sun glare may be unavoidable given the desired start and end points
and the time of day, such as trying to go west during sunset. In this
case, no good route can be found that reduces glare, unless some
environmental factors such as high building and tree coverage along
the road can mitigate it. In addition, even getting data for several
related factors, such as reflectivity of surfaces, may be impossible
without onboard sensors, which are not widely available.

To balance the risk associated with sun glare and other environ-
mental conditions that pose a danger to drivers, we envision new
approaches to navigation that can trade off between these dynamic
risks and the speed of the route. For instance, a driver who has par-
ticular sensitivity to the sun may sacrifice additional time or distance
to avoid driving directly into the sun at times of peak sun glare.
We make the first step by defining the sun glare reduction problem,
suggest several high level strategies for this problem, and investigate
a preliminary RL-based approach to the problem of sun glare reduc-
tion, describing areas of future work to pave the way for broader
safety-aware navigation approaches.

2 Sun Glare in Route Planning

In this section we lay out key factors affecting sun glare incident to
a driver and describe three strategies to account for some of them.

2.1 Factors Affecting Sun Glare Impact on Safety

The impact of sun glare on driver safety may be influenced by many
environmental factors, including (i) relative sun position, (ii) cloud
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cover, (iii) atmospheric refraction, (iv) heights of buildings and trees
along the road(s) traveled, (v) road infrastructure like tunnels and
overpasses, (vi) reflectivity of the surrounding buildings and objects,
and (vii) reflectivity of the road’s surface.

In many cases, there does not exist adequate widely available data
to measure these factors precisely for any given location within a
road network, which is a key challenge in developing a complete
solution to the sun glare navigation problem. For the remainder of
this paper, we only address the sun glare avoidance problem from
the context of the worst case scenario, where environmental factors
such as cloud cover and surrounding buildings do not mitigate the
sun glare experienced.

2.2 Sun Glare Avoidance Strategies

Crowd-sourced navigation strategy. One approach to selecting
routes that avoid sun glare and other safety concerns is to rely on
crowd-sourced information. For example, platforms like Waze allow
users to report hazards in real time, for the benefit of the broader
community [30], which can be used to avoid certain roads to reduce
risk to other drivers. Similarly, knowledge can be extracted from
massive amounts of trajectory data to learn the routes that people
tend to take, even if they are not the shortest or fastest [13]. This
strategy does not explicitly account for any particular safety factors,
but relies on the fact that in the aggregate, the masses will choose
the best routes. However, this strategy requires a massive amount of
data, and there is no guarantee that it even tends to reduce sun glare,
as the average driver may ignore such factors.

Direct optimization strategy. To directly optimize the route for
minimal sun glare, a path finding algorithm like A* could be ad-
justed to consider the position of the sun at the start of the route.
An incremental approach could handle the dynamic nature of the
problem, by only traveling along a single edge (road link), and then
running the algorithm again using the new sun and car position,
accounting for the change since the previous run. However, a greedy
approach does not account for the temporal nature of the problem.
For example, on longer trips, timing the westward portion of the
travel before or after sunset may reduce the sun glare experienced.

RL-based strategy. An more flexible approach that still accounts
for sun glare directly could use reinforcement learning (RL). An
RL policy can be developed to optimize the path given a quantified
measurement of sun glare at any given point in time and space. The
benefit to an RL-based strategy is that it would adeptly handle the
uncertainty in the environment, by considering future states using
a discount factor based on how many iterations ahead are being
predicted. Other strategies such as transfer learning may also be
viable, but may not work well across vast changes in scenario with
different times of day and levels of sun glare. As a preliminary study,
we select an RL-based strategy that can consider future states and
directly encode safety considerations like sun glare. Our findings are
detailed in the following section.

3 Experiments

This section describes our experimental method and results using
an RL-based strategy to find sun glare-low routes, compared to the
standard shortest path approach.
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Figure 1: Plots of route length and S parameter for different levels of sun glare avoidance reward. All paths start at 2200 Pennsylvania

Ave NW, Washington, DC.

3.1 Quantifying Sun Glare

The sun position relative to the driving direction can be determined
using measurements of the altitude and azimuth [12]. Azimuth mea-
sures the sun’s relative direction along the local horizon (the angle
on the xy plane), and Alfitude measures the angle between the sun
and the local horizon (the elevation angle). Using the spherical coor-
dinate system where (x,y,z) = (psin¢ cos 6, psin¢ sin 6, p cos ¢),
the azimuthal angle is 6 and the altitudinal angle is ¢.

3.2 Dataset

We use road network data from Open StreetMap (OSM) 3 3] cap-
tured by the OSMnx tool [4]. The road network contains 554 nodes
and 1314 directional links, representing road intersections and road
segments in Washington D.C., USA. 4

3.3 Experimental Setup

For our experiments we frame the sun glare-low routing problem
as a Reinforcement Learning problem, using Q-Learning with a
multi-part objective function. Rewards are given proportional to the
progress towards the destination point, as measured by the projection
of the actual path onto the straight line connecting the source and
destination points. This is scaled down with a penalty proportional
to the sun glare exposure incurred by the given route segment. We
calculate the position of the sun using the Pysolar 5 package and
use the sun position to determine a quantity we call f, representing
the amount of sun glare incident to the driver, as measured by the
following equation:

B =cosOcos¢b(p) @))

b(¢)={l 0<¢<Z

0 otherwise

where

3opentreetmap.org

4Bounding Box given by North: 38.9057, South: 38.89, West: -77.0516, East: -77.0123
(Latitude and Longitude Coordinates).

Shitps://pysolar.readthedocs.io/en/latest

‘We scale this sun glare penalty by multiplying it by an adjustable
hyperparameter y, where 0 < py < 1. A value of y = 0 means that
sun glare-heavy routes are not penalized at all and a value of =1
means that sun-glare heavy routes are avoided as much as possible,
penalized using the value of f directly. This allows a user to directly
control how much they wish for their route to account for sun glare.
We combine these rewards and penalties to create the following
objective function:

Ry =R(St,Ar) =Dx (1—pf)+e—v 2)

where D is the projection of the segment traveled onto the target
direction, € is an efficiency reward given when the destination is
reached, and v is a dead-end penalty.

Using this objective, we train a Q-learning agent, Q, which reg-
isters a state s, and can choose an action a, based off of the
state [31, 32]. Given a set of states S and a set of actions A, the
function Q : S X A — R, represents the quality of a state-action
pair. At each iteration of the learning process n, the Q function is
updated by:

On(sn,an) = (1 = @)On—1(sn, an) + a(rp + le?X{Qn—l(y, b)}).

where « is the learning rate, and y is the discount factor.

3.4 Results

We measure the lengths and weighted average of the beta parameters
for paths which attempt to reduce sun glare with varying sun glare
avoidance coefficients (1). The baseline is the path determined by
A*, which does not account for sun glare along the route. The RL
baseline, with p = 0, represents the shortest route found by the
RL method, when sun glare is not considered in the objective (i.e.
the sun glare penalty is 0). If the base RL model is successful, we
expect it to find a route with similar distance to the baseline route
by A*. Figure 1(a) shows the length of paths generated. Figure 1(b)
shows the sun glare along each route, represented by the weighted
average of the beta parameter along the path. Some routes were
undefined due to paths not existing with low sun glare. The average
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is computed by summing the beta parameter for each path segment
times the segment length, and dividing by the total path length.

3.5 Discussion

From the results in Figure 1, we find the effectiveness of the sun
glare avoidance objective is mixed. For some routes, the same path is
selected by the model regardless of increases to the emphasis on the
sun glare avoidance parameter, y. These routes are characterized by
flat lines in both plots. On the other hand, for some origin-destination
pairs, the increased emphasis on the sun glare avoidance goal does
cause the model to output a different path. In these cases, the path
selected encounters less sun glare but is sometimes longer, which
aligns with our intuition for this problem, since avoiding sun glare
will likely mean taking a different path than the shortest one.

4 Challenges

Our results show that a reinforcement learning approach can discover
alternative paths that reduce the amount of sun glare incident to the
driver, at the cost of additional distance. While our results pave the
way for future safety-aware navigation approaches, they also reveal
several key challenges in the space. Accounting for the position
of the sun and explicitly considering sun glare in the RL objective
function does not guarantee that the resulting path the agent finds
has less sun glare than the optimal shortest path. Further, predicting
how cloud cover, atmospheric refraction, and reflective surfaces in
the environment will affect the level of glare a driver experiences is
challenging. These challenges generalize to the broader problem of
dynamic safety-aware navigation in that (i) it is difficult to guarantee
a ‘safer’ route can be found, and (ii) several dynamic factors affect
the safety of a route, and it can be difficult to measure all of them.

5 Opportunities

There are a number of opportunities in navigation to begin to address
the challenges we outline. To address the data availability issue for
safety-aware routing, we can borrow from traffic-avoidance data
sourcing strategies, which include crowd-sensed data. Vehicle sen-
sor data may also enable detection of sun glare and other safety
factors, which could be used in a feedback loop that allows the
route to dynamically adapt to environmental changes. In addition,
image data gathered from social media or street cameras could be
used to infer safety conditions like sun glare. With additional data,
sun glare and other safety factors could be learned in conjunction
with the routing policy (such as in Li et al. [16]), providing a fully
dynamic safety-aware navigation solution. Once well-established,
safety-aware navigation may be applicable to autonomous driving
scenarios, where exceptionally bright conditions pose a challenge
for the onboard systems that detect nearby vehicles and pedestrians.
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